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Abstract

Branch instructions are recognized as a major impediment

to exploiting instruction level parallelism. Even with sophis-

ticated branch prediction techniques, many frequently exe-

cuted branches remain di�cult to predict. An architecture

supporting predicated execution may allow the compiler to

remove many of these hard-to-predict branches, reducing the

number of branch mispredictions and thereby improving per-

formance. We present an in-depth analysis of the charac-

teristics of those branches which are frequently mispredicted

and examine the e�ectiveness of an advanced compiler to

eliminate these branches. Over the benchmarks studied, an

average of 27% of the dynamic branches and 56% of the dy-

namic branch mispredictions are eliminated with predicated

execution support.

1 Introduction

Branch instructions are recognized as a major impediment

to exploiting instruction level parallelism (ILP). They force

the compiler and hardware to make frequent predictions of

branch directions in an attempt to �nd su�cient parallelism.

Misprediction of these branches can result in severe perfor-

mance degradation through the introduction of wasted cycles

into the instruction stream. This problem is especially seri-

ous for superscalar and VLIW processors, where each wasted

cycle potentially costs multiple instructions. Branch predic-

tion strategies reduce this problem by allowing the compiler

and hardware to continue processing instructions along the

predicted control path, thus eliminating these wasted cycles.

There are two basic classes of branch prediction strate-

gies: static branch prediction and dynamic branch predic-

tion. Static branch prediction utilizes information available

at compile-time to make predictions. Example static predic-

tion schemes are prediction using branch direction (backward

0

taken, forward not taken) [1], heuristics based on the program

structure [2], and pro�le information [3] [4]. For compilers

employing scheduling techniques such as trace scheduling [5]

or superblock scheduling [6], static branch prediction is used

to identify likely sequences of basic blocks which can be sched-

uled as single units. Dynamic branch prediction utilizes run-

time behavior to make predictions. Example dynamic branch

prediction schemes are the branch target bu�er (BTB) with

a 2-bit saturating counter [7] and two-level adaptive train-

ing [8]. For processors employing hardware scheduling, dy-

namic branch prediction is used to identify a continuous win-

dow of instructions. Regardless of the prediction strategy em-

ployed, the software or hardware scheduler is presented with

a larger block of instructions, enabling it to expose greater

amount of ILP.

While correct branch prediction can increase ILP, incor-

rect prediction often results in large performance penalties.

Recent studies have shown that imperfect branch prediction

can reduce performance by a factor of two to more than

ten [9] [10] [11]. These performance penalties are attributed

to several conditions. First, a large number of instructions,

termed speculative instructions, are often executed from the

predicted direction of each branch. When the branch is mis-

predicted, all speculative instructions must be discarded since

they were improperly executed. Thus, the processor wastes

a large number of instruction slots when a branch is mispre-

dicted. Note that the amount of speculation grows as the

issue width of the processor increases; therefore the negative

impact of branch prediction misses also increases as the issue

width of the processor increases.

The second source of performance loss due to mispredicted

branches is the time necessary to undo the e�ects of the im-

properly initiated speculative instructions. This involves al-

lowing pipelines to drain, and invalidating the appropriate

instructions from processor bu�ers so they do not update the

processor state. Third, after a mispredicted branch is dis-

covered, execution must resume on the correct path. This

involves computing the proper target address and initiating

instruction fetch along this path. At a minimum, several

empty pipeline cycles are required for this procedure.

Finally, the presence of a large number of branches in the

instruction stream places a limit on the potential ILP. A su-

perscalar processor may have to execute multiple branches

per cycle to sustain execution of multiple instructions per

cycle. Under the assumption that an instruction stream con-



tains 25% branches, an 8-issue superscalar processor must

have the capability to execute at least 2 branches per cy-

cle. Handling multiple branches per cycle requires additional

pipeline complexity, as well as designing multi-ported struc-

tures such as the BTB. In high issue rate processors, it is

much easier to duplicate arithmetic function units than to

predict and execute multiple branches per cycle. Therefore,

a technique that eliminates branches from the instruction

stream can signi�cantly reduce the cost for achieving high

issue rates for branch intensive programs.

Predicated execution support provides an e�ective means

to eliminate branches from an instruction stream. Predicated

execution refers to the conditional execution of an instruction

based on the value of a boolean source operand, referred to as

the predicate of the instruction [12] [13]. This architectural

support allows the compiler to use an if-conversion algorithm

to convert conditional branches into predicate de�ning in-

structions, and instructions along alternative paths of each

branch into predicated instructions [14] [15] [16]. Predicated

instructions are fetched regardless of their predicate value.

Instructions whose predicate value is true are executed nor-

mally. Conversely, instructions whose predicate is false are

nulli�ed, and thus are prevented from modifying the proces-

sor state. Predicated execution allows the compiler to trade

instruction fetch e�ciency for the capability to expose ILP

to the hardware along multiple execution paths.

Predicated execution o�ers the opportunity to improve

branch handling in superscalar processors. Eliminating fre-

quently mispredicted branches may lead to a substantial re-

duction in branch prediction misses. As a result, the perfor-

mance penalties associated with the eliminated branches are

removed. Eliminating branches also reduces the need to han-

dle multiple branches per cycle for wide issue processors. As a

side e�ect of reducing the number of branches in the instruc-

tion stream, the amount of speculation required to sustain

full processor utilization is reduced. Therefore, in the case of

a mispredicted branch, fewer speculative instructions must

be discarded. Finally, predicated execution provides an e�-

cient interface for the compiler to expose multiple execution

paths to the hardware. Without compiler support, the cost

of maintaining multiple execution paths in hardware grows

rapidly.

In this paper, we investigate the impact of predicated ex-

ecution on branch behavior. The objectives of the paper are

two-fold. First, the characteristics of branches for a set of

benchmarks are analyzed. Branches are characterized based

on several features, including type, location, frequency, and

bias. Branches which contribute large numbers of mispre-

dictions are isolated and targeted for elimination with predi-

cated execution support. The second objective is to analyze

the e�ects that predicated execution has on branches and

branch prediction characteristics. The ability of the com-

piler to eliminate the problematic branches with predicated

execution is assessed. The analysis presented in this paper

is based on a superscalar microarchitectural model that ef-

�ciently supports predicated execution. This model is an

extension of the HP PA-RISC architecture. Hyperblock op-

timization and scheduling techniques are utilized by the com-

piler to exploit the predicated execution support [16].

for ( i = 0; i < 100; i++ )

if (A[i] � 50 )

j = j + 1;

else

k = k + 1;

(a)

mov r1,0 mov r1,0

mov r2,0 mov r2,0

ld r3,addr(A) ld r3,addr(A)

L1: ld r4,mem(r3+r2) L1: ld r4,mem(r3+r2)

bgt r4,50,L2 pred gt p1U ,p2
U
,r4,50

add r5,r5,1 add r5,r5,1 (p2)

jump L3 add r6,r6,1 (p1)

L2: add r6,r6,1 add r1,r1,1

L3: add r1,r1,1 add r2,r2,4

add r2,r2,4 blt r1,100,L1

blt r1,100,L1

(b) (c)

Figure 1: Example of if-conversion, (a) source code segment,

(b) assembly code segment, (c) assembly code segment after

if-conversion.

