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Abstract
A machine description facility allows compiler writers to

specify machine execution constraints to the optimization and
scheduling phases of an instruction-level parallelism (ILP) op-
timizing compiler.  The machine description (MDES) facility
should support quick development and easy maintenance of
machine execution constraint descriptions by compiler writers.
However, the facility should also allow compact representation
and efficient usage of the MDES during compilation.  This pa-
per advocates a model that allows compiler writers to develop
the MDES in a high-level language, which is then translated
into a low-level representation for efficient use by the compiler.
The discrepancy between the requirements of the high-level
language and the low-level representation is reconciled with a
collection of transformations that derive efficient low-level rep-
resentations from the easy-to-understand high-level descrip-
tions.  In order to support these transformations, a novel ap-
proach to representing machine execution constraints has been
developed.  Detailed and precise descriptions of the execution
constraints for the HP PA7100, Intel Pentium, Sun Super-
SPARC, and AMD-K5 processors are analyzed to show the ad-
vantage of using this new representation.  The results show that
performing these transformations and utilizing the new repre-
sentation allow easy-to-maintain detailed descriptions written
in high-level languages to be efficiently used by ILP-optimizing
compilers.

1. Introduction

Machine descriptions (MDES) have been used to specify
execution constraints for several high-performance compilers
[1][2].  These machine descriptions are primarily used to drive
the instruction scheduler, which uses this information to avoid
resource conflicts and data dependence interlocks.  However, in
future compilers more compiler modules will also need to use
MDES information.  As compilers push to increase the perform-
ance of processors by exploiting instruction-level parallelism
(ILP), transformations such as predication and height reduction
also need to use execution constraints to avoid over-subscription
of processor resources1.  Currently most compiler modules, in-
cluding some schedulers, forgo the use of a machine description
altogether and instead rely on heuristic "knobs" and algorithmic
changes to tune for a specific processor.  This is due, in part, to
the difficulties involved in providing these modules with access
to an accurate machine description, in a form they can effi-
ciently use.

                                                       
1 Although this paper will focus on modeling resource constraints, machine
descriptions also contain other important information such as operation
latencies, the modeling of bypassing and forwarding effects, and the map-
ping of this information to specific operations based on their opcode and the
type of operands expected.

Since each scheduling decision, and potentially each optimi-
zation decision, for every operation involves checking execution
constraints, the efficiency of such checks can significantly im-
pact the compile time.  As a result, compiler writers have faced
the choice between two undesirable alternatives.  One alterna-
tive is to sacrifice portability for accuracy.  A compiler designed
for a particular processor often uses an accurate, very low-level
representation of the machine's description (commonly coded
directly into the compiler), that must be tediously modified in
order to be effective for subsequent processors.  This approach
is not desirable in the highly competitive microprocessor indus-
try, where complex new processors are being rapidly designed
and brought to the market.  Timely development of effective
compilers for these new processors is critical to the realization
of their full performance potential.

The other alternative is to sacrifice accuracy in favor of port-
ability.  Compilers designed to support a wide range of proces-
sors, such as gcc, usually describe the machine to their instruc-
tion schedulers with easy-to-modify metrics, such as the func-
tion unit mix and operation latencies, but these metrics can only
approximately model the complex execution constraints in to-
day's superscalar processors.  Inaccurate modeling of execution
constraints during compilation makes it difficult for the com-
piler to properly address run-time issues such as resource con-
flicts and data dependence interlocks.  As a result, unexpected
execution cycles arise during run time.  In processors that ex-
ploit high degrees of instruction-level parallelism (ILP), these
extra execution cycles can have a significant effect on the over-
all performance.  Accurate modeling of execution constraints is
therefore necessary in order to properly utilize these complex
processors.  

 The possibility of using a generic, high-quality scheduler   
and ILP optimizer driven by an MDES that can be quickly tar-
geted to a new processor is attractive.  This paper advocates a
model which allows writers to develop an MDES in a high-level
language, which is then translated into a low-level representa-
tion for efficient use by the compiler.  The high-level language
should be designed to allow the specification of detailed execu-
tion constraints in an easy-to-understand, maintainable, and
retargetable manner.  The low-level representation should be
designed to allow the compiler to check execution constraints
with high efficiency in both space and time.  The discrepancy
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between the requirements of the high-level language and the
low-level representation should then be reconciled with a col-
lection of transformations that derive efficient low-level repre-
sentations from the easy-to-understand high-level descriptions.

The two-tier model is analogous to using high-level pro-
gramming languages now that contemporary compiler technol-
ogy has eliminated the benefits of using assembly language for
general purpose programs.  The user of a high-level machine
description language is not required to be intimately familiar
with modules using the machine description, and does not need
to manually optimize the description for those modules.  In fact,
a few of the transformations described in this paper are adapted
from the classical compiler techniques that helped make high-
level programming languages so well accepted.  There are,
however, important transformations introduced in this paper that
have no direct correspondence in the optimizing compiler do-
main.  These transformations take advantage of the unique char-
acteristics of an MDES to increase the efficiency of the resulting
low-level representation.

In addition to describing and evaluating the transformations,
a novel representation of resource constraints for complex proc-
essors is presented.  This representation exposes critical infor-
mation that can be profitably exploited by both these transfor-
mations and the compiler modules.  This approach to repre-
senting machine execution constraints is based on the AND/OR-
tree concept used in search algorithms.  In order to show the
effectiveness of the new representation and transformations,
detailed and precise descriptions of the execution constraints for
the HP PA7100, Intel Pentium, Sun SuperSPARC, and AMD-
K5 processors are constructed in a high-level language.  The
low-level representation of these descriptions is then generated
and used to drive a multi-platform list scheduler.  Using a
scheduler for the concrete evaluation of these transformations
allows the rationale behind and the effect of each transformation
to be clearly shown.  Similar benefits should be seen by other
compiler modules that can benefit from using an accurate ma-
chine description.

