
Compiler-Directed Early Load-Address Generation

Ben-Chung Cheng� Daniel A. Connorsy Wen-mei W. Hwuy

�Department of Computer Science
yDepartment of Electrical and Computer Engineering

The Coordinated Science Laboratory

University of Illinois

Urbana, IL 61801

Email: fbccheng, dconnors, hwug@crhc.uiuc.edu

Abstract

Two orthogonal hardware techniques, table-based ad-

dress prediction and early address calculation, for re-

ducing the latency of load instructions have been re-

cently proposed. The key idea behind both of these

techniques is to speculatively perform loads early in

the processor pipeline using predicted values for the

loads' addresses. These techniques have required ei-

ther a large hardware table or complex register bypass

logic to be implemented in order to accurately predict

the important loads in the presence of a large number of

less-important loads. This paper proposes a compiler-

directed approach that allows a streamlined version of

both of these techniques to be e�ectively used together.

The compiler provides directives to indicate which pre-

diction mechanism to use or, when appropriate, that a

prediction should not be made. The hardware there-

fore can be focused on their target cases so that a

smaller prediction table and simpler bypass logic suf-

�ce. Our results show that through straightforward

compiler heuristics, we obtain an average speedup of

34% with a 256-entry direct-mapped address table and

only one cached register. And with the help of address

pro�ling, an extra 4% of speedup can be obtained.

1 Introduction

test
The latency of load instructions can signi�cantly af-

fect overall performance of modern microprocessor ar-

chitectures. Load instructions have longer latency than

most computation instructions because they have both

address calculation and memory access tasks to per-

form. As a result of the growing gap between main

memory and processor clock speeds, the memory access

latency has an even greater impact on performance,

motivating the need for new load latency reduction

techniques.

Various techniques for hiding the latency of load in-

structions have been investigated in the past. Reducing

the load latency by accessing the memory earlier than

the normal pipeline stage using early load-address gen-

eration has been addressed [1][2][3][4][5]. Similarly, the

concept of value prediction [6][7] has introduced ma-

chine models that exceed the limit imposed by data

dependences by predicting the outcome values of in-

structions. One major di�erence between these two

types of techniques is that early load-address gener-

ation schemes may increase the overall memory band-

width requirement due to speculative loads with wrong

addresses. But for value prediction schemes, no specu-

lative loads are needed since the value is predicted and

veri�ed by the normal load. On the other hand, for

value prediction schemes to e�ectively hide the load la-

tency, dependent instructions need to be speculatively

issued based on the predicted value. Therefore recov-

ery techniques de�nitely need to be incorporated in

value prediction schemes. In early load-address gen-

eration schemes, as long as the validity of the specu-

latively loaded data can be veri�ed before the normal

memory stage in the pipeline, its latency can be hid-

den and no recovery is needed. A comprehensive study

of previous work reveals that the e�ective address of

a load can be obtained through two orthogonal cate-

gories: to predict it based on a table or to calculate it

earlier in the pipeline. We also �nd that both meth-

ods have strengths and weaknesses for di�erent scenar-

ios. In general both methods, as previously proposed,

also potentially waste resources by using a signi�cant

amount of hardware space to generalize a mechanism

to handle its sub-optimal cases. Therefore it is desired

to have both methods available and to use the compiler

to select the method based on their target cases.

In this paper we present a compiler-guided early



load-address generation scheme to hide the latency of

load instructions. Our approach involves both instruc-

tion set and microarchitecture changes and compiler

support. At the microarchitecture level, we add the

functionalities of performing both table-based predic-

tion and early calculation for load-address generation.

Selection between the dual paths is performed by the

compiler using new instruction opcodes. For each orig-

inal opcode, enough information is added to the in-

struction encoding to di�erentiate three cases. When

the new opcode indicating that the address can be pre-

dicted is used, a hardware table is accessed to deter-

mine the current address from the previous address

and a possible stride. If the predicted address is cor-

rect and obtained before the real one is computed, the

load latency can be reduced. Another new instruc-

tion opcode is used for early calculation. The register

value for early calculation is retrieved from a special

one-entry cache which can be treated as a special ad-

dressing register. Using an isolated addressing register

requires only a limited broadcast between the register

�le and early calculation mechanism, making the reg-

ister caching design more straightforward in the imple-

mentation. Finally, an instruction opcode indicates the

unpredictability of a load to prevent it from polluting

the prediction table and the addressing register.

We present an instruction set architecture and

microarchitecture pipeline design for supporting

compiler-directed early load-address generation for

load instructions. We evaluate the concept of early

address generation in the context of both our compiler-

directed scheme and previously proposed hardware-

only schemes. Results indicate that our approach is

more e�ective in reducing the average latency of load

instructions, at potentially lower hardware costs. With

our approach, an average speedup of 34% is achieved

with a 256-entry direct-mapped address prediction ta-

ble and one compiler-directed special addressing regis-

ter without instruction predecode and register multi-

casting. This speedup is comparable to that gener-

ated by a hardware-only scheme with much larger ta-

ble and complex register-caching mechanism. We also

�nd that our approach is 
exible in that we can adapt

compiler analysis and pro�ling techniques to further

improve overall performance by better classifying the

loads. The results show that an extra 4% of average

speedup can be obtained using the address pro�le in-

formation. We also evaluate the suitability of our ap-

proach for embedded processors. Such processors may

bene�t the most from our approach since the impact of

instruction set modi�cation is minimal while the con-

straints on space and power consumption are rigorous.

