
1

Java Bytecode to Native Code Translation:
The Caffeine Prototype and Preliminary Results

Cheng-Hsueh A. Hsieh John C. Gyllenhaal Wen-mei W. Hwu
Center for Reliable and High-Performance Computing

University of Illinois
Urbana-Champaign, IL 61801

ada, gyllen, hwu@crhc.uiuc.edu

Abstract

The Java bytecode language is emerging as a software
distribution standard. With major vendors committed to
porting the Java run-time environment to their platforms,
programs in Java bytecode are expected to run without
modification on multiple platforms. These first generation run-
time environments rely on an interpreter to bridge the gap
between the bytecode instructions and the native hardware.
This interpreter approach is sufficient for specialized
applications such as Internet browsers where application
performance is often limited by network delays rather than
processor speed. It is, however, not sufficient for executing
general applications distributed in Java bytecode. This paper
presents our initial prototyping experience with Caffeine, an
optimizing translator from Java bytecode to native machine
code. We discuss the major technical issues involved in stack
to register mapping, run-time memory structure mapping, and
exception handlers. Encouraging initial results based on our
X86 port are presented.

 1. Introduction

The software community has long desired a universal
software distribution language. If such a language is widely
supported across systems, software vendors can compile and
validate their software products once in this distribution
language, rather than repeating the process for multiple
platforms. Software complexity is rapidly increasing and
validation has become the deciding factor in software cost and
time to market. Therefore, substantial economic motivation

 Copyright 1996 IEEE. Published in the Proceedings of the 29th Annual
International Symposium on Microarchitecture, December 2-4, 1996, Paris, France.
Personal use of this material is permitted. However, permission to reprint/republish
this material for resale or redistribution purposes or for creating new collective works
for resale or redistribution of servers or lists, or to reuse any copyrighted component of
this work in other works, must be obtained from the IEEE. Contact: Manager,
Copyrights and Permissions /IEEE Service Center / 445 Hoes Lane / P. O. Box 1331 /
Piscataway, NJ 08855-1331, USA. Telephone: + Intl. 908-562-3966

exists behind efforts to create such a software distribution
language. The progress, however, has been very slow due to
legal and technical difficulties.

On the legal side, many software vendors have been
skeptical about the ability of the proposed software distribution
languages to protect their intellectual property. In practice,
such concern may have to be addressed empirically after a
standard emerges. Although the protection of intellectual
property in software distribution languages is an intriguing
issue, it is not the topic addressed by this paper. For the
purpose of our work, we expect Java to be accepted by a
sufficient number of software vendors in the near future to
make our work relevant.

On the technical side, the performance of programs
distributed in a universal software distribution language has
been a major concern. The problem lies in the mismatch
between the virtual machine assumed by the software
distribution language and the native machine architecture. The
task of bridging the gap is made more difficult by the lack of
source code information in the distributed code in order to
protect intellectual property. As a result, software interpreters
have been the main execution vehicles in the proposed
standards. The disadvantage of software interpreters is poor
performance. This disadvantage has been partially
compensated for by the fast advance of microprocessor speed.
For applications such as Internet browser applets where overall
performance is often more limited by network delays than
processor speed, sacrificing processor performance in favor of
reducing software cost has become acceptable. This is,
however, not true for general applications.

This paper presents our initial prototyping experience with
Caffeine, an optimizing Java bytecode to native machine code
translator. Although our techniques are presented in the
context of handling Java, they are applicable to other software
distribution languages such as Visual Basic P-code. We are by
no means arguing that Java is the ultimate software distribution
language. Rather, we intend to develop a strong portfolio of
techniques from our Java implementation efforts that will
contribute to the creation and acceptance of whatever language
becomes the final standard. The objective of this work is to run
the translated code at nearly the full performance of native code

2

directly generated from a source representation such as the C
programming language.

Due to space limitations, we will limit our discussion to
three critical issues involved in the translation process. The
first issue is the mapping of the stack computation model of the
bytecode Virtual Machine to the register computation model of
modern processors. A performance enhancing algorithm that
takes advantage of the register computation model is presented.
This algorithm requires analysis to identify the precise stack
pointer contents at every point of the program. In addition,
most compilation infrastructures require that each virtual
register contains just one type of data, and that virtual registers
do not overlap. We present a live-range-based register-
renaming algorithm that can resolve such inconsistencies in
non-pathological cases. The second issue is mapping the
bytecode memory organization to the native architecture. A
more efficient memory organization than the one used by the
Java interpreter is introduced. The third issue is how to
translate the exception handling semantics of Java. We
describe the preliminary method used by Caffeine and some of
the issues involved.