2 Predicated Execution

In this section, the underlying predicated execution model as

well as the architecture and compiler support for predicated

execution are summarized. This is necessary to provide a ba-

sic understanding of the underlying framework for predicated

execution used in this paper.

2.1 Overview of Predicated Execution

Predicated execution refers to the conditional execution of

instructions based on the boolean value of a source operand,

referred to as the predicate. If the value of the predicate is

true (a logic 1), the instruction is allowed to execute normally,

otherwise the instruction is nulli�ed, preventing it from mod-

ifying the processor state. Figure 1 contains a simple exam-

ple to illustrate the concept of predicated execution. For

each iteration of the loop in Figure 1(a), either the value

of j or k is conditionally incremented. The basic compiler

transformation to exploit predicated execution is known as if-

conversion [15]. If-conversion replaces conditional branches

in the code with comparison instructions which de�ne one

or more predicates. Instructions control dependent on the

branch are then converted to predicated instructions, utiliz-

ing the appropriate predicate value. In this manner, control

dependences are converted to data dependences.

Figures 1(b) and 1(c) show the assembly code for the loop

example before and after if-conversion. Note that the vari-

ables j and k have been placed in registers r5 and r6. The

conditional branch, bgt, in Figure 1(b) is replaced by a pred-

icate de�ne instruction, pred gt, in Figure 1(c). The actual

semantics of the pred gt instruction will be discussed in the

next subsection. It is su�cient for this example to say that

the predicate p1 is assigned the value 1 if r4 > 50 and 0

otherwise, and the predicate p2 is assigned the complement

of p1. The instructions incrementing the values of r5 and

r6 are converted to predicated instructions, associated with

predicates p1 and p2, respectively. For each loop iteration,

either r5 and r6 will be incremented by the predicated add

instructions, contingent on the results of the predicate de�ne

instruction. Note also that the jump instruction becomes

unnecessary after if-conversion.



2.2 Architectural Support

The architectural extensions assumed to support predicated

execution are based on the Cydra 5 architecture [13] and

the HPL Playdoh Architecture [17]. They consist of four

major components: an Nx1-bit predicate register �le to store

the predicate values, an additional source operand for each

instruction to specify a predicate for instruction execution,

a modi�ed decode/issue stage to nullify instructions whose

predicate is false, and a set of predicate de�ning instructions.

The set of predicate de�ning instructions consist of a com-

plete set of integer, unsigned, 
oat, and double comparison

opcodes of the form shown below.

pred <cmp> Pout1<type>, Pout2<type>, src1, src2 (Pin)

This instruction assigns values to Pout1 and Pout2 accord-

ing to a comparison of src1 and src2 speci�ed by <cmp>

and the predicate <type> speci�ed for each destination pred-

icate. The comparison <cmp> is: equal (eq), not equal (ne),

greater than (gt), etc. The boolean value written to a pred-

icate register is a function of the result of the comparison,

the input predicate of the de�nition instruction (Pin), and

the <type> �eld. The predicate <type> speci�es one of eight

possible functions: unconditional, conditional, OR, AND, or

each of their complements. For a typical predicate de�nition

instruction, the two destination predicates are a given predi-

cate type and its complement to re
ect the \then" and \else"

paths of an if statement. The reader is referred to [17] for

more details regarding the predicate de�nition semantics.

2.3 Compiler Support

The compilation techniques utilized in this paper to exploit

predicated execution are based on a abstract structure called

a hyperblock [16]. A hyperblock is a collection of basic blocks

in which control may only enter at the �rst basic block, des-

ignated as the entry block. Control 
ow may leave from

one or more of the basic blocks in the hyperblock. All con-

trol 
ow between basic blocks in a hyperblock is eliminated

via if-conversion. The goal of hyperblocks is to intelligently

group basic blocks from many di�erent control 
ow paths

into a single manageable block for compiler optimization and

scheduling. Basic blocks are systematically included based

on two high level goals. First, performance is maximized

when the hyperblock captures a large fraction of the pre-

dicted control 
ow paths.1 Thus, any likely blocks to which

control may 
ow should be added to the hyperblock. Sec-

ond, resources (fetch bandwidth and function units) are lim-

ited; therefore including too many blocks will likely result

in an overall performance loss. It may be better to leave

an infrequently executed block out of the hyperblock rather

than insert more predicated instructions which may saturate

the processors resources. Exclusion of a block from the hy-

perblock will require a branch instruction to be left in the

hyperblock; however, if the branch is infrequently taken, it

should be a highly-predictable branch. Hyperblock forma-

tion focuses on eliminating unbiased branches, while leaving

highly biased branches alone since little performance gain is

1Predicted control paths are identi�ed using static branch pre-
diction (pro�le information in this implementation).

for (;;) {
linect = wordct = charct = token = 0;

if (--(fp)->cnt < 0)   c = filbuf(fp);
else   c = *(fp)->ptr++;

}

charct++;
if ((’ ’ < c) && (c < 0177))

if (! token) {
wordct++;
token++;

}
continue;

if (c == ’\n’)   linect++;
else if ((c != ’ ’) && (c != ’\t’))   continue;
token = 0;

if (c == EOF)   break;

Figure 2: Source code for the inner loop of wc.

achieved by eliminating them. Though, careful attention is

paid to the size and dependence height of each block selected

for inclusion in the hyperblock. Therefore, a 50-50 branch

may be left in the program if one of the target blocks re-

quires signi�cantly more resources than the other. An exam-

ple using hyperblock compilation techniques is presented in

the next section.

3 A Case Study

In order to provide a deeper understanding of the branch

characteristics of non-numeric applications and how these

branches are e�ected by predicated execution, a detailed

analysis of one of the benchmark programs is presented in

this section. The benchmark chosen is word count (wc). This

benchmark was chosen for two reasons. First, it contains a

loop which accounts for a large fraction of its execution time,

yet is small enough to be presented in the context of a paper.

Second, the loop has a non-trivial control structure which

presents a challenge to branch handling strategies.

The preprocessed C source code for the loop segment is

presented in Figure 2. The purpose of this program is to

count the number of characters, words, and lines in an input

�le. A character bu�er is processed in the loop and re-�lled

as necessary until the end-of-�le marker is encountered. The

corresponding assembly code and control 
ow graph for the

loop segment are presented in Figure 3. The control 
ow

graph is augmented with the execution frequencies of each

control transfer for the measured run of the program. This

loop is characterized by small basic blocks and a large per-

centage of branches. Overall, the loop segment contains 13

basic blocks with a total of 34 instructions. Of the 34 in-

structions, 14 are branches, 8 conditional, 5 unconditional,

and 1 subroutine call.