The rest of this paper is organized as follows: Sec-

tion 2 reviews the rationale and related work. Sec-

tion 3 presents the instruction set and microarchitec-

ture design necessary for supporting dual early address

generation mechanisms. Section 4 discusses some ini-

tial compiler heuristics used to support our approach.

Section 5 presents the experimental results. Finally,

conclusions are stated in Section 6.

2 Rationale and Related Work

2.1 Rationale
In this section we brie
y present some intuitive

rationale behind early address generation. Figure 1

shows data hazards either caused (load-use) or su�ered

(address-use) by load instructions. Figure 1a shows the

load-use hazard where a load is followed by an imme-

diate use. In this paper we assume a six-stage pipeline

design with two decoding stages and one cache-access

stage. Since the load takes one cycle to calculate the

e�ective address and takes another cycle to access the

data cache, even though the instruction that uses the

loaded register is issued one cycle later, it still su�ers

a one-cycle stall for the data.

As shown in Figure 1b, if an early address generation

scheme produces the correct address and successfully

brings the data back in the highlighted stages, the one-

cycle stall disappears. Some aggressive schemes can

even bring back the data as early as in the ID2 stage

so that the subsequent use instruction can be issued in

the same cycle as the load [1]. Figure 1c shows a case

targeted by the table-based address prediction scheme.

In this example, r1 is incremented by four in each iter-

ation, and the e�ective address for the load can easily

be predicted from its previous address plus a constant

stride, which is four in this case. Figure 1d shows the

code that typically executes in pointer-chasing loops.

Since r1 is �lled from memory in each iteration, its

content is hard to predict as are the subsequent loads'

addresses. Thus the stride-based approaches do not

work under this situation. But with early address cal-

culation and when the up-to-date value of r1 can be

retrieved early in time, both r1+0 and r1+28 can be

computed to access the cache speculatively in the high-

lighted stages thus their latencies are reduced. How-

ever, code in Figure 1c presents the worse-case scenario

for the early address calculation scheme since it trans-

poses the hazards on its destination register to its base

and index registers. When the early calculation stages

are entered, r1's up-to-date value is not ready yet so

the speculatively calculated result is incorrect.

2.2 Related Work

Austin and Sohi [1] presented an early address calcu-

lation scheme which predecodes instructions when the



EXE MEMIF ID2ID1 STALL

IF ID2ID1 WBEXE MEM

IF ID2ID1 WBEXE MEM

IF ID2ID1 WBEXE MEM

IF ID2ID1 WBEXE MEM

IF ID2ID1 WBEXE MEM

IF ID2

(d) A case targetd by early calculation

ID1 WBEXE MEM

IF ID2ID1 WBEXE MEM

IF ID2ID1 WBEXE MEM

WBEXE MEMIF ID2ID1WB

ld r2, r1(0)

add r3, r2, 4

bne r1, 0, loop

loop: loop:

ld r3, r2(r1)

add r4, r3, 100

add r1, r1, 4

ld r2, r1(0)

add r3, r2, 4

ld

bne r1, 0, loop

r1, r1(28)

ld r2, r1(0)

add r3, r2, 4

omitted

omitted

omitted

(b) Using early address generation to remove the hazard

(c) A case targeted by table-based prediction

(a) A load-use harard

Figure 1. Various hazards involving load instructions.

instruction cache is �lled. With the predecode informa-

tion, a cache for base registers and index values (BRIC)

is probed in the decode stage. When register �les are

updated, corresponding entries in the BRIC are up-

dated as well. Depending on the format of the BRIC,

multi-casting writes may be necessary. This approach

is capable of providing the loaded data at the begin-

ning of the execution (EXE) stage if the load uses regis-

ter+o�set addressing mode, or at the beginning of the

memory (MEM) stage if the load uses register+register

addressing mode.

Chen and Wu [2] proposed another early address

calculation scheme with the stride-detection capabil-

ity. In their scheme instruction predecode is avoided,

but multi-casting writes are still required. However,

since the estimated stride is added in the early address

calculation path, it delays the address veri�cation pro-

cedure. In this case, the maximum latency reduction

is one cycle. Also, only latencies of loads using reg-

ister+o�set addressing mode can be reduced. In our

approach strided addresses can be generated early in a

more economical way without hurting the early address

calculation path.

Several table-based address prediction schemes are

presented in the literature. Golden and Mudge's

scheme [4] employed a PC-indexed table to record the

most recently used memory address for each load and

store instruction. Sazeides, Vassiliadis and Smith's ap-

proach [8] is similar in that it can detect loads from con-

stant addresses. Gonzalez [5] added saturating coun-

ters to prevent predictions for unpredictable loads after

repeated incorrect predictions were made. All of these

address prediction methods required a large hardware

table to prevent the contention of table entries. These

schemes are also unable to reduce the latency of loads

whose addresses are not linear, such as pointer-chasing

loads.

Eickemeyer and Vassiliadis' mechanism [3] also pro-

Opcode Speci�er Meaning

ld n Normal loads

ld p Use address prediction

ld e Use early calculation

Table 1. Scheme specifier in the opcode.

vides dual paths for early address generation. When

load instructions are found in the instruction bu�er,

the load unit selects one of the address generation paths

based on the run-time conditions. One major di�er-

ence between our approach and their approach is that

our method initiates early addresses during an instruc-

tion's pipeline execution. The alternative of initiat-

ing early addresses by processing the contents found in

the instruction bu�er can reduce optimization oppor-

tunities when loads are not in the instruction bu�er

very long. Another di�erence is that our selection is

done at compile-time. Although we need to introduce

new instruction opcodes, we believe that the judgment

made by the compiler is more accurate since it can an-

alyze source-level program information and apply var-

ious heuristics.