Although a specific high-level machine description language
[3], low-level representation [4], multi-platform compiler [5],
and multi-platform list scheduler [6] are being used to validate
these techniques, the aim of this paper is to show the general
applicability of these techniques, not to proselytize the specific
components used.  Concepts key to understanding the example
and results will be briefly explained, but these explanations will
only describe some of the above components’ capabilities, and
the interested reader is referred to the papers and reports that
deal directly with these components.

A description and analysis of a common mechanism used to
model resource constraints, which is used by this paper's ma-
chine descriptions, follows this section.  A new representation
of these resource constraints is introduced in Section 3, and is
shown to be well suited for describing today's complex proces-
sors.  An analysis of each MDES, before any transformations are
performed, is presented in Section 4.  In Section 5, the impor-
tance of adapting common-subexpression elimination, copy
propagation, and dead-code removal to clean up machine de-
scriptions is shown, as well as how the new representation fa-
cilitates these transformations.  Section 6 provides a brief over-
view of the implications of using bit-vectors in the low-level

representation of resource constraints in order to set the stage
for the Section 7, which describes transformations that make the
bit-vector representations more effective.  Section 8 describes
and analyzes a set of transformations which makes checking
resource constraints more efficient.  Section 9 summarizes the
aggregate effect of all these transformations, with and without
the new representation.  In Section 10, a brief summary of re-
lated work is presented and is followed by some concluding
remarks.

2. Modeling Resource Constraints

This paper’s machine descriptions model the processor’s re-
source constraints through the use of a set of reservation tables
[7], an approach used by several high-performance MDES-
driven compilers [1][2]. In particular, this paper’s machine de-
scriptions are based on the approach used by the Cydra 5 [1].
Each reservation table specifies a particular way an operation
may use a processor’s resources as that operation executes.  For
example, the resources used by the execution of a Super-
SPARC’s one-cycle integer load can be modeled with the six
reservation tables (each called a reservation table option, or
simply an option) that are shown in Figure 1.  An integer load
must use the SuperSPARC’s only memory unit (M), but may
use any of the three decoders (Decoder) and two register write
ports (Wr Pt).  The register read ports for the address generation
unit are dedicated and do not need to be modeled.  All option
lists are prioritized (option 1 having highest priority), so for the
order shown in this figure, the first available (lowest numbered)
decoder and register write port will be used by the integer load.
The “Cycle” column of these tables indicates the usage time,
which indicates when each of these resources is used, relative to
some chosen time point in the processor’s pipeline.  For all the
examples and machine descriptions used in this paper, the point
chosen to be time “zero” is the first stage of the execution pipe-
line.  Therefore resources used during decoder stages have
negative usage times, and resources used after execution com-
pletes, such as result buses and register write ports, have usage
times around the operation’s latency.  A resource used at a par-
ticular usage time will be referred to as a resource usage.  It
should be noted that the resources modeled often do not repre-
sent actual processor resources, but are abstractions used to
model the processor’s scheduling rules.  This approach was
used in the construction of the machine descriptions used in this
paper.  These machine descriptions were designed to accurately
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Figure 1: The six reservation tables that represent the
resources used by the SuperSPARC’s integer load op-
eration.
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and precisely model the processor’s scheduling rules, and intui-
tive resource names were used solely to enhance the clarity of
the machine descriptions.

Many of this paper’s examples are drawn from the Super-
SPARC MDES, so a brief and somewhat simplified overview of
the SuperSPARC’s execution constraints is necessary before
continuing.  The SuperSPARC [8] is an in-order superscalar
processor that has three full decoders, four integer register read
ports (RP), two integer register write ports, two integer ALU
(IALU) units, one barrel shifter, one memory unit with a dedi-
cated address generation unit, one branch unit, and support for
one floating-point operation per cycle.  The address generation
unit and the floating-point function units have dedicated register
ports which do not need to be modeled, but it is important to
model the usage of the SuperSPARC’s integer register read and
write ports.  All of the common integer operations have a one
cycle latency, and the load operations also have a one cycle la-
tency.  However, load and store operations can cause address
generation interlocks if they are not scheduled properly.

The SuperSPARC’s design also allows the execution of two
flow-dependent IALU operations in the same cycle.  The second
IALU operation, which utilizes this feature to execute a cycle
early, is referred to as a cascaded IALU operation.  The number
of reservation table options required to model an IALU opera-
tion depends on the number of register source operands that the
operation has.  A non-cascaded IALU operation with one regis-
ter source may use any one of the decoders, read ports, IALU
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usages.  Each of these distinct combinations of resource usages
is modeled by a reservation table option.  There is only one
IALU available to execute cascaded IALU operations, so cas-
caded IALU operations only have half the reservation table op-
tions of non-cascaded IALU operations.  The appropriate set of
reservation table options is chosen based on an operation’s in-
coming dependence distances.

A breakdown of the number of reservation table options used
to model the various operations in the SuperSPARC MDES is
shown in Table 1.  This first column specifies the number of
scheduling options.  The second column indicates the percent-
age of the time that a multi-platform list scheduler, driven by

this MDES and scheduling SuperSPARC SPEC CINT92 assem-
bly code, attempted to schedule an operation with that many
options during prepass scheduling. The last column gives a brief
summary of the types of operation that have that many options.
Note that for the SuperSPARC and the PA7100 MDES,
branches are modeled as always using the last decoder in order
to maximize scheduling freedom (since nothing may issue after
a branch on these machines).

Although all of the reservation table options must be tested
in order to determine that an operation cannot be scheduled, a
variable number of the options need to be tested in order to
determine that the operation can be scheduled.  Figure 2 shows
the distribution of options actually checked while scheduling for
the SuperSPARC.  On average, 2.05 scheduling attempts were
required per operation, so roughly half of the time a scheduling
attempt fails.  The 30.05% peak at 48 options checked is pri-
marily due to the fact that 58.50% of unsuccessful scheduling
attempts were on operations with 48 options.  Overall, 45.52%
of the scheduling attempts required between 24 and 72 options
to be checked. The 38.02% peak for one scheduling option
checked is due mainly to scheduling attempts that succeed with
the first option attempted.  For successful scheduling attempts,
73.75% succeed with the first option tested, 8.23% tested be-
tween 2 and 16 options, 16.71% tested between 17 and 32 op-
tions, and 1.31% tested more than 33 options.

