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Abstract
Clustering is one solution to the demand for wide-

issue machines and fast clock cycles because it allows
for smaller, less ported register files and simpler bypass
logic while remaining scaleable. Much of the previous
work on scheduling for clustered architectures has
focused on acyclic code. While minimizing schedule
length of acyclic code is paramount, the primary
objective when scheduling cyclic code is to maximize the
throughput or steady state performance. This paper
investigates a pre-modulo scheduling pass that performs
cluster assignment in a way that minimizes performance
degradation do to explicit communication required as
the loops are split over clusters. The proposed cluster
assignment algorithm annotates and adjusts the graph
for use by the scheduler so that any traditional modulo
scheduling algorithm, having no knowledge of clustering,
can produce a valid and efficient schedule for a
clustered machine.

KEYWORDS: Cluster assignment, Modulo scheduling,
Cluster architecture, ILP.

1. Introduction

1.1. Clustering

In order to take advantage of existing instruction level
parallelism (ILP), the number of function units in
processors have been increasing. With more function
units executing instructions in parallel, the number of
read and write ports required on the register file increases
as well. Additionally, the register file must be larger to
accommodate the increased demand for registers by

operands [1]. Increasing both the size of a register file
and the number of ports to the register file leads to a
register file that limits the clock cycle of the processor or
is impractical to build with current technology. This is
due to fact that the IC area of a register file increases
linearly with the number and size of registers and
quadratically with the number of ports [2]. The cycle
time of the register file increases as a logarithmic
function of the number of registers and read ports [3].

Since functional units typically need two read ports
but only one write port, one approach is to replicate the
register file and spread the read ports among the
replicated register files while writing all of the results to
each replicated register file. The function units split into
separate groups, each of which is supplied input data
from a single register file. This scheme is referred to as
multiple coherent register files, as a given register
always has the same value in each of the replicated
register files. For example, the IBM Power2 emulated a
register file with 8 read ports and 4 write ports using two
coherent register files with 4 read ports and 4 write ports
[4]. This scheme has three major limitations. It consumes
a large amount of die area for the replicated register files
without adding extra register space, requires a lot of
routing to provide the write ports to every replicated file,
and does not reduce the number of write ports per
replicated file.

Llosa et al. proposed a scheme, referred to as dual
non-consistent register files, where each register can
either be globally coherent or local to its function unit
group [5]. Dual non-consistent register files reduce the
register pressure because a given register may contain
two distinct values in two distinct files if the value is
never used by function units within a different group.
However, this scheme still requires the same amount of



write ports and routing and thus does not scale well for
very wide machines.

Colwell et al. and Capitanio et al. propose a scheme
where each of the replicated files is exclusively local to a
group of function units [6] [3]. In this scheme, referred to
as clustering, the register file is divided into multiple,
disjoint register files and the function units are divided
into multiple groups severing bypass logic between
groups. Each disjoint register file is paired with a
corresponding function unit group, which together is
called a cluster. In order to communicate values between
clusters, some form of explicit communication is
required, referred to in this paper as a copy operation. A
bus or direct point-to-point connections may be used to
transmit values between clusters. In a clustered
architecture, a register file needs only the read and write
ports for the local function units, plus a small number to
supply the bus or point-to-point network. Thus clustering
allows for smaller, less ported register files and simpler
bypass logic. The resulting system is scaleable and still
allows the processor to take advantage of more ILP. For
reference, we will refer to traditional, non-clustered
machines as unified machines.

This paper targets various clustered architectures,
including those that use buses to communicate values and
those that use point-to-point connections. For bused
configurations, both the number of buses and the number
of read and write ports to the bus is varied. Details of the
architectures can be found in Section 2.1.

1.2. Modulo scheduling

While clustering provides a way to implement
scaleable VLIW/Superscalar processors, the compiler
must expose enough parallelism so that the processor can
take advantage of the available function units. Since
there is generally not enough parallelism within a basic
block, techniques such as trace scheduling, superblock
scheduling, treegion scheduling, and software pipelining
[7][8][9][10][11], exploit parallelism across basic block
boundaries by moving operations beyond their original
basic blocks thereby extracting more instruction level
parallelism (ILP).

Software pipelining is a technique for exploiting ILP
by overlapping successive iterations of a loop.
Traditionally, each loop iteration is started only after the
previous iteration completes. In software pipelining,
however, the second iteration may be started before the
first iteration completes, the third before the second
completes, and so forth. Modulo scheduling [11] is a
software pipelining technique that use the same schedule
for each iteration of the loop and initiates each loop

iteration after a fixed interval of cycles, referred to as
Initiation Interval (II).