3 Hardware Extensions

3.1 Instruction Set Modification

The compiler-directed approach to early address

generation involves the introduction of at most three

new load instruction speci�ers. The names and func-

tions of these speci�ers are listed in Table 1. Opcode

speci�er ld_n is used for unpredictable load instruc-

tions to perform a normal load operation. The ld_p

speci�er directs the hardware to make an address pre-

diction and allocate an address prediction table entry



Address

table

ID2

Cache

IF ID1 EXE MEM

Forward

Opcode

CA

Verify

Verify

WB

Register file

Address table update

Forward

PC

Raddr

R31

R0

Scheme
selection

Raddr_tag

Rd
Ri

Offset
Rb

Figure 2. Experimental pipeline design.

for the load. The ld_e speci�er selects the early cal-

culation path. In addition, it stores the base register's

content into a special addressing register Raddr. This is

called the binding between Raddr and the general pur-

pose registers. Further run-time details will be given

later.

3.2 Pipeline Design

There are six stages in our experimental pipeline

design with two decoding stages and one cache-access

stage. Circuitry is added to the pipeline to support

both early calculation and table-based prediction to

generate the e�ective address speculatively. In the

pipeline diagram depicted in Figure 2, units annotated

with a dot are added for early calculation, while units

annotated with a triangle are used for address predic-

tion. When a load instruction is being decoded in the

ID1 stage, its opcode can be used to select the appro-

priate scheme for early address generation.

3.2.1 Early Load-Address Calculation Path

One notable di�erence between our scheme and pre-

vious early calculation schemes [1][2] is that only one

register content is bu�ered in a special one-entry cache

which can be considered as a special addressing register

called Raddr. Neither predecode information nor asso-

ciative lookup are needed when retrieving Raddr since

that is the only register being cached. Its content can

always be used in computation when the instruction is

being decoded and veri�ed later when the decode infor-

mation is available. Thus a dedicated full-adder instead

of a carry-free adder [1] is a�ordable in our pipeline

design. The binding between Raddr and one of the

general purpose registers is setup by the ld_e instruc-

tion. For example, when instruction ld_e Rd, Rb(N)

is seen, the content of Rb will be cached in Raddr.

At the end of the ID1 stage, the information about

the instruction type and the early generated address is

available. If the instruction is decoded as ld_e, and if

a data cache port is available, a speculative load will be

dispatched to the cache based on the early calculated

address. Though we use a full-adder to calculate the

e�ective address, it is still possible to generate an in-

correct result because there may be hazards on Raddr,

or the binding has just been switched by the current

load, or there are pending stores that write to the same

location as the speculative load. By using the same

notation in [1], the speculatively loaded data can be

forwarded to subsequent dependent instructions if the

following formula evaluates to true:

Raddr Interlock ^ Mem Interlock ^ Raddr Hit ^
Port Allocated ^DCache Hit

As the formula shows, the fast-address calculation

hazard in [1] is eliminated because a full-adder is used.

And if data can be successfully forwarded, the latency

for the load is reduced to 0. No recovery is needed since

the formula is evaluated before the data is forwarded,

and the mis-speculation penalty is an extra load issued

to the memory system.

3.2.2 Table-Based Address Prediction Path

If a load's opcode is ld_p, its e�ective address is pre-

dicted based on its previous address plus an observed

stride. Its previous address and observed stride are

cached in a PC-indexed address table. Each entry in

the address table has four �elds: tag, predicted address

(PA), stride (ST), and stride con�dence(STC). If the

table access is a miss, no prediction will be made for the

load this time. Otherwise, the PA �eld will be specu-

latively used as the e�ective address to access the data

cache in the ID2 stage, if a data cache port is avail-

able. Its veri�cation will be performed at the end of

the EXE stage by comparing the normally calculated



F

New_Stride

L

Replace
Replace

Correct
Verified_Stride

New_Stride

(a) State transition diagram

Arc Condition Operation
PA ST STC

Replace tag1 != tag2 CA 0 1

Correct PA == CA CA+ST N/C N/C

New Stride PA != CA N/C CA-PA 0

Veri�ed Stride CA-PA == ST CA+ST N/C 1

(b) Operations performed when state is in transition

Figure 3. State transition diagram for address table
entries.

address (CA) and PA, together with checking memory

interlocks. If the following formula evaluates to true,

the load latency for this load is reduced to 1 cycle:

Mem Interlock ^ Address Table Hit ^
Port Allocated ^DCache Hit ^ CA PA Match

Again, no recovery is needed and the mis-speculation

penalty is an extra load.

The corresponding table entry is updated in the

MEM stage. An entry can be in one of the following

two states: functioning or learning. The state transi-

tion diagram is shown in Figure 3a and the operations

performed when the state is in transition are summa-

rized in Figure 3b. A new entry is allocated if the

PC-indexed probe is a miss. The new entry begins in

the functioning state with the PA �eld set to CA, the

ST �eld set to 0 and the STC bit set to 1. When the

state is functioning and PA matches CA, the PA �eld

in the entry is updated with PA+ST, where ST could

be 0. When the state is functioning but PA di�ers from

CA, ST is set to CA-PA and STC is set to 0, and the

state becomes learning. When the state of the entry is

learning, the value of CA-PA is compared with ST. If

they match, the state becomes functioning, PA is up-

dated with PA+ST, and STC is set to 1. Otherwise

the state remains as learning and ST is set as CA-PA.