A prototype of Caffeine has been developed based on the
IMPACT compilation infrastructure [1]. The prototype is
sufficiently stable to handle Java bytecode programs of
substantial size. This paper presents some initial experiments
comparing the real machine execution time of Java bytecode
programs using the SUN Java interpreter 1.0.2, the Symantec
Java Just-in-time (JIT) compiler 1.0, and the IMPACT Java to
X86 native code translator 1.0 running under Windows 95.
Also included in the comparison is the execution time of
equivalent C programs directly compiled by the Microsoft
Visual C/C++ compiler 4.0 into X86 native code. Preliminary
results show that the optimizing translator is currently capable
of achieving, on average, 68% of the speed of the directly
compiled native code.

The remaining sections are organized as follows. Section 2
introduces different approaches to execute Java bytecode
programs and an overview of our translation steps. Section 3
presents the stack computation model used by Java followed by
a proposed stack to register mapping. An overview of the stack
analyses required to perform and validate this mapping is
introduced in Section 4. Section 5 discusses the run-time
memory model adopted by the SUN Java interpreter and
presents a more efficient organization. Complications due to
exception handling are discussed in Section 6. Preliminary
performance results are presented in Section 7. Section 8
provides some concluding remarks and directions of future
work.

2. Background

We will not cover the Java bytecode Virtual Machine model
in this paper due to space limitations. Interested readers are
referred to the Java web site [2] and a large collection of Java
literature [3-11]. We will instead introduce three competing
and sometimes complementary approaches to execute Java
bytecode programs: interpreters, just-in-time compilers, and
optimizing native code translators. A preliminary performance

comparison between these approaches and native code
execution are presented in Section 7.

Interpreters are the most widely understood approach to
execute Java bytecode programs. A software interpreter
emulates the Java bytecode Virtual Machine by fetching,
decoding, and executing bytecode instructions. In the process,
it faithfully maintains the contents of the computation stack,
local memory state, and structure memory. The Java interpreter
from SUN Microsystems is available to the public [2].

Just-in-time compilers do on-the-fly code generation and
cache the native code sequences to speed up the processing of
the original bytecode sequences in the future. The current
generations of just-in-time compilers do not save the native
code sequences in external files for future invocations of the
same program. Rather, they keep the native code sequence to
speed up the handling of the corresponding bytecode sequence
during the same invocation of the program. Thus, they take
advantage of iterative execution patterns such as loops and
recursion. At the time of this work, Borland [12] and Symantec
[13] had both announced just-in-time compiler products, and
the Symantec JIT compiler is used in this paper. Due to the
code generation overhead that occurs during program execution,
just-in-time compilers are still intrinsically slower than
executing native code programs.

Optimizing native code translators use compiler analysis to
translate bytecode programs into native code programs off-line.
This is the least understood approach among the three
alternatives. Without extensive analysis and transformation
capabilities, the native code generated may not be much better
than that cached in the just-in-time compilers. Therefore,
optimizing native code translators must perform extensive
analysis and optimization in order to offer value beyond just-in-
time compilers. Such analysis and transformations tend to
make the translation process more expensive in time and space.
In general, only those applications that will be repeatedly
invoked or those applications whose execution time is much
longer than the translation time should be translated. Thus,
optimizing native code translators will not eliminate the need
for interpreters and just-in-time compilers.

Figure 1 shows an overview of the steps in our prototype
optimizing native code translator. The Java class files [4]
required to execute the program are identified and decoded into
sequences of bytecode operations, which are later used for
construction of an internal representation (IR), called the Java
IR, which is organized into functions and basic blocks. The
construction of the Java IR is straightforward due to the
absence of indirect jumps, indirect calls, self-modified code,
embedded data, and branch target alignment “filler” code in
bytecode. Due to the nature of the Java Virtual Machine
specification [4] and the class file format, data recognition is
also straightforward. Thus, the information recovered from
Java bytecode ensures complete control flow graph
construction.

