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Abstract Since each scheduling decision, and potentially each optimi-

zation decision, for every operation involves checking execution
specify machine execution constraints to the optimization andconstraints, th_e eﬁiciency of such checks_, can _significantly im-

. . . . pact the compile time. As a result, compiler writers have faced
§ch_e_du|mg ph‘f"ses of an |nstru_ct|on-levgl parallellsm (ILP)_(_)p- the choice between two undesirable alternatives. One alterna-
timizing compiler. _The machine description (MDES) facility ive is to sacrifice portability for accuracy. A compiler designed
ShOUIfj support_ quick dev_elopment_ a_nd easy mal_ntenar_lce O%or a particular processor often uses an accurate, very low-level
machine executhr_l constraint descriptions by compiler wrl_ters. representation of the machine's description (commonly coded
However, the facility lsould also allow compact representation  gjrectly into the compiler), that must be tediously modified in
and dficient usage of the MDES during compilation. This pa- grqer 10 be effective for subsequent processors. This approach
per advocates a model that allows compiler writers to developjs pot desirable in the highly competitive microprocessor indus-
the MDES in a high-level language, which is then translated try, where complex new processors are being rapidly designed
into a low-level representation for efficient use by the compiler. gng brought to the market. Timely development of effective
The discrepancy between the requirements of the high-levekompilers for these new processors is critical to the realization
language and the low-level representation is reconciled with a of their full performance potential.
collection of transformations that derive efficient low-level rep- The other alternative is to sacrifice accuracy in favor of port_
resentations from the easy-to-understand high-level descrip-ability. Compilers designed taigport a wide range of proces-
tions. In order to support these transformations, a novel ap- sors, such as gcc, usually describe the machine to their instruc-
proach to representing machine execution constraints has beenion schedulers with easy-to-modify metrics, such as the func-
developed. Detailed and precise descriptions of the executiortion unit mix and operation latencies, but these metrics can only
constraints for the HP PA7100, Intel Pentium, Sun Super- approximately model the complex execution constraints in to-
SPARC, and AMD-KS5 processors are analyzed to show the adéday's superscalar processors. Inaccurate modeling of execution
vantage of using this new representation. The results show thatonstraints during compilation makes it difficult for the com-
performing these transformations andliging the new repre- piler to properly address run-time issues such as resource con-
sentation allow easy-to-maintain detailed descriptions written flicts and data dependence interlocks. As a result, unexpected
in high-level languages to béfieiently used by ILP-optimizing  execution cycles arise during run time. In processors that ex-

A machine description facility allows compiler writers to

compilers. ploit high degrees of instruction-level parallelism (ILP), these
. extra execution cycles can have a significant effect on the over-

1. Introduction all performance. Accurate modeling of execution constraints is
therefore necessary in order to properly utilize these complex

Machine descriptions (MDES) have been used to specify
execution constraints for several high-performance compilers'orO

[1][2]. These machine descriptions are primarily used to drive o . .
the instruction scheduler, which uses this information to avoid and ILP optimizer driven by an MDES that can be quickly tar-

resource conflicts and data dependence interlocks. However, i,99t§dl tohg rr:evl\ll proces_tsor Its 3ttra(it|ve. T,\;‘BSEF;""P er zqu? (I:atef a
future compilers more compiler modules will also need to use model which allows Writers 1o develop an In a high-leve

MDES information. As compilers push to increase the perform- 'ﬁnggageﬁ_w_h":h IS trtl)en htranslat(_ald |nt_c|)_ha Igyv-r:elvel Ir?presenta-
ance of processors by exploiting instruction-level parallelism tion for efficient use by the compiler. € high-ievel language

(ILP), transformations such as predication and height reductionS"oUId be designed to allow the specification of detailed execu-
on constraints in an easy-to-understand, maintainable, and

also need to use execution constraints to avoid over-_'t,ubscriptiortuI .
of processor resources Currently most compiler modules, in- reta_rgetable manner. - The _Iow-level representa_tlon should_ be
cluding some schedulers, forgo the use of a machine descriptiorqes'gn_ed to _a_llow the compiler to checl_< execution constraints
altogether and instead rely on heuristic "knobs" and algorithmicWlth high efficiency in both space and time. The discrepancy
changes to tune for a specific processor. This is due, in part, ta
the difficulties involved in providing these modules with access
to an accurate machine description, in a form they can effi- Copyright 1996 IEEE. Published in the Proceedings of the\@@ual
ciently use. International Symposium on Microarchitecture, December 2-4, 1996, Paris,
France. Personal use of this material is permitted. However, permission to
reprinting / republish this material for resale or redistribution purposes or
! Although this paper will focus on modeling resource constraints, machinefor creating new collective works for resale or redistribution to servers or
descriptions also contain other important information such as operationlists, or to reuse any copyrighted component of this work in other works,
latencies, the modeling of bypassing and forwarding effects, and the mapmust be obtained from the IEEE. Contact: Manager, Copyrights and Per-
ping of this information to specific operations based on their opcode and themissions / IEEE Service Center / 445 Hoes Lane / P.O. Box 1331/ Pis-
type of operands expected. cataway, NJ 08855-1331, USA. Telephone: + Intl. 908-562-3966.