In short, except for newly allocated entries, the stride

con�dence will not be built until the same stride is seen

in two consecutive instances of loads.

4 Compiler Support

In our scheme, the selection between the dual early

address generation mechanisms is guided by the com-

piler. Decisions are made based on the following two

heuristics. Firstly, Raddr is an e�ective but scarce re-

source, so it should be reserved for those loads whose

addresses are not linear. And secondly, the size of the

address prediction table is desired to be small, so to

reduce the chance of con
icts, non-linear loads should

not be entered into the table.

The heuristics provided in this section are de-

signed to classify loads into two categories: load-

dependent loads and arithmetic-dependent loads. For

load-dependent loads, if the addressing mode is reg-

ister+o�set, we would like to use the early calcula-

tion scheme, and for arithmetic-dependent loads, we

prefer the table-based prediction scheme. For a load-

dependent load whose base register is not used by many

other loads, or whose addressing mode is not regis-

ter+o�set, we use ld_n as its opcode so that the Raddr

register or the prediction table will not be contami-

nated.

We enhanced the IMPACT compiler Public Release

1.02 Beta 4 [9] to implement the compiler heuristics.

These heuristics are applied after performing classi-

cal optimizations including function inlining, virtual

register allocation, local/global constant propagation,

local/global copy propagation, local/global redundant

load elimination, loop invariant code removal, and in-

duction variable elimination/strength reduction [10].

Our heuristics are dependent on these optimizations

since they promote variables to registers. Without

these optimizations, almost all loads will be termed as

load-dependent loads thus the resultant classi�cation

will be useless. Though there are many other opti-

mizations performed by the compiler, the above ones

are the most related to the task of load classi�cations.

We use di�erent heuristics for cyclic and acyclic code,

as described below.

4.1 Heuristics for Cyclic Code

When loops are analyzed, nested loops are sorted

and inner loops are analyzed �rst. Loop analysis

heuristics are designed based on the following obser-

vations:

1. After loop optimizations, loop invariant loads should

have been moved out of the loop. The remaining loads

in the loop will likely bring di�erent values from iter-

ation to iteration. If the loaded values are used for

further dereferences, these dereferences are not likely

to be linear so that the table-based prediction is not

applicable.

2. Since arithmetic operations generate the results at

the end of the EXE stage, in some situations it may

impose the address-use hazards. Also, we assume that

these arithmetic operations generate a series of lin-

ear values, which can be easily detected by our table-

based prediction scheme. Therefore we will not se-



for (i=0; i<N; i++) {

:

.. = arr1[ind[i]]);

.. = arr2[i]);

:

}

(a)

_for:

:

op1 ld_p r4, r17(0)

op2 lsl r5, r4, 2

op3 ld_n r6, r19(r5)

:

op4 ld_p r7, r18(0)

:

op5 add r1, r1, 1

op6 add r18, r18, 4

op7 add r17, r17, 4

op8 blt r1, N, _for

(b)

while (p) {

:

.. = p->f1;

.. = p->f2;

:

p = p->next;

}

(c)

_while:

:

op11 ld_e r3, r2(0)

:

op12 ld_e r4, r2(4)

:

op13 ld_e r2, r2(8)

op14 bne r2, 0, _while

(d)

Figure 4. Code examples with new load instruc-
tions.

lect the early address calculation path for arithmetic-

dependent loads to avoid the possible hazards and the

contention for Raddr.

Given a loop, our heuristics proceed as follows:

1. For every load in the loop, add its destination reg-

ister's speci�er into set Sload.

2. For every arithmetic instruction found in the loop

(e:g:, mov, add, sub), check the source registers' spec-

i�ers. If any of them appears in Sload, also add its

destination register's speci�er into Sload. Repeat this

step until no more register speci�ers are added to Sload.

Now Sload contains the register speci�ers whose con-

tents are loaded from the memory or generated from a

loaded value.

3. The appropriate early address generation scheme

can be determined now. Load instructions whose base

registers are in Sload are load-dependent loads. These

loads are divided into several groups based on their

base registers' speci�ers. Loads in the largest group are

assigned ld_e as the opcode, while loads in the remain-

ing load-dependent groups are assigned ld_n. The re-

maining loads are arithmetic-dependent loads and ld_p

is selected as the opcode.

We use the examples in Figure 4 to demonstrate how

our heuristics work. After step 1, set Sload for the for-

loop contains r4, r6, and r7. After step 2 the heuristics

add r5 to Sload. In step 3, ld_n is chosen for op3, since

r5 is in Sload but it uses the register+register address-

ing mode. The rest loads are arithmetic-dependent

loads and thus assigned ld_p. For the while-loop, af-

ter step 1 Sload contains r2, r3 and r4. The size of

the R2 group is three since it contains op11, op12 and

op13. Assuming no other groups contain more than

three loads, Raddr will be reserved for R2 thus ld_e is

selected for op11, op12 and op13.

4.2 Heuristics for Acyclic Code

Unlike cyclic code where previous instances of the

same load can warm up the prediction table and Raddr

for future executions, the heuristics for loads in the

acyclic portion are designed under di�erent principles.