Elimination of Branches with Hyperblock Forma-

tion. Branches are eliminated and replaced with predicated

instructions using hyperblock formation. Hyperblock forma-

tion consists of several steps. First, all loop-back branches

of innermost loops are coalesced into a single backedge. This

procedure is illustrated for the example loop in Figure 4a. A

new block, N, is created with a single jump instruction to the

loop header, A. All loop-back branches are then adjusted to

target the new block. Therefore, in Figure 4a, the branches

in blocks H, K, L, and M are retargeted from A to N. The

purpose of this step is to convert as many loop-back branches

to non-loop (i.e. intra-loop) branches as possible. Because



ld  r98, mem(r3 + 0)
add  r27, r98, -1

LA:

st  mem(r3 + 0), r27

LB: ld  r30, mem(r3 + 4)
add  r29, r30, 1
st  mem(r3 + 4), r29
ld  r4, mem(r30+0)

LD: beq  r4, -1, EXIT
ld  r33, mem(r73 + 0)
add  r32, r33, 1
st  mem(r73 + 0), r32

LE:

bge  32, r4, LG
LF: bge  r4, 127, LG
LH: bne  0, r2, LA
LK: ld  r36, mem(r72 + 0)

add  r35, r36, 1
st  mem(r72 + 0), r35

jump  LA
LG: beq  r4, 10, LI
LJ: bne  r4, 32, LL
LM: mov  r2, 0

jump  LA
LI: ld  r39, mem(r71 + 0)

add  r38, r39, 1
st  mem(r71+0), r38
jump  LM

LL: bne  r4, 9, LA
jump  LM

LC: mov  Parm0, r3
jsr  filbuf
mov  r4, Ret0
jump  LD

blt  r98, 1, LC A

CB

14

14

105K

105K

D

E

F

H

K

G

I J

L

M

1
105K

77K 28K

0

77K

61K 16K

16K

4K 24K

4K 22K
2K

252K

28K

(a) (b)

add  r2, r2, 1

EXIT

Figure 3: Inner loop segment of wc, (a) assembly code, (b)

control 
ow graph.

if-conversion can only remove non-loop branches, this pro-

cedure provides more opportunity for eliminating branches

with multiple back branches. A similar procedure can be ap-

plied for each set of loop-exit branches to the same target.

In this loop example, there is only one loop exit, so there is

no opportunity for coalescing exit blocks.

The second step of hyperblock formation is choosing the

set of blocks to be included in the hyperblock. In this exam-

ple, all blocks are selected for inclusion with the exception of

block C. The priority for C is very low due to its low execution

frequency and the hazardous instruction (subroutine call to

�lbuf ) which it contains. The blocks selected for inclusion for

the example loop are outlined by the dashed line in Figure 4a.

In order to perform if-conversion on the selected blocks, con-

trol 
ow from non-selected blocks to selected blocks must be

eliminated. Such paths of control are referred to as side-entry

points into the hyperblock. The third step, tail duplication,

eliminates side-entry points by duplicating a portion of the

selected blocks and re-adjusting the appropriate control 
ow

arcs. In the example loop, a side entry point exists from C

to D. This is eliminated by duplicating blocks D through N

(pictured as block D0-N0) and re-adjusting the C-D control


ow arc to C-D0. The control 
ow graph for the loop after

tail duplication is shown in Figure 4a.

The �nal step of hyperblock formation is to perform if-

conversion on the blocks selected for the hyperblock. In our

current implementation, a variant of the RK if-conversion al-

gorithm is utilized [15]. The if-conversion algorithm �rst cal-

culates the localized control dependence information among

the selected basic blocks. One predicate register is then as-

signed to all basic blocks with the same set of control depen-

LA: pred_clr  p4, p6
ld  r98, mem(r3 + 0)
add  r27, r98, -1
st  mem(r3 + 0), r27
blt  r98, 1, LC
ld  r30, mem(r3 + 4)
add  r29, r30, 1
st  mem(r3 + 4), r29
ld  r4, mem(r30 + 0)
beq  r4, -1, EXIT
ld  r33, mem(r73 + 0)
add  r32, r33, 1
st  mem(r73+0), r32
pred_ge  p4(OR), p1(U), 32, r4

pred_ge  p4(OR), p2(U), r4, 127  (p1)

pred_eq  p3(U), -, 0, r2 (p2)

pred_eq  p6(OR), p5(U), r4, 10  (p4)

pred_eq  p7(U), -, r4, 10 (p4)

pred_eq  p6(OR), p8(U), r4, 32  (p5)

ld  r36, mem(r72+0)  (p3)
add  r35, r36, 1  (p3)
st  mem(r72+0), r35  (p3)
add  r2, r2, 1  (p3)
ld  r39, mem(r71 + 0)  (p7)
add  r38, r39, 1  (p7)
st  mem(r71 + 0), r38  (p7)
pred_eq  p6(OR), -, r4, 9  (p8)
mov  r2, 0  (p6)
jump  LA

A

CB

14

14

105K

105K

61K

D

E

F

H

K

G

I J

L

M

1
105K

77K 28K

0

77K

16K

16K

4K 24K

4K 22K
2K

25
2K

28K

D’ - N’

N

105k

EXIT

(a) (b)

Figure 4: Inner loop segment for wc, (a) control 
ow graph

after loop-back branch coalescing, block selection, and tail

duplication (b) assembly code after if-conversion.

dences. Predicate register de�ning instructions are inserted

into all basic blocks which are the source of the control de-

pendences associated with a particular predicate. Next, all

instructions in each selected block are predicated based on

the predicate assigned to their block. Finally, all conditional

and unconditional branches from selected blocks to other se-

lected blocks are removed.

The resultant assembly code for the loop body of the ex-

ample is presented in Figure 4b. The loop contains eight

unique control dependences; thus eight predicate registers

are required. Of the 12 original branches in the blocks se-

lected for inclusion, all but three are removed. The remaining

branches in the hyperblock are two infrequent exit branches

and the unconditional loop-back branch at the bottom of the

hyperblock.

Comparison of Branch Characteristics. The branch

characteristics for wc before and after hyperblock formation

are analyzed in the remainder of this section. Tables 1 { 5

present a detailed breakdown of the branch behavior for wc.

Each table consists of two parts: the behavior for the base ar-

chitecture (Base), and the base architecture with predicated

execution support (Pred). The base architecture is an 8-issue

superscalar processor with uniform function units. The in-

struction latencies assumed are those of the HP PA-RISC

7100. More details regarding the architecture model and the

simulation model are presented in Section 4.1.

An overall breakdown of the dynamic branches is pre-

sented in Table 1. Branches are broken down into three

categories: type (conditional, unconditional, subroutine

call/return, or indirect), class (loop or non-loop), and loca-

tion (inner-loop, outer-loop, or straight-line). For the class



Type Conditional Unconditional Jsr/Rts Ind Total

Class Loop Non-loop Loop Non-loop

Location Inner Outer Inner Outer StrLn Inner Outer Inner Outer StrLn

Base 184K 1 339K 3 4 43726 1 5355 0 0 29 0 572K

Pred 105K 1 105K 3 4 105K 0 23 0 0 29 0 315K

Table 1: Dynamic branch breakdown for wc.

