
Unrolling-Based Optimizations for Modulo Scheduling

Daniel M. Lavery Wen-mei W. Hwu

Center for Reliable and High-Performance Computing

University of Illinois

Urbana-Champaign, IL 61801

Abstract

Modulo scheduling is a method for overlapping suc-

cessive iterations of a loop in order to �nd su�cient

instruction-level parallelism to fully utilize high-issue-rate

processors. The achieved throughput modulo scheduled loop

depends on the resource requirements, the dependence pat-

tern, and the register requirements of the computation in

the loop body. Traditionally, unrolling followed by acyclic

scheduling of the unrolled body has been an alternative to

modulo scheduling. However, there are bene�ts to unrolling

even if the loop is to be modulo scheduled. Unrolling can

improve the throughput by allowing a smaller non-integral

e�ective initiation interval to be achieved. After unrolling,

optimizations can be applied to the loop that reduce both the

resource requirements and the height of the critical paths.

Together, unrolling and unrolling-based optimizations can

enable the completion of multiple iterations per cycle in

some cases. This paper describes the bene�ts of unrolling

and a set of optimizations for unrolled loops which have

been implemented in the IMPACT compiler. The perfor-

mance bene�ts of unrolling for �ve of the SPEC CFP92

programs are reported.

Keywords: modulo scheduling, software pipelining, opti-

mization, loop unrolling, instruction-level parallelism

1 Introduction

The scheduling of instructions in loops is of great in-

terest because most programs spend the majority of their

execution time in loops. It is often necessary for the sched-

uler to overlap successive iterations of a loop in order to

�nd su�cient instruction-level parallelism (ILP) to e�ec-

tively utilize the hardware.

0

Two classes of loop scheduling schemes have been de-

veloped that allow motion of instructions from one itera-

tion to another. The �rst approach is to unroll the loop

body some number of times and then apply a global acyclic

scheduling algorithm to the unrolled loop body [1, 2, 3].

This allows the scheduler to overlap the iterations in the

unrolled loop body. However, all overlap is lost when the

loop-back branch is taken, leaving a long start-up overhead

for each iteration of the unrolled body.

The second approach, software pipelining [4, 5, 6], gen-

erates code that maintains the overlap of the original loop

iterations throughout the execution of the loop. A de-

scription of the various approaches to software pipelining

is given in [7]. This paper will focus on a class of software

pipelining methods called modulo scheduling [8]. Modulo

scheduling simpli�es the generation of overlapped sched-

ules by initiating iterations at a constant rate and by re-

quiring all iterations of the loop to have a common sched-

ule.

The constant interval between the start of successive

iterations is called the initiation interval (II). A smaller

II means higher execution throughput.1 The achieved II

depends on:

1. The execution resources, instruction latencies, and

registers available in the processor.

2. The instruction types, the dependence pattern, and

the register requirements of the computation in the

loop body.

3. The quality of the modulo scheduling and register al-

location algorithms.

This paper assumes that the processor design is �xed

and that high quality modulo scheduling and register al-

location algorithms are used. The three characteristics

of the computation in the loop body (item 2 above) are

not �xed. All three can be modi�ed by program transfor-

mations. This paper focuses on optimization of the loop

1As in the design of hardware pipelines [9], modulo schedul-
ing may increase the latency (the number of cycles needed to
complete the �rst iteration) in order to minimize II. Thus, it
is assumed that on average, the loop will execute a su�cient
number of iterations to amortize this increase in latency.

body prior to modulo scheduling to reduce the achieved

II. Speci�cally, it describes the advantages of unrolling

the loop before modulo scheduling and of performing opti-

mizations which reduce the resource requirements and the

height of critical paths in loops.

There are two sources of motivation for this work. First,

the II for the loop is restricted to be an integer. If the

lower bound on the II computed before scheduling is not

an integer, the performance degradation caused by round-

ing it up to an integer may be reduced by unrolling the

loop [8]. A related restriction is that the minimum possi-

ble value for II is one. This limits the performance of a

modulo scheduled loop to one iteration per cycle. By un-

rolling the loop and applying optimizations, it is possible

to complete multiple iterations per cycle given su�cient

execution resources. These restrictions have been known

for some time, but the bene�ts of unrolling prior to modulo

scheduling have never been quanti�ed.

The second source of motivation comes from compar-

isons of modulo scheduling with global acyclic scheduling

of an unrolled loop body. Without unrolling prior to mod-

ulo scheduling, it is possible for the modulo scheduled loop

to perform worse than the acyclicly scheduled loop. The

acyclic scheduler is not required to initiate the iterations

within the unrolled body at a constant rate nor to generate

the same schedule for each of those iterations. Thus, it can

achieve an e�ective II which is not an integer. Addition-

ally, unrolling exposes new opportunities for optimizations

which reduce the resource requirements and dependence

height. The bene�ts of unrolling and these unrolling-based

optimizations have been quanti�ed for acyclicly scheduled

loops [10], but have not been measured for modulo sched-

uled loops.

This paper describes the bene�ts of unrolling, and a

set of optimizations for unrolled loops which have been

implemented in the IMPACT compiler. Unrolling and

unrolling-based optimization is applied to the loops in �ve

of the SPEC CFP92 programs and the achieved speedup

is measured. The performance bene�t of unrolling is also

reported individually for each of the 58 loops in those �ve

programs. Statistics which are relevant to modulo schedul-

ing and to unrolling are reported for the benchmarks and

their loops.

The paper is organized as follows: Section 2 reviews

the background information about the lower bounds on

the II and related work. Section 3 describes the bene�ts

of unrolling and the unrolling-based optimizations. The

performance results are reported in section 4. A summary

and directions for future work are given in section 5.

2 Background

2.1 The Minimum Initiation Interval

It is necessary to choose an initial candidate II be-

fore scheduling the instructions. Two lower bounds on II

have been developed in the modulo scheduling theory [8],

one derived from resource constraints and the other from

the constraints imposed by dependence cycles. The maxi-

mum of the two is the minimum initiation interval (MII).

Scheduling at an II below the MII can be attempted, but

will almost surely fail2 due to lack of resources or failure

to meet dependence constraints. In this case, the II is in-

creased and scheduling is attempted again. Choosing the

initial II equal to the MII saves scheduling e�ort. Another

important use for the lower bounds on the II is to guide the

optimization process [11]. For example, there is no point

in doing optimizations to reduce dependence constraints if

that bound is already lower than the resource-constrained

lower bound.