To use the table-based prediction scheme, only loads

that load from absolute locations are attributed ld_p.

The rest loads are grouped based on their base regis-

ters' speci�ers. Loads in the largest group are assigned

ld_e, and the remaining loads are assigned ld_n.

4.3 Address Profiling

Recent work in value prediction [11][12] use value

pro�le information to improve the accuracy of hard-

ware value prediction. Essentially instructions that are

shown to be unpredictable are kept out of value predic-

tion bu�ers, reducing the number of con
icts, result-

ing in more accurate prediction that requires smaller

resources. In a similar way, address pro�le information

can be used to support our compiler-directed early ad-

dress generation.

In the compiler heuristics we assumed that remain-

ing loads in the loop are likely to bring di�erent values

into registers in each iteration. However, this may be

due to the conservative judgment made by the opti-

mizer. Therefore some load-dependent loads are still

accessing constant or strided locations. Assigning ld_n

to these loads prevents them from utilizing the predic-

tion table. The undesired result can be altered by per-

forming address pro�ling. Our pro�ling model gathers

statistics based on �nding load instructions whose ad-

dresses are predictable by our stride-detection mech-

anism. Knowing that the pro�le information could

adversely a�ect the program performance for di�erent

program inputs, it is used only to change a load clas-

si�ed as ld_n by our compiler heuristics to ld_p and

nothing else will be overruled. The bene�ts of using

pro�le information in early address generation are pre-

sented in Section 5.

5 Experimental Results

5.1 Methodology

The impact of compiler-directed early load-address

generation on execution performance is evaluated in

this section. The benchmarks used in this experiment

consist of programs in SPEC92 and SPEC95 integer

suites. MediaBench benchmark suite [13] was also eval-

uated for extending the performance results to embed-

ded systems. All programs were compiled with tradi-

tional optimizations using the IMPACT compiler. All



Benchmark Loads % Static Loads % Dynamic Loads Prediction Rate
mil NT PD EC NT PD EC NT PD

008.espresso 83 17.25 50.08 32.67 18.10 74.52 7.38 92.65 77.92

022.li 9 19.76 30.10 50.14 21.59 35.37 43.04 54.56 95.19

023.eqntott 195 17.66 57.64 24.70 3.74 92.79 3.47 92.03 94.67

026.compress 13 9.12 85.04 5.84 26.01 73.74 0.25 83.07 95.11

072.sc 18 16.77 45.32 37.91 20.15 64.21 15.64 44.29 98.30

085.cc1 19 22.19 32.93 44.88 24.15 48.40 27.45 64.61 88.88

124.m88ksim 18 5.67 54.52 39.81 8.46 67.18 24.36 72.79 96.33

129.compress 6 9.29 82.51 8.20 26.83 70.49 2.68 75.40 97.72

130.li 33 19.16 29.79 51.05 13.96 35.98 50.06 78.94 88.96

132.ijpeg 237 22.05 28.88 49.07 32.50 63.37 4.13 33.16 91.98

134.perl 287 21.50 32.52 45.98 21.81 46.15 32.04 73.24 97.54

147.vortex 429 16.21 30.26 53.53 26.91 24.45 48.64 85.03 93.54

average 112 16.39 46.63 36.98 20.37 58.06 21.57 70.81 93.01

Table 2. Benchmark programs, load characteristics, and prediction characteristics.

results were generated using an emulation-driven sim-

ulator. The simulator performs a detailed timing sim-

ulation of in-order superscalar microprocessors and in-

struction and data cache memory systems.

The existing simulator was modi�ed to investigate

the early address generation methods presented in this

paper. The simulated processor pipeline was changed

to support address prediction in the �rst decode stage

and load execution in the second decode stage of the

pipeline. For address prediction, a parameterized ad-

dress cache was added to generate the necessary load

address predictions. Similar additions were made to

the simulated pipeline to support early address calcu-

lation. Finally, a mechanism for supporting a limited

number of cached base registers was also simulated.

The base architecture modeled in these experiments

can fetch, decode, and issue up to 6 operations per

cycle. The processor can execute these operations in-

order up to the limits of the available functional units:

four integer ALU's, two memory ports, two 
oating

point ALU's, and one branch unit. The processor con-

tains 64 integer registers and 64 
oating point regis-

ters. The memory system consists of a 64K direct-

mapped instruction cache and a 64K direct-mapped,

non-blocking data cache, both with 64 byte block size.

The data cache is write-through with no write allocate

and has a miss penalty of 12 cycles. The branch pre-

diction scheme is a 1K-entry BTB with 2 bit counters.

The instruction set architecture and instruction laten-

cies used match those of the HP PA-7100 [14] micro-

processor (most integer operations have 1-cycle latency,

and load operations have 2-cycle latency).

5.2 Speedup

In this section, we report performance results and

reference characteristics of compiler-directed early ad-

dress generation. In Table 2, the middle columns in-

dicate the static and dynamic distribution of the load

types classi�ed according to the compiler heuristics of

Section 4. The classi�cations are either neither (NT),

predict (PD), or early calculate (EC). The �nal two

columns of Table 2 indicate the prediction rates of

those loads classi�ed as NT and PD. These prediction

rates were generated using a simulation methodology

that performs individual operation prediction. Thus

the predictions are not a�ected by the limitations of

a prediction cache. An address prediction is made by

emulating the state machine mentioned in Section 3 for

capturing strided accesses for each load instruction.