Algorithms for implementing modulo scheduling
have matured for unified VLIW/Superscalar processors.
For example, an iterative modulo scheduler [13]
combined with a stage scheduler [14] can attain an
optimal II for about 98% of the loops scheduled [15] and
with no more than 3 registers above the minimal number
for 95% of the loops of a large benchmark for a machine
with complex resource use. Similar levels of performance
can be can also be achieved though an iterative version of
the swing modulo scheduler [16].

Various hardware and compiler techniques have
expanded the types of loops for which modulo scheduling
is applicable. For example, Predicated execution, All
Paths Pipelining, and Superblock Modulo Scheduling
allow modulo scheduling to be applied to loops with
conditional code and early exits [17][18][19]. Predicated
execution can also help reduce code expansion of a
modulo scheduled loop [20].  A rotating register file or a
technique called modulo variable expansion allows the
schedules to avoid register conflicts due to the
overlapping iterations [12][21].

While clustering the functional units and register file
helps achieve a higher clock rate for the processor,
overall modulo schedule performance will be improved
only if the performance degradation due to explicit
communication is small. Performance degradation may
occur because of two factors: additional resources
required by the copy operation and additional latencies
due to the copy operation.

In this paper, we propose a technique to generate high
throughput modulo schedule code for clustered machines
with explicit, non-zero latency communication.
Specifically, this paper investigates a pre-modulo
scheduling cluster assignment phase that is followed by a
traditional modulo scheduling phase.  The assignment
phase assigns operations to clusters and generates any
required copy operations when the result of one operation
is used by an operation on a different cluster. The
assignment algorithm: (1) focuses on critical recurrence
cycles to minimize the impact of communication latency,
(2) predictively reserves space for future copy operations
to minimize copy resource contention, and (3) uses an
iterative algorithm to revert sub-optimal assignment
decisions. Additionally, the algorithm is shown to be
effective on a wide range of cluster configurations.

1.3. Result highlights and organization

Modulo scheduling results for each clustered machine
are compared to an equally wide non-clustered machine
in order to show the impact of clustering on modulo



scheduling. The results show that the assignment
algorithm allows for a modulo schedule on a clustered
machine equal to that of a unified machine for 99% of
the loops for two and four clusters of general purpose
function units. For two and four clustered fully
specialized function units, 95% of the  loops match the II
of a unified machine. The two and four cluster
configurations above each had one bus per cluster.

A four clustered machine setup in a grid arrangement
with only two point-to-point connections to each of two
neighbors was modeled as well. The results show that the
assignment algorithm allows for a modulo schedule on
this machine equal to that of a unified machine for 92%
of the loops.

The following sections elaborate on the cluster
assignment algorithm. Section 2 provides an overview of
the assignment process and target architectures. Section
3 presents an example which displays some major issues
which must be considered during assignment. Section 4
details the specifics of the assignment process. Section 5
describes the experimental setup. Actual results on 1327
loops from the Perfect Club, SPEC-89, and the
Livermore FORTRAN Kernels [22][23][24] follow in
section 6. Section 7 presents our conclusions.

1.4. Related work

Along with the architectural specification for non-
consistent dual register files, Llosa et al. proposed an
algorithm for allocating registers on the two register files
[5]. The algorithm consists of two phases. The first phase
schedules operations onto a given function unit group
and classifies register values as right-only, left-only, and
global values. The second phase swaps operations
between groups to further reduce the number of values
classified as global.

The algorithm works well for register file
configurations where communication between groups
does not impose a transmission delay or resource use
penalty because a result is simply labeled as global when
its value is needed by function units attached to another
register file. However, this algorithm does not apply to a
clustered architecture where explicit copy operations
consumer resources and have non-zero latencies.

Ellis proposed an algorithm for scheduling of
operations onto a clustered architecture referred to as
BUG [25][7].  It too consisted of two phases: an
assignment phase using a bottom up node priority and a
scheduling phase. Both phases take the machines
resources into account and attempt to minimize the
schedule length of the code. Desoli extended acyclic
graph partitioning by using an initial clustering heuristic
to exploit DAG symmetries thus simplifying the

assignment process and speeding up the convergence of
their decent algorithm [26]. Both of these approaches can
be extended to loops by performing loop unrolling.

In modulo scheduling, the ILP is further exploited
along consecutive (unrolled) loop iterations. In this
context, BUG and [26] do not apply as well since the
primary objective of modulo scheduling is to maximize
the throughput of the loop instead of the schedule length
of one iteration. In the presence of recurrences, the
throughput is maximized (II minimized) by minimizing
the latency along each of the critical cycles formed by the
recurrences.  An assignment algorithm may significantly
affect II because adding a copy to a critical recurrence
automatically increases the II of the final schedule.
Recurrences correspond to strongly connected
components (SCC) in the data flow graph.