In the following sections, transformations will be presented
that make testing each option nearly as efficient as possible.
However, unless the number of options checked can be reduced,
modeling complex machines exactly will remain expensive in
terms of compile time.  A new representation, presented in the
next section, can dramatically reduce the number of options
checked in complex machine descriptions.

3. A New Representation: AND/OR-Trees

The primary reason so many options need to be checked for
complex processor descriptions is that the traditional represen-
tation for resource constraints hides useful information from the
compiler.  By exposing this useful information with the new
representation presented below, the compiler can more effi-
ciently check the resource constraints.  This representation can
also inherently reduce the MDES size (Section 4), facilitate
size-reducing transformations (Section 5), and facilitate trans-
formations to further optimize for resource conflict detection

Number
of

Options

% of
Scheduling
Attempts

Operations Modeled

1 13.41%Branches and serial ops
3 0.72%Floating-point ops
6 14.37%Load ops

12 4.92%Store ops
24 9.24%Shifts and cascaded IALU ops that use 1 read port
36 3.00%Shifts and cascaded IALU ops that use 2 read ports
48 50.29% IALU ops that use 1 read port
72 4.05%IALU ops that use 2 read ports

Table 1: Option breakdown and scheduling characteris-
tics for the SuperSPARC MDES.
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(Section 8).  Before describing this new representation, a brief
review of the traditional representation is in order.

The traditional representation can be viewed as an OR-Tree,
as shown in Figure 3a.  This figure shows the six reservation
table options for the SuperSPARC integer load (the same op-
tions that are shown in Figure 1).  The options are in priority
order (with the highest priority first), and if the resources for
any of the options are available, the operation can be scheduled.
The advantage of this representation is that for OR-trees with a
small number of options, the OR-tree’s resource constraints can
be quickly and efficiently checked.  For processors which have
execution constraints that can be modeled with just a few reser-
vation table options, it is difficult to improve upon the efficiency
of this OR-tree representation.

The disadvantage of this OR-tree representation is that it
does not allow an easy or efficient way of using information
about why an option was not available.  For example, if Option
1 (the top option) in Figure 3a is unavailable because write port
0 (Wr Pt 0) is unavailable, then Options 2 and 3 are also guar-
anteed to be unavailable.  Although an inference engine could
be programmed into the resource constraint check algorithm to
eliminate these options, the overhead would more than negate
the benefit.

The solution proposed in this paper is to use a new repre-
sentation that is based on the AND/OR-tree concept used in
search algorithms.  This new representation is, in essence, an
AND-tree of OR-trees, allowing multiple OR-trees to be used
together in order to represent the resource constraints.  An ex-
ample of this new AND/OR-tree representation is shown in
Figure 3b.  The AND/OR-tree shown specifies the resource
requirements for the SuperSPARC’s integer load as requiring
the memory unit(M), one of the two write ports (Wr Pt), and
one of the three decoders.  By utilizing the short-circuit proper-
ties of AND and OR, the resource constraint check algorithm
can quickly determine which of the required resources are avail-
able (or if they are not available), without performing any un-
necessary checks.

The algorithm overhead incurred by using this new repre-
sentation is minimal, since it is built upon the OR-tree repre-

sentation and does not require any new information from the
OR-tree resource constraint checker (i.e. which option, if any, is
available).  In Figure 3, each of the OR-trees, which are en-
closed in dotted boxes, can have the same internal representa-
tion and may have the same resource constraint checker algo-
rithm applied to them.  The compiler used for this paper’s ex-
periments does so and, for implementation efficiency, adds an
outer loop around the OR-tree’s algorithm that processes the
array of OR-trees associated with an AND/OR-tree.  Although
some additional space is required to represent the AND-level of
the tree, the use of AND/OR-trees can significantly reduce the
size of the resource constraint description in the MDES, as
shown in Section 4.

4. Original MDES Characteristics

In this paper, detailed and precise descriptions of the execu-
tion constraints for the HP PA7100, Intel Pentium, Sun Super-
SPARC, and AMD-K5 are analyzed to show the rationale be-
hind the transformations presented in the following sections and
the advantages of using the AND/OR-tree representation.  For
this analysis, each of these machine descriptions is used to drive
a multi-platform list scheduler, which is then used to schedule
SPEC CINT92 assembly code for that platform.  Each plat-
form’s assembly code (between 201011 and 282219 static op-
erations) was generated using the level of profile-driven inlin-
ing, classical optimization, ILP optimization, and peephole op-
timization that had been found, through extensive tuning, to
yield the highest possible execution-time performance for that
platform2.  The analysis also focused on prepass scheduling for
the SuperSPARC and PA7100, and on postpass scheduling for
the Pentium and K5.  Prepass scheduling was not performed for
the X86 processors due to the limited number of registers avail-
able.  The SuperSPARC was described in Section 2, and the
reservation table option breakdown of its machine description
was shown in Table 1.  A brief description of the other proces-
sors modeled, and their reservation table option breakdowns, is
in order before analyzing the original characteristics of each
MDES.