From the point-of-view of resources, the throughput of

a software pipeline is maximized when one of the proces-

sor resources is fully utilized. Thus, the resource which

is the most heavily used by the loop body determines the

resource-constrained lower bound on the II (ResMII). The

ResMII is equal to the number of cycles that this resource

is used. One way to compute the ResMII is to total up

the cycles in which a particular type of resource is used by

the instructions in the loop body and divide by the num-

ber of that type of resource available in the machine. If

the result is not an integer, it is rounded up to an inte-

ger. The maximum of this result over all resource types

is the ResMII. An alternative algorithm for computing the

ResMII is given in [8].

Figure 1 shows the source and assembly code to com-

pute a vector-matrix product. The inner loop is used as

an example throughout this paper. The assembly code

shown assumes that classic loop optimizations such as in-

duction variable elimination and global variable migration

have been performed. Registers r4-r7 and f1-f6 are integer

and
oating-point registers respectively. For this example,

we assume an 8-issue processor with no restrictions on the

combination of instructions that may be issued. The issue

slots are thus the most heavily used resources resulting in

a ResMII of one.

Recurrences also constrain the II. A recurrence is a de-

pendence cycle from an instruction in the loop to the same

instruction in a later iteration of the loop. Figure 2 shows

the dependence graph for the example loop. The data and

control dependences are shown with solid and dashed lines

respectively. All anti- and output dependences have been

removed assuming that modulo variable expansion [12] will

be performed after scheduling. Each node is numbered

with the id (from Figure 1(b)) of the instruction it rep-

resents. Each arc is labeled with two numbers. The �rst

is the minimum delay in cycles required between the start

of the two instructions to insure correct execution without

interlock stalls. The delays shown are those of the HP PA-

RISC PA7100. The second number is the distance which

is the number of iterations between the two dependent in-

structions. Arcs with a distance of 0 are intra-iteration

dependences and those with a distance greater than 0 are

cross-iteration dependences.

Assume Delay(c) is the sum of the delays of each edge

2We say almost because in some cases one of the lower
bounds is approximate rather than exact [8].

Assembly

L1:

Assembly Code(b)

Original Loop(a)

do i = 1,n

C(i) = 0.0

do j = 1,m

C(i) = C(i) + A(j) * B(j,i)

end do

end do

Instr.

1

2

3

4

5

6

f5 = MEM(r2+r4)

f6 = f3 * f5

f1 = f1 + f6

r4 = r4 + 4

ble (r4 r7) L1

f3 = MEM(r8+r4)

For Inner Loop

Register Contents:

f1 = C(i)

f3 = A(j)

f5 = B(j,i)

r4 = 4*j

r7 = 4*m

r9 = 4*i

r8 = &A(1)

r2 = &B(1,i)

Figure 1: Example vector-matrix product loop.

1 2

3

4

5

6

2,0
2,0

2,0

2,1

1,1

1,1

1,0

1,1

Data Control

Figure 2: Dependence graph for example loop.

comprising a dependence cycle c and Distance(c) is the

number of iterations between the two dependent instances

of any instruction in the cycle. Then for all elementary

cycles3 c in the graph, we have the constraint that

Delay(c) � II �Distance(c)

The worst-case constraint among all such cycles deter-

mines the recurrence-constrained lower bound on the II

(RecMII). Algorithms for computing this bound are given

3An elementary cycle visits each node in the cycle only once.

in [8] and [13]. The longest cycle in the example graph is

from instruction 4 to itself. The cycle has a delay of 2 and

spans from one iteration to the next, resulting in a RecMII

of 2. It may appear that there is another recurrence with

a delay of two involving instructions 5 and 6, the update

of the loop counter and the loop back branch. Such a re-

currence would create a RecMII of 2 for every DO loop. In

the IMPACT modulo scheduler, the cross-iteration control

dependence from instruction 6 to instruction 5 is removed,

allowing instruction 5 to be speculatively executed. This

is a technique that was proposed for modulo scheduling of

WHILE loops [14].

2.2 Related Work

There has been extensive prior work on the optimization

of loops, some of it targeted directly at software pipelined

loops. The work has focused either on reducing the num-

ber of instructions (the resource requirement) in the loop

body or on changing the dependence pattern to create

more ILP. Traditional loop optimizations try to reduce

the number and complexity of the instructions in the loop

body [15]. These optimizations indirectly reduce the de-

pendence height of a critical path by reducing the number

of instructions along the path.

The compiler for the Cydra-5 performed redundant load

and store elimination across loop iterations [11]. This op-

timization reduces the number of memory ports used and

reduces the dependence height when a load is on a criti-

cal recurrence path. The Cydra-5 compiler also performed

symmetric back-substitution of data recurrences to reduce

dependence height [11]. The compiler for the RS/6000 ar-

chitecture performs an optimization called predictive com-

moning [16]. This optimization achieves an e�ect similar

to redundant load elimination and common subexpression

elimination across loop iterations for loops in which a se-

quence of values is computed and the value of each member

of the sequence, except the �rst, is computed again in the

next iteration. Unrolling is not required for this optimiza-

tion but can be used to eliminate the copy instructions

inserted by the optimization.

Recently, transformations have been proposed which

require that the loop be unrolled. Blocked back-

substitution [17] unrolls the loop b times and reduces the

RecMII by a factor of b. Control recurrences within loops

can also be accelerated by a factor of b by unrolling the

loop b times and applying techniques similar to blocked

back-substitution [18]. Loop unrolling is required for these

techniques because the code is optimized asymmetrically

such that all iterations in the unrolled loop body do not

execute the same code.

Optimizations that unroll loops and then reduce the

height of dependence chains associated with induction and

accumulator variables have been implemented in the IM-

PACT compiler [10]. These can be viewed as special cases

of symmetric back-substitution. These techniques have

been evaluated in the context of global acyclic scheduling

of the unrolled loop body, but not modulo scheduling.

Unrolling can also enable optimizations which reduce

the number of instructions executed per iteration. Com-

pilers which unroll loops before applying a global acyclic

scheduling algorithm take advantage of these optimization

opportunities [2, 10]. However, the potential bene�ts of

these optimizations for loops that are software pipelined

have not been fully explored.