cessors.
The possibility of using a generic, high-quality scheduler
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lection of transformations that derive efficient low-level repre-
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sentations from the easy-to-understand high-level descriptions. 0 0
The two-tier model is analogous to using high-level pro- 1 1

gramming languages now that contemporary compiler technol-
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general purpose programs. The user of a high-level machine
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description language is not required to be intimately familiar 0 0
with modules using the machine description, and does not need 1 1

to manually optimize the description for those modules. In fact,

a few of the transformations described in this paper are adapted
from the classical compiler techniques that helped make high-
level programming languages so well accepted. There are,
however, important transformatio_ns introdut_:ec_i _in this paper thatrepresentation of resource constraints in order to set the stage
ha\(e no direct correspor_ldence in the optimizing com_pﬂer do'for the Section 7, which describes transformations that make the
main. 'I_'hese transformanc_)ns take advant_a_ge of the unique C.hart')it-vector representations more effective. Section 8 describes
acteristics of an MDES to increase the efficiency of the resultmgand analyzes a set of transformations which makes checking

low-level representation. . . resource constraints more efficient. Section 9 summarizes the
In addition to des_crlblng and evaluatlng_the transformations, aggregate effect of all these transformations, with and without
a novel_representatmn of_resource constraints for com_p_lex Pr%Cihe new representation. In Section 10, a brief summary of re-
essors is presented. Th|s representation exposes critical |nforralted work is presented and is followed by some concluding
mation that can be profitably exploited by both these transfor- remarks.
mations and the compiler modules. This approach to repre-
senting machine execution constraints is based on the AND/OR2, Modeling Resource Constraints
tree concept used in search algorithms. In order to show the ) ) o
effectiveness of the new representation and transformations, ThiS paper's machine descriptions model the processor's re-
detailed and precise descriptions of the execution constraints fofource constraints through the use of a seesgérvation tables
the HP PA7100, Intel Pentium, Sun SuperSPARC, and AMD-[7]. an approach used by several high-performance MDES-
K5 processors are constructed in a high-level language. Thelriven compilers [1][2]. In particular, this paper’s machine de-
low-level representation of these descriptions is then generategcriptions are based on the approach used by the Cydra 5 [1].
and used to drive a multi-platform list scheduler. Using a Each reservation table specifies a particular way an operation
scheduler for the concrete evaluation of these transformationghay use a processor’s resources as that operation executes. For
allows the rationale behind and the effect of each transformatiorexample, the resources used by the execution of a Super-
to be clearly shown. Similar benefits should be seen by otherSPARC’s one-cycle integer load can be modeled with the six
compiler modules that can benefit from using an accurate mal€servation tables (each calledreservation table optignor
chine description. simply anoption) that are shown in Figure 1. An integer load
Although a specific high-level machine description language must use the SuperSPARC's only memory unit (M), but may
[3], low-level representation [4], multi-platform compiler [5], Uuse any of the three decoders (Decoder) and two register write
and multi-platform list scheduler [6] are being used to validate ports (Wr Pt). The register read ports for the address generation
these techniques, the aim of this paper is to show the generainit are dedicated and do not need to be modeled. All option
applicability of these techniques, not to proselytize the specificlists are prioritized (option 1 having highest priority), so for the
components used. Concepts key to understanding the examplerder shown in this figure, the first available (lowest numbered)
and results will be briefly explained, but these explanations will decoder and register write port will be used by the integer load.
only describe some of the above components’ capabilities, andThe “Cycle” column of these tables indicates trgage time
the interested reader is referred to the papers and reports thayhich indicates when each of these resources is used, relative to
deal directly with these components. some chosen time point in the processor’s pipeline. For all the
A description and analysis of a common mechanism used teexamples and machine descriptions used in this paper, the point
model resource constraints, which is used by this paper's machosen to be time “zero” is the first stage of the execution pipe-
chine descriptions, follows this section. A new representationline. Therefore resources used during decoder stages have
of these resource constraints is introduced in Section 3, and iiegative usage times, and resources used after execution com-
shown to be well suited for describing today's complex proces-pletes, such as result buses and register write ports, have usage
sors. An analysis of each MDES, before any transformations ardimes around the operation’s latency. A resource used at a par-
performed, is presented in Section 4. In Section 5, the impor-icular usage time will be referred to agesource usage It
tance of adapting common-subexpression elimination, copyshould be noted that the resources modeled often do not repre-
propagation, and dead-code removal to clean up machine desent actual processor resources, but are abstractions used to
scriptions is shown, as well as how the new representation faimodel the processor's scheduling rules. This approach was
cilitates these transformations. Section 6 provides a brief overused in the construction of the machine descriptions used in this
view of the implications of using bit-vectors in the low-level paper. These machine descriptions were designed to accurately

Figure 1: The six reservation tables that represent the
resources used by the SuperSPARC's integer load op-
eration.
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tics for the SuperSPARC MDES. Options Checked During Scheduling Attempt
. . ... Figure 2: Distribution of options checked during each

and precisely model the processor’s scheduling rules, and intui- scheduling attempt using the SuperSPARC MDES.
tive resource names were used solely to enhance the clarity of
the machine descriptions. this MDES and scheduling SuperSPARC SPEC CINT92 assem-

Many of this paper's examples are drawn from the Super-p|y code, attempted to schedule an operation with that many
SPARC MDES, so a brief and somewnhat simplified overview of gptions during prepass scheduling. The last column gives a brief
the _Su_perSPARC’s execution constraints is necessary bemr%ummary of the types of operation that have that many options.
continuing. The SuperSPARC [8] is an in-order superscalarngte that for the SuperSPARC and the PA7100 MDES,
processor that has three full decoders, four integer register reagyanches are modeled as always using the last decoder in order
ports (RP), two integer register write ports, two integer ALU 4 maximize scheduling freedom (since nothing may issue after
(IALU) units, one barrel shifter, one memory unit with a dedi- 3 pranch on these machines).
cated address generation unit, one branch unit, and support for Although all of the reservation table options must be tested
one floating-point operation per cycle. The address generation, order to determine that an operation cannot be scheduled, a
unit and the floating-point function units have dedicated registeryariaple number of the options need to be tested in order to
ports which do not need to be modeled, but it is important togetermine that the operation can be scheduled. Figure 2 shows
model the usage of the SuperSPARC's integer register read anghe distribution of options actually checked while scheduling for
write ports. All of the common |n_teger operations have a onepe SuperSPARC. On average, 2.05 scheduling attempts were
cycle latency, and the load operations also have a one cycle laraquired per operation, so roughly half of the time a scheduling
tency. However, load and store operations can cause addresgtempt fails. The 30.05% peak at 48 options checked is pri-
generation interlocks if they are not scheduled properly. marily due to the fact that 58.50% of unsuccessful scheduling