The PA7100 [9] is an in-order superscalar processor that has
two decoders, and supports executing one floating-point opera-
tion in parallel to an integer or memory operation.  The relative
order of these two operations does not matter, so there are two
options for most operations, as shown in Table 2.  The Pentium
[10] is an in-order superscalar X86 processor that has two exe-
cution pipelines.  A detailed set of pairing rules is used to spec-
ify the operation combinations that may execute in parallel.
Each operation has one or two reservation table options, as
shown in Table 3.  The K5 [11] is a four-issue, out-of-order,
superscalar X86 processor that the MDES models as an in-order
processor that can buffer operations between decode and execu-
tion.  This processor converts X86 operations into one or more
Rops (internal RISC operations), which may be dispatched in
different cycles if the required resources are not available.  Ac-
curate modeling allows the scheduler to take advantage of this
dynamic behavior, potentially increasing decoder and execution

                                                       
2 The relative performance level for each platform and benchmark varied,
but each benchmark’s performance was either close to, or better than, the
published peak SPEC CINT92 numbers for that platform.
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utilization.  The K5’s design allows up to four X86 operations
to be decoded each cycle and up to four Rops to be dispatched
each cycle.  It also has up to two execution units available for
each type of Rop.  As shown in Table 4, 89.44% of scheduling
attempts are for one-Rop X86 operations that have 16 or 32
reservation table options.  However, up to 768 reservation table
options are required to accurately model a multi-Rop X86 op-
eration, which can be dispatched over multiple cycles.  Failure
to model these operations correctly can impact performance in
critical loops.

To clarify the notation in the tables, it should be noted that
for both of the X86 processors, the compiler bundles each
branch together with an appropriate condition-code-setting op-
eration, in order to maximize scheduling freedom.  The reserva-
tion tables for these bundled operations model the resources
required by all the operations in the bundle.  After scheduling,
these bundled operations are converted back into individual
operations.

Although it is not necessary for the high-level MDES lan-
guage to support AND/OR-trees, AND/OR-trees provide a con-
cise way of specifying complex resource usages.  The machine
descriptions used in this paper’s experiments are written in a
high-level MDES language that supports the specification of
both OR-trees and AND/OR-trees.  Every MDES, except the
Pentium MDES, uses AND/OR trees extensively.  (The Pen-
tium’s execution constraints do not have the flexibility that
benefits from the use of AND/OR-trees.)  In order to generate
the OR-tree MDES representations for this paper’s experiments,

each MDES that uses AND/OR-trees was run through an MDES
preprocessor that expanded out each AND/OR-tree specification
into the corresponding OR-tree specification.

The scheduling characteristics for these machine descrip-
tions, before any transformations are performed, are shown in
Table 5.  The second and third columns indicate how many op-
erations were scheduled, and how many scheduling attempts
were required, on average, before an operation was successfully
scheduled.  These two numbers will remain constant throughout
all of the transformations (with either representation), and the
exact same schedule is produced in each case, since all the exe-
cution constraints described in the machine descriptions are
being preserved.  It should be noted that the number of sched-
uling attempts required per operation can increase significantly
with the use of more advanced scheduling techniques such as
iterative modulo scheduling [12] and operation scheduling, and
with the application of more ILP optimizations to the assembly
code.  However, the selected experimental setup closely models
current compiler practices, and the benefit of this paper’s
AND/OR-tree representation and MDES transformations should
only increase as more scheduling attempts are required, since
they speed up detection of resource-constraint conflicts.

The fourth and sixth columns of Table 5 show the average
number of reservation table options checked for each scheduling
attempt, for the OR-tree and AND/OR-tree representations,
respectively.  The fifth and seventh columns show the average
number of resource checks that were required for each schedul-
ing attempts.  The last column shows that for complex machine
descriptions, before any transformations are performed, the use
of the AND/OR-tree representation can reduce the number of
resource checks per reservation table option by up to 84.5%.

The memory required to internally represent the resource
constraints in the compiler used for this paper’s evaluation is
shown in Table 6.  Although this internal representation has
been extensively tuned to maximize the performance of the re-
source constraint checking algorithm, it also was designed to
minimize memory requirements in ways that incur no perform-
ance penalty.  To this end, the internal representation allows
common information to be shared among AND/OR-trees and
OR-trees, but in some cases a small amount of header informa-

Number
of

Options

% of
Scheduling
Attempts

Operations Modeled

1 18.81%Branch ops
2 81.19%Ops that can use either decoder

Table 2: Option breakdown and scheduling characteris-
tics of the PA7100 MDES.

Number
of

Options

% of
Scheduling
Attempts

 Operations Modeled

1 45.42%Ops that can execute in only 1 pipe
2 54.58%Ops that can execute in either pipe

Table 3: Option breakdown and scheduling characteris-
tics of the Pentium MDES.

Number
of

Options

% of
Scheduling
Attempts

Operations Modeled

16 14.72% 1 Rop ops with 1 unit choice
24 0.14% 2 Rop ops dispatched in 1 cycle (1 unit choice)
32 74.72% 1 Rop ops with 2 unit choices
48 5.91% 2 Rop bundled cmp+br dispatched in 1 cycle
64 2.56% 3 Rop bundled cmp+br dispatched in 1 cycle
96 0.19% 2 Rop ops dispatched in 1 cycle (2 unit choices)

128 0.66% 2 Rop bundled cmp+br dispatched over 2 cycles
192 0.15% 3 Rop ops dispatched over 2 cycles (subset of)
256 0.37% 2 Rop ops dispatched over 2 cycles (2 unit choices)
384 0.43% 3 Rop bundled cmp+br dispatched over 2 cycles
768 0.15% 3 Rop ops dispatched over 2 cycles (subset of)

Table 4: Option breakdown and scheduling characteris-
tics of the K5 MDES.

Avg. OR-Trees AND/OR-Trees

MDES

Total
Ops

Sched.

Sched.
Attempts
Per Op

Avg.
Options/
Attempt

Avg.
Checks/
Attempt

Avg.
Options/
Attempt

Avg.
Checks/
Attempt

Percent
Checks
Reduced

PA7100 201011 1.94 1.56 2.47 1.45 1.96 20.6%
Pentium 207341 1.47 1.49 3.99 1.49 3.99 0.0%
S-SPARC 282219 2.05 21.48 31.09 4.38 4.83 84.5%
K5 203094 1.62 19.59 35.49 5.20 5.73 83.9%

Table 5: Original scheduling characteristics of the ma-
chine descriptions for each target machine.

