
Speculative Hedge:

Regulating Compile-Time Speculation Against Pro�le Variations

Brian L. Deitrich Wen-mei W. Hwu

Center for Reliable and High-Performance Computing

University of Illinois

Urbana-Champaign, IL 61801

briand,hwu@crhc.uiuc.edu

Abstract

Path-oriented scheduling methods, such as trace schedul-

ing and hyperblock scheduling, use speculation to extract

instruction-level parallelism from control-intensive pro-

grams. These methods predict important execution paths

in the current scheduling scope using execution pro�ling or

frequency estimation. Aggressive speculation is then applied

to the important execution paths, possibly at the cost of de-

graded performance along other paths. Therefore, the speed

of the output code can be sensitive to the compiler's ability

to accurately predict the important execution paths. Prior

work in this area has utilized the speculative yield function

by Fisher, coupled with dependence height, to distribute in-

struction priority among execution paths in the scheduling

scope. While this technique provides more stability of per-

formance by paying attention to the needs of all paths, it

does not directly address the problem of mismatch between

compile-time prediction and run-time behavior.

The work presented in this paper extends the specula-

tive yield and dependence height heuristic to explicitly min-

imize the penalty su�ered by other paths when instructions

are speculated along a path. Since the execution time of a

path is determined by the number of cycles spent between a

path's entrance and exit in the scheduling scope, the heuris-

tic attempts to eliminate unnecessary speculation that de-

lays any path's exit. Such control of speculation makes the

performance much less sensitive to the actual path taken at

run time. The proposed method has a strong emphasis on

achieving minimal delay to all exits. Thus the name, spec-

ulative hedge, is used. This paper presents the speculative

hedge heuristic, and shows how it controls over-speculation

in a superblock/hyperblock scheduler. The stability of out-

Copyright 1996 IEEE. Published in the Proceedings of the
29th Annual International Symposium on Microarchitecture, De-
cember 2-4, 1996, Paris, France. Personal use of this material
is permitted. However, permission to reprint/republish this ma-
terial for resale or redistribution purposes or for creating new
collective works for resale or redistribution to servers or lists, or
to reuse any copyrighted component of this work in other works,
must be obtained from the IEEE. Contact: Manager, Copyrights
and Permissions / IEEE Service Center / 445 Hoes Lane / P.O.
Box 1331 / Piscataway, NJ 08855-1331, USA. Telephone: + Intl.
908-562-3966

put code performance in the presence of execution variation

is demonstrated with six programs from the SPEC CINT92

benchmark suite.

1. Introduction

Path-oriented scheduling methods, such as trace

scheduling [7] and superblock/hyperblock scheduling [10,

12], extract instruction-level parallelism from control-

intensive programs by using speculation. Pro�le informa-

tion or frequency estimation guides aggressive speculation,

so that important execution paths can have their run time

minimized. However, with limited execution resources, sit-

uations arise where one path will execute faster, only if

another path gets delayed.

Fisher proposed the use of speculative yield to determine

the pro�tability of speculating an instruction [8]. The spec-

ulative yield is an expected value function which is de�ned

between basic blocks. It is the probability that an opera-

tion scheduled in basic blocki produces useful work (mean-

ing that its original basic blockj executes when basic blocki
executes). Its use with dependence height has been shown

to account for the needs of all paths during the scheduling

process [2].

Speculative yield, coupled with dependence height, pro-

vides a good heuristic for path-oriented schedulers, but

it does not address the problem of mismatches between

compile-time prediction and run-time behavior. There is

nothing inherent to speculative yield and dependence height

that ensures that paths, which are shown by pro�le data to

be unimportant, do not get delayed unnecessarily. This

leads to execution-time slow-down when those paths are

really executed at run time.

The speculative hedge heuristic, presented in this paper,

attempts to ensure that no path gets delayed unnecessarily,

even while performing aggressive speculation. Therefore, it

hedges its reliance on the compile-time prediction data. It

accomplishes this goal by accounting for di�erent processor

resources while scheduling, not just the common scheduling

priority function of dependence height.

It should be noted that speculative hedge only solves

part of the pro�le independence problem. Speculative

hedge does not address the problem of determining what

paths should be scheduled together. A poor selection

of paths to schedule together will limit the amount of

ILP that can be generated for a program, and cause a

pro�le-dependence problem [5]. Speculative hedge limits

the damage associated with a poor selection by ensuring

that paths are not delayed unnecessarily. This property

is especially important for any compiler which uses static

analysis instead of pro�le information to determine which

paths should be scheduled together [9].

The usefulness of the speculative hedge heuristic is

demonstrated in a superblock/hyperblock scheduler. The

remainder of the paper describes the heuristic, its imple-

mentation in the superblock/hyperblock scheduler, and the

results obtained when the heuristic is applied to six SPEC

CINT92 benchmarks. The paper is organized as follows:

Section 2 provides background on terms used in the pa-

per and related work. Section 3 provides the details of the

speculative hedge heuristic. The performance results are

reported in Section 4. A summary and a description of

future work is given in Section 5.

2. Background

2.1. Late Times and Dependence Height

Dependence height is an important measure in determin-

ing an operation's scheduling priority. Many heuristics de-

pend on it exclusively during scheduling. Speculative hedge

uses dependence height as one component when determin-

ing scheduling priority. Late times are used by the specula-

tive hedge heuristic to account for dependence height while

scheduling.

A late time for an operation is the latest time that an

operation can be scheduled without delaying an exit. An

operation has a set of late times associated with it, one for

each exit. Late times are calculated based on the latencies

associated with the dependence graph used for scheduling.

Figure 1 shows the late time values for a simple dependence

graph. The late times are a 2-tuple in the �gure. The �rst

entry in the tuple is the operation's late time for exit 0, and

the second entry is the operation's late time for exit 1.

1

3 2

4

5

exit 0

exit 1

late times = (0,0)

late times = (1,2)late times = (X,1)

late times = (X,2)

late times = (X,3)

NOTES:

all dependences are unit latency
X = undefined
for late times, (late time for exit 0, late time for exit1)

Figure 1. Dependence graph used for scheduling

Late times are computed via a bottom-up traversal of

the dependence graph. The calculation is done once for

every exit. An exit operation has its late time de�ned as

the dependence height of the exit (which would have been

determined with a top-down traversal of the dependence

graph) minus one. In the example, operation 2's late time

for exit 0 is 1, and operation 5's late time for exit 1 is 3.