The results of Table 2 indicate that the compiler

heuristics of Section 4 are able to correctly classify

loads as predictable. The average prediction rate of

PD loads is 93.01%, while the NT loads have an av-

erage prediction rate of 70.81%. A few benchmarks

have prediction rates for NT loads that are signi�cantly

above the average rate. The poor classi�cation deci-

sions reduced the potential performance speedup for

008.espresso in the proposed approach, however, ad-

dress pro�ling was able to correct the load classi�ca-

tions of the heuristics.

Figure 5 shows the performance speedup results

for various system con�gurations. All performance

speedup results are relative to a base architecture with-

out any early address generation support. Figure 5a as-

sumes a con�guration where the hardware solely pro-

vides the table-based address prediction scheme with

the capability of detecting strides. We varied the size

of the table with 64, 128, 256 direct-mapped entries

with and without compiler support. When compiler

support is available, only loads identi�ed as predictable

by the compiler heuristics are allocated entries in the

table. When the compiler support is not provided, all

loads are assumed predictable. The outcome is as ex-

pected, larger tables provide higher speedups. When

the size of the table is too small, both methods per-

form equally poorly. When a reasonably-sized table is

given, the compiler-directed method outperforms the

hardware-only method since fewer contentions for ta-



(a) Table-based prediction

1

1.1

1.2

1.3

1.4

1.5

1.6
00

8.
es

pr
es

so

02
2.

li

02
3.

eq
nt

ot
t

02
6.

co
m

pr
es

s

07
2.

sc

08
5.

cc
1

12
4.

m
88

ks
im

12
9.

co
m

pr
es

s

13
0.

li

13
2.

ijp
eg

13
4.

pe
rl

14
7.

vo
rte

x

Sp
ee

du
p

64-entry hardware-only
128-entry hardware-only
256-entry hardware-only
64-entry w/ compiler support
128-entry w/ compiler support
256-entry w/ compiler support

(b) Early calculation

1

1.1

1.2

1.3

1.4

1.5

1.6

00
8.

es
pr

es
so

02
2.

li

02
3.

eq
nt

ot
t

02
6.

co
m

pr
es

s

07
2.

sc

08
5.

cc
1

12
4.

m
88

ks
im

12
9.

co
m

pr
es

s

13
0.

li

13
2.

ijp
eg

13
4.

pe
rl

14
7.

vo
rte

x

Sp
ee

du
p

4-entry
8-entry
16-entry

(c) Compiler-directed approaches compared with HW-only approaches

1

1.1

1.2

1.3

1.4

1.5

1.6

00
8.

es
pr

es
so

02
2.

li

02
3.

eq
nt

ot
t

02
6.

co
m

pr
es

s

07
2.

sc

08
5.

cc
1

12
4.

m
88

ks
im

12
9.

co
m

pr
es

s

13
0.

li

13
2.

ijp
eg

13
4.

pe
rl

14
7.

vo
rte

x

Sp
ee

du
p

256-entry PD/HW-only
16-entry EC/HW-only
dual/HW-only
dual/compiler-directed
dual/Comp.-Dir. + address profiling

Figure 5. Performance speedup from early address
generation.

ble entries are generated. Though not shown in the

�gure, the 1024-entry hardware-only approach was re-

quired to consistently surpass the performance of the

256-entry compiler-directed approach. In Figure 5b, we

show the speedup when the hardware solely provides

the early address calculation mechanism for early ad-

dress generation. The number of cached registers are

ranged from 4 through 16. Again as expected, bet-

ter performance is obtained when more registers are

cached. But the trend of speedup begins to slow down

when the number of cached registers was doubled from

8 to 16 due to the address-use hazards. In Figure 5c, we

show the performance numbers for the largest con�g-

urations of the hardware-only approaches in Figure 5a

and 5b, together with the speedups generated by the

proposed dual-path early address generation scheme.

We generate three performance numbers for the dual-

path scheme - without compiler support, with compiler

heuristics, and with compiler heuristics plus address

pro�ling. The early address generation hardware for

these models consisted of a 256-entry prediction table

and a single early address calculation register. When

compiler support is not available, the selection of early

address generation mechanisms is performed by the

hardware at run-time. We use the selection heuristic

proposed by Eickemeyer and Vassiliadis [3] which only

allocates entries in the prediction table when there are

register interlocks. When compiler heuristics are ap-

plied, di�erent opcodes of load instructions perform the

selection as explained earlier. Figure 5c also shows that

address pro�ling can assist load classi�cation.

From the charts in Figure 5, the speedup obtained

through compiler-directed early load-address genera-

tion is signi�cant. Comparing the two hardware-only

mechanisms as shown in Figure 5a and 5b, it indicates

that no method is overwhelmingly superior. When the

majority of loads are arithmetic-dependent with con-

stant or strided addresses, the prediction method wins,

otherwise the early calculation method prevails. Fig-

ure 5c indicates that the dual-path approach provides

better speedups over the hardware-only approaches, es-

pecially when address pro�ling is performed. Without

address pro�ling, the compiler heuristics provided an

average speedup of 34%. With address pro�ling the

average speedup of our approach increased to 38%.

5.3 Prediction Rate

Our approach has an interesting advantage since it

can adapt program analysis to re�ne its application

mechanism. The results of Table 3 are generated using

address pro�le information as a form of program anal-

ysis to direct the use of the early address prediction

mechanism. The table is generated using a threshold

value of 60%, which changes NT loads with greater

than 60% address prediction rates into PD loads.