Furthermore, the algorithm presented here is iterative
which helps prevent poor assignment choices early on
from negatively impacting the final assignment. The
benefits of an iterative scheduling algorithm have been
well documented [13], and this paper will show its
benefits also apply to an assignment algorithm.

Capitanio et al. present a scheduling algorithm along
with their analysis of clustered architectures [3]. The
central portion of the algorithm starts with pre-scheduled
VLIW code and, after converting the code to a data
dependence graph (DDG), two processing phases are
used: a code partitioning phase and a code compaction
phase. The partitioning phase divides the code into
subgraphs that meet the available resources of each
cluster and minimizes schedule length. The compaction
phase inserts any required copy operation and compacts
the code.

The Capitanio algorithm was used for estimating the
degradation in performance caused by using a clustered
architecture and therefore performs cluster assignment as
a post-scheduling process. Since partitioning is
performed after scheduling, loops are effectively treated
as straight line code. This process could have severe
impacts on modulo scheduled code because the impact of
breaking critical recurrences across clusters is not
considered. Performing cluster assignment after
scheduling may lead to a poorer schedule than assigning
before scheduling because a totally new modulo schedule
may be required after insertion of copies if the same II is
to be maintained. The algorithm presented here performs
cluster assignment before scheduling and takes into
consideration potential performance issues before modulo
scheduling the loop.



2. Overview

2.1. Architectures investigated

Three major cluster organizations are targeted in this
paper. These organizations are a two-clustered bused
setup, a four-clustered bused setup, and a four-clustered
grid point-to-point setup.

For the bused setups, both general purpose (GP) and
fully specified (FS) function unit types are investigated.
Each cluster contains four function units, either four GP
units or four FS units: one memory unit, two integer
units, and one floating point unit .

The four-cluster grid based setup represents a
different clustering scheme and serves to show the
flexibility of the assignment algorithm. It consists of four
clusters, each with three FS units: one memory, one
integer, and one floating point. The clusters are
connected in a square setup so that each cluster can only
communicate with its horizontal and vertical neighbor.
Instead of a bus, a dedicated connect between neighbors
is modeled.

Figure 1 shows how each individual cluster is
arranged, except that the grid based configuration has
only three function units. Figures 2-4 show the three
major cluster organizations. For these figures, each white
block is a cluster as shown in Figure 1 with the addition
of any ports shown in the respective figure.

Copies are used to move data between clusters. A
copy is modeled as a unit cycle operation that consumes
one read port from the source and one write port on the
target. For a bused setup, the copy also reserves a bus for
one cycle and the data that is being copied is broadcasted

across the bus and may be written to any cluster with an
available write port. For a point-to-point setup, a copy
consumes a read and write port and the entire point-to-
point connection. The data passed on a point-to-point
connection can go only to the one connected cluster.
Finally, a copy is not explicitly modeled as requiring an
issue slot, only port and connection resources. In the
worst case, one issue slot per read and write port will be
required. However, since copies are narrow instructions
more novel approaches to issuing them should be
possible.

The highlighted resources in Figures 2, 3, and 4 show
the resources used by a single copy. Figure 3 shows a
copy on a bused setup whose result goes to two target
clusters. Figure 4 shows a copy on a point-to-point setup.
Note that the techniques presented produce assignments
for machines with arbitrary numbers of clusters which
can be homogeneous or heterogeneous in the types of
function units they contain. Also, any numbers of buses
or point-to-point connections and numbers of ports can
be modeled.

2.2.  Process synopsis

The entire scheduling process consists of two major
phases, a cluster assignment phase and a scheduling
phase. The cluster assignment phase maps operations to
clusters and adds any required copies to the data flow
graph. The scheduling phase maps operations to a given
cycle in an execution stream. Figure 2 shows the
interaction between cluster assignment phase and the
modulo scheduling phase.

First, the minimum II (MII) for an equivalent unified
machine is calculated. Then, the assignment process
starts by computing a suitable order of the operations. A
modulo reservation table (MRT) is used to tract the
resources used by the modulo scheduled loop kernel.
Details of its structure are explained by Rau [13]. Notice
that an MRT is used for both assignment and scheduling
as both phases precisely model machine resources. For
each cluster, a MRT of length II is created and initialized
to empty. Local resources for a cluster are in only that
cluster’s MRT. Global resources, such as buses, are found
in every MRT. Each operation from the ordered list and
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any required copies are assigned to a cluster and reserved
in that cluster’s MRT. If a required resource is
unavailable in the MRT of length II, and the iterative
back-tracking budget is spent, a new assignment phase is
initiated with a larger II. The process restarts and
continues until a valid assignment is found. Finally, the
modulo scheduling phase attempts to schedule each
operation and any required copies using the given cluster
assignments. If the scheduler fails, II is increased and the
entire process starts over at the assignment phase until a
valid schedule is obtained. While the previous
assignment could be preserved, it is more advantageous
to search for a new one since a larger II allows more
operations to be assigned to the same cluster thus
generally results in an assignment with fewer copy
operations.