All other operations have their late times computed based

on the exit late times of operations located later in the

dependence graph. Operationx's late time for exiti (LTx)

is de�ned as:

For all dependence arcs exiting operationx and entering any

operationy, LTx = minfor all opsy (LTy � latxy)
1

LTx = opx late time for exiti,

LTy = opy late time for exiti,

latxy = latency of dep arc between ops x and y

If an operation does not reach an exit through a dependence

chain, the operation does not contain a valid late time for

that exit. Therefore, its late time for the exit is unde�ned.

Speculative hedge utilizes late times in the conventional

manner, but allows an exit operation's late time for that

exit to be de�ned by the most constraining resource height,

instead of always using dependence height. In Figure 1, if

the processor being scheduled is single-issue, the exit as-

sociated with operation 5 cannot be issued as quickly as

the dependence height dictates. Since issue width is the

limiting resource, operation 5's late time for exit 1 would

actually be four (the issue width height minus one). There-

fore, all the late times associated with exit 1 would be one

greater than the values shown in the �gure.

2.2. Previous Work and Other Heuristics

DEPENDENCE HEIGHT AND SPECULATIVE

YIELD

Fisher suggests that the multiplication of dependence

height by speculative yield is a good candidate for the

scheduling priority function [8]. The appeal is that depen-

dence height is commonly used as the priority function, and

speculative yield allows it to take into account the proba-

bility of taken branches.

Bringmann utilized this concept in a list scheduler for

superblocks [2]. In his method, a static heuristic utilizes the

exit probabilities2 and an operation's late times to generate

the priority for that operation. The operations are then

scheduled greedily, so that the highest priority operation

that is available gets scheduled. The priority function used

in this scheduler is:

Priorityx =
P

V alLTx
(Probi � (MaxLT + 1� LTx))

V alLTx = for all valid late timesi of opx
Probi = probability of taking exiti
MaxLT = max late time in dep graph

LTx = opx late time for exiti

1In a practical implementation, if all dependence arcs go in
the forward direction relative to the original program order, the
equation can be applied once for each operation by visiting the
operations in the reverse program order.

2Since a superblock has only one entrance point, exit proba-
bilities are equivalent to Fisher's speculative yield values

2

To illustrate how the priority values are obtained, reference

Figure 1. Assume exit 0 is taken 25% of the time and exit

1 is taken the other 75% of the time. The priority values

obtained are:

operation1 = 0:25 � (3 + 1 � 0) + 0:75 � (3 + 1 � 0) = 4,

operation2 = 2.25, operation3 = 2.25, operation4 = 1.5,

and operation5 = 0.75.

Using only dependence height to guide the scheduler can

delay exits unnecessarily though. This is shown in Figure 2.

Assuming the latencies marked in the �gure, the second

branch, operation 7, can be retired in the third cycle when

one only considers dependence height. If the pro�le infor-

mation shows that exit 1 is always taken and dependence

height guides the scheduling priority function, operations 1

and 2 would be scheduled in the �rst cycle. The earliest

time exit 1 can actually be retired is in the fourth cycle be-

cause there are eight operations that must be issued on this

two-issue machine. Since the issue width of the processor

is the limiting factor, exit 0 should be retired right away

(regardless of the pro�le information). This allows exit 0 to

be retired immediately, and still allows exit 1 to be retired

as soon as possible. This case illustrates the main concept

behind speculative hedge|account for processor resources

so exits are not delayed unnecessarily.

Operation Sequence:

0: branch r10==0, target0
1: r1 <- ld(r2 + 0)
2: r3 <- ld(r2 + 4)
3: r4 <- r1 + r5
4: r6 <- r3 + r7
5: r8 <- r6 * r4
6: r9 <- r6 * r10
7: branch r4==r6, target1

Notes:

1) 2-issue processor which can issue
 1 branch per cycle
2) 0-cycle dependences needed to ensure that
 operations that generate a live-out value are
 kept above their branch
3) dependence height = 3
4) height based on issue width = ceil(8/2) = 4

DAG for Scheduling:

1 2 0

3 4

5 6

7

FALL-THRU

EXIT 0

EXIT 1

00

1 1

1 1
1

1 1

Figure 2. Example of dependence height not being
a problem.

CRITICAL PATH

Critical path is a pro�le-independent scheduling heuris-

tic that has been used in many types of schedulers [13, 6,

11]. Its application to superblock scheduling consists of us-

ing the dependence height associated with the last exit in

a superblock.

The dependence height and speculative yield priority

function creates identical schedules to critical path if the

pro�le information shows that the last exit has a probability

of one, and all other exits have a probability of zero. This

scheduling heuristic su�ers from over-speculation along the

longest path of control, and the potential for delaying ear-

lier side exits unnecessarily. Speculative hedge can use the

same pro�le-independent assumption that the last exit is

always taken, and create better schedules through its use

of resource information, along with the dependence infor-

mation.

SUCCESSIVE RETIREMENT

Successive retirement is another pro�le-independent

scheduling heuristic which attempts to retire each exit in-

order, as early as possible [4, 16]. This heuristic minimizes

speculation, so that it only speculates when there are no

non-speculative instructions available.

This scheduling method works well for narrow-issue pro-

cessors, where speculation is not very important. How-

ever, it can potentially lose performance by not speculat-

ing enough for wide-issue processors. When a narrow-issue

processor is scheduled for, successive retirement and spec-

ulative hedge create similar schedules. This results from

speculative hedge's ability to understand when the proces-

sor's issue width is the limiting factor to the retirement of

exits.

3. Speculative Hedge Heuristic

3.1. High-Level Overview

Speculative hedge takes both dependence height and re-

source constraints into account while scheduling. Many pre-

vious methods have considered only dependence height as

the limiting factor. As shown previously, taking into ac-

count only dependence height can delay seemingly unim-

portant exits.

