
Region-Based Compilation: An Introduction and Motivation

Richard E. Hank Wen-mei W. Hwu

Center for Reliable and High-Performance Computing
University of Illinois

Urbana-Champaign, IL 61801

B. Ramakrishna Rau

Hewlett Packard Laboratories
Palo Alto, CA 94303

Abstract

As the amount of instruction-level parallelism required

to fully utilize VLIW and superscalar processors increases,

compilers must perform increasingly more aggressive anal-

ysis, optimization, parallelization and scheduling on the

input programs. Traditionally, compilers have been built

assuming functions as the unit of compilation. In this

framework, function boundaries tend to hide valuable opti-

mization opportunities from the compiler. Function inlin-

ing may be applied to assemble strongly coupled functions

into the same compilation unit at the cost of very large

function bodies. This paper introduces a new technique,

called region-based compilation, where the compiler is al-

lowed to repartition the program into more desirable compi-

lation units. Region-based compilation allows the compiler

to control problem size while exposing inter-procedural op-

timization and code motion opportunities.

Keywords: ILP compilation, region-based compilation,

compilation time complexity, function inlining, code expan-

sion

1 Introduction

As the amount of instruction-level parallelism (ILP) re-
quired to fully utilize high-issue rate processors increases,
so does the di�culty of designing the compiler. An im-
plementation of an ILP compiler must tradeo� the use
of aggressive ILP techniques and compiler performance in
terms of compile time and memory utilization. In situa-
tions where the compile time and memory usage becomes
too large, the aggressiveness of the applied transformations
must be scaled back to avoid excessive compilation cost.
Also, the implementation of ILP compilation techniques
may require the use of certain simplifying constraints and
heuristics to make the technique viable in a production en-
vironment. The implementation of trace scheduling within

0

the Multi
ow compiler provides an example [1]. As a re-
sult, a production quality implementation may not re
ect
the true potential of a technique.

In order to satisfy the need for more ILP, compilers
increasingly resort to inlining to support inter-procedural
optimization and scheduling [2][3][4]. However, inlining of-
ten results in excessively large function bodies that make
aggressive global analysis and transformation techniques,
such as global data
ow analysis and register allocation,
ine�ective and intractable. The root of this problem is
the function-oriented framework assumed in conventional
compilers. Traditionally, the compilation process has been
built using the function as a compilation unit, because the
function body provides a convenient way to partition the
process of compiling a program. Unfortunately, the size
and contents of a function may not be suitable for ag-
gressive optimization. For this reason, the function-based
partitioning of the program may not provide the most de-
sirable compilation units to the compiler.

The purpose of this paper is to motivate the selec-
tion of the fundamental compilation unit by the compiler
rather than the software designer. Essentially, the com-
piler is allowed to repartition the program into a new set
of compilation units, called regions. These regions will re-
place functions as the fundamental unit to which all trans-
formations will be applied. This approach was used in
a more restricted context within the Multi
ow compiler
where scheduling and register allocation are applied to
traces [1]. Under the region-based framework, each region
may be compiled completely before compilation proceeds
to the next region. In this sense, the fundamental mode of
compilation has not been altered and all previously pro-
posed function-oriented compiler transformations may be
applied.

Such an approach to compilation has several potential
advantages. First, the compiler is in complete control over
the size and contents of the compilation unit. This is not
true with functions. Second, the size of the compilation
unit is typically smaller than functions reducing the im-
portance of the algorithmic complexity of the applied ILP
transformations. Finally, the use of pro�le information
to select regions allows the compiler to select compilation
units that more accurately re
ect the dynamic behavior of
the program and may allow the compiler to produce more
optimal code.

Compiler Phase

Classical Optimization

ILP Optimization

Prepass Scheduling

Register Allocation

Postpass Scheduling

F1 F2 F3 Fn....

Figure 1: Block diagram of function-based compilation.

The remainder of this paper is divided as follows. Sec-
tion 2 discusses the characteristics of function-based com-
pilation units. Section 3 discusses the bene�ts and draw-
backs of applying aggressive inlining within an ILP com-
piler. Sections 4 and 5 discuss the implications of the
region-based approach to ILP compilation and the research
issues involved. Finally, Section 7 contains a summary.

2 Desirable Compilation Units

Traditionally, the compilation process has been built
assuming functions as the unit of compilation. The func-
tion body provides a convenient way to break up the task
of compiling a program, since each function is a self con-
tained entity. Typically, the compiler processes each func-
tion of the program in turn, applying a phase ordered suite
of transformations. Figure 1 illustrates the process of com-
piling a program of n functions. The partitioning of the
program into functions is done by the software engineer
usually to satisfy standard software engineering practices:
modularity, reuse, and maintainability. For this reason,
the function-based partition may not provide the most de-
sirable compilation units to the compiler.

Consider the two functions shown in Figure 2. Blocks
1-4 of function A form a very frequently iterated loop.
Within block 3 there is a subroutine call to function B. As
a result, function B, which consists of blocks 5-8, is very
frequently executed. The shaded portions represent the
dynamic behavior of these two functions and indicate that
blocks 2 and 7 are infrequently executed. While compiling
function A, the scope of the compiler is limited to the con-
tents of function A. The contents of function B are hidden.
Likewise, the fact that function B is part of a cycle, is hid-
den from the compiler while compiling function B. In this
case, the function-based compilation units are hiding po-
tential optimization opportunities making this partitioning
undesirable.

The type of compilation units desirable to an aggres-
sive ILP compiler depends upon the techniques and trans-
formations employed by the compiler. Conventional wis-
dom expects programs to spend most of their time in
loops, since any program that executes for an appre-
ciable amount of time must contain at least one cy-

1

2 3

4

5

6 7

8

:

:

Function A Function B

Figure 2: Example of an undesirable function-based parti-
tion.

cle. This belief is supported by the large amount of
active research being done to extract ILP from cyclic
code [5][6][7][8][9][10][11][12][13][14][15]. Exposing more
cycles to an aggressive ILP compiler increases the likeli-
hood that these techniques may be applied to generate
more e�cient code.