The paper focuses on only the first phase of the
scheduling process described above. Any traditional
modulo scheduling algorithm may be used for the second
phase because any copies needed due to clustering have
been added. Thus, highly effective algorithms such as the
Iterative Modulo Scheduler combined with a Stage
Scheduler or a Swing Modulo Scheduler may be used
directly for a clustered architecture [13][16][14].

3.  Assignment issue

This section illustrates issues that arise in phase one
of the process described in Section 2.2 when assigning
loops onto a clustered architecture. The two major issues
are: the impact that loop-carried dependences should
have on the ordering of operations and the negative
impact of aggressively filling clusters.

A simple loop will be assigned onto a hypothetical
two clustered machine in which each cluster consists of
one GP unit. We assume two buses between the clusters
and one read/write port per cluster.

For simplicity neither the buses nor the ports will be
shown. Also for simplicity for the example only, either
one copy or one operation can be issued on a given
function unit per cycle. This contrasts the experimental

models that effectively have a separate issue slot for
copies.

Figure 6 shows the data flow graph for the
introductory example in which the nodes correspond to
operations and the edges correspond to the data flow
between operations. Each operation has a unit latency
with the exception of operation C, which takes two
cycles. Each dependence is within the same loop iteration
with the exception of dependence (D,B) in which the
result of D is used by operation B of the next iteration
(i.e. a recurrence with a dependence distance of one).
Additionally, nodes B, C, and D in Figure 6 are part of a
SCC.

The first step, before assignment can begin, is to
compute MII which accounts for both the latencies of the
operations along recurrence edges in the data flow graph
(RecMII) and the resource limitations of the machine
(ResMII). RecMII corresponds to the sum of the latencies
divided by the sum of the dependence distances along the
most critical cycle in the dependence graph. In Figure 1,
RecMII = (1+2+ 1) / 1= 4. ResMII corresponds, for this
target machine, to the total number of operations divided
by the issue width of the machine. For the data flow
graph in Figure 1, ResMII = 6/2 = 3. MII is simply the
maximum of the RecMII and the ResMII, which is 4 for
this example.

The assignment can now begin. For this example two
assignment approaches will be shown:

x The first will take the nodes in a bottom up
fashion and assign them to the first available
cluster.

x The second will consider nodes within the SCC
in the example graph as high priority nodes. It
will also predict copy usage in order to spread
out the assignments.

3.1. Approach 1 - bottom up + first available

Based on the dependence graph of Figure 6, a bottom
up traversal yields the node ordering F, E, D, C, B, A.
Figure 7 shows the results of assigning each node, in
order, to a cluster. The algorithm fails after assigning B
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to cluster C2 (Figure 7d) because it requires a copy from
D to B on cluster C1, and C1 is already full (Figure 7e).
This points out the first of two observations.

Observation One: The assignment algorithm tried to
fill the clusters too aggressively and did not consider that
copy operations may be required due to future assignment
decisions. Since no room was reserved on C1 for a future
copy, the algorithm was forced to fail.

Observation Two: Even if the copy from D to B
could have been assigned on C1, two copies would have
been added within the strongly connected component of
the graph: the first copy between nodes B and C, and the
second copy between the nodes D and B. Since copy
operations have a latency of 1 cycle, the cumulative
latency along the critical cycle would have been
increased from 4 to 6, thereby increasing RecMII and
MII from 4 to 6 as well.

3.2. Approach 2 - SCC first + predict copy use

This approach takes into consideration the two above
observations to achieve an assignment and schedule with
an II of 4 cycles. Specifically, Observation 1 is satisfied
by tentatively reserving resources for the copy operations
that may be required in the future, depending on where
successor/predecessor operation will be assigned.
Observation 2 is satisfied by giving higher priority to the
nodes within the SCC. One such ordering is D, C, B, A,
E, F. This node ordering will prevent splitting the SCC
across clusters, thus solving the problem mentioned in
observation two.

In Figure 8, shaded MRT slots represent slots whose
future use by a copy has been predicted to be needed.
When given the choice, an operation will be placed in a
non-shaded slot over placement in a shaded slot. Copies
can be placed into shaded slots whenever necessary since
the shaded slots are essentially reserved for copies. The
exact details this prediction is presented in Section 4.2.