To account for the resources accurately, speculative

hedge uses a dynamic-priority scheme. The dynamic-

priority calculation is needed because exits can be con-

strained by di�erent resources at various times during the

scheduling process. The type of resource that constrains

an exit's retirement has a direct e�ect on scheduling deci-

sions. The compilation-time implications of this approach

are addressed in Section 4.

In order to determine the best operation to schedule

next, speculative hedge uses several priority values. The

priority values used are:

� Helped weight - The sum of the taken probabilities for

all exits having a critical need met by an operation.

� Helped count - The total number of exits having a crit-

ical need met by an operation.

� Minimum late time di�erence - The minimum di�er-

ence between the current cycle time being scheduled

and any of an operation's late times.

� Original program order - A unique number which is

based on the original program location of an operation.

The �rst two priority values are utilized whenever the

scheduling of an operation satis�es a critical need for an

exit. A critical need can be dependence height, issue width,

or any other restricted processor resource, which must be

dealt with in order for an exit to be retired by its retire-

ment goal. An exit's retirement goal is the earliest time

that an exit can be retired based on dependence height or

any resource constraint. An operation satis�es a critical

need by having the properties necessary to retire an exit

3

quickly. One example of satisfying a critical need occurs

when an operation has a late time equal to the current cycle

being scheduled and an exit is dependence height limited.

Another example happens when an operation is an integer

add operation and integer ALU issue width is the limiting

factor for an exit. If an operation can satisfy a critical need,

it helps an exit by allowing it to retire quickly.

Helped weight is the �rst criterion used to determine

which operation should get scheduled. Helped weight's

value is de�ned as the sum of all taken-exit pro�le weights

that can be retired as soon as possible, if the current op-

eration gets scheduled immediately. For example, if a su-

perblock contains three exits (with each exit taken 25%,

40%, and 35% of the time respectively), an operation which

helps the �rst two exits retire would have a helped weight

of 0.65. An operation with the highest helped weight value

gets scheduled next since it helps the most probable exits.

Of the four priority values, helped weight is the only one

that depends on pro�le information. The other three pri-

ority values allow the speculative hedge heuristic to be less

sensitive to pro�le variations. They allow fair decisions to

be made for all exits, regardless of the compile-time pre-

dicted behavior.

The helped count priority value is used when operations

share the same helped weight. Helped count is the number

of exits having a critical need met by an operation. This

criterion gives zero weight exits priority. If the weight of

all the exits helped between two operations is equal, the

operation helping the most exits should get scheduled �rst.

The helped weight and helped count priority values work

together to prevent exits from being delayed unnecessarily.

They accomplish this with the accurate accounting of re-

sources. For example, if an important exit's retirement is

issue-width limited, all operations located prior to the exit

will meet the critical criteria for the exit. Therefore, oper-

ations helping an earlier, less important exit are critical for

the important exit too. These operations would be chosen

for scheduling because they will include both exits in their

helped weight and helped count values. Even if the earlier

exit was shown to never be taken based on the pro�le in-

formation, helped count would ensure the exit does not get

delayed.

On the other hand, if dependence height is the limiting

factor in an important exit's retirement, speculative hedge

will work similar to the dependence height and speculative

yield heuristic. Therefore, it will delay certain exits in favor

of an exit that the pro�le information shows to be impor-

tant. Speculative hedge does not keep exits from being de-

layed because of speculation. It only tries to minimize the

number of exits and the penalty for exits that are delayed

unnecessarily.

Another important aspect of speculative hedge is that it

only looks at the exits that are helped by scheduling a par-

ticular operation. Speculative hedge's priority values do not

directly deal with the condition where the scheduling of an

operation might delay another exit. This is indirectly han-

dled through the priority values for other operations. In or-

der for the scheduling of operationx to delay an exiti, there

must exist another operationy, whose scheduling would al-

low exiti to not be delayed. Since operationy helps exiti,

it gets exiti's contribution for helped weight and helped

count. Therefore, the trade-o� that needs to be made be-

tween the delaying of an exiti and another exit is done via

the comparison of operations x and y's helped weight and

helped count values.

If the helped weight and helped count values are equal,

the next criterion used is minimum late time di�erence. As

de�ned earlier, each operation has a set of late times, one

for each exit. An operation's late time di�erence for an exit

is de�ned as the di�erence between the current cycle being

scheduled and the operation's late time for that exit. An

operation's minimum late time di�erence is the minimum

of all the exits' late time di�erences.

This criterion is important because it helps anticipate

which operations are about to become critical. Its biggest

bene�t comes when the helped weight and helped count val-

ues are both zero. This condition occurs after several op-

erations have already been scheduled for the current cycle,

all the scheduled operations have met all the exits' critical

needs, and there is still at least one open slot in the current

cycle.

The �nal criterion, original program order, is used when

all the previous criteria have tied. It is used so that an op-

eration located earlier in the program order gets scheduled

�rst. This keeps unnecessary speculation from occurring

and allows a deterministic schedule.

The priority values are used by speculative hedge to de-

termine which operation should be scheduled next. The

speculative hedge heuristic computes the priority values in

the following way. First, the retirement goals and critical

needs for every exit that has not been retired are deter-

mined. Then, all the late times for unscheduled operations

are computed using the exit retirement goals as the de�ned

late times for their corresponding exit operations. Finally,

the priority values for all operations available for scheduling

are computed, and the operation with the highest priority

gets scheduled.

The remainder of this section describes the details

needed to utilize the speculative hedge heuristic e�ectively.

First, the determination of exit retirement goals and critical

needs is presented. Second, the application of the priority

value calculation is shown. Finally, some potential prob-

lems with speculative hedge are discussed.

3.2. Exit Retirement Goals and Critical Needs

The key components of speculative hedge are the estima-

tion on the number of cycles that remain before an exit can

be retired, and the determination of which resources must

be utilized in order to not delay the exit. This information is

used directly by the dynamic priority function to determine

if an exit has a critical need, and whether the scheduling of

an operation will enable that need to be met. The schedul-

ing of an operation meeting a critical need either shortens

the unscheduled dependence height or consumes a resource

so that resource need in the future is alleviated. As with

4

the priority calculation, this information is recomputed dy-

namically during the scheduling process.