By examining the dynamic distribution of cyclic and
acyclic code within functions we can gain some insight as
to the quality of the function-based partition of the pro-
gram. Figure 3 contains the dynamic distribution of cyclic
and acyclic code within the function bodies of several non-
numeric programs. The large percentage of time spend
in cyclic code within the programs validates the impor-
tance of cycles. The programs lex, yacc, and 023.eqn-

tott, which spend at least 95% of their execution time in
cyclic code, fall in line with the philosophy that programs
spend most of their time in loops. However, there are sev-
eral programs that appear to spend an unexpectedly large
percentage of their execution time in acyclic code. The
programs tbl, 022.li, and perl spend more than 50% of
their time in intra-procedural acyclic code.

A large percentage of time spent in acyclic code im-
plies that these programs contain cycles spanning func-
tion boundaries that are outside the scope of the compiler.
These inter-procedural cycles are caused by the presence
of subroutine calls within loop bodies, such as in Figure 2,
and procedure call cycles, i.e., recursion. The function-
based partition of the program hides the existence of these
cycles, as well as other valuable optimization opportuni-
ties. By making these inter-procedurally coupled portions
of the program simultaneously visible to the compiler, the
potential for an aggressive compiler to expose more ILP is
increased.

Function inlining is the only well known technique that
will allow inter-procedurally coupled portions of the pro-
gram to be assembled into the same compilation unit.
However, within a function-based framework, any trans-
formation applied during the compilation process must en-
sure that code expansion within the function body will not
adversely a�ect the rest of the compilation process. Ap-
plication of function inlining to the example in Figure 2

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

cc
cp

eq
n

le
x

pe
rl

qs
or

t

tb
l

ya
cc

00
8.

es
pr

es
so

02
2.

li

02
3.

eq
nt

ot
t

02
6.

co
m

pr
es

s

07
2.

sc

08
5.

cc
1

Benchmark

P
er

ce
nt

 o
f D

yn
am

ic
 O

pe
ra

tio
ns

Cyclic Acyclic

Figure 3: Intra-procedural distribution of dynamic acyclic
and cyclic code.

successfully exposes the entire cycle to the compiler by
placing the contents of function B into function A. How-
ever, function A now contains two basic blocks, 2 and 7,
that are dynamically unimportant to the compilation of
the exposed cycle. Thus, the e�ectiveness of the rest of
the compilation process could be unnecessarily a�ected by
the presence of these basic blocks.

Consider a situation were the compiler is allowed to
repartition the program into a new set of compilation units,
called regions. Where a region is de�ned as an arbitrary
collection of basic blocks selected to be compiled as a unit.
Under this framework, the compiler may select compilation
units that are more representative of program behavior.
Focusing the attention of the compiler on these regions as
self-contained entities has several bene�ts. The compiler
may more accurately determine the class of transforma-
tions applicable to particular region of the program. Also,
individual regions are isolated from the code expansion ef-
fects in other regions and the surrounding function body.
This allows the aggressive application of inline expansion
under a region-based compilation framework to aid the for-
mation of more desirable compilation units.

After inlining function B into A, the compiler may
repartition the program and select the preferred region
that consists of basic blocks 1, 3, 4, 5, 6, and 8. Blocks
2 and 7 will be placed in other regions and will no longer
a�ect the compilation of this cycle. Compilation of this
region as a self-contained entity has several implications
to the compilation process that will be discussed in more
detail in Sections 4 and 5.

3 Function Inlining

Traditionally, the goal of function inlining has been to
eliminate the overhead of frequent subroutine calls [3][4].
Within the context of an ILP compiler, the goal of inlin-
ing is to increase the visibility of the compiler by expos-
ing code that is hidden by subroutine calls. This bene�ts
the compiler in several ways. Additional opportunities for
the application of classical optimizations, such as, common

getline(s)
register char *s;

f register c;

while((*s++=c=gtc())!='nn' && c!=EOF && c!=lefteq)
if (s >= in+MAXLINE) f

error(!FATAL, "input line too long: %.20snn", in);
in[MAXLINE] = 'n0';
break;

g
if (c==lefteq)

s{;
*s++ = 'n0';
return(c);

g

gtc() f
loop:

if (ip > ibuf)
return(*{ip);

lastchar = getc(cur�le);
if (lastchar=='nn')

linect++;
if (lastchar != EOF)

return(lastchar);
if (++i�le > svargc) f

return(EOF);
g
fclose(cur�le);
linect = 1;
if (openin�le() == 0)

goto loop;
return(EOF);

g

Figure 4: Source code for functions getline and gtc.

subexpression elimination, constant propagation, and loop
invariant code motion are exposed [3]. Assembling larger
compilation units may allow privatization of the code, im-
prove variable aliasing information [2] and may subsume
some inter-procedural analysis [4].

In addition, inlining frequent function calls tends to in-
crease the amount of cyclic code visible to the compiler.
This may increase the opportunities for application of tech-
niques designed to extract ILP from cyclic code. A detailed
example of the ILP bene�ts to be gained from inlining is
provided in the next section. The negative e�ects of in-
lining within a function-based compilation framework are
discussed in Section 3.2.

3.1 Bene�ts of Inlining - An Example
The function-based partitioning of the non-numeric

program eqn provides an example of the potential ILP
bene�ts of inlining. Intra-procedurally, eqn appears to
have a large percentage of frequently executed code that
does not occur within the body of a loop. Figure 3 shows
that eqn appears to spend 22% of its execution time within
acyclic code. This is the result of several inter-procedural
cycles that are caused by the presence of subroutine calls
within the bodies of frequently iterated loops.

One such inter-procedural cycle spans the two functions
getline and gtc. The source code for these two functions is
shown in Figure 4. The function getline contains a very fre-
quently iterated loop which calls the function gtc once ev-

1

2

9 3

4

5

10

8

6

7 11

12 14

13

16

2

3

15

5

12 6

7

8

9

11

10

1

getline() gtc()
a) b)

19Κ

506K

490K

487Κ

3.8K

490K

25Κ

1

59

12.7Κ

Figure 5: Control
ow graphs for the functions a) getline
and b) gtc.

ery iteration. Inlining function gtc into the call site within
getline provides signi�cant bene�t beyond simply eliminat-
ing the overhead of the subroutine call. This is illustrated
through the use of superblock optimization and scheduling
techniques [13] as follows.