OR-Trees AND/OR-Trees

MDES
Number
of Trees

Table
 Options

Size
 (bytes)

Table
 Options

Size
 (bytes)

%Size
Reduced

PA7100 15 40 2504 16 1384 44.7%
Pentium 37 34 14824 34 15416 -4.0%
SuperSPARC 24 333 17120 40 2624 84.7%
K5 33 4424 312640 64 4376 98.6%

Table 6: Original MDES memory requirements.
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tion per item is duplicated to prevent performance degradation.
Both the OR-tree and the AND/OR-tree internal representations
have the same number of trees.  However, the table shows that
the AND/OR-tree representation, because it does not require the
explicit enumeration of all the resource usage combinations
(OR-tree options), can significantly reduce the memory required
(a 98.6% reduction for the K5).  Thus, before any MDES op-
timizations, the AND/OR-tree significantly reduces both the
internal representation size and the number of checks required
per attempt for complex resource constraint descriptions (i.e. the
SuperSPARC and K5).  This advantage will remain definitive
after both representations are fully optimized.

The sizes shown in this paper for the AND/OR-tree repre-
sentation reflect the extra memory required to store the AND
level of the tree.  In the Pentium MDES, the AND level always
points to one OR-tree, so the AND/OR-tree representation will
always be slightly larger.  It should also be noted that the com-
mon information to be shared is entirely specified by the exter-
nal MDES representation, in order to minimize the time re-
quired to load the MDES into memory.  The number of trees
and reservation table options shown in the table reflects only
what the writer of the MDES specified as being shared.  It is
easy and natural to specify shared information in the high-level
MDES language used, so most of the common information is
shared in these machine descriptions.  However, common in-
formation is often not shared in order to make the machine de-
scription more readable or easier to modify.  In fact, some of the
information in the MDES may not even be used.  The transfor-
mations presented in the Section 5 will deal with these issues.

5. Eliminating Redundant or Unused MDES In-
formation

Machine descriptions tend to evolve as a processor’s execu-
tion constraints become more thoroughly understood, as the
compiler’s vocabulary of operations increases, and as these ma-
chine descriptions are ported to different or experimental proc-
essors in the family.  As the machine descriptions evolve, the
amount of redundant and unused information in the MDES
tends to grow because, for an MDES writer, it is typically easier
to just make a local copy of the information to be changed than
to do the careful analysis required to safely modify or delete
existing information.  In fact, this was experienced both at Cy-
drome Inc., with creation and maintenance the Cydra 5 MDES,
and by the authors of this paper’s machine descriptions.

This redundant and unused information can be eliminated
from the MDES by adapting the classical compiler optimiza-
tions (common sub-expression elimination, copy propagation,
and dead-code removal [13]) to the MDES domain.  In this pa-
per’s implementation, common sub-expression elimination and

copy propagation were combined into one step that finds redun-
dant MDES information and points all various references to that
information to only one particular copy, and an adaptation of
dead-code removal eliminates unreferenced information.  These
techniques greatly reduced the size required to represent all of
the aspects of the MDES, such as resource constraints, operation
latency, and operation format. Their effect on the resource-
constraint description size in particular is shown in Table 7.

It is interesting to note that the AND/OR-tree representation
for the SuperSPARC and K5 machine descriptions benefited
more from eliminating redundant information than the OR-tree
representation.  This is because the reservation table options in
the AND/OR-tree representation typically specify the resource
usages at a finer granularity (less usages per option) than the
OR-tree options, allowing them to be shared more aggressively.
In addition, the OR-trees in an AND/OR-tree tend to be more
general-purpose, allowing entire OR-trees to be shared by sev-
eral AND/OR-trees.  An example of this second case is shown
in Figure 4, where the OR-trees for decoder and register write
port resource usages are shared by the SuperSPARC’s integer
load AND/OR-tree and the SuperSPARC’s integer ALU (with
two register sources) AND/OR-tree.  In this way the AND/OR-
tree representation facilitates further reduction of the MDES
size.

The transformations for removing redundant information can
also be adapted to more MDES specific circumstances, such as
removing options from an OR-tree that can be determined to be
impossible to satisfy.  An option can be removed from an OR-
tree if its resource usages are identical to, or a superset of, the
resource usages for a higher-priority option, since the higher-
priority option will always be selected if these resources are
available.  This case can arise when the use of preprocessor
directives enumerates the various OR-tree options, and it can
also arise as a machine description evolves, which is the case
for the PA7100 MDES used in this paper.  The PA7100 MDES
was derived from the MDES for an earlier HP PA processor.
During the retargeting, two of the reservation table options for
the PA7100’s memory operations became identical, but the
MDES author never realized this since correct output was still
generated.  The effect this has on the PA7100’s scheduling
characteristics is shown in Table 8.

Num. OR-Tree Rep. AND/OR-Tree Rep.

MDES
of

Trees
Table

Options
Size

 (bytes)
% Size

Reduced
Table

Options
Size

 (bytes)
% Size

Reduced
PA7100 13 24 1712 31.6% 14 1232 11.0%
Pentium 30 28 10816 27.0% 28 11296 26.7%
S-SPARC 19 277 14752 13.8% 30 1896 27.7%
K5 27 3704 266032 14.9% 55 3592 17.9%

Table 7: MDES memory requirements after eliminating
redundant and unused information.
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Figure 4: An example of how the AND/OR-tree repre-
sentation can facilitate the sharing of OR-trees.

Avg. OR-Tree AND/OR-Tree

MDES

Total
Ops

Sched.

Sched.
Attempts
Per Op.