The SuperSPARC's design also allows the execution of twoattempts were on operations with 48 options. Overall, 45.52%
flow-dependent IALU operations in the same cycle. The secondyf the scheduling attempts required between 24 and 72 options
IALU operation, which utilizes this feature to execute a cycle g pe checked. The 38.02% peak for one scheduling option
early, is referred to as@scadedALU operation. The number  checked is due mainly to scheduling attempts that succeed with
of reservation table options required to model an IALU opera- the first option attempted. For successful scheduling attempts,
tion depends on the number of register source operands that theg 7504 succeed with the first option tested, 8.23% tested be-

operation has. A non-cascaded IALU operation with one regis-tween 2 and 16 options, 16.71% tested between 17 and 32 op-
ter source may use any one of the decoders, read ports, IALUjons, and 1.31% tested more than 33 options.

units, and write ports, yielding@%@%éz 48 distinct In the foIIow!ng sections,_transformations \_/vi_ll be present_ed
that make testing each option nearly as efficient as possible.

combinations of these resource usages. The same non-cascadei@wever, unless the number of options checked can be reduced,

IALU operation with two register sources, requiring two read modeling complex machines exactly will remain expensive in
terms of compile time. A new representation, presented in the

ports, has@%%%%: 72 distinct combinations of resource eyt section, can dramatically reduce the number of options

usages. Each of these distinct combinations of resource usagdd'ecked in complex machine descriptions.

is modelgd by a reservation table option. There_: is only oneg A New Representation: AND/OR-Trees

IALU available to execute cascaded IALU operations, so cas-

caded IALU operations only have half the reservation table op- The primary reason so many options need to be checked for

tions of non-cascaded IALU operations. The appropriate set ofcomplex processor descriptions is that the traditional represen-

reservation table options is chosen based on an operation’s intation for resource constraints hides useful information from the

coming dependence distances. compiler. By exposing this useful information with the new
A breakdown of the number of reservation table options usedrepresentation presented below, the compiler can more effi-

to model the various operations in the SuperSPARC MDES isciently check the resource constraints. This representation can

shown in Table 1. This first column specifies the number of also inherently reduce the MDES size (Section 4), facilitate

scheduling options. The second column indicates the percentsize-reducing transformations (Section 5), and facilitate trans-

age of the time that a multi-platform list scheduler, driven by formations to further optimize for resource conflict detection




cm@ sentation and does not require any new information from the
/4 o X OR-_tree resource constraint checker (i.e. which oon_n, if any, is
available). In Figure 3, each of the OR-trees, which are en-
CycldWr pt closed in dotted boxes, can have the same internal representa-
0 1 tion and may have the same resource constraint checker algo-
< 1 rithm applied to them. The compiler used for this paper’'s ex-
[1 [ X periments does so and, for implementation efficiency, adds an
outer loop around the OR-tree’s algorithm that processes the
Cycle Becods array of OR-trees associated with an AND/OR-tree. Although
1 [ some additional space is required to represent the AND-level of
the tree, the use of AND/OR-trees can significantly reduce the
\<DZD size of the resource constraint description in the MDES, as
[T IX shown in Section 4.

a) b) 4. Original MDES Characteristics
Figure 3: Two methods of modeling the resource con-
straints of a SuperSPARC integer load operation. a) The
traditional OR-Tree representation. b) The proposed
AND/OR-Tree representation.

In this paper, detailed and precise descriptions of the execu-
tion constraints for the HP PA7100, Intel Pentium, Sun Super-
SPARC, and AMD-K5 are analyzed to show the rationale be-
hind the transformations presented in the following sections and
(Section 8). Before describing this new representation, a briefth® advantages of using the AND/OR-tree representation. For
review of the traditional representation is in order. this analysis, each of these machine descriptions is used to drive

The traditional representation can be viewed as an OR-Tree@ multi-platform list scheduler, which is then used to schedule
as shown in Figure 3a. This figure shows the six reservationoPEC CINT92 assembly code for that platform. Each plat-
table options for the SuperSPARC integer load (the same opform’s assembly code (between 201011 and 282219 static op-
tions that are shown in Figure 1). The options are in priority €rations) was generated using the level of profile-driven inlin-
order (with the highest priority first), and if the resources for INg, classical optimization, ILP optimization, and peephole op-
any of the options are available, the operation can be schedulediMization that had been found, through extensive tuning, to
The advantage of this representation is that for OR-trees with &/i€ld the highest possible execution-time performance for that
small number of options, the OR-tree’s resource constraints caplatforn. The analysis also focused on prepass scheduling for
be quickly and efficiently checked. For processors which haveth® SuperSPARC and PA7100, and on postpass scheduling for
execution constraints that can be modeled with just a few reserth® Pentium and KS. Prepass scheduling was not performed for
vation table options, it is difficult to improve upon the efficiency the X86 processors due to the limited number of registers avail-
of this OR-tree representation. able. The SuperSPARC was described in Section 2, and the

The disadvantage of this OR-tree representation is that it’€Servation _table option bregkdown Qf its machine description
does not allow an easy or efficient way of using information Was shown in Table 1. A brief d_escrlptlon of_the other proces-
about why an option was not available. For example, if Option SO'S modeled, and thel_r reservation table option _brc_eakdowns, is
1 (the top option) in Figure 3a is unavailable because write port" order before analyzing the original characteristics of each

0 (Wr Pt 0) is unavailable, then Options 2 and 3 are also guar-MDE . )
anteed to be unavailable. Although an inference engine could The PA7100 [9] is an in-order superscalar processor that has

be programmed into the resource constraint check algorithm tdWo decoders, and supports executing one floating-point opera-

eliminate these options, the overhead would more than negat&©n in parallel to an integer or memory operation. The relative
the benefit. order of these two operations does not matter, so there are two