The control
ow graph (CFG) for the function getline is
shown in Figure 5a. The loop is composed of basic blocks 5,
6, 7, and 8. Basic block 6 contains a subroutine call to the
function gtc. The CFG for gtc is shown in Figure 5b. The
dotted lines indicate the implicit
ow of control between
these two functions.

Consider the application of superblock formation and
optimization to the function getline as it appears in Fig-
ure 5a. Several superblocks will be formed. However, we
are concerned primarily with the superblock loop gener-
ated from basic blocks 5, 6, 7, and 8. This is indicated
by the shaded area in Figure 5a. These basic blocks cor-
respond to the shaded portion of the getline source code
in Figure 4. The contents of the resulting superblock after
optimization is shown in Figure 6a. Scheduling this su-
perblock loop for an 8-issue, fully uniform machine, yields
the issue times shown to the right of Figure 6a. One it-
eration of this superblock loop requires four cycles. Ap-
plying superblock formation to the function gtc yields the
superblock indicated by the shaded area in Figure 5b. The
corresponding source code lines are shaded in Figure 4.

0
0
0
0

1
1

2
3

1

3
3

3bne $P15,r15,cb5
ld_i r15,[r21+0]

$P15,−1,cb9beq
beq r5,10,cb9
st_c [r4+0],r5
asr r5,r14,24
lsl r14,$P15,24

r1,$P15mov
jsr gtc
add r6,r6,1
mov r4,r6
bge r6,r11,cb12

Issue Cycle

0

0

0
1

1

1

1

2

2

4

4

4

6

6

6

7
7

7

8
8
8
8

0r46,%hi(ip)mov
r25,%lo(ip),r46add
r47,%hi(curfile)mov
r26,%lo(curfile),r47add
r48,%hi(lastchar)mov
r28,%lo(lastchar),r48add
r3,[0+r25]ld_i
r49, %hi(ibuf)mov
r50,%lo(ibuf),r49add
r3,r50,cb9bgt
r4,[0+r26]ld_i
r43,[0+r4]ld_i
r5,−1,r43add
[0+r4],r5st_i
1,r43,cb27bgt
r9,[4+r4]ld_i
r8,1,r9add
[4+r4],r8st_i
r11,[0+r9]ld_uc
[0+r28],r11st_i
10,r11,cb28beq
−1,r11,cb29beq

ld_i

Issue Cycle

$P15,[0+r28]

*

*
*
*
*
*
*
*
*
*

x

x

x

x

getline() gtc()
a) b)

Figure 6: Superblock contents prior to inlining for a) get-
line and b) gtc.

0

0
0

r6,r11,cb12bge
r6,r6,1add
r19,r50,cb9bgt
r174,r174,−1add
r174,0,cb88blt
r178,[0+r175]ld_uc
r175,r175,1add
r178,10,cb87beq
r178,−1,cb89beq
$P15,r178mov
r1,r178mov
[r6−1],r178st_c
r178,r15,cb5bne

0
0
1

1
2
2
2
2
2
2

Issue Cycle

Figure 7: Superblock loop after inlining gtc into getline.

Again, the contents of the resulting superblock after opti-
mization and scheduling for the same 8-issue, fully uniform
machine is shown in Figure 6b. This superblock requires
nine cycles to completely execute. Thus one loop iteration
requires 13 cycles not including subroutine call overhead.

Consider the application of superblock formation and
optimization to the function getline after the inline expan-
sion of the function gtc into the call site in basic block 6
of getline. The loop in the function getline now contains
all blocks from the function gtc. In this case, inlining has
certainly increased the amount of code visible to the com-
piler, but it has also increased the amount of cyclic code
visible to the compiler. The blocks inlined from gtc are
now subject to loop-based optimization techniques, since
their presence within the cycle is known to the compiler.
Superblock formation yields a superblock that contains the
blocks in both shaded areas of Figure 5.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

cc
cp

eq
n

le
x

pe
rl

qs
or

t

tb
l

ya
cc

00
8.

es
pr

es
so

02
2.

li

02
3.

eq
nt

ot
t

02
6.

co
m

pr
es

s

07
2.

sc

08
5.

cc
1

Benchmark

P
er

ce
nt

 o
f D

yn
am

ic
 O

pe
ra

tio
ns

Cyclic Acyclic

Figure 8: Distribution of dynamic acyclic and cyclic code
after aggressive inlining.

This superblock loop presents several optimization op-
portunities that were not available prior to inline expan-
sion. Applying superblock optimizations to this loop re-
sults in the code shown in Figure 7. The loop contains 13
operations, one more than the original superblock loop de-
spite the large amount of code added during inlining. The
application of loop-based optimizations eliminates most of
the operations from the superblock loop body. Applica-
tion of loop invariant code elimination [16] allows the op-
erations indicated by an (*) in Figure 6b to be removed.
Also, the application of operation migration [13] allows the
operations indicated by an (x) in Figure 6b to be hoisted
outside the superblock loop body. These code optimiza-
tions would not be accomplished without compiling func-
tions getline and gtc together. Scheduling this superblock
for the same 8-issue, fully uniform machine actually pro-
duces schedule with length three cycles, one cycle shorter
than the original superblock loop in getline.

Inlining the function gtc into getline results in a cycle
that is four times shorter than in the non-inlined case. De-
tailed simulation of an 8-issue processor executing eqn and
gathering statistics for this cycle shows that before inlin-
ing 7.24M cycles are spent in these two functions. After
inlining, the loop requires only 1.9M cycles. The speedup
is 3.8 which corresponds closely to the estimate of 4. Inline
expansion has provided the compiler with many more ILP
optimization opportunities than prior to inlining, yielding
signi�cant performance improvement.