The IMPACT low-level intermediate code (Lcode) serves as
a machine-independent IR for our prototype translator.
Translation from the Java IR to an efficient Lcode IR requires
extensive analyses, as discussed in Section 4. The stack
computation model is mapped to a more efficient register
computation model. Bytecode operations which do not have
corresponding Lcode operations are translated into sequences of

3

Lcode operations or into function calls to the emulation library.
After the Lcode IR is constructed, it is optimized by the X86
compilation path in the IMPACT compiler to generate assembly
code and then an executable which runs under Windows 95.
The Lcode IR construction phase is generic and will be
retargeted to other code generation paths supported in IMPACT
compiler in the future.

3. Stack to Virtual Register Mapping

3.1 Stack Computation Model

Java bytecode Virtual Machine uses a stack computation
model to avoid making assumptions about the architectural
register file size available to the interpreter [4]. Source
operands are fetched from the top of operand stack and the
result is pushed back on. The instruction size in this model is
small since the operands are implicitly defined and require no
operand fields in the instruction encoding, which facilitates

efficient object code distribution over the Internet. Beside the
operand stack, the Java Virtual Machine also provides a
memory array, called the local variable array, for storage of
local variables.

No stack analysis is required if the translated native code
maintains a run-time operand stack in memory and manipulates
it in the same way that the interpreter does. This
straightforward approach is able to handle any situation that the
interpreter can handle. The run-time cost of this
straightforward approach, however, can be expensive due to the
unnecessary memory traffic caused by inefficient register
utilization. In Figure 2, the stack operations and the
corresponding unoptimized translated intermediate code are
presented side-by-side for an add operation to illustrate this
approach. A load/store architecture is assumed in this example.
Note that the original add operation pops two operands off the
stack, adds them, and pushes the result back on.

Optimizations can be performed on the translated code to
eliminate some of the loads (pops) and stores (pushes).
However, many will still exist due to the use of stack
operations across basic blocks. Global removal of unnecessary
loads and stores requires an analysis equivalent to that
discussed in Section 4 and is not the focus of this paper.

3.2 Register Mapping: Global Stack Location
Register Mapping and Renaming

The performance of the translated code can be improved by
mapping the run-time stack to the virtual register file. The
approach used by Caffeine is to assign each stack location a
unique virtual register number. Register allocation is later used

 ByteCode

Java
IR

Machine-Indep.
IR (Lcode)

 Optimized
Native Code

Optimized
Machine-Specific

IR

Optimized
Machine-Indep.

IR

Instruction Recognition
Data Recognition

Stack Analysis
Stack to Register Mapping
Class inheritance Analysis
Instruction Annotation

Inlining
Data Dependence Anal.
Interclass Analysis
Classic Optimization
ILP Optimization
Predication

Peephole Optimization
Scheduling, Speculation
Register Allocation

Assembly code generation
Assemble & Link

Run-time supportClassfile reader
Java bytecode decoder

Figure 1. Java bytecode to native code translation steps.

Stack operations Translated code

push A push A
push B push B

add r2 Å pop (B)
r1 Å pop (A)
r3 Å r1 + r2

push r3

Figure 2. Translated intermediate code
example without stack to register mapping.

4

to allocate the virtual registers to physical registers during the
code generation phase. After this register mapping, a push to
the operand stack is translated to a move to the register
assigned to the stack location pointed to by the current stack
pointer, and a pop is translated to a move from the register
assigned to the stack location. This algorithm can only be
applied when a constant stack offset can be determined for
every push and pop at translation time. Algorithms to
determine when this transformation can be applied are
discussed in Section 4.1. The local variable array can be
mapped to virtual registers using the array indices. Figure 3
shows the translated code using this approach for the same add
operation as Figure 2. The moves of operands to virtual
registers r1 and r2 before add will be forward copy propagated
if possible. They are then removed as dead code if they are not
live out.

There are two issues associated with this approach that need
to be resolved. First, variables with different types or different
sizes may be pushed to the same stack location and thus
assigned to the same virtual register, causing some virtual
registers to hold multiple types of operands or to alias with
adjacent registers. In Figure 4, a push of 4-byte float onto
stack location 3 is translated to “r3 Å float_value” in this
register mapping scheme. At another point in the program, a 4-
byte integer could be pushed to the same stack location and be
translated to “r3 Å integer_value”. As a result, register r3
holds two different types, which is not allowed in many
compiler infrastructures. Another conflict arises if an 8-byte
double is pushed to stack location 2 and 3. The translated
statement “r2 Å double_value” causes register r2 to alias with

neighboring register r3. Because Java has no union and all
type conversions are made explicit, accesses to different types
should never alias. Bytecode generated from a valid Java
compiler should always have the type state property [6] that
guarantees neither type conflict nor aliasing problems should
occur. An algorithm presented in Section 4.2 is used to
validate this assumption and to disambiguate virtual registers
which hold different types in this mapping scheme.