The solution proposed in this paper is to use a new repre_options for most operations, as shown in Table 2. The Pentium

sentation that is based on the AND/OR-tree concept used irf10] is an in-order superscalar X86 processor that has two exe-
search algorithms. This new representation is, in essence, afution pipelines. A detailed set of pairing rules is used to spec-
AND-tree of OR-trees, allowing multiple OR-trees to be used Iy the operation combinations that may execute in parallel.
together in order to represent the resource constraints. An exEach operation has one or two reservation table options, as
ample of this new AND/OR-tree representation is shown in Shown in Table 3. The K5 [11] is a four-issue, out-of-order,
Figure 3b. The AND/OR-tree shown specifies the resourceSuUperscalar X86 processor that the MDES models as an in-order
requirements for the SuperSPARC's integer load as requiringProcessor that can buffer operations between decode and execu-
the memory unit(M), one of the two write ports (Wr Pt), and tion. This processor converts X86 operations into one or more
one of the three decoders. By utilizing the short-circuit proper- Rops (internal RISC operations), which may be dispatched in
ties of AND and OR, the resource constraint check algorithm different cycles if the required resources are not available. Ac-
can quickly determine which of the required resources are avail-curate modeling allows the scheduler to take advantage of this
able (or if they are not available), without performing any un- dynamic behavior, potentially increasing decoder and execution
necessary checks.

The algorithm overhead incurred by using this new repre-? The relative performance level for each platform and benchmark varied,
sentation is minimal, since it is built upon the OR-tree repre- but each benchmark’s performance was either close to, or better than, the
published peak SPEC CINT92 numbers for that platform.




Numbel % of Avg. OR-Trees AND/OR-Trees |
of [Scheduling Operations Modeled Total | Sched.] Avg. | Avg. | Avg. | Avg. | Perceni
Optiong Attempts Ops |Attempt4Options[CheckgOptions[Checksf Checks
1 18.81%Branch ops IMDES | Sched.| Per Op]AttemptiAttempy AttemptiAttemp{ Reduce

2| 81.19%Ops that can use either decoder PA7100 | 201011 1.9F 156 247 145 16 20p%

Pentium | 207341 1.4y 1.49 399 149  3/99 0.0%

Table 2: Option breakdown and scheduling characteris- S-SPARG 282214 20b 2148 3189 2bs alsz salso

tics of the PA7100 MDES. K5 203094 1.6p 1959 3549 5p0 573 83w
Number % of _ Table 5: Original scheduling characteristics of the ma-
of | Scheduling Operations Modeled chine descriptions for each target machine.
Optiony Attempts
1 45.42%0ps that can execute in only 1 pipe OR-Trees AND/OR-Trees
2 54.58%0ps that can execute in either pipe Number|] Table | Size | Table | Size | %Size
Table 3: Option breakdown and scheduling characteris- PA;ABES of Treelf Opt'onj) (bétggz Opt'ogi (bytlzsg 1Recljc‘;

. . J . 0
tics of the Pentium MDES. Pentium 3 34 14824 34 1541F -4.0%
TS BT SuperSPARE .’} 3i3 17124 49 26241 84.7)o
of [Scheduling Operations Modeled K5 33 4424 31264p o 4316 98.4%

Optiong Attempts Table 6: Original MDES memory requirements.
16 14.72% 1Rop ops with 1 unit choice
24/ 0.14% Rop ops dispatched in 1 cycle (1 unit choice) each MDES that uses AND/OR-trees was run through an MDES

32 74.72% 1Rop ops with 2 unit choices

28 5.91% ZRop bundled cmp+br dispatched in 1 cycle preprocessor that expanded out each AND/OR-tree specification

64 2.56% 3Rop bundled cmp+br dispatched in 1 cycle into the corresponding OR-tree specification.

96 0.19% 2Rop ops dispatched in 1 cycle (2 unit choices) The scheduling characteristics for these machine descrip-
128 0.66% Rop bundled cmp+br dispatched over 2 cycles tions, before any transformations are performed, are shown in
192 0.15% Rop ops dispatched over 2 cycles (subset of) Table 5. The second and third columns indicate how many op-

256 0.37% ZRop ops dispatched over 2 cycles (2 unit choicgs)
384 0.43% FRop bundled cmp-+br dispatched over 2 cycles
768 0.15% FRop ops dispatched over 2 cycles (subset of)

erations were scheduled, and how many scheduling attempts
were required, on average, before an operation was successfully
) - ) scheduled. These two numbers will remain constant throughout
Table 4: Option breakdown and scheduling characteris- 5| of the transformations (with either representation), and the
tics of the KS MDES. exact same schedule is produced in each case, since all the exe-
I , . . cution constraints described in the machine descriptions are
utilization. The K5's design allows up to four X86 ope_ratlons eing preserved. It should be noted that the number of sched-
to be decoded each cycle and up to four Rops to be d|spatche8”ng attempts required per operation can increase significantly

each cycle. It also has up to two execution units available for . : :
. .~ with the use of more advanced scheduling techniques such as
each type of Rop. As shown in Table 4, 89.44% of SCheoIUIIngiterative modulo scheduling [12] and operation scheduling, and

attemptg are chJr ont_a-Rop l_>|(86 operatlons7t6h8at have 1_6 or S’ﬁNith the application of more ILP optimizations to the assembly
res_ervatlon ta e_optlons. owever, up to re_servatlon @ €ode. However, the selected experimental setup closely models
options are required to accurately model a multi-Rop X86 op-

- . . . . current compiler practices, and the benefit of this paper’s
eration, which can be _dlspatched over m_ultlple cycles. Fa'lur.eAND/OR-tree representation and MDES transformations should
to model these operations correctly can impact performance Inonly increase as more scheduling attempts are required, since
critical loops. '