3.2 Aggressive Inlining

The previous example illustrates the bene�ts of expos-
ing hidden cycles to the compiler through the use of in-
lining. In order to form better compilation units, it is de-
sirable to expose all of the frequently executed cycles that
are hidden by the function-based partition of the program.
This can be achieved by aggressively applying pro�le-based
function inlining. Figure 8 shows how aggressive inlining
a�ects the distribution of cyclic and acyclic code within
the benchmarks shown in Figure 3.

For the most part, the desired result is achieved. The

Program No. Oper Inline No. Oper Growth

cccp 5280 16259 3.1
eqn 3868 14077 3.6
lex 5501 11529 2.1
qsort 146 146 1.0
tbl 6375 28311 4.4
yacc 5154 13078 2.5
perl 44558 110298 2.5
008.espresso 27009 114818 4.3
022.li 8348 145099 17.4
023.eqntott 3695 13078 3.5
026.compress 1305 1428 1.1
072.sc 11433 20008 1.8
085.cc1 107414 554059 5.2

Average 4.0

Table 1: Static code growth due to inlining.

dynamic percentage of acyclic code for all but three of
the programs has been reduced to less than 10%. This
implies that most of the frequently executed cycles have
been assembled and made visible to the compiler. The
programs 022.li, 085.cc1, and perl still contain about
20% dynamic acyclic code. The principle reason for this
is recursion. Although the inliner was allowed to inline
self-recursive functions, this will not necessarily increase
the amount of visible cyclic code. Inlining a self-recursive
function into itself does not expose a cycle within the func-
tion body since the cycle is still hidden by the subroutine
call. Inlining of recursive cycles does however serve to in-
crease the scope of the compiler in the same way unrolling
is applied to increase the scope of the compiler for iterative
cycles.

Despite the obvious bene�ts of increasing the compila-
tion scope in this way, inlining has several negative e�ects
on the compiler's performance within the current function-
based compilation framework. Inline expansion may in-
crease register pressure to the point where the resulting
spill code negates any bene�t to be gained from the inlin-
ing [4]. More important, aggressive inline expansion can
lead to excessive code expansion. The increase in function
size will have adverse e�ects on compile time due to the
algorithmic complexity of data
ow analysis, optimization,
scheduling and register allocation.

The code expansion resulting from aggressively inlining
benchmark programs is shown in Table 1. The code expan-
sion ranges from 1.0 to 17.4 times the original code size,
with an average increase of 4 times. The data presented in
Figure 9 provides better insight into the e�ect inlining may
have on compilation. Figure 9 contains histograms of the
static function size weighted by the number of dynamic op-
erations in each function. The function bodies within these
programs tend to be rather small. Prior to inlining all 13
programs spent 80% of their execution time in functions
with fewer than 250 operations1. Whereas after inlining
there is a noticeable shift to the right. After inlining, over

1These and all subsequent operation counts are before the
application of any aggressive optimization other than inlining.
Since we are interested in assembling program units for compi-
lation, this measure of size has merit.

0%

5%

10%

15%

20%

25%

30%

35%

0-
9

10
-4

9

50
-9

9

10
0-

24
9

25
0-

49
9

50
0-

74
9

75
0-

99
9

10
00

-4
99

9

50
00

-9
99

9

10
00

0-

P
er

ce
nt

 o
f D

yn
am

ic
 O

pe
ra

tio
ns

Function Size (No Inlining) Function Size (inlining)

Figure 9: Histogram of function size before and after in-
lining.

50% of the program's execution time is spent in functions
with more than 1000 operations. Inlining has succeeded in
assembling the inter-procedurally coupled portions of the
programs together. However, the areas of the program that
should be subject to the most aggressive ILP techniques
are now located within the largest function bodies. The
tractability of applying aggressive ILP compilation tech-
niques under these conditions is questionable. In this situ-
ation, the attention of the compiler must be focused such
that the important regions of the program can be aggres-
sively optimized without the compile time being a�ected
by the size of the surrounding function body.

4 Region-Based Compilation Units

The compilation di�culties that arise as a result of in-
lining and other ILP techniques are a product of the com-
pilation framework. Function-based compilation units are
not representative of the behavior of the program and ap-
plied transformations are restricted to prevent excessive
code expansion that may adversely a�ect compilation time.
By allowing the compiler to repartition the program into
regions, the compiler is provided a more desirable compi-
lation unit that has the potential to result in better qual-
ity code. In addition, since each region is compiled as a
self-contained entity, the compilation process for a region
is not a�ected by code expansion within the surrounding
function body.

This section will present a pro�le-based algorithm for
region selection and discuss the application of this algo-
rithm to aggressively inlined functions.

4.1 Region Formation

The goal of the region formation process is to pro-
vide the best possible compilation unit for aggressive opti-
mization. The properties of the selected compilation unit
should be such that aggressive optimization is both fea-
sible and bene�cial. In order to ensure that compilation
time and memory usage fall within certain constraints, re-
gion formation should consider factors such as the number
of operations, the number of virtual registers, the num-
ber of memory dependences, etc. In order to make ag-

gressive optimization bene�cial, region formation should
consider factors that a�ect the quality of the generated
code. These factors include the dynamic program behav-
ior, the presence of optimization hazards [17], the control

ow structure, etc. A possible region formation algorithm
is presented next that takes into account dynamic program
behavior.

This region formation algorithm is a generalization of
the pro�le-based trace selection algorithm used in the
IMPACT compiler [18]. The principle di�erence being that
the algorithm is permitted to expand the region along more
than one path of control. The use of pro�le information
for region formation provides the compiler with an accu-
rate indication of the interaction between basic blocks in
the program. This results in compilation units that are
more representative of the dynamic behavior of the pro-
gram than the original functions.