Figure 8 below shows the assignment process. Nodes
D, C, and B are first assigned to C1 since they are all a
part of an SCC (Figure 8b). On C1, node D has one

successor that has not yet been assigned, therefore one
slot on cluster one is shaded. B and C have all of their
successors assigned. C2 is unchanged.

A must now be assigned to a cluster. If A is placed on
C1 it will have to go into the shaded slot because D still
has one unscheduled successor (Figure 8c). If A is placed
on C2, C1 remains unchanged and a copy is required for
C2 from A to B (Figure 8d). The assignment of A to C2 is
chosen to avoid placing A into the shaded slot on C1. In
fact it can be seen that if A were placed on C1 there
would be no room for the future copy from D to E.

E must now be assigned. E is placed on C2 (Figure
8f), again to avoid placing it into the shaded slot on C1
(Figure 8e). A copy from D on C1 to E on C2 is placed
into the shaded slot on C1. Finally F is assigned to C2
because that is the only place it can go (Figure 8g). The
assignment process has completed successfully.

4. Cluster assignment

The cluster assignment phase takes a data flow graph
and a machine description and outputs a new data flow
graph that has been annotated to indicate cluster
assignments and includes any required copies. This
graph is then used by the modulo scheduler in phase two.

There are three integral concepts in the cluster
assignment algorithm: (1) Node grouping and ordering,
(2) Tentative assignment and selection, and (3) Iteration
and maintaining forward progress. First, the assignment
algorithm partitions the operations into suitable sets and
then orders the nodes within each set so that the impact
of the copy operations is minimized. The specific
grouping and ordering algorithms are presented in more
detail in Section 4.1.

Second, taking each operation one at a time in the
order of decreasing priority, the algorithm tentatively
assigns an operation to each cluster. The assignment
selector then chooses the assignment which appears to be
the best. The selected cluster assignment is finalized
while the others are discarded. The process continues
until all of the nodes have been permanently assigned
(i.e. finalized) on a cluster. Section 4.2 explains the
details of assignment and selection.

Third, Section 4.3 explains the details of the iterative
portion of the algorithm that allows it to continue past
seeming assignment failures by selectively removing and
reassigning operations. It also explains how to keep the
iterative algorithm from getting locked in repetitive
sequences of assignments and removals.
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4.1. Node ordering for cluster assignment

The main goal of the node ordering is to make sure
that nodes in SCCs are assigned first to avoid splitting
them across clusters with copies. The performance
degradation from splitting SCCs across clusters is
reduced by assigning nodes in the SCCs which result in
the highest RecMII value to clusters first and then
assigning nodes from successively less constraining
SCCs. Since the most critical SCCs are handled first,
they are less likely to be split across clusters due to
unavailable resources within the II. The remaining
operations of a loop are then spread across clusters to
take advantage of the available resources.

To this end, an ordered list of sets is formed, with the
highest priority set containing the nodes of the most
constraining SCC. The next highest priority set contains
the nodes of the next most constraining SCC. The final
and lowest priority set contains any nodes not in any
SCC.

The second goal of the node ordering is to assign data
dependent nodes on the same cluster whenever possible.
This affects both nodes inside and outside SCCs. While
adding copies between nodes outside SCCs will not
directly impact II, these copies still consume shared
resources and may contribute to an increase in ResMII.
The number of copies added can be minimized by
assigning nodes with predecessors and successors
whenever possible.

To achieve this second goal, we leverage on a node
ordering heuristic developed in the context of register
sensitive modulo scheduling [16]. This heuristic orders
nodes such that a given node is listed, when possible,
after all its successors (or all its predecessors) have been
listed. This order, clearly beneficial when minimizing
register lifetime, is also beneficial here as it reduces the
likelihood of assigning both the successors and
predecessors of an operation to distinct clusters prior to
assigning the operation itself. Thus the Swing Modulo
Scheduler’s node ordering heuristic is applied to each set.

4.2. Tentative assignment and selection

The assignment algorithm assigns one node at a time.
The next node chosen for assignment is always the
highest priority unassigned node. The node is then
tentatively assigned to each cluster, and information
about the resulting resource use is recorded. For example,
after placement of a node information such as the number
of copies generated, copies requested, maximum number
of assignable copies, and total free resources on the
cluster are recorded. A heuristic then uses the
information gathered to pick the best assignment from
among the feasible cluster assignments.

