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Abstract

Recent studies on value locality reveal that many instruc-
tions are frequently executed with a small variety of inputs.
This paper proposes an approach that integrates architec-
ture and compiler techniques to exploit value locality for
large regions of code. The approach strives to eliminate
redundant processor execution created by both instruction-
level input repetition and recurrence of input data within
high-level computations. In this approach, the compiler
performs analysis to identify code regions whose computa-
tion can be reused during dynamic execution. The instruc-
tion set architecture provides a simple interface for the com-
piler to communicate the scope of each reuse region and
its live-out register information to the hardware. During
run time, the execution results of these reusable computa-
tion regions are recorded into hardware buffers for poten-
tial reuse. Each reuse can eliminate the execution of a large
number of dynamic instructions. Furthermore, the actions
needed to update the live-out registers can be performed
at a higher degree of parallelism than the original code,
breaking intrinsic dataflow dependence constraints. Initial
results show that the compiler analysis can indeed identify
large reuse regions. Overall, the approach can improve the
performance of a 6-issue microarchitecture by an average
of 30% for a collection of SPEC and integer benchmarks.

1. Introduction

One of the major challenges to increasing processor per-
formance is overcoming the fundamental dataflow limita-
tion imposed by data dependences. By reusing previous
computation results, the dataflow limit can be surpassed for
sequences of operations that are otherwise redundantly exe-
cuted. Traditional compiler techniques for eliminating pro-
gram redundancy include common subexpression elimina-
tion, loop invariant code removal, and partial redundancy
elimination [1]. These optimization techniques rely on the

detection of static redundancy, which requires the compu-
tations be definitely redundant for all executions. As such,
compiler techniques have no mechanism for capturing dy-
namic redundancy which occurs over a temporal set of def-
initions. As a result, several empirical studies indicate that
significant amounts of redundancy, orvalue locality, still
exist in optimized programs [12][14][17].

To exploit dynamic redundancy, two hardware strategies,
speculative value prediction [11] and dynamic instruction
reuse [16], have been proposed. Due to hardware complex-
ity limitations, these techniques detect reuse opportunities
at the instruction level rather than at a larger granularity.
A more aggressive alternative is to allow the compiler to
partition the program into potentially reusable regions of
computation whose results are then dynamically recorded
in hardware for future reuse.

Consider the loop example in Figure 1, which computes
the sum of the elements in the arrayA. To improve program
execution speed, it is desirable to remove the loop’s compu-
tation when the resulting sum is identically computed with
a previous invocation. Assume that the loop is first invoked
at a time� and then at a later time� + �. Additionally
assume that the loop is not located within a program do-
main in which the compiler could trivially detect the op-
portunity to avoid re-computation of the sum. As such, the
reuse of the computation is based on determining the equiv-
alence of the arrayA at time� + � and time� , for which
there is a previously computed sum. The equivalence holds
if array A remains unchanged along all executed program
paths between� and� + �. Once the equivalence is estab-
lished one can simply use the execution result recorded at
� to eliminate the need to execute the entire loop at� + �.
Traditional compiler optimization techniques and run-time
hardware mechanisms are incapable of exploiting dynamic
redundancy in such regions.

A computation reuse mechanism can provide perfor-
mance improvement if the system can significantly re-



sum = 0;

sum += A[i];
}

for (i = 0 ; i < MAX ; i++){
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Figure 1. Loop example with potential reuse.

duce execution time for computing previous results and can
adapt to run-time variations. Different trade-offs exist be-
tween hardware-based run-time methods and software ap-
proaches, and many design alternatives have been consid-
ered [13][16][18]. Our approach strives to achieve the best
of both concepts in an integrated architecture and compila-
tion framework. Toward this end, we develop instruction set
architecture extensions and microarchitectural mechanisms,
referred to collectively as the Compiler-directed Computa-
tion Reuse (CCR) approach. The approach allows the com-
piler to identify code regions whose computation can be
reused during dynamic execution. The instruction set ar-
chitecture provides a simple interface for the compiler to
communicate the scope of each reuse region and its live-out
register information to the hardware. During run time, the
microarchitectural components of the approach record the
execution results of the regions for potential reuse. Explicit
designation of computation reuse allows a large number of
dynamic control, memory, and arithmetic instructions to be
removed from the processor execution. Inclusion of control
instructions within the computation further increases the
exploitation of value locality over block-level reuse meth-
ods [10][8].