0 1-10 11-20 21-30 31-40 41-50 51-60 61-70 71-80 81-90 91-100

Base 287K 24898 27606 105K 3 2 0 3 77590 0 3

Pred 210K 14 5 0 16 8 0 3 8 0 3

Table 2: Taken frequency distribution for wc.

category, loop branches refer to loop-back branches as well

as loop-exit branches. All other branches are grouped in

non-loop class. For the location category, inner-loop spec-

i�es branches contained within innermost loops. Outer-loop

speci�c branches contained within a loop which is not an

innermost loop. All other branches do not reside explic-

itly within any loop body within their respective function

and are thus placed in the straight-line category. From Ta-

ble 1, with predicated execution support, the total number

of dynamic branches was reduced from 572K to 315K, ap-

proximately a 45% reduction. This is mainly attributable

to the reduction in branches shown in column [conditional,

non-loop, inner]. The branches in this category removed are

from blocks E, F, G, and J (Figure 3). The dynamic num-

ber of branches is also reduced in column [conditional, loop,

inner]. Although if-conversion does not directly remove loop

branches, the loop-back and exit coalescing performed during

hyperblock formation allows this number to be reduced with

predicated execution support.

One interesting note from Table 1, column [unconditional,

loop, inner], is that the number of branches is increased with

predicated execution support. This is a result of loop-back

branch coalescing. In the transformed code, there is a single

unconditional back branch which is executed on every itera-

tion of the loop. Since unconditional loop-back branches were

only executed on a subset of iterations in the original code,

an increase in the number is observed as shown in column

[unconditional, loop, inner].

To further break down the conditional branches, the taken

frequency distribution is presented in Table 2. The data

shown are the dynamic counts of all conditional branches

whose taken percentages lie within the range at the top of

each column. For example, for the base architecture, 8%

(27,606) of the branches are taken 11-20% of the time. From

Table 2, a drastic change is observed from the base to the

predicate architecture. With predicated execution support,

the taken frequency of nearly all conditional branches is re-

duced to 0%. This behavior is a direct result of the hyper-

block formation procedure. All conditional branches in the

loop are eliminated with the exception of the two branches

to blocks C and EXIT (Figure 3). These remaining branches

are heavily biased to the fall-through path, taken only 1 and

14 times, respectively.

The taken frequency distribution chart is a direct measure

of the e�ectiveness of the compiler at eliminating unbiased

branches with predicated execution support. The desired

trend is for the compiler to eliminate all unbiased branches,

while leaving highly biased branches in the code. If only

highly biased conditional branches remain with predicated

execution support, very few mispredictions for conditional

branches will occur.

Table 3 presents the branch misprediction breakdown for

wc. Data for three dynamic prediction models is reported:

BTB with a 2-bit saturating counter (Ctr), BTB with pro�le-

based direction prediction (Pro), and a branch target cache

(Btc). For each scheme, a 1024-entry bu�er is utilized. In

our model, the branch target cache is similar to a BTB, ex-

cept that the bu�er is addressed by the cache block number

instead of the instruction address, and simply stores the ad-

dress to which control 
owed the last time this cache block

was executed. Thus, there is only one branch prediction for

all branches within a single cache block. The cache block size

simulated is 64 bytes (16 instructions).

From Table 3, the most important data is the huge drop

in branch prediction misses from the base to the predicate

architecture. The number of misses drops by factor of al-

most 1000 for all models. The reason for this huge drop

the compiler successfully removes the branches causing the

majority of the misses. Considering the Ctr and Pro mod-

els, the two problematic categories of branches are shown in

columns [conditional, loop, inner] and [conditional, non-loop,

inner]. As shown in column [conditional, non-loop, inner] the

hyperblock formation procedure removes all branches of this

category, with the exception of 2. The remaining 2 are highly

biased as fall-through, and are only mispredicted a total of

33 times. The branches in column [conditional, loop, inner]

have been coalesced into a single unconditional branch which

is mispredicted only when it is not in the BTB.

An interesting pattern is observed in the Btc model. In

the base architecture, it predicts [conditional, loop, inner]

branches more e�ectively than either Ctr or Pro. All models

have approximately the same performance for [conditional,

non-loop, inner] branches. The poorer performance of the

Btc model is the result of the large number of mispredic-

tions for [unconditional, loop, inner] branches. This behavior

occurs because there are two unconditional branches which

share the same cache block. Therefore, they are constantly

changing the predicted target block and causing the other to

miss. However, the unconditional branches causing this prob-

lem are eliminated by the compiler with predicated execution

support. The performance level of all three branch predic-

tion models is approximately equal with predicated execution

support for wc.

Table 4 presents the static misprediction coverage of all

branches. The branch prediction scheme is a BTB with 2-bit

saturating counter and the percentages shown are the sum of

the conditional and unconditional branch values. Mispredic-

tion coverage is de�ned as the percentage of static branches

which account for a given percentage of dynamic mispre-

dictions. For example, in the base architecture, 8% of the



Type Conditional Unconditional Jsr/Rts Ind Total MPR

Class Loop Non-loop Loop Non-loop

Location Inner Outer Inner Outer StrLn Inner Outer Inner Outer StrLn

Base Ctr 19521 0 32604 0 2 2 1 5 0 0 9 0 52144 0.09

Pro 16173 0 32987 0 2 2 1 5 0 0 9 0 49179 0.09

Btc 14047 0 33000 0 2 43726 1 4082 0 0 9 0 94867 0.17

Pred Ctr 3 1 33 0 2 2 0 6 0 0 9 0 56 0.00

Pro 3 1 31 0 2 2 0 6 0 0 9 0 54 0.00

Btc 3 1 47 0 2 26 0 23 0 0 9 0 111 0.00

Table 3: Branch misprediction breakdown for wc.

10 20 30 40 50 60 70 80 90 100

Base 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.08 0.08 0.56

Pred 0.07 0.07 0.07 0.14 0.14 0.20 0.29 0.34 0.45 0.52

Table 4: Branch misprediction coverage for wc using a BTB with 2-bit counter.

static branches account for 90% of the dynamic mispredic-

tions. Note that 100% of all mispredictions occur in 56% of

the static branches; the remaining 44% of branches are either

never executed or never mispredicted. The desired distribu-

tion is that a small number of static branches should account

for a large portion of the misses, as seen in this table. In this

situation, the compiler can focus its e�orts on eliminating

this small number of branches, reducing mispredictions and

improving performance.

The distribution of the number of instructions between

branches and the number of instructions between mispre-

dicted branches using the BTB with 2-bit counter scheme

is presented in Table 5. All branch categories are consid-

ered in this data. The data shown are the dynamic counts of

the number of branches which are separated by the speci�ed

number of instructions. For example, in the base architec-

ture, 59% (335K) of branches are separated by 3-4 instruc-

tions, and 11% (5561) of mispredicted branches are sepa-

rated by 1 instruction. In general, for the base architecture,

there is a very small number of instructions between branches

and mispredicted branches. The average values are 2.02 in-

structions between branches and 32.15 instructions between

mispredicted branches. For a superscalar processor, this low

number of instructions between mispredicted branches indi-

cates a signi�cant branch misprediction overhead. For the

predicated architecture, the distribution is somewhat dis-

torted since there are only 56 mispredicted branches in the

entire program. The average values are 9.00 instructions be-

tween branches and 56355.55 instructions between mispre-

dicted branches. By eliminating branches, the compiler has

successfully increased the distance between branches and mis-

predicted branches for the predicate architecture.