The region formation process begins by selecting a seed
block, s, which is the most frequently executed block not
yet in a region. From this seed block, the scope of the
region is expanded by selecting a path of desirable succes-
sors from s. For this discussion, desirability is based solely
upon execution frequency. There are no other restrictions
placed on the region formation process, however factors
other than execution frequency should be considered in
the future. Thus, a desirable successor of a block x is a
block y that is likely to be executed once the
ow of con-
trol enters block x. The control
ow transition from block
x to block y is considered likely if the weight of the control

ow arc from x to y, W (x! y), is at least (T � 100)% of
the weight of block x, W (x). Furthermore, to prevent the
inclusion of irrelevant blocks to the region, the execution
frequency of y must be at least (Ts�100)% of the execution
frequency of s, where the values T and Ts are threshold
values de�ned by the compiler. Therefore, y is a desirable
successor of x if it satis�es the following equation.

Succ(x; y) =

�
W(x! y)

W(x)
� T

�
&&

�
W(y)

W(s)
� Ts

�
(1)

Once the most desirable successor of s has been added
to the region, the most desirable successor of that block is
selected. This process continues until the successor path
can no longer be extended. A path of most desirable prede-
cessors from s is added next. The conditions under which
block y is a desirable predecessor of a block x are analo-
gous to the successor case. The resulting path forms the
seed path of the region. The region is further extended by
selecting all possible desirable successors from every block
in the region. Each selected block is then added to the
region and the process continues until no more desirable
successors are found. This has the e�ect of adding all of
the desirable paths that extend out from the seed path.
The algorithm is summarized in Figure 10.

Consider the application of this algorithm to the inlin-
ing example from Section 3.1. Figure 5 represents the CFG
after inlining gtc into getline if the dashed arcs are replaced
by solid arcs. For this example, the assumed value of the

/* most frequent block not in a region */
seed = Seed(B)

/* select path of desirable successors */
x = seed

y = most frequent successor of x
while (y 3 R && Succ(x; y)) f

R = R [fyg
x = y

y = most frequent successor of x
g

/* select path of desirable predecessors */
x = seed

y = most frequent predecessor of x
while (y 3 R && Pred(x; y)) f

R = R [fyg
x = y

y = most frequent predecessor of x
g

/* select desirable successors of all blocks */
stack = R

while (stack 6= ;) f
x = Pop(stack)
for each successor of x, y 3 R f

if (Succ(x; y)) f
R = R [fyg
Push(stack,y)

ggg

Figure 10: An algorithm for region formation.

thresholds T and Ts is 0.10. Region formation begins by
selecting the most frequent block not yet in a region. The
loop header, block 5 of getline, will be selected as the seed
block. The region selection process will then select block 6
in getline, blocks 1-7 and 16 in gtc, and �nally blocks 7 and
8 in getline, in that order, as desirable successors because
their execution frequency is very close to that of block 5.
The third step of region formation is to select desirable
predecessors of the seed block. In this instance, the exe-
cution frequency of block 15 (19K) in getline is much less
than that of block 5 (506K), since block 5 is the header
of a frequently iterated loop. Thus no predecessors are se-
lected. If, in fact, the preheader and header blocks of a
loop have similar execution frequencies, the region selec-
tion process would grow the region outside the loop, since
the loop tends to infrequently iterate. The last step of re-
gion selection is to select desirable successors of all blocks
currently in the region. The contents of the region before
this step are indicated by the shaded area of Figure 5. In
this example, the pro�le weights indicate that the dynamic
behavior of these functions is extremely biased towards the
currently selected path. Thus, there are no successors of
the blocks currently in the region that satisfy the desirable
successor condition, Equation 1. The region is now com-
plete and is representative of the dynamic behavior of this
area of the program.

0%

5%

10%

15%

20%

25%

30%

35%

40%

45%

0-
9

10
-4

9

50
-9

9

10
0-

24
9

25
0-

49
9

50
0-

74
9

75
0-

99
9

10
00

-4
99

9

50
00

-9
99

9

10
00

0-

P
er

ce
nt

 o
f D

yn
am

ic
 O

pe
ra

tio
ns

Function Size (No Inlining) Function Size (inlining) Region Size (inlining)

Figure 11: Histogram comparing function size before and
after inlining with regions selected on inlined code.

4.2 Problem Size Control

One problem with function-based compilation units is
that function size is potentially unbounded, especially if
aggressive inlining is employed. The compiler engineer
must deal with the time and memory complexity of algo-
rithms in the presence of unbounded problem size. Allow-
ing the compiler to select region-based compilation units,
places the compiler in complete control of the problem size.
Since the problem space of the compiler is now localized
to a region, the size of the function body or the code ex-
pansion in other regions has no e�ect on the compilation
of the current region. Reducing the problem space has the
advantage of reducing the importance of the time complex-
ity and memory complexity of the optimization, scheduling
and register allocation algorithms used by the compiler.
This simpli�es the task of a compiler engineer developing
a production quality ILP compiler.

The region formation algorithm presented in Section 4.1
used pro�le weight as the sole criterion for region forma-
tion. No upper bound on region size was imposed, in or-
der to determine how well the pro�le information naturally
controlled the size of the selected regions. Figure 11 adds
a histogram of the selected regions to the function size
histograms shown in Figure 9. For all 13 programs, 85%
of the execution time was contained in regions with fewer
than 250 operations. The large percentage (20%) of re-
gions that contain less than 10 operations results from the
fact that many of these integer programs are dominated
by small loop bodies. Small cyclic regions are not a sig-
ni�cant problem for optimization and scheduling, because
the amount of ILP within a loop is essentially limited only
by the trip count. There were also some regions formed
with more than 10000 operations. These large regions were
formed within 085.cc1 after aggressive inlining and they
can be easily prevented by placing an upper bound on the
allowable region size. Overall, the presented region selec-
tion algorithm is successful in controlling the problem size
even in the presence of aggressive inlining.

Presenting the region size characteristics of all 13 pro-
grams within the same histogram hides some information.

0%

10%

20%

30%

40%

50%

60%

70%

80%

0-
9

10
-4

9

50
-9

9

10
0-

24
9

25
0-

49
9

50
0-

74
9

75
0-

99
9

10
00

-4
99

9

50
00

-9
99

9

10
00

0-

P
er

ce
nt

 o
f D

yn
am

ic
 O

pe
ra

tio
ns

Function Size (no inlining) Function Size (inlining) Region Size (inlining)

Figure 12: Histogram comparing function size before in-
lining, function size after inlining, and selected region size
after inlining for 022.li.