Avg.
Options/
Attempt

Avg.
Checks/
Attempt

Average
Options/
Attempt

Avg.
Checks/
Attempt

Percent
Checks
Reduced

PA7100 201011 1.94 1.42 2.32 1.38 1.89 18.5%

Table 8: PA7100 scheduling characteristics after remov-
ing unnecessary options for memory operations.
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6. Utilizing Bit-Vector Representations

The results presented so far have not taken advantage of the
fact that most resource-constraint checking algorithms, includ-
ing the one used in this paper, use bit-vectors [14][15][16] to
keep track of the resources used each cycle in what is referred to
as a resource usage map (RU map).  This design allows the RU
map size to be minimized and efficiently initialized, and allows
multiple resource usages to be checked (and reserved) with a
single AND (OR) operation.  In addition, using bits in the
MDES to represent multiple resource usages can significantly
decrease the MDES size.  Although it is possible to pack more
than one cycle’s resource usages into a single memory word, it
is not necessary to do so for the machine descriptions in this
paper.  The resource usage time transformation presented in the
next section will reduce the number of checks to almost the
minimum of one resource check per reservation table option.

The incremental effect of packing each cycle’s resource us-
ages into one memory word is shown in Tables 9 and 10.  Be-
fore using bit-vectors, each resource usage was represented as a
cycle/resource pair (one resource usage per check).  After using
bit-vectors, the resource usages were represented as a cy-
cle/resource-vector pair (multiple resource usages per check
possible, if the usages are in the same cycle).  Although both
representations require two words to represent each pair, the
bit-vector representation typically requires less pairs per table.
The Pentium MDES shows the most benefit, since modeling the
Pentium’s resource constraints required checking several re-
source usages in every cycle.  The other machine descriptions
didn’t benefit as much, since their resource usage did not al-
ways fall within the same cycle.  For example, the reservation
table options shown in Figure 3a do not benefit from packing a
cycle’s resource usage into a single memory word, since there is
only one usage per cycle.  However, the resource usage time
transformation presented in the next section will resolve this
issue.

7. Optimizing for Bit-Vector Representations

The use of the actual resource usage times, as in Figure 3a,
can significantly reduce the effectiveness of using a bit-vector
representation that packs one cycle's worth of resource usages
into a single memory word.  We address this problem by making
use of the theory of pipelined, multi-function unit design
[7][17].  For any ordered pair of reservation table options (A,
B), t is a forbidden latency (i.e., an operation using reservation
table option B cannot be initiated t cycles after an operation that
uses reservation table option A) if and only if A and B have
resource usages for some common resource at times i and j,
respectively, such that i is greater than or equal to j and i-j = t.
The set of all forbidden latencies between A and B is termed the
collision vector for the ordered pair (A, B).  A given schedule
results in no resource conflicts if and only if, for every pair of
operations, the difference in their scheduled times never violates
the collision vector for the corresponding pair of reservation
tables.  Note that the actual reservation table options A and B
are not directly important; only the collision vector for (A, B) is.
Consequently, we could substitute any reservation table options
A' and B' for A and B, respectively, as long as the collision vec-
tor for (A', B') is the same as that for (A, B).  Further note that,
in computing a forbidden latency, only the difference between
the resource usage times i and j matters, not their actual values.
In particular, we could add a common constant to both resource
usage times without altering the forbidden latency.

With this in mind, the optimization that we use, for each re-
source, is to subtract a strategically selected constant from the
originally specified resource usage times for that resource in
every reservation table option, with a view to concentrating
resource usages into as few time slots as possible.  The constant
may be different for each resource.  This optimization is related
to the one used by Eichenberger and Davidson [18].  Although
minimization techniques can be used to find those constants that
maximize the benefit, a simple heuristic was found to be highly
effective for the forward-scheduling list scheduler and the proc-
essors considered in this paper.  The heuristic is, for each re-
source, to pick the constant to be the earliest resource usage
time for that resource (across all reservation table options).  The
result of this heuristic is to concentrate a far larger number of
resource usages than before at time zero, thereby making the
bit-vector approach more effective.  For a backward-scheduling
list scheduler, the constants should be chosen to make the latest
usage time to be zero (or some constant). Applying this trans-
formation to Figure 3a yields the OR-tree shown in Figure 5.

Memory Requirements (in bytes)
MDES OR-Tree Rep. AND/OR-Tree Rep.

Before After Diff. Before After Diff.
PA7100 1712 1408 17.8% 1232 1128 8.4%
Pentium 10816 3224 70.2% 11296 3704 67.2%
SuperSPARC 14752 11152 24.4% 1896 1640 13.5%
K5 266032 183280 31.1% 3592 3136 12.7%

Table 9: MDES size characteristics before and after a bit-
vector representation is used (one cycle/word).

Average Checks Per Scheduling Attempt
MDES OR-Tree Rep. AND/OR-Tree Rep.

Before After Diff. Before After Diff.
PA7100 2.32 2.18 6.0% 1.89 1.76 6.9%
Pentium 3.99 2.31 42.1% 3.99 2.31 42.1%
SuperSPARC 31.09 26.69 14.2% 4.83 4.62 4.3%
K5 35.49 34.35 3.2% 5.73 5.30 7.5%

Table 10: Scheduling characteristics before and after a
bit-vector representation is used (one cycle/word).
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Figure 5: The OR-tree modeling the resource constraints
for a SuperSPARC integer load operation, after trans-
forming the resource usage times in order to better utilize
the bit-vector representation.
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In addition to making the bit-vector representation more ef-
fective, this transformation also has a subtle effect on the char-
acteristics of the resource usage checks that can be taken ad-
vantage of.  The resource usages that cause most of the resource
conflicts now tend to be concentrated at time zero.  The resource
usages with times greater than zero are usually conflict free and
are primarily there to delay the execution of later operations.
For example, the non-zero-time divide-unit usages for a divide
operation rarely prevent the operation from being scheduled (if
the divide unit is available at time zero).  However, while
scheduling the next divide operation, the divide unit will not be
available at time zero until the previous divide completes.  Thus
for a forward-scheduling list scheduler, the average number of
checks before a conflict is detected is minimized by sorting the
resulting usage checks so that time zero is checked first.  In this
manner, the same machine descriptions can be automatically
tuned for other types of schedulers by adjusting the heuristic for
picking the resource usage time shift constants and for the sort-
ing of the resulting usage checks.