Second, parallelism may be lost for wide-issue machines
because different variables use the same stack location in the
original Java bytecode and get assigned to the same virtual
register in this mapping scheme. This reuse of the virtual
registers introduces artificial output and anti-dependencies.
The same algorithm used to disambiguate virtual registers
which hold different types can be applied to perform global
virtual register renaming to remove the artificial dependencies.

4. Stack analysis

4.1 Stack balance analysis

For our register mapping scheme to function correctly, the
position of the stack pointer must be a known constant for each
operation at translation time. Although bytecode generated
from valid Java compilers should satisfy this property [6], we
can not assume all loaded bytecode came from valid sources.

A basic block may push more items on the stack than it
consumes, and vice versa. The residue of each basic block,
which is defined as the total number of pushes minus the total
number of pops in the block, is computed first. The control
flow graph is then traversed depth-first and each node is
marked “visited” along the path from the first block. The stack
pointer position upon entering a block is equal to the
accumulated residue. If a marked basic block is revisited, the
accumulated residue is checked against the stack pointer
position in the revisited block. If they disagree, the stack to
register mapping cannot be applied to this control flow graph.
In such cases, Caffeine reverts to the stack model. The
accumulated residue is also checked against zero whenever a

Stack
operation

Translated
code

After copy prop. &
Dead code removal

push A r1 Å A -
push B r2 Å B -

add r1 Å r1 add r2 r1 Å A add B

Figure 3. Translated intermediate code
example with stack to register mapping.

..

..

..

4-byte integer

8-byte double

r2

r3

r1

4-byte float

stack
grows...

Figure 4. Example of type or size mismatch
and register aliasing problems. A 32-bit
architecture is assumed.

1

2

3

413

5

6

7

812

11
9

10

+1+1

-1

-1

-1

Figure 5. Stack balance analysis example.

5

leaf block (a block with no successor) is reached to ensure that
the stack is balanced in each control flow graph. This
algorithm runs in linear time in the number of basic blocks and
control flow arcs. Figure 5 shows a control flow graph whose
blocks are numbered in the order that they are visited by this
algorithm. In this example, we assume blocks 4 and 13 have a
residue of one, and blocks 9, 11, and 12 have a residue of
minus one. All paths from block 1 to block 10 are stack
balanced. The position of the stack pointer for each block is
also a known constant. Specifically, the stack pointer at the
entrance to blocks 5, 6, 7, 8, 9, 11, and 12 points to location
one. For the rest of the blocks, the stack pointer initially points
to location zero.

An example of when register mapping cannot be currently
applied is shown in Figure 6. Depending on the path traversed,
the stack offset for the pop is either zero or one. For this case,
the stack based method needs to be used. However, since we
are using a valid Java compiler, the register-based approach can
always be used.

4.2 Live range disambiguation and register renaming

The mapping of stack locations and local variables to
registers could have type and size conflicts as discussed in
Section 3.2. Variables of different types which reside in the
same virtual register are separated into separate registers, when

possible, using the technique presented below. The live ranges
of each register can be characterized by their def-use chains.
Since the access of a double also takes the next contiguous
memory word, the normal reaching-definition analysis [16] is
slightly modified to take this effect into account. To be
specific, the definition of r2 by an 8-byte double in Figure 4
also reaches the contiguous register r3.

For each register rx, the identified def-use chains are
grouped into non-overlapping live ranges. In Figure 7,
operations op1, op3, and op5 define the register rx and
operations op2, op4, and op6 use the same register rx. The def-
use chains for register rx are 1Æ 2, 1Æ 4, 3Æ 4, and 5Æ 6 as
shown. Each connected graph forms a non-overlapping live
range of register rx. As a result, op1, op2, op3, and op4 form a
live range (LR#1) while op5 and op6 form another (LR#2).
Register rx in each live range is renamed to a different register
id. If the type of register rx is not consistent inside a live range
after this renaming, the stack to register mapping cannot be
applied and the translation falls back to the stack computation
model.