Summary. This section demonstrates how predicated ex-

ecution can be applied to the benchmark wc with the use of

hyperblocks. The compiler was able to reduce the number of

dynamic branch instructions by 45%. More importantly, we

were able to remove almost all hard to predict branches. As

a result, the number of dynamic mispredictions was reduced

dramatically (1000 times), regardless of the branch predic-

tion scheme employed. Thus, the results for wc indicated

that predicated execution may lessen the need to employ a

sophisticated branch prediction scheme. Finally, we saw that

hyperblocks greatly increased the number of instructions be-

tween mispredicted branches. In the next section, we exam-

ine whether the the branch characteristics exhibited by wc

are consistent across a set of benchmarks.

4 Experimental Evaluation

4.1 Methodology

The impact of predicated execution on branch behavior is

evaluated using hyperblock compilation techniques in this

section. The benchmarks studied consist of 022.li , 023.eqn-

tott , 026.compress, 056.ear from SPEC-92, and the Unix util-

ities cmp, grep, lex , quick sort , wc. The benchmarks are

compiled to produce an intermediate code for the target ar-

chitecture, either base or predicate. The base architecture is

an 8 issue superscalar processor, with no limitation placed

on the combination of instructions which may be issued each

cycle. The base architecture is further assumed to have 64

integer and 64 
oating-point registers. The memory system

consists of a 64K direct mapped instruction cache and a 64K

direct mapped, blocking data cache; both with 64 byte block

size. The data cache is write-through with no write allocate

and has a miss penalty of 12 cycles. The dynamic branch

prediction strategy is one of three models: a 1K entry BTB

with 2 bit counter, a 1K entry BTB with pro�le-based di-

rection prediction, or a 1K entry branch target cache. The

instruction latencies assumed are those of the HP PA-RISC

7100. The predicate architecture is the same as the base ar-

chitecture with extensions to support predicated execution

as described in Section 2.2. A 64-entry predicate register �le

is assumed in the predicate architecture.

Following register allocation and code scheduling, the in-

termediate code is in a form which could be executed by the

target architecture. To allow simulation of the predicated

code on the host HP PA-RISC processor, the code is modi�ed

to remove all predicated instructions. Instructions to emulate

the e�ects of predicated instructions are inserted by the com-

piler, using the bit manipulation and conditional nulli�cation

capabilities of the PA-RISC instruction set. This emulation

code is then probed. Execution of the probed code demon-

strates correctness of the target architecture code, and also

generates an instruction trace containing memory address in-

formation, predicate register contents, and branch directions.

Note the code utilized speci�cally for emulation and trace

generation is not simulated; therefore it is not counted in

any of the measured statistics.

The compiler support utilized in this evaluation is more

sophisticated than what was presented in Section 3 for wc.

For the base architecture, superblock formation, superblock

ILP optimizations, and superblock scheduling are applied to

e�ectively generate code for a wide issue processor without

predicated execution support [6]. For the predicate archi-

tecture, the ILP optimizations and scheduling techniques are



0 1 2 3-4 5-8 9-16 17-32 33-64 65-128 129-256 257+

Base Br 209K 27586 17 335K 4 3 2 0 0 0 0

MP br 4060 5561 4 8 9 5487 23980 5444 5689 1742 160

Pred Br 58 12 105K 24 1 210K 2 0 0 0 0

MP br 5 7 4 8 9 6 3 1 0 0 13

Table 5: Distance between branches and mispredicted branches for wc using a BTB with 2-bit counter.
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Figure 5: Reduction in total dynamic branches with predi-

cated execution support.

applied to hyperblocks to expose additional ILP for a wide

issue processor with predicated execution support. An im-

portant item to note is the branch behavior data for wc pre-

sented in this section is similar to that presented in Section 3.

However, there are some distinct di�erences as to the cate-

gorization of branches. These di�erences are caused by the

changes to the control 
ow graph and loop structure intro-

duced by superblock and ILP transformations.

4.2 Results and Analysis

The branch analysis introduced in Section 3 was performed

for each of the benchmarks. Here, much of the data is pre-

sented in graphical form rather than tables. Appendix A

contains a complete tabular listing of the data generated for

all benchmarks. The table format and contents is the same

as that used in Section 3.

Total Dynamic Branches. Predicated execution en-

ables the compiler to remove hard to predict branches from

the instruction stream. Thus, the total number of dynamic

branches in the program would be expected to decrease as the

result of hyperblock techniques. Figure 5 shows the reduction

in dynamic branches for each benchmark for the predicate ar-

chitecture. As expected, predication signi�cantly reduces the

number of dynamic branches for most benchmarks, averag-

ing a 27% reduction across the benchmarks. The one excep-

tion was 026.compress, which experiences a small increase

in the number of branches for the predicated execution case

(12343K to 12852K total dynamic branches, Table 7). The

increase in the number of dynamic branches is a side-e�ect

of the hyperblock formation procedure. As a hyperblock is

formed, branches that cannot be removed from the merged

blocks are predicated. These branches are predicted regard-

less of the value of their predicate, increasing the number

of times each branch is fetched, and hence increasing the

dynamic count for that branch. The reader is referred to Ta-

ble 7 in Appendix A for a complete breakdown of the dynamic

Ctr Pro Btc
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Figure 6: Reduction in the number branch mispredictions

with predicated execution support.

branch counts for each benchmark.

Total Mispredicted Branches. By allowing hard to

predict branches to be removed from the instruction stream,

the total number of mispredicted branches should be de-

creased with predicated execution support. Figure 6 shows

this reduction for each of the benchmarks, using the three

branch prediction schemes. A complete breakdown of the

branch misprediction counts is provided in Appendix A, Ta-

ble 8. For the majority of benchmarks, the number of mis-

predictions decreases signi�cantly regardless of the predic-

tion scheme employed. For wc and cmp, virtually all mis-

predictions are removed, regardless of the branch prediction

scheme. Although the numbers are not as signi�cant as the

wc example presented in Section 3, the number of mispre-

dictions is reduced by a factor of 6 for 023.eqntott and a

factor of 4 for 056.ear (Table 8). Even though there is a 4%

(Figure 5) increase in the number of dynamic branches for

026.compress, all branch prediction schemes achieve a 30%

decrease in the number of branch mispredictions. The oppo-

site trend appears for grep: the number of dynamic branches

is reduced by 30% (Figure 5) with predication, but there is

little decrease in the number of branch mispredictions and

even an increase for the Btc model. This behavior occurs

because grep is dominated by heavily biased branches. As a

result, branches which are eliminated do not signi�cantly re-

duce the number of mispredictions. The observed increase in

mispredictions for the Btc model occurs because the branches

in the hyperblock happen to be scheduled into the same cache

block. Since the Btc model only allows a single prediction per

cache block, prediction accuracy is lost.

Dynamic Distance Between Branches. Figure 7

presents the distribution, averaged across all benchmarks,

of the number of instructions between branches and mispre-

dicted branches. The dynamic branch prediction scheme uti-

lized to derive this data is the BTB with 2-bit counter. The

desired trend is for the distributions to shift to the right with

predicated execution support. This indicates the compiler is
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Figure 7: Distribution of the distance between branches and

mispredicted branches using a BTB with 2-bit counter.