3 Unrolling-Based Optimization

3.1 Loop Unrolling

The requirement that the II be an integer can result in

less than full utilization of processor resources, or the al-

lowance of more cycles than necessary for the completion

of a recurrence. For example, in Figure 1(b), there are six

instructions in the loop body and it was assumed that the

processor has eight issue slots. The ResMII is one (rounded

up from 0.75) and two issue slots are wasted every cycle.

Unrolling allows a smaller non-integral e�ective ResMII to

be achieved. For example, if the loop in Figure 1(b) is un-

rolled four times, the ResMII for the unrolled loop body

is three and the e�ective ResMII for each iteration within

the loop body is 0.75. Unrolling helps to reduce the degra-

dation by creating larger loop bodies which require more

resources and a larger ResMII. The larger the ResMII, the

smaller the degradation caused by rounding it up to the

next integer.

The RecMII will not be an integer if the delay of the

limiting cycle is not a multiple of the distance of the cy-

cle. Unrolling helps because it reduces the distance of the

recurrence. This makes the RecMII larger, decreasing the

degradation caused by rounding it up to the next inte-

ger. If the distance of the cycle becomes one, the RecMII

becomes an integer. For example, a recurrence with a dis-

tance of three becomes a recurrence with a distance of one

if the loop is unrolled three or more times.

Figure 3 shows the way the IMPACT compiler unrolls

Fortran-style DO-loops. The example loop of Figure 1 has

been unrolled 3 times. We use the terminology of [18],

and refer to the iterations of the unrolled loop as major

iterations and the iterations of the original loop as minor

iterations.

An optimization has already been applied to remove the

loop exit branches from the unrolled loop body. A simple

check is done before the loop (and for each major iteration)

to ensure that there are at least three more minor iterations

to be executed. Two extra copies of the original loop body

are inserted after the loop at label L2. These copies are

executed when the trip count is not a multiple of 3. If

the loop is unrolled u times, there are u� 1 copies of the

original loop body inserted after the unrolled loop. If the

code expansion is too great, the remainder iterations can

be re-rolled into a loop at a cost of lower performance for

the those iterations.

This type of unrolling has two bene�ts. First, the num-

ber of branch unit resources required for each major it-

eration is reduced from 3 to 1. Second, the control de-

pendences associated with the exit branches are removed,

allowing the possibility of executing more than one minor

L1:

f5 = MEM(r2+r4)

f6 = f3 * f5

f1 = f1 + f6

r4 = r4 + 4

f3 = MEM(r8+r4)

f5 = MEM(r2+r4)

f6 = f3 * f5

f1 = f1 + f6

r4 = r4 + 4

f3 = MEM(r8+r4)

f5 = MEM(r2+r4)

f6 = f3 * f5

f1 = f1 + f6

r4 = r4 + 4

f3 = MEM(r8+r4)

ble (r4 r3) L1

bgt (r4 r3) L2

bgt (r4 r7) L3

L2:

L3:

f5 = MEM(r2+r4)

f6 = f3 * f5

f1 = f1 + f6

r4 = r4 + 4

f3 = MEM(r8+r4)

f5 = MEM(r2+r4)

f6 = f3 * f5

f1 = f1 + f6

r4 = r4 + 4

f3 = MEM(r8+r4)

bgt (r4 r7) L3

r3 = r7 - 8

Figure 3: Example loop after unrolling three times.

iteration per cycle (resource permitting) without specu-

lation. This can also be viewed as control height reduc-

tion [18] where the conditions under which the minor iter-

ations execute have been collapsed into the single check to

see if there are at least u minor iterations remaining.

II now refers to the initiation interval for the major

iterations. We de�ne IIeff , the e�ective initiation interval

for the minor iterations, to be II=u. For the example loop,

the ResMIIeff falls from 1 to 0.66 as a result of unrolling

and exit branch removal.

3.2 IMPACT Unrolling-based Optimiza-
tions

This section describes the remaining unrolling-based

optimizations done by the IMPACT compiler [10] and their

e�ect on the MII. Figure 4 shows the e�ect of induc-

tion variable optimizations applied to the unrolled loop

body. In Figure 4(a), the unrolled loop body without exit

branches has been extracted from the code in Figure 3.

The induction variable increment instructions have been

highlighted.

In the original loop body, the vector and matrix are ad-

L1:

f5 = MEM(r2+r4)

f6 = f3 * f5

f1 = f1 + f6

r4 = r4 + 4

f3 = MEM(r8+r4)

f5 = MEM(r2+r4)

f6 = f3 * f5

f1 = f1 + f6

r4 = r4 + 4

f3 = MEM(r8+r4)

ble (r4 r3) L1

L1:

f6 = f3 * f5

f6 = f3 * f5

f6 = f3 * f5

f3 = MEM(r81+0)

f5 = MEM(r21+0)

f3 = MEM(r82+0)

f5 = MEM(r22+0)

f5 = MEM(r23+0)

f3 = MEM(r83+0)

r81 = r81 + 12

r82 = r82 + 12

r83 = r83 + 12

r21 = r21 + 12

r22 = r22 + 12

r23 = r23 + 12

ble (r83 r33) L1

f5 = MEM(r2+r4)

f6 = f3 * f5

f1 = f1 + f6

r4 = r4 + 4

f3 = MEM(r8+r4)

r81 = r8

r82 = r8 + 4

r83 = r8 + 8

r21 = r2

r22 = r2 + 4

r23 = r2 + 8

r4 = r81 - r8

(a) (b) (c) After Induction
Elimination

r83 = r83 + 12

r23 = r23 + 12

ble (r83 r33) L1

L1:

Unrolled Loop Body

L1:

f6 = f3 * f5

f1 = f1 + f6

f6 = f3 * f5

f1 = f1 + f6

f6 = f3 * f5

f1 = f1 + f6

After Induction
Expansion

f1 = f1 + f6

f1 = f1 + f6

f1 = f1 + f6

After Induction
Rewriting

(d)

f3 = MEM(r83-8)

f5 = MEM(r23-8)

f3 = MEM(r83-4)

f5 = MEM(r23-4)

f3 = MEM(r83+0)

f5 = MEM(r23+0)

f6 = f3 * f5
f1 = f1 + f6

f6 = f3 * f5
f1 = f1 + f6

f6 = f3 * f5
f1 = f1 + f6

r23 = r2 + 8

r83 = r8 + 8

r4 = r83 - r8 - 8

f3 = MEM(r80+0)

f5 = MEM(r20+0)

r80 = r80 + 4
r20 = r20 + 4

f3 = MEM(r80+0)

f3 = MEM(r80+0)

f5 = MEM(r20+0)

f5 = MEM(r20+0)

r80 = r80 + 4

r20 = r20 + 4

r80 = r80 + 4
r20 = r20 + 4

r80 = r8

r20 = r2

r4 = r80 - r8

ble (r80 r31) L1

Figure 4: Example loop after induction variable optimization.

dressed using two di�erent bases (r8 and r2 respectively)

and a common o�set (r4). This reduces the number of in-

duction instructions for good performance in the original

loop. In Figure 4(b), the address calculations have been

rewritten in preparation for later induction variable elim-

ination (described below). The objective of the rewriting

is to specify each memory address using only one operand.

This frees up the other address source operand in each

load for use by induction variable elimination. In the un-

rolled loop, after the rewriting, the vector and the matrix

are each addressed using a separate induction variable (r80

and r20 respectively). This rewriting increases the number

of induction variable increment instructions in the loop, so

it is only done if there will be a net gain after later induc-

tion variable elimination.

In Figure 4(c), induction variable expansion [10] has

been applied to the loop. For the each induction vari-

able (r80 and r20), 3 temporary induction variables have

been created, one for each de�nition of the original in-

duction variables. The new induction variables are now

incremented by 3 times the original increment. They are

initialized to the initial series of values in the preheader.

In the example, induction variable expansion reduces

the delay for the cycle involving the 3 increments of r80

from 3 to 1. Induction variable expansion is a special case

of symmetric back-substitution [17] where the reduction is

a simple addition of a loop invariant.

Figure 4(d) shows the loop after the application of

induction variable elimination. Elimination of induction

variable r22 is done as follows. First, r22 is rewritten in

terms of r23: r22 = r23 - 4. Then this de�nition of r22 is

combined with the load which uses r22 in the next itera-

tion [19]. After combining, there are no further uses of r22

and its de�ning instruction can be removed.

Induction variable elimination signi�cantly reduces the

number of integer ALU and issue slot resources required by

making use of the separate e�ective address addition avail-

able in most load/store units and the two address operands

of the load/store instructions. For the example loop, the

number of induction instructions has been reduced from 3

(in Figure 4a) to 2 (in Figure 4d). If the loop is unrolled

8 times, the number of induction instructions is reduced

from 8 to 2. Loop unrolling is required for this type of

induction variable elimination because the minor loop it-

erations are no longer identical.

Figure 5 shows the e�ect of two more optimizations.

In Figure 5(b), accumulator variable expansion has been

applied [10]. In the original loop, f1 is an accumulator

variable. Three temporary accumulators (f11, f12, f13)

have been created, one for each de�nition of the original

accumulator. The temporary accumulators are summed

after the loop.

In the example, accumulator variable expansion reduces

the delay for the cycles involving f1 by a factor of 3. Accu-

mulator variable expansion is also called interleaved reduc-

tion [2] and ri�ing of reductions [11]. Since accumulator

L1:

f6 = f3 * f5

f6 = f3 * f5

f6 = f3 * f5

f11 = f11 + f6

f12 = f12 + f6

f13 = f13 + f6

r83 = r83 + 12

r23 = r23 + 12

ble (r83 r33) L1

f1 = f11 + f12

f1 = f1 + f13

r83 = r8 + 8

r23 = r2 + 8

f11 = 0.0

f12 = 0.0

f13 = 0.0

(b) (c)

f31 = MEM(r83-8)

f51 = MEM(r23-8)

f61 = f31 * f51

f11 = f11 + f61

f32 = MEM(r83-4)

f52 = MEM(r23-4)

f62 = f32 * f52

f12 = f12 + f62

f33 = MEM(r83+0)

f53 = MEM(f23+0)

f63 = f33 * f53

f13 = f13 + f63

r83 = r83 + 12

r23 = r23 + 12

ble (r83 r33) L1

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

L1:

After Induction
Optimization

r83 = r83 + 12

r23 = r23 + 12

ble (r83 r33) L1

L1: f3 = MEM(r83-8)

f5 = MEM(r23-8)

f3 = MEM(r83-4)

f5 = MEM(r23-4)

f3 = MEM(r83+0)

f5 = MEM(r23+0)

f6 = f3 * f5
f1 = f1 + f6

f6 = f3 * f5
f1 = f1 + f6

f6 = f3 * f5
f1 = f1 + f6

r23 = r2 + 8

r83 = r8 + 8

r4 = r83 - r8 - 8

f3 = MEM(r83-8)

f5 = MEM(r23-8)

f3 = MEM(r83-4)

f5 = MEM(r23-4)

f3 = MEM(r83+0)

f5 = MEM(r23+0)

r4 = r83 - r8 - 8

After Accumulator
Expansion

After Renaming

r83 = r8 + 8

r23 = r2 + 8

f11 = 0.0

f12 = 0.0

f13 = 0.0

f1 = f11 + f12

f1 = f1 + f13
r4 = r83 - r8 - 8

(a)

Figure 5: Example loop after accumulator expansion and renaming.

variable expansion reassociates the terms in the accumu-

lation, which may change the results of
oating-point ac-

cumulations, its use is under user control.

In Figure 5(c), variable renaming has been applied to

produce the �nal optimized version of the loop. The 3

iterations of the loop are now independent. Overall, the

RecMIIeff for the example loop was reduced by a factor of

3: from 2 to 0.66 for the 8-issue processor. The ResMIIeff
was reduced from 1 to 0.66 due to the removal of the loop

exit branches described earlier. Removal of both data and

control dependences and reduction of resources were all

necessary to achieve these improvements in the MIIeff .
For example, without the removal of control dependences

and the reduction in resources, the MIIeff is limited to 1

for this loop. If this example loop is unrolled 8 times, an

MIIeff of 0.25 can be achieved given su�cient resources.

This is 8 times the performance of the original loop in

Figure 1!