The comparison of region size and function size for the pro-
gram 022.li provides some interesting insights2, see Fig-
ure 12. Notice that all functions in 022.li contain fewer
than 250 operations prior to inlining; actually there are
no functions containing more than 175 operations. After
inlining, however, 50% of the execution time of 022.li is
shifted into functions containing more than 5000 opera-
tions. Inlining has increased the scope of the compiler to
an extreme in this case. After performing region selection,
the selected compilation units have two bene�cial charac-
teristics. First, the problem size is much smaller than the
function bodies resulting from inlining. Second, the his-
togram indicates that the selected regions are larger than
the original function bodies, which were extremely small.
Thus, region formation properly enlarged the compilation
scope when needed. The result is a shifting of the compi-
lation scope into more desirable compilation units rather
than the drastic increase seen at the function level.

In order to better illustrate the bene�ts of controlling
problem size, consider the e�ect of problem size on a global
graph-coloring register allocator [19][20]. The register al-
location process generally consists of three steps: interfer-
ence graph construction, register assignment or graph col-
oring, and spill code insertion. The computational com-
plexity of the interference graph construction and graph
coloring steps is O(n2), where n is the number of virtual
registers in the compilation unit. The amount of time and
memory required for global register allocation is heavily
dependent upon the size of the compilation unit in terms
of virtual registers. The region-based partition may reduce
the amount of time and memory required by reducing the
number of virtual registers visible to the register allocator.
A technique proposed by Gupta et al. [21], with a similar
goal, reduces the memory requirements of register alloca-
tion by using clique separators to avoid constructing the
entire interference graph for a function.

By characterizing the time complexity of the global reg-

2Unfortunately space does not permit discussing such a com-
parison for all 13 programs.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

cc
cp

eq
n

le
x

qs
or

t

pe
rl tb
l

ya
cc

00
8.

es
pr

es
so

02
2.

li

02
3.

eq
nt

ot
t

02
6.

co
m

pr
es

s

07
2.

sc

08
5.

cc
1

Benchmarks

E
si

tm
at

ed
 A

llo
ca

tio
n

T
im

e

Region-Based Register Allocation Function-Based Register Allocation

Figure 13: Estimated register allocation times for function-
based and region-based compilation units.

ister allocator within the IMPACT compiler, a function
was obtained that estimates register allocation time as a
function of virtual register count. Figure 13 contains the
register allocation time required for all regions selected on
the aggressively inlined programs relative to the amount of
time required to register allocate the large function bod-
ies. Note that the time to register allocate the region-based
compilation units is, for most of the programs, less than
10% of the time required to allocate the large functions3.
The register allocation times for qsort are almost identical
due to the small size of the program. The region-based par-
tition will have similar e�ects for other compilation phases
that use algorithms of nonlinear complexity.

4.3 Regions Spanning Multiple Functions
The intra-procedural distribution of cyclic vs. acyclic

code in Figure 3 implies a signi�cant amount of inter-
procedural coupling between program functions. Figure 8
shows that through aggressive inlining, most of the inter-
procedural transitions have been transformed into intra-
procedural transitions. By examining the selected regions,
we can determine the degree of inter-procedural coupling,
as indicated by the dynamic pro�le information. Figure 14
shows the fraction of regions that span each given number
of function bodies. For each region selected, the number
of original functions represented by the blocks within the
region are counted. These regions are then weighted by
dynamic execution frequency to produce the distribution.

For example, the region selected from eqn within Sec-
tion 4.1 contains blocks from two functions, namely getline
and gtc. This region accounts for 30% of the execution time
within that program. Thus, Figure 14 shows that for eqn
more than 30% of the execution time spans two functions.
As selected, this region contains 32 of the 9600 operations
in the function body that contains it.

The distributions in Figure 14 indicate the depth of the
inter-procedural coupling within these programs. Several
of the programs have a great deal of inter-procedural cou-

3The quality of register allocation is practically identical for
these benchmarks with the function-based approach and the
region-based approach.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

cc
cp

eq
n

le
x

pe
rl

qs
or

t

tb
l

ya
cc

00
8.

es
pr

es
so

02
2.

li

02
3.

eq
nt

ot
t

02
6.

co
m

pr
es

s

07
2.

sc

08
5.

cc
1

Benchmarks

P
er

ce
nt

 o
f D

yn
am

ic
 O

pe
ra

tio
ns

1 2 3 4 5 6 7 8 9 10+

Figure 14: Dynamic distribution of the number of func-
tions spanned by selected regions.

pling. The programs eqn and 022.li spend more than 40%
of their execution time in regions spanning nine or more
functions. For 022.li most of these regions are small, con-
taining fewer than 250 operations. The program 085.cc1

spends more than 70% of its execution time in regions
spanning 10 or more function. Within perl, through in-
lining and region selection, a cyclic region is formed that
spans nine functions and represents 25% of the execution
time of the program. The importance of this region shows
that it is desirable to assemble inter-procedurally coupled
blocks in the program into the same compilation unit. This
region contains only 230 operations, whereas the function
it is contained in contains approximately 15,000 operations
after inlining. Under a region-based framework, the com-
piler is able to isolate and perform aggressive optimization
on this portion of the program without being a�ected by
the large number of operations that actually reside within
the function body. Aggressive ILP compilation of such
large functions would be extremely expensive in terms of
compilation time and memory.

5 Research Opportunities

A region-based compiler has several characteristics that
distinguish it from a more traditional function-based com-
piler. Figure 15 contains a block diagram of a region-based
compiler. The upper block represents the program being
compiled, the bottom block represents the suite of avail-
able transformations, and the center block the core of the
compiler. A region-based compiler has three more capabil-
ities than a function-based compiler: region selection, clas-
si�cation, routing. There are a number of research issues
raised by the application of each of these tasks that must
be addressed in the design of a region-based ILP compiler.