The heuristic chooses the best cluster assignment
though a series of selections. A selection is defined in
Figure 9. The list of clusters under consideration is
initialized to all clusters onto which the assignment of
the current node is feasible. An assignment is considered
feasible if enough resources exist for both the operation
and any required copies (RC), i.e. copies that must be
inserted in order for the current cluster assignments to be
valid. After the series of selections, the node’s
assignment is finalized on the first cluster in LIST and
the other tentative assignments are discarded. The series
of selections performed are shown in Figure 10.

The selection at line 4 keeps SCCs together as much
as possible. Section 4.1 amply explains why SCCs must
be kept together when possible. Line 6 attempts to spread
out the nodes by predicting future copy usage. When a
node X is assigned to a cluster, e.g. C1, and one of its
successors has already been assigned to a different
cluster, e.g. C2, it is obvious that the result of X must be
copied to C2. However, when some of the successors of X
have not yet been assigned to a cluster it is not known
whether any copies will be required. If the decision to
reserve space for a copy is delayed until the successors
are assigned, as in Figure 6 in the introductory example,
there may no longer be any resources for these extra
copies, which would in turn force an increase in II. Two
numbers are calculated in order to perform the selection
in line 6. These are the predicted copy requests (PCR)
and the maximum reservable copies (MRC). For a given
cluster C, MRCC and PCRC, are defined as follows:

MRC Maxmimum NumberOf Additional Copies

ForWhich There Is Room On ClusterC

C  

PCR Min Upperbound N UnscheduledSuccessors NC i i
N Ci

 

�

¦ ( ( ), ( ))

where the min term is summed for all operations NI

which have already been assigned to cluster C.

Select( LIST, criteria )
(1) NewLIST = all clusters in LIST that satisfy [criteria]
(2) LIST = NewLIST if NewLIST is not empty

Figure 9. Definition of a selection.

SelectBestCluster( LIST, N )
(1) LIST = all feasible clusters
(2) N = node to be assigned
(3) if ( N is a member of  S, an SCC ) {
(4) Select( LIST, “clusters on which another node from S is already assigned” )
(5) }
(6) Select( LIST, “predicted copy requests <= maximum reservable copies”)
(7) Select( LIST, “minimize the number of required copies generated”)
(8) Select( LIST, “maximize free resources on the cluster”)
(9) return the first cluster in LIST

Figure 10. Cluster assignment selection algorithm.



UnassignedSuccessor(Ni) corresponds to the number of
successor operations from Ni that are not currently
assigned to any clusters. Upperbound() provides an
upper-bound on the number of additional copies an
operation could require do to the worst-case placement of
its unassigned successors. UpperBound(Ni) is defined as
follows:

UpperBound N Max RC Ni i( ) [ , ( )] �0 1

for configurations with broadcast buses

UpperBound N Max ClusterCount RC Ni i( ) [ , ( ) ] � �0 1

otherwise.
RC(Ni) corresponds to the number of required copies

generated by operation Ni and ClusterCount is the total
number of clusters in the system. The above definition
takes into account that on a broadcast machine, the result
of an operation needs to be communicated at most once;
otherwise, the result of an operation needs to be
communicated at most to the other clusters (i.e.
ClusterCount -1).

In Figure 10, Line 7 simply picks the assignment that
generates the fewest required copies. Finally, line 8 picks
the cluster with the most free space.

4.3. Iteration and forward progress

Since heuristics are intrinsically imperfect they
sometimes chose poorly. For the cluster selection
heuristic presented in Section 4.2, poor choices tend to
occur because too little information is available at the
time when the node was assigned. A small number of
poorly placed nodes can result in a situation in which no
more nodes can be assigned to any cluster, thus forcing a
premature failure and an increase in II. Allowing the
algorithm to remove conflicting nodes from their current
assignments and therefore continuing beyond a failure
can result in a successful assignment.
For an iterative algorithm, there are two major
considerations:

x Choosing which nodes to remove, thus allowing
forward progress,

x Preventing repetitively assigning and removing
the same series of nodes to the same clusters.

4.3.1 Node removal.  When a node can no longer be
assigned to any cluster (i.e. LIST in Figure 10 is empty in
Line 1), the algorithm picks a cluster on which to force
the node’s assignment using the selection algorithm in
Figure 11. There are two reasons why a node is unable to
be assigned to a particular cluster:

x Resources for the node itself are unavailable
x Resources for a required copy from a

predecessor or to a successor are unavailable

The series of selections are shown in Figure 11. Once
the cluster on which to place N is chosen, any and all
nodes conflicting with the resources needed by N are
removed as well as any conflicting predecessors and
successors.