Although not shown in the running example, unrolling

also allows redundant load and store elimination, common

subexpression elimination, and copy propagation across

minor iterations. These optimizations, along with accumu-

lator and induction variable expansion, can be done with-

out unrolling if the compiler representation has support

for expanded virtual registers (EVRs) [20]. If the compiler

supports EVRs, but the architecture does not have support

for rotating registers [21], the loop must still be unrolled to

allow modulo variable expansion. Even in this case, EVRs

allow the optimizations to be performed without having

to �rst decide how much to unroll the loop. For compilers

which do not support EVRs, unrolling is the only way to

do load and store elimination and common subexpression

elimination across iterations without introducing copy in-

structions and to do accumulator and induction variable

expansion. However, for any compiler, the exit branch re-

moval and induction variable elimination described in this

paper require unrolling, as does blocked back-substitution.

4 Experimental Results
In this section, we report experimental results on the

importance of the unrolling-based optimizations for soft-

ware pipelined loops. The results are obtained using

the IMPACT compiler and benchmarks from the SPEC

CFP92 suite. The data dependence analysis performed

includes both the sophisticated array dependence analy-

sis performed by the Omega Test [22], as well as inter-

procedural analysis of pointer aliases.

In the back end, the classic optimizations and the

unrolling-based optimizations described earlier are per-

formed. Modulo scheduling is performed before prepass

acyclic scheduling and global register allocation. Modulo

variable expansion is done to rename overlapping lifetimes.

The modulo scheduler is a library that can be called

from any of IMPACT's code generators. It uses a ma-

chine description system [23] to obtain necessary infor-

mation on instruction latencies and resource usage. The

modulo scheduler has been used to pipeline loops for high

issue rate versions of the PA-RISC and SPARC architec-

tures. Currently, only single-basic-block DO and WHILE

loops without function calls or complex recurrences are

pipelined. Loops with a single-node recurrence, a depen-

dence from an instruction to itself, are pipelined.

Table 1 shows the characteristics of 11 of the SPEC

CFP92 benchmarks. The Modulo Sched. column shows

the percentage of the dynamic instructions which are in

software pipelined loops. The rest of the columns show the

percentage of dynamic instructions within loops that were

not software pipelined for the various reasons described

below.

Table 1: Benchmark characteristics.

Modulo Not Modulo Scheduled Due To

Program Sched. Mult. Unstr. Func Scalar Array

Block Loop Call Dep. Dep.

spice2g6 1.1 13.3 60.5 9.7 | |

doduc 7.3 65.4 0 47.7 | 61.7

mdljdp2 9.6 82.3 0 12 | 86.1

wave5 50.9 17.9 3.2 4.1 | 16.0

tomcatv 90 9.8 0 0 9.8 0

ora 0 96.5 96.5 96.5 | |

alvinn 99.5 0 0 0 0 0

ear 74.8 20.1 0 0 0 2.7

swm256 99.9 0 0 0 0 0

su2cor 80.3 10.5 0 9.9 6.3 0

hydro2d 56.9 42.2 0 0 0 0

There can be several reasons why a particular loop is

not software pipelined, so the rows may add up to more

than 100%. Also, only the percentage of instructions in

inner loops is shown in the table. The percentages calcu-

lated using the total dynamic instructions for the program.

Thus, the rows can add up to less than 100% also. The

remaining time is spent in acyclic code and outer loops.

Mult. Block means that the loop body consisted of mul-

tiple basic blocks. Unstr. Loop means that the loop was

not a structured DO loop, but rather an implicit loop

generated using gotos. Such loops are detected, but not

analyzed for dependences in our front end. Scalar Dep.

means that there was a cross-iteration dependence for a

scalar variable. Array Dep. means that there was a cross-

iteration dependence between accesses to array elements.

A dash in the table means that the percentage of the

dynamic instructions that are in loops of that type is un-

known. Since unstructured loops are not analyzed for

dependences, the dependence statistics are unknown for

benchmarks which spent a signi�cant amount of time in

such loops (such as spice and ora). The statistics on depen-

dences are currently reported in such a way that if there is

a cross-iteration array dependence in the loop, one cannot

tell from the report if there was also a cross-iteration scalar

dependence. Thus, the number of scalar dependences in

doduc, mdljdp2, and wave5 is unknown.

Multiple-basic-block loops are by far the largest cat-

egory of non-pipelined loops, followed by loops with

function calls, unstructured loops, and loops with cross-

iteration array dependences. Cross-iteration scalar depen-

dences do not appear to be a large problem so far. Note

however, that single-node recurrences associated with ac-

cumulator and induction variables are handled by our mod-

ulo scheduler and so contribute to the Software Pipelined

column.

4.1 Benchmark Results

The �ve benchmarks with the highest percentage of

software pipelined loops (tomcatv, alvinn, ear, swm256,

and su2cor) were used to measure the performance bene�t

of the unrolling-based optimizations. The target proces-

sors are multiple issue processors with issue rates between

4 and 16. There are no restrictions on the combination of

instructions that may be issued. All speedups are reported

over a base single-issue processor. All processors are as-

sumed to have 64 integer registers and 64
oating-point

registers. In some cases, the results for 128
oating-point

registers are also shown. The latencies used are those of

the HP PA-RISC PA7100 processor. A 100% cache hit

rate is assumed.

For the multiple issue processors, code is generated two

ways, once with and once without the unrolling-based op-

timizations for the software pipelined loops. In both cases,

the loops that are not software pipelined are unrolled and

optimized.

The execution time of the programs is calculated us-

ing scheduler cycle counts for each basic block and pro�le

information. The benchmarks are pro�led after all trans-

formations to insure accuracy. The pro�ling is done by in-

strumenting the target (virtual) processor's assembly code

and then emulating it on an HP Series 700 workstation.

This execution produces benchmark output which is used

to verify the correctness of the code transformations.