The MDES memory requirements after transforming the re-
source usage times are shown in Table 11.  The size of the OR-
tree representation is reduced up to 37.1% by using this trans-
formation.  There is less reduction for the AND/OR-tree repre-
sentation since this representation tends to have fewer resource
usages per option. The transformations presented in the next
section do not change the MDES size, so these sizes are the
final MDES sizes after full optimization.

The MDES scheduling characteristics after transforming the
resource usage times and sorting the resulting usages to check
time zero first are shown in Table 12.  This transformation re-
duced the average number of resource checks per option to be-
tween 1.01 and 1.12, which is close to the ideal case of one
check per option.  As a result, the average number of options
checked per attempt is what is truly dictating the number of
checks required.  Although the AND/OR-tree already has a clear
advantage in this regard for the SuperSPARC and K5, the num-
ber of options checked is further reduced by the transformations
in Section 8.

8. Optimizing AND/OR-Trees for Resource Con-
flict Detection

The structure of the AND/OR-tree representation allows ad-
ditional transformations to be performed that can increase the
chance of detecting resource conflicts early.  The first transfor-
mation is to sort the sub OR-trees in the AND/OR-tree so that
the OR-tree most likely to have a resource conflict (heuristically
determined) is checked first.  The following heuristic-based sort
criteria were found to produce the most consistent results.  The
OR-trees are first sorted by the earliest usage time in each tree,
since after the resource usage time transformation, most con-
flicts occur at usage time zero.  For OR-trees with the same
earliest usage time, sort by the number of options in each OR-
tree, so that OR-tree with the fewest options is checked first.
To break ties at this point, preference is given to the OR-trees
that are shared by the most number of AND/OR-trees, since this
gives an indication of which OR-trees have resources that are
heavily used.  Finally the original order specified is used to
break any remaining ties.  Figure 6a shows the OR-tree order
originally specified in the MDES (and used for all previous
analysis), and Figure 6b shows the order after sorting the OR-
trees using the above criteria (only the second criterion applies).  

A second transformation that can be applied is to remove re-
source usages that are common to all of the OR-tree options and
place them in an OR-tree with just one option (creating one if
necessary).  This transformation works well when a resource
common to all options is likely to cause a resource conflict.  By
pulling it out, this resource conflict can be detected earlier.
This transformation can also be used to create some simple
AND/OR-trees from OR-tree descriptions.  Application of this
transformation can actually increase the number of resource
checks required, but the following application heuristics were
found to yield good results.  First, if there is already a one-
option OR-tree that has a resource usage with the same usage
time as the common usage, apply the transformation.  (With bit-
vectors, this transformation cannot hurt performance.)  Also,

Memory Requirements (in bytes)
MDES OR-Tree Rep. AND/OR Tree Rep.

Before After Diff. Before After Diff.
PA7100 1408 1168 17.0% 1128 1032 8.5%
Pentium 3224 3080 4.5% 3704 3560 3.9%
SuperSPARC 11152 7016 37.1% 1640 1584 3.4%
K5 183280 125488 31.5% 3136 3096 1.3%

Table 11: MDES memory requirements before and after
transforming resource usage times (one cycle per word).

OR-Tree Rep. AND/OR-Tree Rep.
MDES Avg. Checks/Attempt Checks/ Avg. Checks/Attempt Checks/

Before After Diff Option Before After Diff. Option
PA7100 2.18 1.59 37.1% 1.12 1.76 1.55 11.9% 1.12
Pentium 2.31 1.57 32.0% 1.05 2.31 1.57 32.0% 1.05
S-SPARC 26.69 21.59 19.1% 1.01 4.62 4.49 2.8% 1.03
K5 34.35 19.87 42.2% 1.01 5.30 5.25 0.9% 1.01

Table 12: Scheduling characteristics before and after
transforming resource usage times and sorting the re-
sulting usages to check time zero first (one cycle per
word).
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Figure 6: An example of optimizing the order of the OR-
trees in an AND/OR-trees for resource conflict detection.
a) Original order specified.  b) After optimizing the or-
der.
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apply the transformation if the common usage is the only usage
in the OR-tree with that usage time (each option in the OR-tree
then has one less check, and in exchange only one check is
added).  Otherwise, the transformation should not be applied.
In the machines descriptions used in this paper, all the applica-
tions of this transformation occurred due to the first application
rule.  After the usage time transformation the second case be-
comes rare or, for these descriptions, nonexistent.  

The incremental effect of these transformations on the
AND/OR-tree scheduling characteristics is shown in Table 13.
Most of the AND/OR-trees in the SuperSPARC and K5 MDES
are reordered, which significantly reduces the average number
of options checked before a resource conflict is detected.  The
MDES sizes did not change due to these transformations.

9. Aggregate Effect of All Transformations

There are two important machine description aspects that are
optimized by the transformations presented in this paper.  The
first one is the amount of memory needed by the compiler to
represent the processor’s resource constraints.  Minimizing this
size allows more MDES information to fit within the first-level
cache during compilation and also reduces the overall memory
requirements of the compiler.  The aggregate effect on required
memory of all the transformations presented in this paper is
shown in Table 14.  When applied to an OR-tree representation,
these transformations reduce representations by as much as a
factor of five.  When these transformations are further combined
with the AND/OR-trees, representations up to a hundred times
smaller than the unoptimized OR-tree representation are pro-
duced3.  For processors with flexible execution constraints (i.e.
the SuperSPARC and K5), combining these transformations
with the AND/OR-tree representation is especially effective.