Table 3 indicates that address pro�ling can improve

the classi�cation of loads done by the compiler. Revis-

iting Figure 5c, the hardware-only dual-path early ad-

dress generation scheme outperforms the scheme with

compiler heuristics only for 008.espresso. After per-

forming pro�le-assisted load classi�cation, 3.16% more

of static loads or 15.71% more of dynamic loads are

revised as PD loads which yield 6.88% more speedup,

topping the hardware-only dual-path scheme. Compar-

ing Table 2 and Table 3 indicates that many loads for

these benchmarks were originally classi�ed incorrectly

as unpredictable. The new classi�cations of Table 3

demonstrates that the pro�le information can change

the classi�cation of these loads, thereby increasing the

dynamic execution frequency of predictable loads by



Benchmark Speedup Static Dynamic Prediction Rate
PD PD NT PD

008.espresso 1.34 53.24 90.22 49.20 82.06

022.li 1.30 31.12 39.19 16.37 95.66

023.eqntott 1.44 59.79 96.21 38.54 94.70

026.compress 1.31 85.77 83.12 41.43 95.08

072.sc 1.43 46.75 67.99 35.91 97.44

085.cc1 1.27 34.62 53.42 25.94 89.24

124.m88ksim 1.47 54.87 72.45 21.14 95.33

129.compress 1.35 83.06 74.74 27.89 97.86

130.li 1.31 31.15 38.95 23.05 89.87

132.ijpeg 1.39 31.80 64.52 29.18 91.72

134.perl 1.46 33.46 55.93 0.84 97.42

147.vortex 1.52 35.64 42.70 45.66 79.23

average 1.38 48.44 64.95 29.60 92.13

Table 3. Speedup, static and dynamic distribution
of predictable loads, and prediction rates using
profile information in load classification.

6.9%. This change caused an average 41.21% reduction

in the prediction rate of NT loads, while slightly de-

creasing the average prediction rate of the predictable

loads. The prediction characteristics for 134.perl were

most signi�cantly a�ected by using pro�le information

since the prediction rates for its loads were distinctly

predictable or unpredictable. Further work needs to be

done to understand ways of using these observations to

re�ne the compiler heuristics of Section 4.

5.4 Embedded System Design

The compiler-directed early load-address generation

method described in this paper may �nd the most

suitable use in embedded systems. First of all, the

compiler-directed approach requires changes in the in-

struction set architecture, and e�ectively excludes ex-

isting architectures. Since embedded architecture de-

signs typically have shorter lifetimes and experience

more architectural changes, such alterations to the in-

struction set may be more attractive. Secondly, em-

bedded processors are typically in-order execution de-

signs that have not been altered by the recent trend in

dynamically scheduled microarchitectures for general

purpose computing. The embedded design principle

for in-order architectures is based primarily on mem-

ory system and hardware resource constraints. Thus,

the compiler-directed scheme investigated in this paper

is more likely to complement traditional embedded ar-

chitectures than other load latency hiding techniques.

Finally, embedded systems face more restrictive

space and power constraints than general purpose pro-

cessors. Thus, even through progress in VLSI tech-

nology may eventually allow early address generation

schemes implemented in hardware to achieve similar

levels of performance to compiler schemes for general

purpose machines, compiler-directed schemes may still

be favored for embedded processor designs. Overall,

compiler based approaches advocate limited and spe-

cialized hardware resources, a common theme in em-

bedded system design.

In order to evaluate the compiler-directed early ad-

dress generation method for embedded systems, the

MediaBench benchmark suite was studied. These pro-

grams characterize applications that typically execute

on embedded systems. Table 4 shows the load char-

acteristics for the early address generation scheme for

these programs. In general the MediaBench applica-

tions exhibit more loads with address predictability

than the loads in the SPEC benchmarks of Table 2.

This is indicated by a 21% di�erence in the percent-

age of dynamic load executions that were classi�ed as

predict. Overall, such loads of the MediaBench ap-

plications also have a slightly higher prediction rate.

Since loads in MediaBench make up a smaller portion

of executed instructions, the average speedup is 19%.

6 Conclusions

In this paper we present a novel early address gen-

eration scheme which accommodates both early ad-

dress calculation and table-based address prediction

with stride detection. Through analysis of load in-

structions in various program contexts and through ex-

perimentation, we have shown that neither approach

alone captures all the important cases across a variety

of loads. The key to good performance is to use the

proper type of early address generation for each load.

The compiler is in the best position to make such de-

terminations based on its ability to analyze code and

apply heuristics for using the mechanism. The determi-

nation can be re�ned statically by using address pro�le

information. Nevertheless, even with simple heuristics,

the compiler-supported schemes performed better than

the hardware-only approach. Furthermore, these re-

sults were achieved with signi�cantly reduced hardware

overhead. These results are particularly interesting for

embedded processors since hardware space and power

constraints dominate design decisions.

Our results indicate that with compiler support, an

average speedup of 34% is achieved with one special

addressing register and a 256-entry address prediction

table. Hardware-only approach generates only 26%

speedup for the same dual-path model. Our speedup

number is improved by an average of 4% after enhanc-

ing load classi�cations with address pro�le information.

Overall, these results demonstrate that our proposed

model is e�ective in reducing the latency of load in-

structions and improving performance.