4.3.2 Preventing repetition. To prevent a node from
being repetitively assigned and removed from the same
cluster, a list of clusters on which a node was previously
assigned is kept. When possible, the algorithm will avoid
re-assigning a node onto a cluster in which the node has
been previously assigned. Once the node has been
assigned to all possible clusters, the list is cleared.

This is implemented by adding the following selection
A between lines 2 and 3 in the cluster selection algorithm
in Figure 10 as well as between lines 2 and 3 in the
algorithm for cluster selection after a failure as described
in Figure 11.

 (A) Select( LIST, “clusters onto which N has not
been previously assigned”)

ForceSelectBestCluster( N )
(1) LIST = all clusters
(2) N = node to be assigned
(3) Select( LIST, “in which N (excluding copies) can be assigned without resource conflicts”)
(4) Select( LIST, “which minimizes the number of conflicting  predecessors and successors”)
(5) return the first cluster in LIST

Figure 11. Selection of the Best Cluster  when no clusters have
enough resources.

Statistic Min Avg Max

Nodes 2 17.5 161

SCCs per loop 0 0.4 6

Nodes in non-trivial
SCCs

2 9.0 48

Edges 1 22.5 232

Table 1. Loop Statistics

Operation Latency

ALU, Shift, Branch, Store,
FP-Add, Copy

1 Cycle

Load 2 Cycles

FP-Mult 3 Cycles

FP-Div, FP-SQRT 9 Cycles

Table 2. Operation Latencies



5. Experimental setup

The test loops consisted of 1327 loops, 301 containing
SCCs, from the Perfect Club[22], SPEC-89[23], and the
Livermore Fortran Kernels[24]. The input loops consist
exclusively of innermost loops with no early exits, no
procedure calls, and fewer than 30 basic blocks, as
compiled by the Cydra 5 Fortran77 compiler. Load-store
elimination, recurrence back-substitution, and IF-
conversion have already been applied to the input loops.
Table 1 shows some statistics on the loops in the suite.

A wide range of machine and cluster configurations
were tried in order to show the algorithms effectiveness
on different architectures. Two cluster machines using
buses, four cluster machines using buses, and four cluster
grid array were modeled. Section 2.1 explains the details
of these three architectures. Table 2 shows the latency
used for each operation regardless of machine.

The assignment phase proceeds as described in the
previous sections. An iterative version of a swing modulo
scheduler was used in the scheduling phase.

6. Results

The following results show the performance of the
assignment algorithm for the variety of machines
mentioned in Section 2.1 and loops as described in
Section 5. In each case, the performance of the algorithm
for a clustered machine will judged by comparing the
final IIs for each scheduled loop on the clustered machine
to the II of the same loop scheduled on an equally wide
unified machine. While this does not show how far the
final II for the clustered machine deviates from optimal,
it gives a good estimate of how well communication was
hidden. For example, if a loop can only be scheduled
within an II of 10 for a unified architecture having a

width of 8 and the algorithm partitions the graph across
four clusters, with a combined total width of 8, in such a
way that a modulo schedule is still able to be found with
the same II of 10 then the algorithm has succeeded in its
goal. Any copies that had to be added were placed in a
way that kept them from exceeding resource limits or
breaking critical SCCs.

For the graphs, the x-axis represents how far the II of
a loop scheduled on a clustered machine deviated from
that of the same loop on a non-clustered machine. The y-
axis shows what percentage of loops fell into the x-axis’s
category. For example, an x=0, y=98% means that the
algorithm was able produce schedules for 98% of the
loops where the II on the clustered machine matched that
of the unified machine. An x=0 is the ideal x value, and
means that all required communication was hidden.

The first set of results will show the performance of
the iterative assignment with the full cluster selection
algorithm, Heuristic Iterative, compared to (1) an
iterative assignment with a simple cluster selection
algorithm (Figure 10, without lines 3 to 8): Simple
Iterative; (2) a non-iterative assignment with full cluster
selection algorithm: Heuristic; and (3) a non-iterative
assignment with the simple cluster selection algorithm:
Simple.

Figure 12 compares the algorithm for a machine with
two clusters of 4 GP units and two buses. Figure 13
compares the algorithm for a machine with four clusters
of 4 GP units and four buses. The graphs show that the
Iterative algorithm using the heuristic described in
Section 5 is the best algorithm overall. Making the
algorithm non-iterative severely impacts the performance
of the algorithm causing a 2% to 11% drop in the
number of loops that match the unified machine’s II. Not
using the full selection heuristic also impacts
performance, causing a 1% to 9% drop in matching IIs.
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Figure 12. Comparing heuristics for a two cluster setup
(2 buses, 4 GP units per cluster).