Figure 6 shows the speedup for each target processor

with and without the unrolling-based optimizations for

software pipelined loops over a single-issue base proces-

sor. For the base processor, loops are not unrolled or soft-

ware pipelined. The software pipelined loops in alvinn,

ear, and swm256 all required less than 64 integer and 64

oating-point registers. However for tomcatv , there was

a large amount of spilling for the 12 and 16 issue proces-

sors, resulting in performance degradation. The IMPACT

module scheduler can schedule loops either from the top

down or the bottom up. The results shown are for bottom

up scheduling. With top down scheduling, the spilling and

performance degradation for tomcatv is much worse. The

loops in these
oating-point benchmarks tend to have de-

pendence graphs where the nodes have more incoming de-

pendence edges than outgoing edges (usually only 1 outgo-

ing edge). This creates more opportunities for a greedy top

down scheduler to schedule instructions too early (and in-

crease register pressure) than for a bottom up scheduler to

schedule instructions too late. The white bars in the �gure

show the performance of tomcatv with 128
oating-point

registers. The benchmark su2cor also bene�ts somewhat

from additional
oating-point registers.

The unrolling-based optimizations produce tremendous

performance improvement for alvinn. In this benchmark

the loops are small and similar to the example loop of

Figure 1. Using the PA7100 latencies, single-node recur-

rences for
oating-point accumulator variables impose a

RecMII of two, as shown in Figure 2. Without unrolling,

the maximum performance achievable for any loop, even

AA
AA
AA
AA
AA
AA
AA
AA
AA
AA

AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA

AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA

AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA

AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA

AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA

AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA

AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA

AA
AA
AA
AA
AA
AA
AA
AA
AA

AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA

AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA

AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA

AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA

AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA

AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA

AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA

AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA

AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA

AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA

AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA
AAA

0

2

4

6

8

10

12

14

16

18

4 8 12 16 4 8 12 16 4 8 12 16 4 8 12 16 4 8 12 16

Speedup

AAA
AAA
AAAWithout Unrolling

With Unrolling

047.tomcatv 052.alvinn 056.ear 078.swm256 089.su2cor

Figure 6: Speedup over single issue processor with and without unrolling.

with in�nite resources, is one iteration every two cycles for

loops with
oating-point accumulator variables, and one

iteration per cycle for loops without
oating-point accu-

mulator variables. For alvinn, the 8-issue processor can

support the maximum rate of execution, so without un-

rolling there is no further speedup for the higher issue rate

processors. With unrolling, the loops in alvinn execute at

a rate of multiple iterations per cycle for the higher issue

rate processors.

The unrolling based optimizations improve the perfor-

mance of swm256, ear, tomcatv, and su2cor by 8 to 21

percent for the 16 issue processor and 4 to 18 percent for

the 8 issue processor. In these programs, the frequently

executed loops are larger. In larger loops, induction and

branch instructions are a smaller percentage of the total in-

structions, so the optimizations which reduce them have a

smaller e�ect. Because the modulo scheduler handles only

single-node recurrences, the largest RecMII calculated for

these benchmarks was two. Larger loops tend to have a

ResMII which is larger than this so they do not bene�t

as much from the height reduction achieved by accumula-

tor variable expansion. Finally, the degradation caused by

rounding the MII up to the next integer is not as severe

in larger loops. Even so, the unrolling-based optimizations

do provide a signi�cant performance improvement for these

benchmarks.

The e�ect of Amdahl's law is visible in Figure 6. alvinn

and swm256 have the highest percentage of their execution

time in software pipelined loops (practically 100%) and

they show the highest speedup over the base processor.

ear and su2cor have the lowest percentage of execution

time in software pipelined loops and they have the lowest

speedup over the base processor.

4.2 Individual Loop Results

In the �ve benchmarks, a total of 58 loops were soft-

ware pipelined. Figure 7 shows the speedup due to the

unrolling-based optimizations for each of the 58 loops. The

speedups are for the 16-issue machine with unrolling over

the 16-issue machine without unrolling. The speedup is

calculated by dividing the achieved II for the original loop

body by the achieved IIeff for the unrolled loop body.

The individual loop speedups are generally better than

the full benchmark speedups. There are two reasons for

this. First for tomcatv, su2cor, and ear, 10-20% of the

execution time is spent in loops which are not software

pipelined, limiting the applicability of the techniques de-

scribed in this paper. Second, the smaller loops have

the best speedup, but tend to be less frequently executed

(alvinn is an exception). The small loops, for example,

tend to be initialization loops.

Table 2 summarizes some of the characteristics of the

software pipelined loops. The column marked Original

shows the statistics for the original loop body. A dash is

used to indicate that a measurement does not apply to the

original loop body. The column marked Unrolled shows

the statistics for the unrolled loop body.

Table 2: Loop statistics.

Measurement Statistic Original Unrolled

Minimum 5 14
Static Instructions Maximum 76 137

Mean 22 65
Minimum | 1

Unroll Amount Maximum | 8
Mean | 6.7
Median | 4
Minimum 1 0.25

MIIeff Maximum 5 5
Mean 1.9 1.3
Minimum | 1

Speedup Maximum | 5.33
Mean | 1.7

AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA

AA
AA
AA
AA
AA
AA
AA
AA
AA
AA

AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA

AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA

AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA

AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA

AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA

A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A

A
A
A
A
A
A
A
A
A
A
A
A
A

AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA

AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA

AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA

AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA

AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA

AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA

AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA

AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA

A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A

A
A
A
A
A
A
A
A
A
A
A
A
A
A
A

AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA

AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA

AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA

AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA

AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA

AA
AA
AA
AA
AA
AA
AA
AA
AA
AA

AA
AA
AA
AA
AA
AA
AA
AA
AA
AA

AA
AA
AA
AA
AA
AA
AA
AA
AA
AA

A
A
A
A
A
A
A
A
A
A
A
A
A

A
A
A
A
A
A
A
A
A
A
A
A
A

AA
AA
AA
AA
AA
AA
AA
AA
AA
AA

AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA

AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA

AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA

AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA

AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA

AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA

AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA

A
A
A
A
A
A
A
A
A
A
A
A

A
A
A
A
A
A
A
A
A
A
A
A
A

AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA

AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA

AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA

AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA

AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA

AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA

AA
AA
AA
AA
AA
AA
AA
AA
AA
AA

AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA

A
A
A
A
A
A
A
A
A
A
A
A
A
A
A

A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A

AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA

AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA

AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA

AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA

AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA

AA
AA
AA
AA
AA
AA
AA
AA
AA
AA
AA

AA
AA
AA
AA
AA
AA
AA
AA
AA
AA

AA
AA
AA
AA
AA
AA
AA
AA
AA
AA

A
A
A
A
A
A
A
A
A
A

speedup

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53 55 57

Figure 7: Individual loop speedup. Unrolled over non-unrolled.