To clarify th tation in the tabl it should b ted th tthey speed up detection of resource-constraint conflicts.
o clarify the notation in the tables, it s ould be note al " The fourth and sixth columns of Table 5 show the average
for both of the X86 processors, the compilaundles each

. ! . ) number of reservation table options checked for each scheduling
branch together with an appropriate condition-code-setting op-

attempt, for the OR-tree and AND/OR-tree representations,

e_ratlon, in order to maximize schedullr_lg freedom. The re‘Q‘erv"’"respectiveIy. The fifth and seventh columns show the average
tion tables for these bundled operations model the resource

. . . "CeHumber of resource checks that were required for each schedul-
required by all the ope_rat|ons in the bundle. Aft(_er scheo_lu_lmg, ing attempts. The last column shows that for complex machine
these _bundled operations are converted back into 'nd'v'dualdescriptions, before any transformations are performed, the use
operations. o . of the AND/OR-tree representation can reduce the number of

Although it is not necessary for the high-level MDES lan- resource checks per reservation table option by up to 84.5%.
guage to support_ A.ND/ OR-trees, AND/OR-irees provide a con- — The memory required to internally represent the resource
cise way of speufy_mg qomplex resource usages. The_ mac.h'n%onstraints in the compiler used for this paper’'s evaluation is
descriptions used in this paper's experiments are written in 3shown in Table 6. Although this internal representation has
high-level MDES language that supports the specification of been extensively tuned to maximize the performance of the re-
both_OR-trees and AND/OR-trees. Every M_DES' except thesource constraint checking algorithm, it also was designed to
Pentlum MDE.S‘ Uses AND/OR trees extensively. _('_F_he Pen'minimize memory requirements in ways that incur no perform-
tium’s execution constraints do not have the flexibility that ance penalty. To this end, the internal representation allows
benefits from the use of AND/OR-trees.) In order to generate .o on information to be ’shared among AND/OR-trees and
the OR-tree MDES representations for this paper’'s experimentsOR_trees, but in some cases a small amount of header informa-




Integer Load lalu w/2 reg src
Num. OR-Tree Rep. AND/OR-Tree Rep. ANDIOR T ANDIOR Thoa

of | Table | Size | % Size| Table | Size | % Size
MDES | Trees]|Optiong (bytes)|ReducedOptiong (bytes)|Reduce ]
PA7100 1 2h 1714 31.69 ih 1232 11.0% : : N T
Pentium 3 28 10814 27.09 2B 11296 26.4%
ssPARG 19 2777 1475 13.89 3p 1846 27 Cvad ]\ [ - L1 D |
K5 271 3704 26603p 14.9p6 55 3502 17.p% \[Cycw Lo IX] ] 1 X ] - AP T
{ o] S D

Table 7: MDES memory requirements after eliminating

redundant and unused information. Figure 4: An example of how the AND/OR-tree repre-

sentation can facilitate the sharing of OR-trees.

tion per item is duplicated to prevent performance degradation
Both the OR-tree and the AND/OR-tree internal representationd Avg. OR-Tree AND/OR-Tree |
Total | Sched.] Avg. lj Avg. |Averagd Avg. | Perceng

have the same number of trees. However, the table shows that Ops |Attempt{Options{ChecksfOptions|Checkey Checks
the AND/OR-tree representation, because it does not require thg \ines | sched | per Op‘_ Attemptl Attemp Attempt Attempl Reducel
explicit enumeration of all the resource usage combinations|sa7100 1201011 Tob 14 242 1B8 1Bo 18p%
(OR-tree options), can significantly reduce the memory required - —
(a 98.6% reduction for the K5). Thus, before any MDES op- _Table 8: PA7100 sc_hedullng characterlstlc__e, after remov-
timizations, the AND/OR-tree significantly reduces both the  INg unnecessary options for memory operations.

internal representation size and the number of checks required

per attempt for complex resource constraint descriptions (i.e. the"OPY propagation were combined into one step that finds redun-

SuperSPARC and K5). This advantage will remain definitive dant MDES information and points all various references to that
after both representati(:;ns are fully optimized information to only one particular copy, and an adaptation of
The sizes shown in this paper for the AND/OR-tree repre- dead-code removal eliminates unreferenced information. These

sentation reflect the extra memory required to store the AND:ﬁChmquetS grfetitly'\;%déjé:ed thr? size required totreprtesent allt_of
level of the tree. In the Pentium MDES, the AND level always € aspects of the » SUCh as resource constraints, operation

points to one OR-tree, so the AND/OR-tree representation will Iatency,_ and operation fofmat- _Thelr _effect on the resource-
always be slightly larger. It should also be noted that the com-constraint desc_rlptlon size in particular is shown in Table 7. .

mon information to be shared is entirely specified by the exter- It is interesting to note that the AND/OR-treg representation
nal MDES representation, in order to minimize the time re- for the SuperSPARC and K5 machine descriptions benefited

quired to load the MDES into memory. The number of trees more from eliminating redundant information than the OR-tree

and reservation table options shown in the table reflects Onlyrepresentation. This is becau_se the_reservatio_n table options in
what the writer of the MDES specified as being shared. It iSthe AND/OR-tree representation typically specify the resource

easy and natural to specify shared information in the high-levelusages at a finer granularity (less usages per option) than the

MDES language used, so most of the common information isOR-tree options, allowing them to be shared more aggressively.

shared in these machine descriptions. However, common indn addition, the OR-irees in an AND/OR-tree tend to be more

formation is often not shared in order to make the machine de_general-purpose, allowing entire OR-trees to be shared by sev-

scription more readable or easier to modify. In fact, some of the_eral AND/OR-trees. An example of this second case is shown

information in the MDES may not even be used. The transfor-" Figure 4, where the OR-trees for decoder and register_write
- . tion 5 will deal with these issues. PO't resource usages are shared by the Su_perSPARCs |n_teger
mations presented in the Section 5 will de load AND/OR-tree and the SuperSPARC's integer ALU (with

5. Eliminating Redundant or Unused MDES In- two register sources) AND/OR-tree. In this way the AND/OR-
formation tree representation facilitates further reduction of the MDES
size.