Our current compiler implementation relies on profile-
guided heuristics to identify which computations will be
potentially reusable during the execution of the program.
Specifically, value profiling techniques [2] enable individ-
ual instructions to be classified according to their reuse po-
tential. Instructions with high reuse potential then serve as
seeds of dataflow and constant propagation analysis to de-
termine which regions of the program should be dynami-
cally reused. Such regions are calledReusable Computa-
tion Regions(RCRs). The compiler then uses the instruc-
tion set architecture of the proposed framework to instruct
the hardware how to effectively reuse the computation de-
fined within these regions.

The remainder of this paper is organized as follows. Sec-

tion 2 provides a brief overview of works related to the con-
cept of reuse and the intuitive rationale behind the proposed
scheme. Next, Section 3 presents an overview of the ar-
chitecture that facilitates the exploitation of reusable com-
putation designated at compile time. Section 4 details the
compilation issues and challenges associated with detect-
ing region-level computation reuse. The effectiveness of the
proposed approach in improving performance and exploit-
ing instruction repetition is presented in Section 5. Finally,
the paper is summarized in Section 6.

2. Related Work and Motivation

2.1. Related Work

Several empirical studies indicate the presence of
significant amounts of dynamic redundancy in pro-
grams [12][14][17]. Previous research in the area of value
locality and redundancy exploitation can be classified into
three major categories: value prediction, dynamic instruc-
tion reuse, and memoization. Value prediction and dynamic
instruction reuse are two important hardware strategies that
attempt to reduce the execution time of programs by al-
leviating the dataflow constraints at the instruction level.
Value prediction [11] speculates the results of instructions
based on previous execution results, performs speculative
computation using the predicted values, and confirms the
speculation. Instruction reuse [16] recognizes that many
instructions have the same inputs when executed dynami-
cally, and that by buffering the previous results, future dy-
namic instances can avoid execution by simply using the
saved result. Although alternative schemes includedepen-
dence chainsof multiple instructions or use profiling infor-
mation to guide the detection mechanism [6], the perfor-
mance improvement of these proposed approachs is often
limited by the exploitation of value locality at the instruc-
tion level [18]. In theblock [10] and trace-level reuse[8]
techniques, hardware mechanisms are proposed to exploit
value locality for large straight-line sequences of instruc-
tions. These approaches detect that the inputs and outputs
of a chain of instructions are highly correlated, and recog-
nize that the inherent benefits of prediction and reuse only
materialize when a large amount of execution is eliminated.

The final category of value locality exploitation research
focuses on memoization. Generally, memoization is a tech-
nique that stores previous results of computation in mem-
ory, and later invocations are preceded by table lookups for
already computed results. Functional and logic programs
use software concepts of memoization, whereas theTree
Machine (TM)[9] andresult cache[13] are hardware imple-
mentations of computation memoization. In these models,
computation caching exploits value locality in the way that
cache memory systems exploit spatial and temporal locality
of memory accesses.



2.2. Motivation

This section presents the intuitive rationale behind
compiler-directed computation reuse.

2.2.1 Opportunities for Compiler-Directed Reuse
The goal of any computation reuse scheme is to minimize
the execution time of computing results that have been pre-
viously determined. The following examples illustrate that
an integrated compiler and architecture reuse approach has
the potential to eliminate large sequences of dynamic in-
structions.