The second aspect of the machine descriptions to be opti-
mized is the number of resource checks per scheduling attempt.
Minimizing this number reduces the time required to check
resource constraints, making room in the compiler’s time budget
for more advanced scheduling or optimization techniques.  The
aggregate effect of all the transformations presented in this pa-
per on the average number of resource checks required per
scheduling attempt is shown in Table 15.  As described in Sec-
tion 4, these check-per-attempt statistics were generated using
an MDES-driven multi-platform list scheduler to schedule
SPEC CINT92 assembly code for each platform.  When com-
pared to the checks-per-attempt of the unoptimized OR-tree
representation, these transformations reduced the number of
checks required by the OR-tree representation by up to a factor

                                                       
3 As described in Section 4, the Pentium MDES does not take advantage of
AND/OR-trees.  The size increase is due to representation overhead.

of 2.6.  When these transformations are combined with the
AND/OR-trees, the number of checks were reduced by as much
as a factor of ten.  As was seen with the MDES-size aspect,
combining these transformations with the AND/OR-tree repre-
sentation is especially effective at reducing the number of
checks required for processors with flexible execution con-
straints (i.e. the SuperSPARC and K5).

The trend that these tables show is that as the processors be-
come more powerful and flexible, the AND/OR-tree representa-
tion, combined with the described transformations, becomes
crucial for keeping under control both the MDES size and the
number of checks per scheduling attempt.  We expect the K5
MDES results to be representative of the latest generation of
microprocessors, such as the Intel Pentium Pro and the HP
PA8000.

10. Related Work

Eichenberger and Davidson [18] recently proposed a minimi-
zation algorithm which, for each reservation table option, gener-
ates an equivalent reservation table option with a minimum4

number of resource usages.  The total number of resources used
to model the processor is also minimized, which facilitates
packing multiple cycles of resource usages into a bit-vector.
This algorithm, combined with a bit-vector representation, was
shown to minimize both the memory required to represent each
option and the number of resource checks per option.  However,
Eichenberger and Davidson do not address the problem of re-
ducing the number of option checks per scheduling attempt.

The transformations presented in this paper reduce the num-
ber of resource checks and memory required per option to a
level close to that obtained using the Eichenberger and David-
son algorithm, although a different approach is used.  In addi-
tion, when combined with our proposed AND/OR-tree repre-
sentation, our transformations simultaneously optimize the
number of options checks per scheduling attempt, the number of

                                                       
4 This algorithm uses heuristics to avoid exhaustive searches.   Although
true minimums may not always be found, the results are near optimal.

AND/OR-Tree Representation
MDES Options Per Attempt Checks Per Attempt

Before After Diff. Before After Diff.
PA7100 1.38 1.38 0.0% 1.55 1.55 0.0%
Pentium 1.49 1.49 0.0% 1.57 1.57 0.0%
SuperSPARC 4.38 2.97 32.2% 4.49 3.08 31.4%
K5 5.20 4.32 16.9% 5.25 4.38 16.6%

Table 13: Scheduling characteristics before and after opti-
mizing AND/OR-trees for resource conflict detection.

Memory Requirements (in bytes)
MDES Unoptimized Fully Optimized With Bit-Vector Rep.

 OR-
Trees

 OR-
Trees Reduction

AND/OR-
Trees Reduction

PA7100 2504 1168 53.4% 1032 58.8%
Pentium 14824 3080 79.2% 3560 76.0%
SuperSPARC 17120 7016 59.0% 1584 90.7%
K5 312640 125488 59.9% 3096 99.0%

Table 14: Aggregate effect of all transformations on
MDES resource-constraint representation size.

Average Checks Per Scheduling Attempt
MDES Unoptimized Fully Optimized With Bit-Vector Rep.

 OR-
Trees

 OR-
Trees Reduction

AND/OR-
Trees Reduction

PA7100 2.47 1.59 35.6% 1.55 37.2%
Pentium 3.99 1.57 60.7% 1.57 60.7%
SuperSPARC 31.09 21.59 30.6% 3.08 90.1%
K5 35.49 19.87 44.0% 4.38 87.7%

Table 15: Aggregate effect of all transformations on
MDES scheduling characteristics.
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resource checks per option, and the memory required to repre-
sent the processor’s resource constraints.

Proebsting and Fraser [19], Müller [20], and Bala and Rubin
[21] have proposed approaches that use finite-state automata,
instead of resource reservation tables, to determine if an opera-
tion may be scheduled without a resource conflict.  These tech-
niques, when compared with the use of unoptimized reservation
tables and representations, have shown significant reductions in
the number of checks per scheduling attempt and in representa-
tion size.  However, the combination of our transformations and
AND/OR-tree representation appear to mitigate these advan-
tages, even for complex resource constraints.  In addition, as
described in the literature, finite-state automata do not appear to
support some advanced scheduling techniques, such as iterative
modulo scheduling [12], which strategically unschedule opera-
tions in order to remove the resource conflicts that are prevent-
ing an operation from being scheduled.  This requires the ability
to identify and unschedule the operations that are causing the
resource conflicts.  This type of unscheduling is straightforward
with reservation tables (implemented in [12]), but it is unclear
how to do this type of unscheduling with finite-state automata.

11. Conclusions

This paper advocates a model which allows compiler writers
to develop easy-to-understand, maintainable machine descrip-
tions in a high-level language, which is then translated into a
low-level representation for efficient use by the compiler.  To
reconcile the discrepancy between the requirements of the high-
level language and the low-level representation, a collection of
transformations was presented that derives efficient low-level
representations from descriptions written in a high-level MDES
language.  In addition, a new resource constraint representation,
AND/OR-trees, was introduced that facilitates the efficient de-
scription of complex execution constraints.  Experiments
showed that this AND/OR-tree representation, combined with
the proposed transformations, produces small and efficient low-
level representations requiring less than 3.5k bytes of compiler
memory.  This combination was also shown to greatly reduce,
by up to a factor of ten, the number of resource checks per
scheduling attempt required to model complex execution con-
straints.  These results strongly support the assertion that pre-
cise and accurate machine descriptions, designed to be easy-to-
maintain and written in a high-level language, can be translated
into a low-level representation that can be efficiently used by an
ILP compiler.
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