In speculative hedge, the estimation of when an exit can

be retired is optimistic. It is a lower bound on how quickly

an exit can be retired [14]. An estimate may change during

the course of scheduling because conicting needs between

di�erent exits force some exits to delay. It is the dynamic

priority function's responsibility to e�ectively deal with the

trade-o�s that must be made during the scheduling process.

There are three main needs that are always considered,

independent of the processor that is targeted. They are de-

pendence height, the branch unit, and issue width. Other

processor resources that are restricted, such as memory op-

eration issue width or special decoder requirements, are

considered when they apply.

For each need, a cycle estimate is made which determines

when an exit can be retired, based exclusively on that need.

The maximum of all the cycle estimates for each need yields

the retirement goal for an exit. Any need whose cycle esti-

mate equals the exit retirement goal is considered critical.

The cycle estimate based on dependence height is a

straight-forward computation which determines the depen-

dence height that must be honored before an exit can be

retired. It must account for unscheduled operations and la-

tencies for already scheduled operations that have not been

fully satis�ed.

The cycle estimate based on the branch unit is a func-

tion of the number of branches that can be issued in the

same cycle, and the retirement goals for previous exits shar-

ing a common control path. Branches guarding a common

control path cannot be reordered. Therefore, an exit with

a branch must have a cycle estimate which is at least the

same as the retirement goal for a preceding branch along a

common control path. If an exit is a fall-thru, it must have

a retirement goal that is at least the same as any preceding

exit's retirement goal.

If the number of preceding branches having the same

retirement goal is equal to the number of branches that

can be issued in any cycle, the current exit's cycle estimate

is the preceding retirement exit goal plus one. This hap-

pens because there are not enough branch units to retire all

of those exits simultaneously. In the one branch-per-cycle

case, the cycle estimate based on the branch unit is always

one more than any preceding exit retirement goal.

Speculative hedge's cycle estimate based on issue width

(ceiw) could be:

ceiw = dnum ops to sched before exit=issue widthe

This simple calculation does not detect enough issue-width

problems though. Many times, an exit may have an issue-

width problem early in its dependence chain, but contain

few operations later in its dependence chain. This is illus-

trated in Figure 3. In this example, a two-issue machine

needs to execute three loads which, based on dependence

height, must be executed in cycle zero in order to not delay

the exit. Since it is impossible to issue them all simultane-

ously, the exit is really issue width limited at the beginning

of its dependence chain.

To deal with this e�ectively, speculative hedge detects

Operation Sequence:

0: r1 <- ld(r4 + 0)
1: r2 <- ld(r5 + 0)
2: r3 <- r1 + r2
3: r6 <- ld(r7 + 0)
4: r8 <- r6 + 10
5: r9 <- r3 + r8
6: r10 <- r9 - 20
7: branch r10==0, target0

Notes:

1) 2-issue processor is targeted.
2) issue-width problem ends after loads are issued.

DAG for Scheduling:

0 1

2

7

FALL-THRU EXIT 0

3

6

5

4

2 2 2

1 1

1

1

Figure 3. Example of an issue-width problem lo-
cated at the beginning of a dependence chain.

these cases, and keeps track of the late times that are in-

cluded in any issue-width problem. This allows the specula-

tive hedge heuristic to ensure that the issue-width problem

is taken care of properly. For an operation to help solve

an issue-width problem, it must have a late time for the

exit that is less than or equal to the late time where the

issue-width problem ends.

The cycle estimates for other restricted resources, like

a limited number of integer ALU operations that can be

issued in any cycle, can be handled similarly to the general

issue-width problem just discussed.

3.3. Priority Calculation

Now that the exit retirement goals and critical needs

have been determined, the dynamic priority calculation is

performed. This dynamic scheme does require more compu-

tations than a static priority scheme, but is needed in order

to account for all the changing resource requirements. The

compilation-time implications of this method are discussed

in the Section 4.

The priority calculation is performed for every operation

that can be scheduled by evaluating each exit, and deter-

mining whether the operation meets a critical need for the

exit. If the scheduling of an operation meets a critical need,

the operation helps the exit retire quickly. The high-level

view of the priority calculation is shown in Figure 4.

If an exiti has dependence height as its critical need, an

operationx meets that need if it has a late timei which is

equal to the current cycle being scheduled. If operationx
meets the critical need, operationx's helped weight and

helped count get incremented for exiti. A check is also

made to determine if the meeting of a critical need for the

current exiti will help future exits meet a critical need.

The check is needed to accurately account for branch-to-

branch dependence height. A future exitj is helped if the

branch unit is a critical need for it, the current exiti pre-

cedes it, it shares a common control path with the branch

for exiti, and the delaying of the branch for exiti would

cause the future exitj to also be delayed. The determina-

tion of whether delaying exiti will also delay a future exitj
is not trivial. Figure 5 helps to illustrate the di�erent cases

that are handled by speculative hedge.

5

for (each unscheduled, available operx) f
helped weightx = helped countx = 0
for (each exiti) helped foundi = FALSE
for (each exiti where operx has a valid late timei) f
if (dependence critical for i &&
(operx's late timei == current cycle)) f

helped foundi = TRUE
account for future branches

g
if (issue width critical for i &&
operx's late time is located before issue width
problem ends) f

helped foundi = TRUE
account for future branches

g
/* the following is an example of what needs to be

done for restricted resources */
if (integer alu issue width critical for i &&
operx is an integer alu operation &&
operx's late time is located before integer alu
issue width problem ends) f

helped foundi = TRUE
account for future branches

g
g
for (each exiti)
if (helped foundi) f

helped weightx += profile weighti

helped countx++
g

determine min late time diff for operx

g

Figure 4. Algorithm for dynamic priority calcula-
tion.

CASE 1:

B1 B2

CASE 2:

B1

CASE 3:

B1 B2

CYCLE CYCLE CYCLE

B2 B3

B6

B4 B3 B4 B5

n n n

n+1 n+1

n+2 B7

Figure 5. Cases for account for future branches.

For each case, branch B1 is associated with exiti. It

is the exit that has a critical need met by operationx. A

determination is made to see if any future exitsj will also

be helped by operationx. All branches shown are assumed

to share a control path, and three branches can be issued

in one cycle.