Region Selection. The region-based compiler begins
by repartitioning the program into regions. The region se-
lector may select one region at a time or it may select all
regions a priori, before the compilation process begins on
any region. The results in this paper were generated using
a region formation algorithm that considered only pro�le

Program

Selection

Classifier

Router

Optimization Scheduling Regalloc

Control

Figure 15: Block diagram of a region-based compiler.

information. The importance of the additional factors dis-
cussed in Section 4.1 will be investigated.

Region Compilation. Once the region is selected, the
compiler determines the best compilation path based upon
the region's characteristics. The region characteristics that
may be relevant to the compiler include topology, content,
and previously applied transformations. A function-based
compiler does not require this capability, because within
such a compiler, a suite of transformations are applied to
the function in a rigid phase order. The phase ordered
application of transformations over a function implies that
each phase of compilation is applied to every basic block
in the function before the next phase begins.

For example, global optimization is typically applied to
an entire function prior to scheduling. In a similar manner,
the region-based compiler applies a transformation over
the entire region before applying a subsequent transfor-
mation. However, a region has a scope that di�ers from
the function it resides in. Thus, basic blocks in di�erent
regions may be in two completely di�erent phases of the
compilation process.

The fact that basic blocks in di�erent regions may be
at di�erent phases in the compilation process provides a
region-based compiler with a potential advantage over a
function-based compiler. Compensation code generated
while applying a transformation to a region may be pushed
into unprocessed regions. Consider the application of
global optimization, followed by scheduling, to a region.
Any resulting compensation code may be pushed into a
neighboring region where it will be subject to optimiza-
tions applied when that region is processed. This is not the
case for a function-based compiler, since the entire func-
tion is optimized prior to scheduling and reapplication of
the optimizer after scheduling may destroy the schedule.

Region Boundary Conditions. Separate compila-
tion of a program using a traditional function-based com-
piler is facilitated by the fact that the boundary conditions
of a function are �xed. The variables live across the sin-
gle entry point and single exit point of a function are well
de�ned by the parameter passing convention. However,
a region is an arbitrary partition of the program's con-

trol
ow graph. There may be any number of variables
live across each region's entry and exit points. This live
variable information and any other required information,
such as memory dependence information, may change as a
result of transformations applied to the current region.

Separate compilation of regions also requires the com-
piler to maintain register allocation and scheduling in-
formation at the region boundary points to ensure that
regions can be reconciled. This capability has been im-
plemented within the Multi
ow compiler, which applies a
combined scheduling and register allocation technique on
individual traces. For correctness, the scheduler must take
into account information on processor resources and reg-
ister bindings at trace boundary points [1]. The register
binding information is communicated by means of a value-
location mapping data structure [22]. In general, a region-
based compiler must maintain, update, and propagate all
of this boundary information to a degree that guarantees
correctness and allows e�cient optimization.

Partial Inlining. Rather than perform aggressive in-
lining a priori, the inline expansion decisions could be
made during the region selection process. The region
formation algorithm could be allowed to cross function
boundaries and grow regions inter-procedurally. Once the
region is selected, only the desired portions of the called
functions need be inlined rather than the entire function
body. Recall the eqn example from Section 3.1. Assume
an inter-procedural region selection algorithm selected the
shaded basic blocks in Figure 5 to comprise the region,
only the shaded blocks in the function gtc need be inlined.
This reduces the code expansion that results from aggres-
sive inlining prior to region formation. The region-based
compilation framework may provide a directed method for
performing partial inlining.

Self-Recursion. The results from Figure 8 show that
self-recursion can prevent important cycles from being ex-
posed to the compiler in some programs. Inlining self-
recursive functions does not increase the amount of vis-
ible cyclic code since the cycle is still hidden by a sub-
routine call. All that is achieved is an increase in the
amount of code visible to the compiler. A technique that
can transform a general self-recursive function into itera-
tive cyclic code has de�nite merit. Such a transformation
would make the inter-procedural cycle visible to the com-
piler and should further reduce code expansion.

6 Related Work

In addition to the previously mentioned work done in
the Multi
ow compiler, Mahadevan and Ramakrishnan
have proposed a global scheduling technique that oper-
ates over regions within a function [23]. In this approach,
a region is a single entry sub-graph of a function control

ow graph. The region-based compilation technique is
more general than this technique in two important aspects:
First, the de�nition of region for our technique places no
restrictions on the subset of control
ow nodes that make
up a region. In addition, the technique described in this

paper applies to the entire compilation process.

The term region has been used before in several contexts
di�erent from that of region-based compilation. For ex-
ample, the region scheduling approach proposed by Gupta
and So�a uses an extended Program Dependence Graph
representation [24] to support global code scheduling [25],
allowing code motion between regions consisting of control-
equivalent program statements. Although this technique
provides a vehicle for e�cient global code scheduling, the
compilation unit remains an entire function.

7 Summary

The traditional function-based framework for compila-
tion is not suitable for an aggressive ILP compiler. The
function-based partitioning presents the compiler with
compilation units which hide valuable optimization oppor-
tunities. By utilizing pro�le information to repartition the
program into regions, the compiler may apply aggressive
inlining to overcome the de�ciencies of the function-based
partitioning. The resulting compilation units allow aggres-
sive optimization in the presence of large function bodies
and have the potential to result in more e�cient code.

In addition to the on going region-based compilation
work in the IMPACT compiler group, HP Labs is actively
investigating the area. HP Labs is developing an ILP re-
search compiler, called Elcor, that supports region-based
compilation. Both compilers are being used to investigate
region-based program analysis, optimization, scheduling,
and register allocation.

Acknowledgments

This paper and the underlying research have bene-
�ted from discussions with Santosh Abraham, Sadun Anik,
Richard Johnson, Vinod Kathail, Scott Mahlke, and Mike
Schlansker at HP Labs. The authors would also like to
thank John Gyllenhaal, Grant Haab, all the members of
the IMPACT research group, and the anonymous referees
whose comments and suggestions helped to improve the
quality of this paper signi�cantly.

This research has been supported by the National Sci-
ence Foundation (NSF) under grant MIP-9308013, Intel
Corporation, Advanced Micro Devices, Hewlett-Packard,
SUN Microsystems, and AT&T GIS.