For the majority of the loops, the number of instruc-

tions in the original loop is fairly small. After unrolling,

there are few very large loops. The amount of unrolling is

moderate, with a median of 4 times. The optimizer in the

IMPACT compiler uses pro�le information, (the average

trip count) and code size to determine the unroll amount.

For these
oating-point benchmarks, the trip counts are

high and the unroll amount is determined by code expan-

sion considerations.

The optimizer generally unrolls the medium to small

size loops 8 to 16 times when the loop is scheduled by the

acyclic scheduler. For software pipelined loops, only one

half that amount of unrolling is done. There are two rea-

sons for this. First, software pipelining creates additional

code expansion because of modulo variable expansion and

because of the generation of the prologue and epilogue.

Therefore, it is desirable to keep the degree of unrolling

moderate. Second, the modulo scheduler does not need

as much unrolling because it maintains the overlap of it-

erations across the loop back edge. Investigation of more

sophisticated methods for determining the unroll amount

is part of the future work.

The minimum and mean MIIeff are improved with

unrolling as expected. The Speedup rows summarize the

individual loop speedup results shown earlier. For some

loops there is no improvement in the MIIeff after un-

rolling, which can happen when the original loop was too

big to be unrolled at all. This case occurs for the largest

and most important loop (in terms of execution time) in

tomcatv.

Performance also may not improve if the resources of

the processor are fully or nearly fully utilized by the orig-

inal loop body. There are several examples in the bench-

marks where the original loop has 15 or 16 instructions.

For these loops, the reduction in resources due to the opti-

mizations is not enough to reduce theMIIeff for the 8 and
16 issue processors. This condition can be detected during

optimization when the ResMII is equal to or slightly less

than an integer value. If many copies of the most heavily

used resource exist, then a large degree of unrolling and op-

timization would be necessary to reduce the ResMII. Also

for these loops, the ResMII is equal to or just slightly less

than an integer, so the degradation in rounding up to an

integer is not large.

5 Conclusion

5.1 Summary

This paper described a set of unrolling-based optimiza-

tions which reduce resource requirements and the height of

critical paths in software pipelined loops. Unrolling is the

only way to reduce the the e�ective number of loop-back

branches executed per iteration and to allow optimiza-

tions which asymmetrically optimize the loop iterations.

Unrolling also helps to reduce the degradation caused by

rounding the MII up to the nearest integer.

The paper reported the performance improvement

achieved by applying unrolling and unrolling-based opti-

mizations to �ve SPEC CFP92 benchmarks. Speedup of

more than 200% was observed for alvinn. This benchmark

spends all of its time executing small loops. On a high is-

sue rate processor, multiple iterations of the loops can be

executed per cycle. This can only be achieved by unrolling

the loop. Small loops also bene�t the most from the re-

duction in branch instructions and induction operations.

The other benchmarks contained a wider variety of loops

and attained speedups between 9 and 22 percent.

5.2 Future Work

Future work includes looking at methods to control the

optimizations such that all the constraints on the MII are

balanced. For example, there is no point in doing optimiza-

tions which reduce the RecMII if it is already less than the

ResMII and vice versa. As the ResMII and the RecMII are

reduced, the number of physical processor registers can im-

pose a third constraint on the MII. As more parallelism is

exploited, more simultaneously live values are generated,

requiring more registers [24, 25]. If more simultaneously

live values exist than physical registers, spill code must be

added and can signi�cantly increase the achieved II of the

loop. In this case, it may be possible to achieve a better

�nal II by increasing the candidate II and attempting to

schedule the original loop body again [26].

If a lower bound on the loop's �nal register requirement

for a given II were available, it would be useful during

both optimization and scheduling. During optimization it

could be used to stop optimization before excessive register

pressure is generated. During scheduling, the candidate

II's for which the lower bound is less than the number of

physical registers could be ruled out. A lower bound on the

average number of simultaneously live values was reported

by Hu� [13]:

MinAvg =

�P
v
MinLT (v)

II

�

where v is a loop variant, a value that is written in the

loop. MinLT is a lower bound on the length of the life-

time of v and is a function of the processor latencies and

II. A register-constrained lower bound on the II (RegMII)

can be computed iteratively by starting with the maximum

of ResMII and RecMII and incrementing II until MinAvg

plus the number of loop invariants (read-only values) is less

than the number of physical processor registers. How close

MinAvg is to the actual number of registers required dur-

ing allocation depends on how well the scheduler optimizes

the register lifetimes and on the quality of the register al-

locator. For Hu�'s scheduler, and a Cydra-5-like proces-

sor model, MinAvg was reasonably close to the maximum

number of simultaneously live values [13]. More research

needs to be done to determine how tight this bound is for

our scheduler and processor models and how e�ectively it

can be used to control optimizations and to save scheduling

e�ort.

A fundamental issue with unrolling is determining the

optimal number of times to unroll. More unrolling can

result in a greater reduction in resource usage and depen-

dence height. However, the degree of unrolling should be

limited if the register pressure becomes too high or if there

are diminishing returns. Analytical and empirical methods

to determine the amount to unroll deserve further investi-

gation. Another consideration is limiting code expansion.

Future work may measure the code expansion due to the

unrolling-based optimization and investigate methods to

control it.

Acknowledgments
The IMPACT modulo scheduler and the underlying

research for this paper have bene�ted from discussions

with Bob Rau, Mike Schlansker, and Scott Mahlke at HP

Labs. Scott Mahlke and John Gyllenhaal implemented

the unrolling-based optimizations. The authors would like

to thank Dave Gallagher and Grant Haab for proofread-

ing the initial and �nal versions of this paper respectively.

The authors would also like to thank all the members of

the IMPACT research group and the anonymous referees

whose comments and suggestions helped to improve the

quality of this paper signi�cantly.

This research has been supported by the National Sci-

ence Foundation (NSF) under grant MIP-9308013, Joint

Services Engineering Programs (JSEP) under Contract

N00014-90-J-1270, Intel Corporation, the AMD 29K Ad-

vanced Processor Development Division, Hewlett-Packard,

SUN Microsystems, NCR and the National Aeronautics

and Space Administration (NASA) under Contract NASA

NAG 1-613 in cooperation with the Illinois Computer lab-

oratory for Aerospace Systems and Software (ICLASS).