Case 1 is a basic example. In it, branch B2 is located

after B1, and in the same cycle as B1. Therefore, if B1 gets

delayed, B2 must be delayed too. B2's exit gets added to

operationx's helped weight and helped count.

Case 2 is another basic example. Here, B1 is located by

itself in a cycle, but the next cycle contains three branches.

If B1 gets delayed, too many operations end up being lo-

cated in the same cycle. So, B4 must be delayed also. B4's

exit gets added to operationx's helped weight and helped

count.

Case 3 is a combination of both cases 1 and 2. Here,

the delay of B1, causes B2, B4, B5, and B7 to be delayed.

Therefore, each one of them get their corresponding exit

added into operationx's helped weight and helped count. In

this cascading fashion, an operationx can help many exits

just by meeting one exit's critical need.

The multiple branches-per-cycle problem is actually an

important special case of a more general phenomenon.

When predication is not used, branches have zero-cycle

control dependences linking them. A similar case can also

arise for other instructions. An example is a sequence of

integer ALU operations that are linked by zero-cycle anti-

dependences. If only one integer ALU operation can be

issued in a single cycle, all the zero cycle anti-dependences

can be changed to one cycle dependences in order to ac-

count for resource height. The fact making branches the

most interesting case is that branches, when predication

is not used, are always connected by these control depen-

dences; no other instruction type has a zero-cycle depen-

dence always linking them.

Operationx meets an exit's issue-width critical need, if

the exit has issue width as a critical need, and operationx's

late time is less than the late time associated with the issue

width problem. The late time check is needed to ensure

that the issue-width problem is really being addressed. As

discussed in the previous section, an issue-width problem

can be isolated to the beginning of an exit's dependence

chain.

Finally, the checks needed for a restricted resource are

also shown in Figure 4. They are identical to the issue

width critical comparisons, with an extra check to ensure

that operationx is the correct type of instruction. This same

check can be replicated for any type of restricted resource

that the scheduler should account for.

3.4. Potential Problems

As with any scheduling heuristic, there are some poten-

tial areas of concern with speculative hedge. Scheduling is

an NP-complete problem, and obtaining an optimal solu-

tion for all cases is not feasible.

One problem area of speculative hedge has to do with

the trade-o�s made while selecting an operation to schedule.

An operation may be chosen because it helps an important

exiti, but scheduling it may delay a less important exitj .

The problem arises, when a subsequent trade-o� may mean

that exiti gets delayed in order to help an even more impor-

tant exitk. Delaying exitj , in hindsight, was unnecessary.

Because the heuristic only looks at the situation for the

current cycle, it may not always make the best decisions

for the entire scheduling region as a whole.

This problem, while seen in practice, does not appear

frequently enough to be a major issue. Also, it does not

hurt the most frequently executed exits, and it causes only

a short, unnecessary delay for the exits that it e�ects.

There is another problem related to scheduling trade-

o�s. This can happen when an important exit has depen-

dence height as its critical need, and in the process of satis-

fying the dependence height need, it uses all the resources

for a particular instruction type, like an integer ALU in-

6

struction. In addition, this situation lasts for several cy-

cles. A less important exit can be retired immediately if

it were allowed to issue an instruction whose type is being

used up by the more important exit, but speculative hedge

chooses to help the more important exit. When the prob-

lem is not solved for several cycles, the less important exit

gets delayed several cycles.

This is an issue because a net loss may result. The cost

of delaying the less important exit several cycles may not

be o�set by allowing the more important exit to be retired

one cycle early. Speculative hedge only looks at the costs

involved for the current cycle, and does not look at the costs

that are involved in the future.

A �nal problem deals with speculative hedge's desire to

not consciously schedule for an exit's retirement until it is

absolutely necessary to do so. Speculative hedge will de-

lay an operation on a path shown by pro�le information to

be taken 100% of the time for an operation on a 0% path,

if it determines that scheduling for the 0% path will not

delay the 100% path. This works �ne as long as the spec-

ulative hedge heuristic makes no misjudgments concerning

the 100% path. If a misjudgment is made, the 100% path

may get delayed unnecessarily.

This problem was seen in several places during the evolu-

tion of the speculative hedge heuristic. As the heuristic was

improved, the problem became less pronounced. The main

mechanism in the heuristic that helped alleviate the prob-

lem was the determine min late time di� for oper function.

This function identi�es operations that are most likely to

be needed next, and helps ward o� the potential problem.

4. Experimental Analysis

In this section, the e�ectiveness of the speculative hedge

heuristic in minimizing the unnecessary delaying of ex-

its is analyzed for a set of SPEC CINT92 benchmarks.

First, speculative hedge's performance is compared against

other scheduling heuristics on real input cases for a variety

of machine con�gurations and compile-time assumptions.

Then, an in-depth analysis is done to show exactly how

well the speculative hedge heuristic controls unnecessary

speculation for an exit that does not appear to be impor-

tant based on the compile-time predicted data. Finally,

the compilation-time implications of speculative hedge's dy-

namic priority scheme are addressed.

4.1. Methodology

The speculative hedge, dependence height and specula-

tive yield, and successive retirement heuristics have been

implemented in the IMPACT compiler [3]. This compiler

inlined, coalesced into superblocks, and fully ILP optimized

the six SPEC CINT92 benchmarks used in this testing. The

benchmarks used are espresso, li, eqntott, compress, sc, and

cc1.

To show the e�ectiveness of the speculative hedge heuris-

tic for various issue width and functional unit constraints,

four machine models are utilized. They are:

� 4 MIX { A 4-issue processor that contains 2-memory

ports, 2-integer ALUs, 1-oating point ALU, and 1-

Table 1. Instruction latencies.

Function Latency Function Latency

Int ALU 1 FP ALU 2

memory load 2 FP multiply 2

memory store 1 FP divide(SGL) 8

branch 1 / 1 slot FP divide(DBL) 15

branch unit. This machine model is similar to many of

today's processors.

� 4 1BR { A fully-uniform 4-issue processor that con-

tains only one branch unit. This machine model allows

more scheduling freedom than 4 MIX, and shows how

the scheduling heuristics perform when the functional

units are not constraining resources.