Machine descriptions tend to evolve as a processor’'s execu- The transformations for removing redundant information can
tion constraints become more thoroughly understood, as thealso be adapted to more MDES specific circumstances, such as
compiler’s vocabulary of operations increases, and as these maemoving options from an OR-tree that can be determined to be
chine descriptions are ported to different or experimental proc-impossible to satisfy. An option can be removed from an OR-
essors in the family. As the machine descriptions evolve, thetree if its resource usages are identical to, or a superset of, the
amount of redundant and unused information in the MDES resource usages for a higher-priority option, since the higher-
tends to grow because, for an MDES writer, it is typically easier priority option will always be selected if these resources are
to just make a local copy of the information to be changed thanavailable. This case can arise when the use of preprocessor
to do the careful analysis required to safely modify or delete directives enumerates the various OR-tree options, and it can
existing information. In fact, this was experienced both at Cy- also arise as a machine description evolves, which is the case
drome Inc., with creation and maintenance the Cydra 5 MDES, for the PA7100 MDES used in this paper. The PA7100 MDES
and by the authors of this paper's machine descriptions. was derived from the MDES for an earlier HP PA processor.

This redundant and unused information can be eliminatedDuring the retargeting, two of the reservation table options for
from the MDES by adapting the classical compiler optimiza- the PA7100's memory operations became identical, but the
tions (common sub-expression elimination, copy propagation, MDES author never realized this since correct output was still
and dead-code removal [13]) to the MDES domain. In this pa-generated. The effect this has on the PA7100's scheduling
per’'s implementation, common sub-expression elimination andcharacteristics is shown in Table 8.



Memory Requirements (in bytes) Cycle || Decodey | MK PX
MDES OR-Tree Rep. AND/OR-Tree Rep. 0 |

Before | After Diff. Before | After Diff. EI:IZDZE]

PA7Z.|_00 1712 140 17.8%0 1232 1128 8.49 II”:I:lZleXl:‘

Pentium 10814 3224 70.2% 11296 37p4 67. %% Em
SuperSPARE 14752 11152 24.4% 1896 1640 13.p%

K5 266034 18328 31.1f 3562 3136 12fi% %DZDXDZ

[TXX X

Table 9: MDES size characteristics before and after a bit-

vector representation is used (one cycle/word). Figure 5: The OR-tree modeling the resource constraints

for a SuperSPARC integer load operation, after trans-
forming the resource usage times in order to better utilize

Average Checks Per Scheduling Attempt the bit-vector representation.
MDES OR-Tree Rep. AND/OR-Tree Rep.
Before | After | Diff | Before| After | Diff 7. Optimizing for Bit-Vector Representations
PA7100 2.32 218 6.0%0 1.89 16  6.p%
Pentium 3.99 231 42.1% 3.99 231 42.1% The use of the actual resource usage times, as in Figure 3a,
SuperSPARE  31.09  26.69 14.29% 483 462 43% can significantly reduce the effectiveness of using a bit-vector
K5 3549 343% 32% 5.13 580 7% representation that packs one cycle's worth of resource usages

Table 10: Scheduling characteristics before and after a  into a single memory word. We address this problem by making
bit-vector representation is used (one cycle/word). use of the theory of pipelined, multi-function unit design
[7][17]. For any ordered pair of reservation table options (A,
B), t is aforbidden latency(i.e., an operation using reservation
table option B cannot be initiated t cycles after an operation that
uses reservation table option A) if and only if A and B have
resource usages for some common resource at times i and j,

The results presented so far have not taken advantage of theespectively, such that i is greater than or equal to j and i-j = t.
fact that most resource-constraint checking algorithms, includ-The set of all forbidden latencies between A and B is termed the
ing the one used in this paper, use bit-vectors [14][15][16] to collision vectorfor the ordered pair (A, B). A given schedule
keep track of the resources used each cycle in what is referred teesults in no resource conflicts if and only if, for every pair of
as aresource usage ma(RU map). This design allows the RU  operations, the difference in their scheduled times never violates
map size to be minimized and efficiently initialized, and allows the collision vector for the corresponding pair of reservation
multiple resource usages to be checked (and reserved) with @bles. Note that the actual reservation table options A and B
single AND (OR) operation. In addition, using bits in the are not directly important; only the collision vector for (A, B) is.
MDES to represent multiple resource usages can significantlyConsequently, we could substitute any reservation table options
decrease the MDES size. Although it is possible to pack moreA' and B' for A and B, respectively, as long as the collision vec-
than one cycle’s resource usages into a single memory word, itor for (A", B') is the same as that for (A, B). Further note that,
is not necessary to do so for the machine descriptions in thisn computing a forbidden latency, only the difference between
paper. The resource usage time transformation presented in thighe resource usage times i and j matters, not their actual values.
next section will reduce the number of checks to almost theln particular, we could add a common constant to both resource
minimum of one resource check per reservation table option.  usage times without altering the forbidden latency.