References

[1] P. G. Lowney, S. M. Freudenberger, T. J. Karzes,
W. D. Lichtenstein, R. P. Nix, J. S. O'Donell, and
J. C. Ruttenberg, \The Multi
ow trace scheduling
compiler," The Journal of Supercomputing, vol. 7,
pp. 51{142, January 1993.

[2] R. Allen and S. Johnson, \Compiling C for vector-
ization, parallelization, and inline expansion," in Pro-
ceedings of the ACM SIGPLAN 1988 Conference on
Programming Language Design and Implementation,
pp. 241{249, June 1988.

[3] W. W. Hwu and P. P. Chang, \Inline function ex-
pansion for compiling realistic C programs," in Pro-
ceedings of the ACM SIGPLAN 1989 Conference on

Programming Language Design and Implementation,
pp. 246{257, June 1989.

[4] J. W. Davidson and A. M. Holler, \Subprogram in-
lining: A study of its e�ects on program execution
time," IEEE Transactions on Software Engineering,
vol. 18, pp. 89{101, February 1992.

[5] B. R. Rau and C. D. Glaeser, \Some scheduling tech-
niques and an easily schedulable horizontal architec-
ture for high performance scienti�c computing," in
Proceedings of the 20th Annual Workshop on Micro-
programming and Microarchitecture, pp. 183{198, Oc-
tober 1981.

[6] J. A. Fisher, \Trace scheduling: A technique for
global microcode compaction," IEEE Transactions on
Computers, vol. C-30, pp. 478{490, July 1981.

[7] M. S. Lam, \Software pipelining: An e�ective
scheduling technique for VLIW machines," in Pro-
ceedings of the ACM SIGPLAN 1988 Conference on
Programming Language Design and Implementation,
pp. 318{328, June 1988.

[8] K. Ebcioglu, \A compilation technique for software
pipelining of loops with conditional jumps," in Pro-
ceedings of the 20th Annual Workshop on Micropro-
gramming and Microarchitecture, pp. 69{79, Decem-
ber 1987.

[9] A. Aiken and A. Nicolau, \Optimal loop paralleliza-
tion," in Proceedings of the ACM SIGPLAN 1988
Conference on Programming Language Design and
Implementation, pp. 308{317, June 1988.

[10] K. Ebcioglu and T. Nakatani, \A new compilation
technique for parallelizing loops with unpredictable
branches on a VLIW architecture," in Languages and
Compilers for Parallel Computing, pp. 213{229, 1989.

[11] P. Tirumalai, M. Lee, and M. Schlansker, \Paralleliza-
tion of loops with exits on pipelined architectures," in
Proceedings of Supercomputing '90, November 1990.

[12] S. A. Mahlke, D. C. Lin, W. Y. Chen, R. E. Hank,
and R. A. Bringmann, \E�ective compiler support for
predicated execution using the hyperblock," in Pro-
ceedings of the 25th International Symposium on Mi-
croarchitecture, pp. 45{54, December 1992.

[13] W. W. Hwu, S. A. Mahlke, W. Y. Chen, P. P. Chang,
N. J. Warter, R. A. Bringmann, R. G. Ouellette, R. E.
Hank, T. Kiyohara, G. E. Haab, J. G. Holm, and
D. M. Lavery, \The Superblock: An e�ective tech-
nique for VLIW and superscalar compilation," The
Journal of Supercomputing, vol. 7, pp. 229{248, Jan-
uary 1993.

[14] B. R. Rau, \Iterative modulo scheduling: An algo-
rithm for software pipelining loops," in Proceedings of
the 27th International Symposium on Microarchitec-
ture, pp. 63{74, December 1994.

[15] M. Schlansker, V. Kathail, and S. Anik, \Height re-
duction of control recurrences for ILP processors," in
Proceedings of the 27th International Symposium on
Microarchitecture, pp. 40{51, December 1994.

[16] A. Aho, R. Sethi, and J. Ullman, Compilers: Princi-
ples, Techniques, and Tools. Reading, MA: Addison-
Wesley, 1986.

[17] R. E. Hank, S. A. Mahlke, R. A. Bringmann, J. C.
Gyllenhaal, and W. W. Hwu, \Superblock formation
using static program analysis," in Proceedings of the
26th Annual International Symposium on Microarchi-
tecture, December 1993.

[18] P. P. Chang and W. W. Hwu, \Trace selection
for compiling large C application programs to mi-
crocode," in Proceedings of the 21st International
Workshop on Microprogramming and Microarchitec-
ture, pp. 188{198, November 1988.

[19] G. J. Chaitin, \Register allocation and spilling via
graph coloring," in Proceedings of the ACM SIGPLAN
82 Symposium on Compiler Construction, pp. 98{105,
June 1982.

[20] F. C. Chow and J. L. Hennessy, \The priority-
based coloring approach to register allocation," ACM
Transactions on Programming Languages and Sys-
tems, vol. 12, pp. 501{536, October 1990.

[21] R. Gupta, M. L. So�a, and D. Ombres, \E�cient reg-
ister allocation via coloring using clique separators,"
ACM Transactions on Programming Languages and
Systems, vol. 16, pp. 370{386, May 1994.

[22] S. Freudenberger and J. Ruttenberg, \Phase order-
ing of register allocation and instruction scheduling,"
in Code Generation - Concepts, Tools, Techniques,
pp. 146{170, May 1992.

[23] U. Mahadevan and S. Ramakrishnan, \Instruction
scheduling over regions: A framework for scheduling
across basic blocks," in Proceedings of the 5th Interna-
tional Conference on Compiler Construction, pp. 419{
434, April 1994.

[24] J. Ferrante, K. J. Ottenstein, and J. D. Warren, \The
program dependence graph and its use in optimiza-
tion," ACM Transactions on Programming Languages
and Systems, vol. 9, pp. 319{349, July 1987.

[25] R. Gupta and M. L. So�a, \Region scheduling: An ap-
proach for detecting and redistributing parallelism,"
IEEE Transactions on Software Engineering, vol. 16,
pp. 421{431, April 1990.