� 4 2BR { A fully-uniform 4-issue processor that con-

tains two branch units. This machine model forces the

condition where branch resource height is tough to ac-

count for.

� SINGLE { A single-issue processor. This machine

model forces issue width to be a major issue and spec-

ulation to be minimized in order to obtain good per-

formance.

Each machine model's latencies match those of the HP

PA-RISC PA7100 processor, and the latencies are shown

in Table 1. An enhanced version of the HP PA-RISC pro-

cessor instruction set is used with a non-trapping version of

instructions added, so speculative instructions cannot cause

program termination. This allows the general speculation

model to be utilized by the scheduler [3]. This model gives

the scheduler the freedom and choices during scheduling to

help di�erentiate the performance of the heuristics.

The analysis focuses on prepass scheduling, and the ef-

fect that the compile-time predicted behavior has on the

quality of the schedules produced. The e�ects of register

allocation, cache misses, branch mispredictions, etc. are

factored out, so that a fair comparison can be made be-

tween the di�erent scheduling heuristics. This means that

the execution time of programs is determined statically, by

knowing the schedule time for a particular exit and the

number of times that the pro�le information shows that

the exit is taken.

4.2. Results

This section compares the schedules obtained for the

di�erent benchmarks. The �rst set of results analyze

the schedules obtained by the speculative hedge, depen-

dence height and speculative yield, and successive retire-

ment heuristics for the four di�erent machine models and

di�erent compile-time pro�le assumptions. The di�erent

schedules are compared assuming that the actual program

input matches the exact input used to generate one of the

compile-time pro�le assumptions. The second set of results

7

analyze the e�ectiveness of the speculative hedge and de-

pendence height and speculative yield heuristics to schedule

the �rst exit when they both assume that the last exit is al-

ways taken. Finally, the time needed to schedule with the

speculative hedge heuristic is compared against the time

needed to schedule with dependence height and speculative

yield.

Evaluation for Real Execution of Programs. In

this test, the e�ectiveness of the speculative hedge heuris-

tic in controlling unnecessary speculation is analyzed. This

is done by scheduling each benchmark on four di�erent ma-

chine models with the di�erent scheduling heuristics. In

addition, the two pro�le-dependent heuristics, speculative

hedge (SH) and dependence height and speculative yield

(DHASY), are given three di�erent compile-time pro�le as-

sumptions. The di�erent assumptions will be used to show

that SH is less sensitive to pro�le variations than DHASY.

The three di�erent pro�le-time assumptions are REAL

(the pro�le data matches the program behavior for the real

data that is input), ALL1 (the pro�le data shows that all

exits are equally likely), and LAST1 (the pro�le data shows

that only the last exit in the superblock is ever taken). Note

that the critical path scheduling heuristic is the same as

scheduling DHASY with the LAST1 pro�le assumption.

The results for the four machine models after schedul-

ing with the di�erent scheduling heuristics are shown in

Table 2. The cycle count for SH-REAL assumes the same

pro�le input used to generate the SH-REAL schedule is

used in the actual run. The % Di� columns represent the

di�erence the column's scheduling heuristic cycle count had

to the SH-REAL's cycle count for the same benchmark and

input data (a negative value means the column's heuristic

required more cycles to execute).

SH is less reliant on the compile-time pro�le assump-

tion than DHASY. The largest di�erence between SH-

REAL and SH-ALL1/SH-LAST1 for any machine model

and benchmark is 2%. This is contrasted with DHASY-

REAL and DHASY-LAST1 (which is critical path) which

vary by over 5% for at least one benchmark in every ma-

chine model, and vary by over 10% for at least one bench-

mark for the 4 2BR and SINGLE machine models.

In addition, SH-ALL1 and SH-LAST1, which were

scheduled with compile-time pro�le assumptions that dif-

fered from the run-time execution, outperformed DHASY-

REAL for most of the test cases. SH-ALL1 and SH-LAST1

executed more cycles than DHASY-REAL for only one

benchmark in each of the 4 MIX, 4 1BR, and 4 2BR ma-

chine models. SH-ALL1 and SH-LAST1 performed bet-

ter because they were able to account for resources while

scheduling, and minimize the e�ect of exits that were de-

layed unnecessarily. Even though SH-ALL1 and SH-LAST1

may not have helped some of the execution paths that were

important at run-time (because they did not have that in-

formation), they were able to minimize unnecessary exit

delays. On the other hand, DHASY-REAL did delay some

less important exits unnecessarily, and this resulted in its

schedule taking a few more cycles to execute than the sched-

ules for SH-ALL1 and SH-LAST1.

To understand how speculative hedge performs for spe-

cial cases, the SINGLE and 4 2BR machine models must

be examined. The SINGLE machine model case shows how

well speculative hedge performs when issue width is a se-

vere problem. Speculative hedge generates schedules that

are as good as, or better than successive retirement. This

highlights speculative hedge's ability to control speculation,

so exits are not delayed unnecessarily.

In the 2 BR machine model case, speculative hedge's

method of accounting for the branch resource height allows

it to be insensitive to the accounting problems for branch-

to-branch dependences that e�ect DHASY. The zero cycle

branch-to-branch dependence assumption made by DHASY

leads to its pro�le sensitivity problems. For this machine

model, DHASY-LAST1 (critical path) varies an average

of over 5% when compared to DHASY-REAL, while SH-

LAST1 only varies an average of 0.4% when compared to

SH-REAL.

Evaluation of the unnecessary delaying of an exit.

The results shown so far have been for real execution cases.

These results can be a�ected by a minority of the su-

perblocks present in the benchmarks. This makes it dif-

�cult to show how large a problem the dependence on pro-

�le information can be. To illustrate the potential problem,

speculative hedge and DHASY are scheduled assuming that

the last exit is always taken. Then, a comparison is made

between their resulting schedules showing how well they

handle the �rst exit for all the superblocks in the six bench-

marks. The �rst exit was chosen because it has the best

chance of being delayed unnecessarily by over-speculation.