Base Pred

Mispred Mispred

Branches Branches Branches Branches

022.li 3.5 43 3.7 62

023.eqntott 2.1 28 4.8 195

026.compress 7.3 78 8.7 137

056.ear 4.7 129 5.3 492

cmp 2.6 433 3.6 43940

grep 0.9 126 1.2 100

lex 1.6 160 6.4 290

qsort 8.5 54 14.7 128

wc 2.0 46 6.8 28464

Average 3.7 122 6.1 8201

Table 6: Average distance between branches and mispre-

dicted branches using a BTB with 2-bit counter.

successfully removing branches from the instruction stream,

thereby increasing the distances between branches and mis-

predicted branches. The distributions indicate the desired

behavior is obtained for the predicate architecture. The most

notable change is the distance between mispredicted branches

distribution which starts in the 3-4 instruction category for

the base architecture. However, for the predicate architec-

ture the distribution has been shifted to start in the 17-32

instruction range. This indicates the predicate architecture

can consistently process a moderate number of instructions

(17-32) before encountering a misprediction. This is espe-

cially important for wider issue processors, which cannot be

fully utilized unless su�cient distance can be established be-

tween mispredicted branches. The individual dynamic dis-

tributions for each benchmark are given in Table 11 of the

appendix.

On an individual benchmark basis, the average distance

between branches and mispredicted branches is presented in

Table 6. With predicated execution support, the compiler

has e�ectively eliminated branches to increase distance be-

tween the remaining branches. The benchmark improved the

largest amount is lex , 1.6 to 6.4 instructions. A more mag-

ni�ed e�ect is observed for the increased distance between

mispredicted branches. For cmp and wc, almost all mispre-

dictions are eliminated, thus the average distance between

mispredictions is extremely high. The anomaly is grep, in

which the average distance between mispredicted branches

is reduced with predicated execution support. This behav-

ior occurs because the number of mispredictions is relatively

unchanged in the predicate architecture (Table 8). However,
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Figure 8: Average taken frequency distribution of conditional

branches across all benchmarks.

the total number of instructions executed in grep is reduced

in the predicate architecture due to additional compiler opti-

mization opportunities exposed by hyperblock formation. As

a result, a net reduction in instructions per misprediction is

observed.

Taken Branch Frequency. Figure 8 presents the av-

erage taken frequency distribution for conditional branches

across all benchmarks. As discussed in Section 3, the e�ec-

tiveness of the compiler support for predicated execution can

be shown by eliminating or reducing the less biased branches

and leaving the branches that are more heavily biased to-

wards taken or not taken. As the �gure shows, this was

indeed the case. In particular, the number of branches that

fall into the range of taken from 1% of the time to 90% of

the time were reduced. In addition, branches that were never

taken or taken 91-100% of the time have been increased.

5 Related Work

Predicated or guarded execution has been examined by sev-

eral researchers. Decision tree scheduling utilizes guarded

instructions to achieve large performance improvements on

deeply pipelined processors [12]. Guarded instructions allow

instructions from multiple execution paths to be placed in

load/branch delay slots to e�ectively hide long execution la-

tencies. Predicated execution support was used extensively

in the Cydra 5 system [13] [18]. Predicated execution is in-

tegrated into the optimized execution of modulo scheduled

inner loops to control the prologue, epilogue, and iteration

initiation. Predicated execution also allows loops with con-

ditional branches to be e�ciently modulo scheduled.

Pnevmatikatos and Sohi examine the e�ectiveness of

guarded execution on dynamically scheduled superscalar pro-

cessors [19]. They show that full guarding can signi�cantly

increase the average basic block size and the average dynamic

window size. They also show moderate increases in both

may be obtained with restricted guarding. A major di�er-

ence with this work is that we focus on characterizing the

behavior of the branches responsible for mispredictions and

the e�ectiveness of predicated execution to deal with these

branches using hyperblock compilation techniques [16].



6 Conclusions

Branch instructions pose serious di�culties to exploiting

instruction-level parallelism. Even with sophisticated branch

prediction techniques, a large percentage of frequently ex-

ecuted branches remain di�cult to predict. In this paper,

an in-depth analysis of the characteristics of branches is pre-

sented. Branches which contribute large numbers of mispre-

dictions are isolated and targeted for elimination with predi-

cated execution support. Compiler support for predicated ex-

ecution is based on a structure called a hyperblock. The goal

of hyperblock formation is to intelligently group basic blocks

from many di�erent control 
ow paths into a single manage-

able block for compiler optimization and scheduling. Hyper-

block formation focuses on eliminating unbiased branches,

while leaving highly biased branches alone, since little per-

formance gain is achieved by eliminating them.

Results show the compiler can substantially reduce the

number of dynamic branches with predicated execution sup-

port. Across all benchmarks, an average of 27% reduction

in the dynamic branches was observed. More importantly,

though, the compiler is able to remove a large fraction of

the di�cult to predict branches. Therefore, the number of

mispredictions is also considerably reduced. The addition of

predicate support to an architecture utilizing a BTB with a

2-bit counter reduced the branch prediction misses by 75%

in 4 of the 9 benchmarks. Over 20% of the branch prediction

misses are eliminated in all but one of the benchmarks. The

distance between branches and mispredicted branches is also

an important measure. With predicated execution support

the average distance between branches is increased from 3.7

to 6.1 instructions, and the average distance between mis-

predicted branches is increased from 122 to 8201, for the

benchmarks studied.

While predicated execution support was able to reduce the

number of mispredicted branches, there are still a large num-

ber of problematic branches remaining. These problematic

branches motivate future architecture and compiler studies

on predicated execution.
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A Appendix

Type Conditional Unconditional Jsr/Rts Ind Total

Class Loop Non-loop Loop Non-loop

Location Inner Outer Inner Outer StrLn Inner Outer Inner Outer StrLn

022.li

Base 2419K 57667 147K 428K 3405K 138K 4822 2687 263 121K 549K 0 7275K

Pred 2149K 191K 1141K 341K 1959K 398K 10376 26629 2725 81179 550K 0 6853K

023.eqntott

Base 28708K 101M 2285K 149M 5017K 172K 19578 4465 129K 1614K 6873K 66 296M

Pred 176M 263K 956K 1903K 4707K 301K 56317 21 176K 1625K 6886K 66 193M

026.compress

Base 5217K 1758K 39 4760K 88 49590 93008 1 463K 22 250 0 12343K

Pred 4383K 4264K 39 2664K 88 306K 871K 1 361K 22 250 0 12852K

056.ear

Base 1065M 117M 234M 43240K 13047K 54997 41728 0 111 2480K 15005K 0 1491M

Pred 878M 6320 21 18675 12420K 233M 1 233M 6311 2480K 15433K 0 1375M

cmp

Base 210K 13 315K 1 11 4037 1 42 0 0 31 0 530K

Pred 420K 13 0 44 11 0 2 0 43 0 31 0 420K

grep

Base 4300 312K 0 340K 465 0 8831 0 5539 0 308 1 672K

Pred 210K 108K 0 118K 465 4792 856 0 9483 0 308 1 453K

lex

Base 5866K 778K 242K 6958K 31689 51243 105K 10190 42230 4814 15600 678 14107K

Pred 6195K 902K 69121 1294K 24227 60470 54295 4392 18143 5122 16708 3881 8648K

qsort

Base 5512K 0 242K 0 1062K 236K 0 0 0 108K 614K 0 7777K

Pred 2075K 0 135K 0 455K 1879K 0 0 0 399K 614K 0 5559K

wc

Base 222K 58237 6 199K 4 11245 26489 2 4927 0 29 0 523K

Pred 210K 23 6 35 4 13137 7 2 29 0 29 0 223K

Table 7: Dynamic branch breakdown for all benchmarks.