5. Run-time memory organization

Java programs are name-binding rather than address-binding
and thus allow flexibility in the run-time memory organization
implemented by the interpreter. Dynamically allocated objects
in the heap can be roughly categorized into class objects and
array objects. Figure 8 illustrates the heap memory
organization used by the SUN Java interpreter. In this
organization, neither a class object nor an array object points
directly to its associated data. Rather, there is an 8-byte handle
in between. Accesses to both class instance data and array
body require two levels of indirection. Accesses to the method
block for method invocation need three levels of indirection.
Since these access events take place frequently during program
execution, such high levels of indirection can cause significant
performance degradation.

The enhanced memory model proposed in this paper (in
Figure 9) reduces the amount of indirection by combining the

if A

p u s h

if A

 p o p

+ 1

-1

Figure 6. Example of where stack based approach
must be used.

op1

op2

op3

op4

op5

op6

def:

use:

LR#1 LR#2

Figure 7. Def-use chains grouping.

classobj_ptr obj_ptr

Handle Space Object Space

method_table_ptr

class_ptr

method_ptr

method table

 class Run-Time
 Type Info.
 ..

method block
 ..
 ..
 ..

arrayobj_ptr obj_ptr

length

class_ptr

class Run-Time
 Type Info.
 ..

method block
 ..
 ..
 ..

Class A descriptor

type

Class B descriptor

2

3

2
array
 body
 ..
 ..

Heap Memory Shared MemoryExternal
Reference

class
 instance
 data

Figure 8. Run-time memory organization used by
Java interpreter.

6

class instance data block and the method table into one object
block. The reference to object block now requires only one
level of indirection. Since the class run-time type information
in our implementation is of constant size, the method block can
be accessed by a constant offset from a pointer to the class
descriptor. The method_ptr in Figure 8 is thus eliminated,
which reduces a method block reference to two indirection
levels. The enhanced model also consumes less memory.
Changes made to the run-time library, which is source licensed
from SUN, to support this enhanced memory model are
minimal due to the library’s heavy use of preprocessor macros
for handle-to-object dereferencing.

6. Exception Handler Considerations

Exception handlers are sections of code that are reached
when a run-time exception occurs. The try-block in Java is
designed to enclose statements which may cause run-time
exceptions. Exceptions which occur within a try-block are
captured by an associated catch-block of the same exception
type. A Java method can have many exception handlers
cascaded together to guard ordinary code, or to guard other
handlers. In Figure 10, block 14 is an exception handler that
guards its try-block consisting of blocks 4 to 8. There are four
issues that must be addressed during translation.

First, after exception handling, control may be transferred
back to the original program (e.g. in Figure 10, block 14 Æ

10). As a result, exception handlers need to be connected to
the control flow graph as shown in Figure 10.

Second, an exception handler might use local variables
defined before its associated try-block. In Figure 10, the
definition of local variable entry LV[1] reaches the use in
exception handler block 14. A pseudo arc, shown as a dotted
line, and a null block preceding the try-block are created to
allow live variable information to be passed to the handler.

Otherwise incomplete flow analysis may lead to incorrect
optimizations.

Third, during optimization and scheduling, an instruction
inside the try-block cannot be moved outside its try-block
without enlarging the try-block in general. However, if the try-
block has to be enlarged, to avoid changing the program
behavior, the added instructions should not cause exceptions
that can be captured by the try-block’s handler.

Fourth, for maximum portability, exception handling
support in the Java interpreter does not rely on the underlying
architecture or operating system. Thus, the interpreter
explicitly checks for null references, array index bounds, divide
by zero, etc. It is expensive and often unnecessary for the
translated code to do all of these explicit checks. Caffeine
currently explicitly checks array index bounds in the translated
code. This checking costs about 10% of the performance across
our benchmark programs. Optimization opportunities exist to
conduct analysis to eliminate unnecessary explicit checks.
Previous work has shown that program analysis can be done to
determine if it is possible for a load or store to ever have an
address of zero or to ever access outside of its intended array,
etc., for the purpose of speculative code motion [20].

The benchmarks presented in Section 7 do not cause
exceptions and thus do not exercise the exception handler
capabilities of Java. Although Caffeine does not currently
support many of these capabilities, we believe that the
underlying hardware architectures can be used to support the
remaining exception-handling capabilities without affecting
performance of these benchmarks.