The results are shown in Figure 6, and they were ob-

tained for the 4 MIX machine model. The cycle di�erence

subtracts the scheduled cycle for SH-LAST1's �rst exit to

the cycle obtained for DHASY-LAST1's �rst exit. The zero

cycle's column represents instances where SH-LAST1 and

DHASY-LAST1 scheduled the �rst exit in the same cycle,

and the cycle was later than could have been obtained if

the �rst exit was scheduled to retire as quickly as possible.

As shown in the �gure, DHASY does a worse job in retiring

the �rst exit of the superblocks for all the benchmarks.

11

82

129

81

28

6 6

13

3

23

0

20

40

60

80

100

120

140

-1 0 1 2 3 4 5 6 7 8

Number of Cycles of Difference

N
u

m
b

e
r

o
f

S
u

p
e
rb

lo
c
k
s
 t

h
a
t

D
if

fe
r

Figure 6. Cycle differences between SH-LAST1 and
DHASY-LAST1 for the first exit.

8

Table 2. Results when input data matches input used for REAL profiling.
SH - SH - SH - DHASY - DHASY -

Machine REAL ALL1 LAST1 REAL ALL1 Crit. Patha Succ. Ret.
Model Benchmark # of cycles % di� % di� % di� % di� % di� % di�

4 MIX espresso 152405400 -0.5 -0.9 -0.2 -0.6 -2.1 -0.7
li 14486519 0.0 0.0 0.0 -0.7 -0.3 -0.4

eqntott 423624658 0.0 0.0 0.0 0.0 0.0 0.0
compress 25767022 -0.1 -0.1 -0.6 -3.1 -8.2 -2.6

sc 38204165 0.0 0.0 -0.5 -0.9 -0.3 -3.7
cc1 49349343 -0.2 -0.1 -0.3 -0.7 -0.2 -1.1

4 1BR espresso 146674421 -0.1 0.0 -1.4 -1.2 -1.0 -1.6
li 13702023 0.0 0.0 -0.8 -1.3 -0.2 -1.1

eqntott 401064104 0.0 0.0 0.0 0.0 0.0 0.0
compress 24174638 -0.5 -0.5 -0.4 -3.4 -6.3 -2.9

sc 36938586 0.0 0.0 -0.1 -0.3 0.0 -2.5
cc1 47497736 0.0 0.0 -0.1 -0.2 -0.1 -0.7

4 2BRb espresso 129275735 -0.1 0.0 -1.0 -1.9 -7.2 -2.3
li 12389729 -0.7 -0.7 0.0 -2.2 -1.3 -2.0

eqntott 313622471 -0.4 -0.4 -1.0 -4.0 -6.4 -0.9
compress 22011735 -0.3 -0.3 -0.6 -7.1 -11.4 -2.7

sc 30904853 -1.2 -1.1 -1.4 -2.0 -5.8 -4.6
cc1 41450987 0.0 0.0 -0.4 -0.6 -3.7 -1.3

SINGLE espresso 330192736 -0.2 -0.2 -1.6 -3.1 -11.2 -0.2
li 27242181 -0.6 -0.6 -0.3 -1.9 -4.4 -1.9

eqntott 826767804 0.0 0.0 0.0 -0.1 -0.1 -0.1
compress 56980582 -2.0 -2.0 -0.7 -6.3 -15.6 +0.1

sc 84079061 -0.5 -0.4 +0.2 -0.8 -1.0 -0.7
cc1 99468982 -0.3 -0.2 -0.1 -1.4 -3.1 -0.4

aCritical path is the same as DHASY-LAST1.
bAll branch-to-branch dependences for DHASY are assumed to be 0.

An evaluation of speculative hedge's and DHASY's �rst

exit schedule times to the earliest time that the �rst exit

could be retired (which would be obtained if the pro�le

information showed that it was the only exit ever taken)

provides more insight into this issue. It con�rms that not

only does DHASY delay more exits unnecessarily, it also

delays them longer than speculative hedge. An examination

of the detailed data shows, that compared to the case where

the �rst exit was retired as soon as possible, speculative

hedge delayed 125 �rst exits for an average of 1.3 cycles,

while DHASY delayed 379 �rst exits for an average of 2.4

cycles.

Evaluation of compilation time. The compilation

time for speculative hedge must be addressed because of its

use of a dynamic priority calculation. The priority calcula-

tion is performed on every operation that can be scheduled

(which means there are no resource conicts and all the op-

eration's incoming dependences have been satis�ed), and

gets recomputed before any operation is scheduled. In ad-

dition, the priority calculation's run time is proportional to

the number of exits that have yet to be retired. This leads

to a worst-case run time for speculative hedge of O(n2m),

where n = number of operations and m = number of ex-

its. Measurements, during prepass scheduling of the SPEC

CINT92 benchmarks, showed that speculative hedge had to

compute priorities for an average of 2.8 operations before

an operation got scheduled. This leads to a run-time of

2.8nm in practice. The worst-case run time for DHASY's

static priority calculation is O(nm).

The speculative hedge heuristic was implemented in the

IMPACT compiler. Timing measurements were made dur-

ing prepass scheduling. Besides the calculation of oper-

ation priorities and the actual scheduling, the only other

computationally-intensive functionality performed was the

data-ow analysis required to compute the live-out vari-

ables. IMPACT uses a standard, iterative data-ow algo-

rithm for the analysis which has a worst-case run time of

O(b2), where b = number of basic blocks [1]. For the bench-

marks used in this paper, prepass scheduling took 26% to

49% longer for speculative hedge than it did for DHASY.

5. Conclusion

5.1. Summary

This paper described a new path-oriented, scheduling

heuristic, speculative hedge, which attempts to minimize

speculation so paths of execution do not get delayed un-

necessarily. This ensures that speculative hedge is much

less sensitive to variations between compile-time predicted

behavior and actual run-time behavior. This is done

by accounting for dependence height and processor re-

sources while scheduling. Previous scheduling heuristics

that only accounted for dependence height while schedul-

ing would delay exits unnecessarily, and perform poorly at

run time when the program executed di�erently than ex-

pected. The speculative hedge heuristic was implemented

9

in a superblock/hyperblock scheduler to illustrate its e�ec-

tiveness.