The incremental effect of packing each cycle's resource us-  With this in mind, the optimization that we use, for each re-
ages into one memory word is shown in Tables 9 and 10. Besource, is to subtract a strategically selected constant from the
fore using bit-vectors, each resource usage was represented asoéiginally specified resource usage times for that resource in
cycle/resource pair (one resource usage per check). After usingvery reservation table option, with a view to concentrating
bit-vectors, the resource usages were represented as a Cyesource usages into as few time slots as possible. The constant
cle/resource-vector pair (multiple resource usages per checknay be different for each resource. This optimization is related
possible, if the usages are in the same cycle). Although botho the one used by Eichenberger and Davidson [18]. Although
representations require two words to represent each pair, theninimization techniques can be used to find those constants that
bit-vector representation typically requires less pairs per table.maximize the benefit, a simple heuristic was found to be highly
The Pentium MDES shows the most benefit, since modeling theeffective for the forward-scheduling list scheduler and the proc-
Pentium’s resource constraints required checking several reessors considered in this paper. The heuristic is, for each re-
source usages in every cycle. The other machine descriptionsource, to pick the constant to be the earliest resource usage
didn’t benefit as much, since their resource usage did not altime for that resource (across all reservation table options). The
ways fall within the same cycle. For example, the reservationresult of this heuristic is to concentrate a far larger number of
table options shown in Figure 3a do not benefit from packing aresource usages than before at time zero, thereby making the
cycle’s resource usage into a single memory word, since there iit-vector approach more effective. For a backward-scheduling
only one usage per cycle. However, the resource usage timéist scheduler, the constants should be chosen to make the latest
transformation presented in the next section will resolve thisusage time to be zero (or some constant). Applying this trans-
issue. formation to Figure 3a yields the OR-tree shown in Figure 5.

6. Utilizing Bit-Vector Representations



MDES OR-Tree Rep. AND/OR Tree Rep.

Memory Requirements (in bytes) %ec%de& Cycle
—>
Lo XTI ]

Before | After Diff. Before | After Diff.

ol [Xe=]

[o]
PA7100 1404 1168 17.09 1128 1082 8.5% 0 Z
Pentium 3224 3080 459 3704 3560 3.9% Cyle P{
SupersPAR¢ 11154 7016 37.1¢%6 1640  15B4 3.49 [0 [ [ IX 5
K5 183280 125488 31.5p0 31B6 3096 1.3%
Table 11: MDES memory requirements before and after Cycle E IIIEIZ
transforming resource usage times (one cycle per word). 0 Z Cycle | [Decoder
o
OR-Tree Rep. AND/OR-Tree Rep. Cycle | Pt III
MDES [ Avg. Checks/Attemgt Checs/ Avg. Checks/Attedhpt Chdcks/ 0 1

Beforel After| Diff | Option] Beforg¢ Afterl Diff.] Optior] <:| 0 | E”:lzlj
PA7100 218 159 37.1pp 1.2 1{76 155 11]9% .12
b7 32p%  3.05 IIIDE II“:I:&

Pentum | 2.31 1573209 145 281 1

S-SPARG 26.69 21.59 19.1% 1.1 4.p2 4449 2B%  1.03 a) b)

K5 34.35 19.87 42.2% 1.41 580 525 0p% 101
Table 12: Scheduling characteristics before and after Figure 6: An example of optimizing the order of the OR-
tran_sformlng resource usage times gnd sorting the re- trees in an AND/OR-trees for resource conflict detection.
sulting usages to check time zero first (one cycle per a) Original order specified. b) After optimizing the or-
word).

der.

In addition to making the bit-vector representation more ef-
fective, this transformation also has a subtle effect on the char8. Optimizing AND/OR-Trees for Resource Con-
acteristics of the resource usage checks that can be taken ad- fjict Detection
vantage of. The resource usages that cause most of the resource
conflicts now tend to be concentrated at time zero. The resource The structure of the AND/OR-tree representation allows ad-
usages with times greater than zero are usually conflict free andlitional transformations to be performed that can increase the
are primarily there to delay the execution of later operations.chance of detecting resource conflicts early. The first transfor-
For example, the non-zero-time divide-unit usages for a dividemation is to sort the sub OR-trees in the AND/OR-tree so that
operation rarely prevent the operation from being scheduled (ifthe OR-tree most likely to have a resource conflict (heuristically
the divide unit is available at time zero). However, while determined) is checked first. The following heuristic-based sort
scheduling the next divide operation, the divide unit will not be criteria were found to produce the most consistent results. The
available at time zero until the previous divide completes. ThusOR-trees are first sorted by the earliest usage time in each tree,
for a forward-scheduling list scheduler, the average number ofsince after the resource usage time transformation, most con-
checks before a conflict is detected is minimized by sorting theflicts occur at usage time zero. For OR-trees with the same
resulting usage checks so that time zero is checked first. In thisarliest usage time, sort by the number of options in each OR-
manner, the same machine descriptions can be automaticalliyree, so that OR-tree with the fewest options is checked first.
tuned for other types of schedulers by adjusting the heuristic forTo break ties at this point, preference is given to the OR-trees
picking the resource usage time shift constants and for the sortthat are shared by the most number of AND/OR-trees, since this
ing of the resulting usage checks. gives an indication of which OR-trees have resources that are

The MDES memory requirements after transforming the re- heavily used. Finally the original order specified is used to
source usage times are shown in Table 11. The size of the ORbreak any remaining ties. Figure 6a shows the OR-tree order
tree representation is reduced up to 37.1% by using this transeriginally specified in the MDES (and used for all previous
formation. There is less reduction for the AND/OR-tree repre- analysis), and Figure 6b shows the order after sorting the OR-
sentation since this representation tends to have fewer resourdgees using the above criteria (only the second criterion applies).
usages per option. The transformations presented in the next A second transformation that can be applied is to remove re-
section do not change the MDES size, so these sizes are theource usages that are common to all of the OR-tree options and
final MDES sizes after full optimization. place them in an OR-tree with just one option (creating one if

The MDES scheduling characteristics after transforming the necessary). This transformation works well when a resource
resource usage times and sorting the resulting usages to checfommon to all options is likely to cause a resource conflict. By
time zero first are shown in Table 12. This transformation re- pulling it out, this resource conflict can be detected earlier.
duced the average number of resource checks per option to béFhis transformation can also be used to create some simple
tween 1.01 and 1.12, which is close to the ideal case of oneAND/OR-trees from OR-tree descriptions. Application of this
check per option. As a result, the average number of optiongransformation can actually increase the number of resource
checked per attempt is what is truly dictating the number of checks required, but the following application heuristics were
checks required. Although the AND/OR-tree already has a clearfound to yieldgood results. First, if there is already a one-
advantage in this regard for the SuperSPARC and K5, the numeption OR-tree that has a resource usage with the same usage
ber of options checked is further reduced by the transformationgime as the common usage, apply the transformation. (With bit-
in Section 8. vectors, this transformation cannot hurt performance.) Also,