Further enhancements to our heuristics can be made

by performing aggressive compiler analysis. Though



Benchmark Loads % Static Loads % Dynamic Loads Prediction Rate Speedup
mil NT PD EC NT PD EC NT PD

G.721 Decode 28 16.67 36.90 46.43 18.16 66.73 15.11 39.67 81.47 1.15

G.721 Encode 27 16.87 37.35 45.78 18.46 66.41 15.13 39.07 78.21 1.15

EPIC Decode 1 11.88 62.62 25.50 9.73 78.34 11.93 55.14 99.02 1.22

EPIC Encode 6 7.20 40.06 52.74 3.43 96.46 0.11 39.86 86.20 1.23

Ghostscript 1 11.41 29.43 59.16 17.79 48.06 34.15 52.34 84.18 1.11

GSM Decode 5 3.07 35.58 61.35 0.44 98.34 1.22 31.64 76.48 1.21

GSM Encode 20 4.19 34.16 61.65 1.05 96.55 2.40 38.20 94.04 1.25

MPEG Decode 21 8.21 73.31 18.48 3.48 94.48 2.04 27.19 73.31 1.19

PGP Decode 1 9.95 69.94 20.11 0.29 98.91 0.80 29.73 98.58 1.27

PGP Encode 1 9.95 69.94 20.11 6.73 77.28 15.99 26.56 71.08 1.15

RASTA 2 19.30 44.38 36.32 12.39 82.89 4.72 36.69 91.32 1.21

ADPCM Decode 1 21.43 50.00 28.57 39.99 59.93 0.08 16.21 81.03 1.16

ADPCM Encode 1 28.57 42.86 28.57 33.33 66.60 0.07 16.21 86.59 1.14

average 8 12.98 48.19 38.83 12.71 79.31 7.98 34.50 84.73 1.19

Table 4. MediaBench programs, load characteristics, prediction characteristics, and speedup.

we applied function inlining to remove frequently exe-

cuted function calls in the loop, any remaining func-

tion call may prevent an important load from be-

ing migrated out of a loop. This will cause some

arithmetic-dependent loads to be identi�ed as load-

dependent loads and prevent them from being pre-

dicted. Thus, the results of more aggressive analy-

sis will provide many opportunities to further improve

overall performance by better utilizing the proposed

compiler-directed early address generation scheme.

7 Acknowledgments

The authors would like to thank John Gyllenhaal,

Matt Merten and all the members of the IMPACT com-

piler team for their valuable comments. This research

has been supported by the National Science Founda-

tion (NSF) under grant CCR-9629948, Intel Corpora-

tion, Advanced Micro Devices and Hewlett-Packard.

References

[1] T. M. Austin and G. S. Sohi, \Zero-cycle loads: Mi-

croarchitecture support for reducing load latency," in

Proceedings of the 28th Annual International Sympo-

sium on Microarchitecture, pp. 82{92, December 1995.

[2] C. Chen and A. Wu, \Microarchitecture support for

improving the performance of load target prediction,"

in Proceedings of the 30th Annual International Sym-

posium on Microarchitecture, pp. 228{234, December

1997.

[3] R. J. Eickemeyer and S. Vassiliadis, \A load-

instruction unit for pipelined processors," IBM Jour-

nal of Research and Development, vol. 27, pp. 547{564,

July 1993.

[4] M. Golden and T. N. Mudge, \Hardware support for

hiding cache latency," tech. rep., University of Michi-

gan, February 1993.

[5] J. Gonzalez and A. Gonzalez, \Speculative execution

via address prediction and data prefetching," in Pro-

ceedings of the 1997 International Conference on Su-

percomputing, pp. 196{203, July 1997.

[6] M. H. Lipasti and J. P. Shen, \Exceeding the data
ow

limit via value prediction," in Proceedings of the

29th International Symposium on Microarchitecture,

pp. 226{237, December 1996.

[7] G. S. Tyson and T. M. Austin, \Improving the ac-

curacy and performance of memory communication

through renaming," in Proceedings of the 30th An-

nual International Symposium on Microarchitecture,

pp. 218{227, December 1997.

[8] Y. Sazeides, S. Vassiliadis, and J. E. Smith, \The per-

formance potential of data dependence speculation &

collapsing," in Proceedings of the 29th International

Symposium on Microarchitecture, pp. 238{24, Novem-

ber 1996.

[9] P. P. Chang, S. A. Mahlke, W. Y. Chen, N. J. Warter,

and W. W. Hwu, \IMPACT: An architectural frame-

work for multiple-instruction-issue processors," in Pro-

ceedings of the 18th International Symposium on Com-

puter Architecture, pp. 266{275, May 1991.

[10] A. Aho, R. Sethi, and J. Ullman, Compilers: Princi-

ples, Techniques, and Tools. Reading, MA: Addison-

Wesley, 1986.

[11] B. Calder, P. Feller, and A. Eustace, \Value pro�ling,"

in Proceedings of the 30th International Symposium on

Microarchitecture, pp. 259{269, December 1997.

[12] F. Gabbay and A. Mendelson, \Can program pro�l-

ing support value prediction?," in Proceedings of the

30th International Symposium on Microarchitecture,

pp. 270{280, December 1997.

[13] C. Lee, M. Potkonjak, and W. Mangione-Smith, \Me-

diabench: A tool for evaluating and synthesizing mul-

timedia and communications systems," in Proceedings

of the 30th Annual International Symposium on Mi-

croarchitecture, pp. 330{335, December 1997.

[14] Hewlett-Packard Company, Cupertino, CA, PA-RISC

1.1 Architecture and Instruction Set Reference Man-

ual, 1990.