7. Benchmarks and Preliminary Results

A suite of six integer programs was selected to evaluate our
prototype translator. There were currently no standard Java
benchmarks generally available at the time of this work. For
each program, we hand translated the C source code into
equivalent Java source code. By equivalence we mean that the

classobj_ptr
 class_ptr

class
 instance
 data

arrayobj_ptr

 class_ptr

class Run-Time
 Type Info.
 ..

method block
 ..
 ..
 ..

Class A descriptor

 type
Class B descriptor

2
1

1
array
 body
 ..
 ..

Heap Memory Shared MemoryExternal
Reference

object block

 class Run-Time
 Type Info.
 ..

method block
 ..
 ..
 ..

 length

Figure 9. Run-time memory organization
used by Java bytecode translator.

7

9

8

6

4

5 14

def LV[1]
use LV[1]

use LV[1]

use LV[1]
LV[2] = 1

10

LV[2] =10/0

LV[2] alive later

Exception
 handler

4’

Try-bock Catch-bock

Figure 10. Example of exception handing.

7

algorithm, data structures, and operand types used in the Java
code and the C code are the same. Due to the fundamental
differences between C and Java with regard to the object-
oriented concept, array accessing, array index bounds checking
and library routines, an exact correspondence is not always
feasible. When this occurred, we modified the C program so
that it could be translated with close correspondence. The Java
sources thus generated are then compiled into Java bytecode by
the SUN Java compiler.

Figure 11 shows preliminary results that compare the real
machine execution time of Java bytecode programs using the
SUN Java interpreter, the Symantec Java Just-in-time compiler
(JIT), and different configurations of the IMPACT Java to X86
native code translator Caffeine. All of the programs are
executed on an Intel Pentium processor running Windows 95.
Performance is shown in Figure 11 as a percentage of the
benchmark performance for the equivalent C code compiled by
the Microsoft Visual C/C++ compiler with optimization level
two. The first Caffeine model (Stk.-Orig.Mem) uses the stack
computation model and the interpreter’s memory model. The
performance is, on average, 2.8 times higher than the JIT
compiler. This is because of the optimizations that remove
unnecessary pushes and pops, and because no initial code-
generation is required. The second Caffeine model (Reg.-
Orig.Mem) uses the register computation model instead of the
stack model. This results in 55% performance improvement

over the stack model. The final Caffeine model (Reg.-
Enh.Mem) also uses the proposed memory organization
instead of the interpreter’s memory organization. This results
is a 7% performance improvement. This final model of our
prototype Java native code translator Caffeine is capable of
generating code that runs on average at 68% of the speed of the
equivalent C code, 4.7 times faster than the Symantec Java JIT
compiler, and more than 20 times faster than the Java
interpreter. For these preliminary results, the Caffeine
translated code is optimized using classic C code optimization
techniques without profiling and inlining.

8. Conclusion and Future Work

In this paper, we presented our initial prototyping
experience with Caffeine, a Java-bytecode-to-native-machine-
code translator, to demonstrate the feasibility of efficient
universal software distribution languages. The preliminary
results show that it is capable of achieving 68% of the speed of
the native code directly compiled from the equivalent C code.
Besides the fact that it removes the interpretation overhead,
much of the performance gain over the SUN Java interpreter
comes from the stack to register mapping, which fully utilizes
the register computation model of modern processors. The
requirements and algorithms for the stack to register mapping

0.0%

10.0%

20.0%

30.0%

40.0%

50.0%

60.0%

70.0%

80.0%

90.0%

100.0%

cmp compress grep Pi Sieve wc Overall

Benchmarks

P
er

ce
nt

ag
e

of
 C

 p
er

fo
rm

an
ce

SUN (interpreter)
Symantec (JIT)
Caffeine (Stk-Orig.Mem)
Caffeine (Reg-Orig.Mem)
Caffeine (Reg-Enh.Mem)

Figure 11. Experiment results on different approaches. All numbers are relative speed to the equivalent
C code compiled by Microsoft Visual C/C++ compiler with optimization level two.

8

were presented and discussed. Although these requirements
will hold for all Java bytecode generated by a valid Java
compiler, the stack computation model is kept as a fall-back
when these requirements are not met. The penalty for using the
stack model is about a 35% performance degradation.

We also presented and compared two different run-time
memory organizations. Preliminary results showed that a 7%
performance gain can be achieved by moving the data
associated with dynamically allocated objects closer to their
external references.