References
[1] J. A. Fisher, \Trace scheduling: A technique for

global microcode compaction," IEEE Transactions on

Computers, vol. c-30, pp. 478{490, July 1981.

[2] P. G. Lowney, S. M. Freudenberger, T. J. Karzes,

W. D. Lichtenstein, R. P. Nix, J. S. O'Donnell, and

J. C. Ruttenberg, \The Multi
ow trace scheduling

compiler," The Journal of Supercomputing, vol. 7,

pp. 51{142, January 1993.

[3] W. W. Hwu, S. A. Mahlke, W. Y. Chen, P. P. Chang,

N. J. Warter, R. A. Bringmann, R. G. Ouellette, R. E.

Hank, T. Kiyohara, G. E. Haab, J. G. Holm, and

D. M. Lavery, \The Superblock: An e�ective tech-

nique for VLIW and superscalar compilation," The

Journal of Supercomputing, vol. 7, pp. 229{248, Jan-

uary 1993.

[4] B. R. Rau and C. D. Glaeser, \Some scheduling tech-

niques and an easily schedulable horizontal architec-

ture for high performance scienti�c computing," in

Proceedings of the 20th Annual Workshop on Micro-

programming and Microarchitecture, pp. 183{198, Oc-

tober 1981.

[5] K. Ebcioglu and T. Nakatani, \A new compilation

technique for parallelizing loops with unpredictable

branches on a VLIW architecture," in Languages and

Compilers for Parallel Computing, pp. 213{229, 1989.

[6] A. Aiken and A. Nicolau, \Optimal loop paralleliza-

tion," in Proceedings of the ACM SIGPLAN 1988

Conference on Programming Language Design and

Implementation, pp. 308{317, June 1988.

[7] B. R. Rau and J. A. Fisher, \Instruction-level par-

allel processing: History, overview, and perspective,"

Journal of Supercomputing, vol. 7, pp. 9{50, January

1993.

[8] B. R. Rau, \Iterative modulo scheduling: An algo-

rithm for software pipelining loops," in Proceedings of

the 27th International Symposium on Microarchitec-

ture, pp. 63{74, December 1994.

[9] J. H. Patel and E. S. Davidson, \Improving the

throughput of a pipeline by insertion of delays," in

Proceedings of the 3rd Annual Symposium on Com-

puter Architecture, pp. 159{164, January 1976.

[10] S. A. Mahlke, W. Y. Chen, J. C. Gyllenhaal,

W. W. Hwu, P. P. Chang, and T. Kiyohara, \Com-

piler code transformations for superscalar-based high-

performance systems," in Proceedings of Supercom-

puting '92, pp. 808{817, November 1992.

[11] J. C. Dehnert and R. A. Towle, \Compiling for the

Cydra 5," The Journal of Supercomputing, vol. 7,

pp. 181{227, January 1993.

[12] M. S. Lam, \Software pipelining: An e�ective

scheduling technique for VLIW machines," in Pro-

ceedings of the ACM SIGPLAN 1988 Conference on

Programming Language Design and Implementation,

pp. 318{328, June 1988.

[13] R. A. Hu�, \Lifetime-sensitive modulo scheduling,"

in Proceedings of the ACM-SIGPLAN Conference on

Programming Language Design and Implementation,

pp. 258{267, June 1993.

[14] P. Tirumalai, M. Lee, and M. Schlansker, \Paralleliza-

tion of loops with exits on pipelined architectures," in

Proceedings of Supercomputing '90, November 1990.

[15] A. Aho, R. Sethi, and J. Ullman, Compilers: Princi-

ples, Techniques, and Tools. Reading, MA: Addison-

Wesley, 1986.

[16] K. O'Brien, B. Hay, J. Minish, H. Scha�er, B. Schloss,

A. Shepherd, and M. Zaleski, \Advanced compiler

technology for the RISC System/6000 architecture,"

in IBM RISC System/6000 Technology, 1990.

[17] M. Schlansker and V. Kathail, \Acceleration of �rst

and higher order recurrences on processors with in-

struction level parallelism," in Proceedings of Lan-

guages and Compilers for Parallel Computing, 6th In-

ternational Workskop, August 1993.

[18] M. Schlansker, V. Kathail, and S. Anik, \Height re-

duction of control recurrences for ILP processors," in

Proceedings of the 27th International Symposium on

Microarchitecture, pp. 40{51, December 1994.

[19] T. Nakatani and K. Ebcioglu, \Combining as a compi-

lation technique for VLIW architectures," in Proceed-

ings of the 22nd International Workshop on Micropro-

gramming and Microarchitecture, pp. 43{55, Septem-

ber 1989.

[20] B. R. Rau, \Data
ow and dependence analysis for

instruction-level parallelism," in Proceedings of the

Fourth International Workshop on Languages and

Compilers for Parallel Computing, pp. 236{250, 1992.

[21] J. C. Dehnert, P. Y. Hsu, and J. P. Bratt, \Over-

lapped loop support in the Cydra 5," in Proceedings of

the Third International Conference on Architectural

Support for Programming Languages and Operating

Systems, pp. 26{38, April 1989.

[22] W. Pugh, \A practical algorithm for exact array de-

pendence analysis," Communications of the ACM,

vol. 35, pp. 102{114, August 1992.

[23] J. C. Gyllenhaal, \A machine description language for

compilation," Master's thesis, Department of Electri-

cal and Computer Engineering, University of Illinois,

Urbana, IL, 1994.

[24] W. Mangione-Smith, S. G. Abraham, and E. David-

son, \Register requirements of pipelined processors,"

in Proceedings of the International Conference on Su-

percomputing, pp. 260{271, 1992.

[25] P. P. Chang, D. M. Lavery, S. A. Mahlke, W. Y. Chen,

and W. W. Hwu, \The importance of prepass code

scheduling for superscalar and superpipelined pro-

cessors," IEEE Transactions on Computers, vol. 44,

pp. 353{370, March 1995.

[26] B. R. Rau, M. Lee, P. P. Tirumalai, and M. S.

Schlansker, \Register allocation for software pipelined

loops," in Proceedings of the ACM SIGPLAN 92 Con-

ference on Programming Language Design and Imple-

mentation, pp. 283{299, June 1992.