The paper investigated the performance of speculative

hedge for six programs from the SPEC CINT92 benchmark

suite for four di�erent machine models. Speculative hedge

was scheduled with three di�erent sets of compile-time pre-

dicted behaviors, and the largest variation for any combina-

tion of machine model and compile-time predicted behav-

ior was 2%. In contrast, dependence height and speculative

yield, using the same sets of compile-time predicted behav-

ior, had variations of over 5% for at least one benchmark

in every machine model, with three cases having variations

of over 10%. In addition, an analysis of how the �rst ex-

its of superblocks can be delayed for di�erent pro�le inputs

showed that dependence height and speculative yield delayed

some superblock �rst exits by up to eight cycles more than

speculative hedge.

5.2. Future Work

Future work includes �xing the speculative hedge heuris-

tic so it can account for multiple, independent paths of

control. This problem must be �xed so fully-resolved pred-

icates [15] can be dealt with e�ectively. In addition, some of

the potential problem areas discussed earlier may be tack-

led if new applications show that they are more of an issue

than they were in SPEC CINT92.

Another area of future research will be a coupling of

speculative hedge and register allocation. Currently, spec-

ulative hedge does not account for register pressure while

scheduling. Allowing speculative hedge to control specula-

tion and make intelligent decisions when register pressure

is an issue should prove useful for a number of di�erent

situations.

A �nal area that needs to be addressed is making the

path selection process done by the compiler less depen-

dent on pro�le information. Speculative hedge makes the

scheduling of paths within a scheduling scope less depen-

dent on pro�le information, but it can only minimize the

penalty incurred when path selection does a poor job. By

lessening the pro�le sensitivity of path selection and uti-

lizing speculative hedge, a complete solution to the pro�le

sensitivity problem of scheduling can become reality.

Acknowledgments

The authors would like to thank John Gyllenhaal for

his suggestions regarding the presentation of results. The

authors would also like to thank all the members of the

IMPACT research group and the anonymous referees whose

comments and suggestions helped to improve the quality of

this paper.

This research has been supported by the National Sci-

ence Foundation (NSF) under grant MIP-9308013, Intel

Corporation, Advanced Micro Devices, Hewlett-Packard,

SUN Microsystems, NCR, and the National Aeronautics

and Space Administration (NASA) under Contract NASA

NAG 1-613 in cooperation with the Illinois Computer Lab-

oratory for Aerospace Systems and Software (ICLASS).

References

[1] A. Aho, R. Sethi, and J. Ullman. Compilers: Princi-
ples, Techniques, and Tools. Addison-Wesley, Reading,
MA, 1986.

[2] R. A. Bringmann. Compiler-Controlled Speculation.
PhD thesis, Department of Computer Science, Univer-
sity of Illinois, Urbana, IL, 1995.

[3] P. P. Chang, S. A. Mahlke, W. Y. Chen, N. J. Warter,
and W. W. Hwu. IMPACT: An architectural frame-
work for multiple-instruction-issue processors. In Pro-
ceedings of the 18th International Symposium on Com-
puter Architecture, pages 266{275, May 1991.

[4] C. Chekuri, R. Motwani, R. Johnson, B. Natarajan,
B. R. Rau, and M. Schlansker. Pro�le-driven instruc-
tion level parallel scheduling with applications to super
blocks. In Proceedings of the 29th Annual International
Symposium on Microarchitecture, December 1996.

[5] T. M. Conte, B. A. Patel, K. N. Menezes, and J. S.
Cox. Hardware-based pro�ling: An e�ective technique
for pro�le-driven optimization. International Journal
of Parallel Programming, 24(2):187{206, April 1996.

[6] S. Davidson, D. Landskov, B. D. Shriver, and P. W.
Mallett. Some experiments in local microcode com-
paction for horizontal machines. IEEE Transactions
on Computers, C-30:460{477, July 1981.

[7] J. A. Fisher. Trace scheduling: A technique for global
microcode compaction. IEEE Transactions on Com-
puters, C-30:478{490, July 1981.

[8] J. A. Fisher. Global code generation for instruction-
level parallelism: Trace scheduling-2. Technical Report
HPL-93-43, Hewlett-Packard Laboratory, 1501 Page
Mill Road, Palo Alto, CA 94304, June 1993.

[9] R. E. Hank, S. A. Mahlke, R. A. Bringmann, J. C.
Gyllenhaal, and W. W. Hwu. Superblock formation
using static program analysis. In Proceedings of the
26th Annual International Symposium on Microarchi-
tecture, December 1993.

[10] W. W. Hwu, S. A. Mahlke, W. Y. Chen, P. P. Chang,
N. J. Warter, R. A. Bringmann, R. G. Ouellette, R. E.
Hank, T. Kiyohara, G. E. Haab, J. G. Holm, and D. M.
Lavery. The Superblock: An e�ective technique for
VLIW and superscalar compilation. The Journal of
Supercomputing, 7(1):229{248, January 1993.

[11] W. H. Kohler. A preliminary evaluation of the criti-
cal path method for scheduling tasks on multiproces-
sor systems. IEEE Transactions on Computers, C-
24:1235{1238, December 1975.

[12] S. A. Mahlke, D. C. Lin, W. Y. Chen, R. E. Hank, and
R. A. Bringmann. E�ective compiler support for pred-
icated execution using the hyperblock. In Proceedings
of the 25th International Symposium on Microarchitec-
ture, pages 45{54, December 1992.

[13] C. V. Ramamoorthy and M. Tsuchiya. A high level
language for horizontal microprogramming. IEEE
Transactions on Computers, C-23:791{802, August
1974.

[14] B. R. Rau. Iterative modulo scheduling: An algorithm
for software pipelining loops. In Proceedings of the 27th
International Symposium on Microarchitecture, pages
63{74, December 1994.

[15] M. Schlansker and V. Kathail. Critical path reduc-
tion for scalar programs. In Proceedings of the 28th
International Symposium on Microarchitecture, pages
57{69, December 1995.

10

[16] M. D. Smith. Architectural support for compile-time
speculation. In D. Lilja and P. Bird, editors, The Inter-
action of Compilation Technology and Computer Ar-
chitecture, pages 13{49. Kluwer Academic Publishers,
Boston, MA, 1994.

11