Several aspects of translating Java bytecode to native code
that were not exercised by these benchmarks are now being
investigated. These aspects include garbage collection, Java’s
extensive exception handling capabilities, threading support,
and the use of the Java graphic library.

In addition, substantial ongoing efforts are focusing on
removing indirection overhead for method invocation. By
doing interclass reaching-definition analysis, we should be able
to trace the class type of a current object from its definition and
convert, if possible, the indirect method invocation to an
absolute method invocation. Inlining is also made possible by
this conversion. Another direction for research is to perform
better memory disambiguation by taking advantage of well-
protected class boundaries to eliminate dereferencing overhead.
We also observe that the array index bounds checking as
required by Java semantics is a major source of performance
degradation. We feel that with aggressive analysis, most of
these checks can be removed. We would also like to target
other platforms and make use of more advanced instruction-
level parallelism enhancing techniques such as predication and
speculation.

Acknowledgments

The author would like to thank Daniel M. Lavery for
proofreading the various versions of this paper, all the members
of the IMPACT research group, and the anonymous reviewers
whose comments and suggestions helped to improve the quality
of this paper.

This research has been supported by the National Science
Foundation (NSF) under grant MIP-9308013, Intel Corporation,
Advanced Micro Devices, Hewlett-Packard, SUN
Microsystems, NCR, and the National Aeronautics and Space
Administration (NASA) under Contract NASA NAG 1-613 in
cooperation with the Illinois Computer Laboratory for
Aerospace Systems and Software (ICLASS).

Reference

 [1] P.P. Chang, S. A. Mahlke, W. Y. Chen, N. J. Warter, and
W. W. Hwu, IMPACT: An architectural framework for
multiple-instruction-issue processors, Proc. 18th Ann. Int’l
Symp. Computer Architecture, (Toronto, Canada), pp.
266-275, Jun 1991.

 [2] JavaTM – Programming for the Internet, Sun Microsystems,
Inc., 1996, http://java.sun.com/

 [3] James Gosling and Henry McGilton, The Java Language
Environment, A White Paper, Sun Microsystems Computer
Corporation, October, 1995.

 [4] The Java Virtual Machine Specification, Release 1.0 Beta
DRAFT, Sun Microsystems Computer Corporation, August
21, 1995.

 [5] The Java Language Specification, Version 1.0 Beta DRAFT,
Sun Microsystems Computer Corporation, October 30,
1995.

 [6] James Gosling, Java intermediate Bytecodes, ACM
SIGPLAN Workshop on Intermediate Representations,
1995.

 [7] Arthur van Hoff, Sami Shaio, and Orca Starbuck, Hooked
on Java, Addison-Wesley, December 1995.

 [8] David Flanagan, Java in a Nutshell, O’Reilly & Associates,
Inc, February 1996.

 [9] Gary Cornell and Cay S. Horstmann, Core Java, The
Sunsoft Press Java Series, March 1996.

[10] Michael C. Daconta, Java for C/C++ Programmers,
Wiley Computer Publishing, March 1996.

[11] Ken Arnold and James Gosling, The Java Programming
Language, Addison Wesley, May 1996.

[12] Borland C++ Development Suite, Borland International,
Inc., 1996 , http://www.borland.com/

[13] Café – Visual Java Development and Debugging Tools,
Symantec Corporation, 1996, http://www.symantec.com/

[14] Tim Wilkinson, KAFFE – A JIT virtual machine to run
Java code, 1996,
http://web.soi.city.ac.uk/homes/tim/kaffe/kaffe.html

[15] Guava – High-performance Environment for Running Java
Programs, Softway Pty. Ltd., 1996,
http://www.softway.com.au/softway/products/guava/

[16] Alfred V. Aho, Ravi Sethi, and Jeffery D. Ullman,
Compiler – Principles, Techniques, and Tools, Addison
Wesley, March, 1988.

[17] Jeffery Richter, Advanced Windows - Chap.9 Thread
Synchronization and Chap.14 Structured Exception
Handling, Microsoft Press, 1995.

[18] Matt Pietrek, Windows 95 System Programming Secrets,
IDG Books Worldwide, 1995.

[19] Walter Oney, Extend Your Application with Dynamically
Loaded VxDs Under Windows 95, MSJ, May 1995.

[20] Roger Alexander Bringmann, Enhancing Instruction Level
Parallelism Through Compiler-Controlled Speculation,
Ph.D. thesis, Department of Computer Science,
University of Illinois, Urbana-Champaign, 1995.