AND/OR-Tree Representation Memory Requirements (in bytes)
MDES Options Per Attempt Checks Per Attempt MDES Unoptimize Fully Optimized With Bit-Vector Rep.
Before | After Diff. Before | After Diff. OR- OR- AND/OR-

PA7100 1.3 1.3B 0.0 1.55 165 0.0% Trees Trees | Reductioh Trees [ Reductioh

Pentium 1.49 1.44 0.0% 1.57 1.7 0.we |PA7100 2504 116§ 53.4% 1032 58.4%

SuperSPAREC  4.38 2971 32.2% 4.49 3.08 31.4% |Pentium 14824 308 79.2% 3560 76.4%

K5 5.20 432  16.9% 5.25 4.38 16.4% |SuperSPARE 17124 701 59.0%0 1584 90.1%
K5 312640 12548B 59.9%6 30P6 99.9%

Table 13: Scheduling characteristics before and after opti- -
mizing AND/OR-trees for resource conflict detection. Table 14: Aggregate effect of all transformations on
MDES resource-constraint representation size.
apply the transformation if the common usage is the only usag

Average Checks Per Scheduling Attempt

in the OR-tree with that usage time (each option in the OR-tred MDES [Unopimize Fully Opimized With Bit Vector Rep.
then has one less check, and in exchange only one check |s

added). Otherwise, the transformation should not be applied OR- OR- _|AND/OR- '

) . R . . PP . Trees Trees | Reductioh Trees [ Reductiop

In the ma(_:hlnes descrlp_tlons used in this paper,_all the gpp!lc 5A7100 >4 150 35606 TEs 37 b
tions of this transformation occurred due to the first application|pentium 3.99 157 60.7% 147 60.7%
rule. After the usage time transformation the second case bqSuperSPARE 31.09 2159  30.6%0 3.08  90.1%
comes rare or, for these descriptions, nonexistent. K5 35.49 19.87 44.090 4.38 87.4%

The incremental effect of these transformations on the Tgple 15: Aggregate effect of all transformations on
AND/OR-tree scheduling characteristics is shown in Table 13.  \DES scheduling characteristics.
Most of the AND/OR-trees in the SuperSPARC and K5 MDES
are reordered, which significantly reduces the average numbebf 2.6. When these transformations are combined with the
of options checked before a resource conflict is detected. TheAND/OR-trees, the number of checks were reduced by as much
MDES sizes did not change due to these transformations. as a factor of ten. As was seen with the MDES-size aspect,

. combining these transformations with the AND/OR-tree repre-
9. Aggregate Effect of All Transformations sentation is especially effective at reducing the number of

There are two important machine description aspects that aréhecks required for processors with flexible execution con-
optimized by the transformations presented in this paper. Thestraints (i.e. the SuperSPARC and KG5).
first one is the amount of memory needed by the compiler to ~ The trend that these tables show is that as the processors be-

represent the processor's resource constraints. Minimizing thiscome more powerful and flexible, the AND/OR-tree representa-
size allows more MDES information to fit within the first-level tion, combined with the described transformations, becomes
cache during compilation and also reduces the overall memonyrucial for keeping under control both the MDES size and the
requirements of the compiler. The aggregate effect on required’umber of checks per scheduling attempt. We expect the K5
memory of all the transformations presented in this paper isMDES results to be representative of the latest generation of
shown in Table 14. When applied to an OR-tree representationMicroprocessors, such as the Intel Pentium Pro and the HP
these transformations reduce representations by as much as RBA8000.
factor of five. When these transformations are further combined
with the AND/OR-trees, representations up to a hundred timeslo' Related Work
smaller than the unoptimized OR-tree representation are pro- Eichenberger and Davidson [18] recently proposed a minimi-
duced. For processors with flexible execution constraints (i.e. zation algorithm which, for each reservation table option, gener-
the SuperSPARC and K5), combining these transformationsates an equivalent reservation table option with a minitnum
with the AND/OR-tree representation is especially effective. number of resource usages. The total number of resources used
The second aspect of the machine descriptions to be optito model the processor is also minimized, which facilitates
mized is the number of resource checks per scheduling attemptpacking multiple cycles of resource usages into a bit-vector.
Minimizing this number reduces the time required to check This algorithm, combined with a bit-vector representation, was
resource constraints, making room in the compiler’s time budgetshown to minimize both the memory required to represent each
for more advanced scheduling or optimization techniques. Theoption and the number of resource checks per option. However,
aggregate effect of all the transformations presented in this paEichenberger and Davidson do not address the problem of re-
per on the average number of resource checks required petlucing the number of option checks per scheduling attempt.
scheduling attempt is shown in Table 15. As described in Sec- The transformations presented in this paper reduce the num-
tion 4, these check-per-attempt statistics were generated usinger of resource checks and memory required per option to a
an MDES-driven multi-platform list scheduler to schedule |evel close to that obtained using the Eichenberger and David-
SPEC CINT92 assembly code for each platform. When com-son algorithm, although a different approach is used. In addi-
pared to the checks-per-attempt of the unoptimized OR-treetion, when combined with our proposed AND/OR-tree repre-
representation, these transformations reduced the number ofentation, our transformations simultaneously optimize the
checks required by the OR-tree representation by up to a factonumber of options checks per scheduling attempt, the number of

3 As described in Section 4, the Pentium MDES does not take advantage of* This algorithm uses heuristics to avoid exhaustive searches. Although
AND/OR-trees. The size increase is due to representation overhead. true minimums may not always be found, the results are near optimal.
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