0.84
0.86
0.88

0.9
0.92
0.94
0.96
0.98

1

0 1 2 3

Increase in II

P
er

ce
nt

 o
f L

oo
ps

Simple Heuristic

Iter. Simple Iter. Heuristic

Figure 13. Comparing heuristics for a four cluster setup (4
buses, 4 GP units per  cluster).



The data shows that removing any part of the algorithm
will reduce its effectiveness. The graphs above also show
that the algorithm generates schedules virtually matching
those of a unified machine.

Figures 14 and 15 show the ability of the algorithm to
hide communication on a two- clustered machine with a
varying number of buses and number of read and write
ports, respectively. For the two-clustered machine it
appears that reducing the number of buses to 1 impacts
4% of the IIs. Increasing to 4 buses provides no benefit at
all, so the best number of buses appears to be 2. However,
it also appears that only one read and write port is need.
Adding a second port only improves 0.1% of the loops
and, due to the expense of ports, the additional
performance is not worth the extra cost. For the two-
clustered machine above, two buses with one read and
write port per cluster for the buses allow for performance
nearly matching that of a unified machine.

Figures 16 and 17 show the ability of the algorithm to
hide communication on a four-clustered machine with a

varying number of buses and numbers of read and write
ports.

For the four-clustered machine, the results show that
going from four buses to two buses negatively impacts
over 10% of the loops. Due to the cost of buses, the
additional increase of 3% from four to eight buses is
probably not worth the additional four buses.
Additionally, the read and write port results show that
two ports is a good number. Going to four is of marginal
value and dropping to 1 port decreases the performance
of 12% of the loops.  While four buses are needed only
two read and write ports are needed per cluster for the
four clustered machine for performance nearly matching
that of a unified machine.

Figures 18 and 19 show a comparison of various bus
counts for both a two and four clustered machine with
fully specified FUs. The results for the models with FS
units are very similar to those for the GP machines. The
IIs for about 95% of the loops on the two clustered match
those on the non-clustered machine given 2 buses. Given
four buses, the IIs of 94% loops on the four-clustered
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Figure 17. Varying the number of ports for a four clusters
setup (4 buses, 4 GP units per cluster).
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Figure 16. Varying the number of buses for a four cluster
setup (4 GP units per cluster).
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Figure 15. Varying the number of ports for a two cluster
machine (2 buses, 4 GP units per cluster).
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Figure 14. Varying the number of buses for a two cluster
machine (4 GP units per cluster).



match those on the non-clustered machine. The required
ports to get the above results is one read and write port
for the two cluster machine, and two read and write ports
for the four clustered machine.

Simulation runs were also performed for six and eight
clustered GP machines. The bus and port counts listed
are for the point of diminishing returns for which
addition of another port or bus did not result in a
significant performance improvement. Table 3 shows an
overview of the results for the runs with two, four, six,
and eight clusters. There appears to be at worst a linear
relationship between the number of clusters and the
number of buses/ports needed. However, it should be
noted that the relationship between the number of
clusters and the number of buses/ports is very dependent
on the amount of ILP that is effectively used. Thus a
higher number of ports and buses may be needed for
benchmarks with higher ILP, and vice versa.

The results were also promising for the four-cluster
grid setup as described in section 2.1. The algorithm

assigned 92% of the loops on the clustered machine
equally as well as it could have on unified machine. 98%
of the loops deviated by no more than one cycle from the
II of the unified machine. Though this cluster setup has
limited communication, no buses for broadcasting, and
one less FU per cluster, the algorithm still performed
well.

7. Conclusions

Clustering is one solution to the demand for wide-
issue machines and a fast clock cycle.  Clustering allows
for smaller, less ported register files and simpler bypass
logic. The resulting system is scaleable and still allows
the processor to take advantage of more ILP. The
resulting throughput of the machine will only be
improved, however, if the latency of any inter-cluster
communication, i.e. copies, can be hidden.

This paper proposed an algorithm for hiding the
latency of copies for modulo scheduled loops. The results
show that the cluster assignment algorithm can allow a
modulo scheduler to attain nearly identical IIs for
clustered architectures as for an equivalently wide non-
clustered architecture. For the machines shown above
between 94% and 98% of the loops scheduled for the
clustered machine matched the non-clustered II given a
reasonable number of buses and ports. The algorithm is
flexible enough to generate good assignments for a very
wide range of machine configurations. This algorithm
allows for modulo scheduled loops to take advantage of
significantly wider machines without incurring the high
penalty of highly ported register files.
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setup (4 FS units per cluster).
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Clusters Buses Ports Percent of Unified

2 2 1 99.7

4 4 2 97.5

6 6 3 96.5

8 7 3 99.5

Table 3. Bus/Port Resource Comparisons
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