Type Conditional Unconditional Jsr/Rts Ind Total MPR

Class Loop Non-loop Loop Non-loop

Location Inner Outer Inner Outer StrLn Inner Outer Inner Outer StrLn

022.li

Base Ctr 197K 852 29688 11775 218K 118 153 12 36 4021 261K 0 724K 0.10

Pro 409K 1568 27645 15357 368K 76 80 12 33 3474 256K 0 1082K 0.15

Btc 326K 965 45494 16607 402K 47614 1103 802 149 83303 445K 0 1370K 0.19

Pred Ctr 216K 37652 32243 8955 50515 55 12 25 128 1500 218K 0 565K 0.08

Pro 187K 33123 26367 15556 68877 55 12 25 125 772 213K 0 545K 0.08

Btc 349K 65170 34196 13297 77203 88911 6132 13878 891 48920 405K 0 1104K 0.16

023.eqntott

Base Ctr 1119K 2133K 182K 24080K 120K 8571 1078 490 2450 4118 3356K 98 31010K 0.10

Pro 3708K 2819K 277K 37272K 227K 7979 1078 490 2450 3724 3355K 98 47676K 0.16

Btc 2944K 6263K 361K 30110K 197K 36177 48995 885 54506 735K 6614K 3154 47370K 0.16

Pred Ctr 2290K 106K 4334 215K 24064 3151 1960 294 3245 9459 2884K 0 5543K 0.03

Pro 2860K 124K 6406 242K 24459 882 1960 294 3443 9459 2872K 0 6147K 0.03

Btc 4712K 116K 6112 400K 26728 113K 60461 294 16269 1115K 4765K 0 11334K 0.06

026.compress

Base Ctr 274K 49181 41 953K 104 104 1974 13 8541 26 78 0 1287K 0.10

Pro 863K 164K 13 1512K 104 104 1974 13 416 26 78 0 2543K 0.21

Btc 411K 116K 13 1167K 104 7761 63251 13 215K 26 78 0 1981K 0.16

Pred Ctr 404K 82058 41 385K 143 26 10835 13 286 52 104 0 883K 0.07

Pro 624K 341K 13 740K 143 26 11783 13 286 52 104 0 1719K 0.13

Btc 544K 142K 13 463K 143 77686 78255 13 104K 52 104 0 1411K 0.11

056.ear

Base Ctr 23091K 15885K 6592 19769K 3077 396 693 0 198 693 6805K 0 65564K 0.04

Pro 21644K 14567K 6392 23206K 2277 396 693 0 198 693 6175K 0 65606K 0.04

Btc 32762K 19815K 6392 19900K 2777 58031 39550 0 198 7086 9959K 0 82552K 0.06

Pred Ctr 9334K 6994 0 998 3077 99 0 0 297 693 5534K 0 14880K 0.01

Pro 9311K 7894 0 798 3377 99 0 0 297 693 5534K 0 14859K 0.01

Btc 22953K 7094 0 2398 2377 99 0 0 6894 74452 8369K 0 31416K 0.02

cmp

Base Ctr 1 2 4374 1 10 10 0 8 0 0 1 0 4407 0.01

Pro 1 2 4064 1 10 10 0 8 0 0 1 0 4097 0.01

Btc 397 3 7797 1 10 19 0 42 0 0 1 0 8270 0.02

Pred Ctr 19 2 0 5 10 0 1 0 6 0 1 0 44 0.00

Pro 15 12 0 5 10 0 1 0 6 0 1 0 50 0.00

Btc 28 3 0 4 10 0 1 0 32 0 1 0 79 0.00

grep

Base Ctr 452 4329 0 5121 6 0 5 0 52 0 96 1 10062 0.01

Pro 559 4053 0 5322 6 0 5 0 38 0 7 1 9991 0.01

Btc 606 8463 0 9154 6 0 425 0 973 0 185 1 19813 0.03

Pred Ctr 4366 4666 0 772 6 1 5 0 65 0 7 1 9889 0.02

Pro 4049 4582 0 745 6 1 5 0 39 0 7 1 9435 0.02

Btc 7590 12720 0 1349 6 235 420 0 1583 0 96 1 24000 0.05

lex

Base Ctr 39381 6429 7019 160K 4169 590 2735 958 724 856 5181 771 228K 0.02

Pro 92560 25859 9857 269K 4510 469 2403 710 608 733 5119 771 412K 0.03

Btc 71315 30734 7057 231K 4827 5306 12798 3070 12641 4618 11773 874 396K 0.03

Pred Ctr 78864 13942 600 35689 2649 190 245 55 100 874 5962 819 139K 0.02

Pro 82835 16872 23082 51618 3290 185 245 55 100 1569 5932 819 186K 0.02

Btc 142K 55869 1737 84510 4454 32441 37525 274 1020 3865 13479 830 378K 0.04

qsort

Base Ctr 740K 0 106K 0 274K 42 0 0 0 42 129K 0 1250K 0.16

Pro 697K 0 101K 0 272K 42 0 0 0 42 129K 0 1200K 0.15

Btc 775K 0 106K 0 265K 106K 0 0 0 29399 129K 0 1413K 0.18

Pred Ctr 133K 0 41875 0 137K 131K 0 0 0 51325 133K 0 627K 0.11

Pro 104K 0 34671 0 103K 104K 0 0 0 46621 133K 0 526K 0.09

Btc 171K 0 52996 0 74833 190K 0 0 0 124K 208K 0 822K 0.15

wc

Base Ctr 13704 35 6 19492 2 2 5 2 7 0 9 0 33264 0.06

Pro 13313 28 3 19674 2 2 5 2 7 0 9 0 33045 0.06

Btc 16019 29 4 24993 2 3734 10887 2 678 0 9 0 56357 0.11

Pred Ctr 20 4 5 10 2 1 3 2 5 0 9 0 61 0.00

Pro 16 8 3 10 2 1 3 2 5 0 9 0 59 0.00

Btc 29 5 3 9 2 1 7 2 5 0 9 0 72 0.00

Table 8: Branch misprediction breakdown for all benchmarks.



0 1-10 11-20 21-30 31-40 41-50 51-60 61-70 71-80 81-90 91-100

022.li

Base 4202K 382K 452K 182K 219K 158K 93281 166K 130K 84425 370K

Pred 4336K 114K 126K 116K 146K 50258 104K 622K 19165 28929 122K

023.eqntott

Base 125M 40752K 34506K 4328K 18539K 8855K 9926K 8043K 419K 6897K 29826K

Pred 158M 2124K 13088K 293K 163K 102K 14406 56995 130K 9391K 934K

026.compress

Base 3980K 2651K 661K 1011K 803K 720K 207K 196K 383K 311K 804K

Pred 5973K 2638K 2262K 4 0 261K 225K 228K 145K 36 273K

056.ear

Base 1175M 86393K 38305K 14876K 19817K 43835K 18465K 7005K 4011K 14 65451K

Pred 1216M 37355K 37200K 70 382 19 57 0 0 14 65258K

cmp

Base 409K 105K 0 0 0 0 0 0 0 0 11168

Pred 407K 14 0 0 0 0 0 0 0 0 13175

grep

Base 445K 195K 0 0 0 1011 0 0 0 6 14128

Pred 223K 197K 160 0 250 0 0 723 0 0 14952

lex

Base 10848K 1850K 234K 125K 88545 44539 38135 91013 33594 30043 490K

Pred 823K 583K 12479 240K 6015 71519 54663 35157 47455 116K 6496K

qsort

Base 1483K 2539K 565K 12718 114K 1503K 295K 0 0 0 300K

Pred 2313K 1083K 558K 78642 0 204K 0 0 0 0 198K

wc

Base 331K 22270 70264 34951 16 15584 0 1306 8 4033 3

Pred 210K 14 5 0 16 8 0 3 8 0 3

Table 9: Taken frequency distribution for all benchmarks.

10 20 30 40 50 60 70 80 90 100

022.li

Base 0.00 0.00 0.01 0.01 0.01 0.01 0.02 0.02 0.02 0.15

Pred 0.00 0.00 0.00 0.01 0.01 0.01 0.01 0.02 0.03 0.14

023.eqntott

Base 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.01 0.01 0.15

Pred 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.01 0.12

026.compress

Base 0.00 0.01 0.01 0.01 0.02 0.03 0.03 0.04 0.07 0.31

Pred 0.01 0.01 0.02 0.02 0.02 0.03 0.03 0.04 0.06 0.27

056.ear

Base 0.00 0.00 0.01 0.01 0.02 0.02 0.02 0.03 0.04 0.18

Pred 0.00 0.00 0.01 0.01 0.02 0.02 0.03 0.04 0.04 0.09

cmp

Base 0.02 0.03 0.05 0.07 0.09 0.11 0.14 0.16 0.17 0.33

Pred 0.02 0.03 0.05 0.06 0.08 0.09 0.12 0.14 0.17 0.21

grep

Base 0.00 0.00 0.01 0.01 0.01 0.02 0.02 0.03 0.03 0.10

Pred 0.00 0.01 0.02 0.02 0.03 0.04 0.04 0.05 0.07 0.18

lex

Base 0.00 0.00 0.00 0.00 0.00 0.01 0.01 0.03 0.06 0.29

Pred 0.00 0.00 0.00 0.01 0.01 0.01 0.01 0.01 0.02 0.33

qsort

Base 0.02 0.02 0.02 0.03 0.04 0.06 0.07 0.09 0.13 0.45

Pred 0.03 0.03 0.04 0.04 0.05 0.08 0.09 0.10 0.15 0.50

wc

Base 0.02 0.02 0.02 0.03 0.05 0.05 0.06 0.06 0.09 0.50

Pred 0.03 0.03 0.04 0.04 0.05 0.11 0.17 0.24 0.32 0.38

Table 10: Misprediction coverage for all benchmarks using a BTB with 2-bit counter.

0 1 2 3-4 5-8 9-16 17-32 33-64 65-128 129-256 257+

022.li

Base Br 2675K 942K 834K 792K 1187K 369K 414K 0 0 0 0

MP br 46872 6843 9795 37061 42965 105K 182K 168K 83099 38330 2303

Pred Br 827K 2307K 910K 1354K 539K 1723K 338K 0 0 0 0

MP br 8699 77905 17157 35384 48790 94316 170K 396K 136K 49752 4915

023.eqntott

Base Br 119M 42025K 10517K 74928K 42437K 4393K 564K 5323 0 0 0

MP br 1110K 2745K 923K 2510K 1528K 6969K 6538K 5229K 2411K 1034K 7587

Pred Br 12308K 5236K 110M 29587K 6171K 10489K 13706K 44191 60473 0 0

MP br 28313 5820 9076 23577 2101K 37682 183K 194K 1133K 83633 1741K

026.compress

Base Br 2671K 2073K 1346K 1587K 1384K 1163K 1108K 867K 0 6899 0

MP br 16343 11972 11683 22967 70153 118K 231K 228K 321K 216K 37067

Pred Br 3094K 2151K 508K 1583K 2307K 952K 1108K 945K 39 9289 0

MP br 14549 125 153 1617 70444 32889 30654 158K 165K 319K 88904

056.ear

Base Br 66504K 110M 500M 440M 63641K 180M 54812K 36680K 29738K 7429K 99

MP br 1106K 715K 209K 7329K 3980K 4435K 21368K 12436K 4204K 1706K 8069K

Pred Br 394M 27198K 307M 336M 119M 60810K 59685K 30493K 27265K 9909K 0

MP br 1699 1205K 617K 1898 1235K 4792 2481K 7687 6384 19961 9297K

cmp

Base Br 199K 115K 11539 117K 27589 59111 0 0 0 0 0

MP br 5 7 3 2 8 14 23 766 375 587 2617

Pred Br 46 52614 131K 144K 78920 13165 0 0 0 0 0

MP br 5 4 3 1 9 2 4 0 0 3 13

grep

Base Br 471K 131K 320 33591 22061 8615 3948 118 0 0 0

MP br 5 34 8 32 45 330 1581 1879 2503 2453 1192

Pred Br 270K 98732 17668 31131 21933 8820 4154 0 0 0 0

MP br 5 78 24 40 67 102 1807 2134 2844 2194 594

lex

Base Br 6802K 3911K 1165K 600K 970K 320K 180K 7265 1350 1144 0

MP br 3980 9389 3382 5372 10799 18677 38512 60385 39225 16704 22785

Pred Br 559K 446K 589K 849K 5739K 362K 59628 118 231 0 0

MP br 3185 14677 3421 2054 39177 27609 35996 39095 23024 11130 17856

qsort

Base Br 1212K 456K 2393 1840K 1557K 1373K 562K 421K 6 0 0

MP br 13 4170 13 15653 225K 15801 319K 442K 191K 31413 4478

Pred Br 359K 216K 14801 1623K 459K 538K 1519K 692K 14 0 0

MP br 7 0 14 4809 5174 24833 69725 253K 211K 42847 15459

wc

Base Br 348K 48759 1341 26531 50051 31671 16145 0 0 0 0

MP br 66 11 39 592 207 6120 8089 10476 6565 1064 35

Pred Br 92054 23 4 34 78902 26316 13151 13151 0 0 0

MP br 6 5 3 10 3 3 14 1 1 2 13

Table 11: Distance between branches and mispredicted branches for all benchmarks using a BTB with 2-bit counter.