Block-level reuse. Figure 2 represents an example from
the SPEC92 benchmark008.espressothat demonstrates the
complexity of efficiently detecting sequences of reusable in-
structions. A macro definition for computing the number of
bits set to logical 1 in a 32-bit word is shown in Figure 2(a).
The macro divides the 32-bit word into four bytes and uses
each byte as an integer index for thebit count array. The
four byte components are then summed together. The de-
pendence graph for this segment is shown in Figure 2(b) and
uses the following instruction key:A for arithmetic/logical,
L for load, R for right shift, S for left shift, M for move,
andB for branch. In this case, all the code falls into one ba-
sic block because there is no possibility of branching until
the end of the instruction sequence. The dependence graph
illustrates that the entire sequence of operations is depen-
dent on a single input registerr3 and defines a single output
registerr26. No other registers defined in the sequence are
live-out, i.e. used after the computation sequence. Also, by
performing alias analysis, it can be determined that the ar-
ray bit count is static and does not change during program
execution. The instruction sequence clearly designates an
opportunity for reusing previously computed results.

The example of Figure 2 demonstrates several funda-
mental barriers to effective exploitation of dynamic redun-
dancy for both hardware-based and software-based meth-
ods. First, in exploiting the full redundancy of the se-
quence, a run-time hardware scheme must detect the depen-
dences between instructions as displayed by the dependence
graph of Figure 2(b). The dependence representation allows
the mechanism to determine the set of instructions that are
reusable from a particular set of starting instructions. Sim-
ilarly, the hardware approach is limited in scope and may
be unable to determine that only a single register is live-out
of the computation. The alternative of storing the results of
all registers defined in the region can be very costly. Third,
the example could also benefit from code specialization, a
software scheme that duplicates the code to efficiently han-
dle certain run-time values. Although value profiling can be
used to determine whether certain variables have the same
value across multiple input sets, code specializations can
not easily adapt to variations in the value set.

A compiler-directed hardware approach has the advan-

(bit_count[v & 255] + bit_count[(v >> 8) & 255]\
#define count_ones(v)\

 + bit_count[(v >> 16) & 255] + bit_count[(v >> 24) & 255])

(a)

S2

A4

S3

A1

S1

r26R2

r3

A7

R1

A2

Y

N
r3

r26

L1

S1

A1

R1

L2

A2

S2

A3

R2

L3

S3

A4

A5

R3

A6

L4

S4

A7

L1

L4L3L2

A3

A5

A6

S4

R3

REUSE

(b) (c)

Figure 2. Block-level reuse example (a)
source code macro definition, (b) depen-
dence graph, and (c) potential reuse se-
quence.

tages of both hardware and software methods. At compile
time, the mapping relation between the single input register
and single output register may be determined. With this in-
formation, the compiler can construct an alternative control
flow graph, as illustrated in Figure 2(c), based on a reuse
instruction that communicates with hardware buffers to de-
tect reuse scenarios. If the hardware determines that a pre-
vious computation can be reused, the reuse instruction will
update the corresponding registers and proceed to the next
sequential instruction. Otherwise, no recorded computation
can be reused and the reuse instruction will branch to the
original sequence, which executes and returns. In contrast
to hardware schemes, the compiler-directed approach can
accurately inform the hardware of the input and output reg-
isters which, in Figure 2, arer3 andr26. Compared to soft-
ware code specialization techniques, the reuse instruction
can be implemented to use multiple recorded instances, al-
lowing a large number of instructions to be skipped for sev-
eral input sets.

Region-level and memory reuse.Control and memory
dependences also limit the effective exploitation of dynamic
redundancy. Figure 3 illustrates an example of potential
reuse involving control and memory operations in the func-



tion ckbrkptsfrom the SPEC95 benchmark124.m88ksim.
Figure 3(a) shows the source code in which the function
scans the contents of the arraybrktable for breakpoint in-
formation that is updated from a set of only four functions:
nobr, br, settmpbrk, andrsttmpbrk. During program exe-
cution, the code behaves as a reusable computation region
since it is repeatedly executed without subsequent calls to
any of the four functions that change the contents of the
brktablearray. As such, the results of one execution can be
reused until thebrktablearray is changed.

settmpbrk ()br () rsttmpbrk ()

if(bp->code  &&  ((bp->adr  &  ~0x3) == addr))

 }
break;

 for(cnt = 0; cnt < TMPBRK; cnt++, bp++) {

.....
ckbrkpts ()

brkpoints *bp = brktable;

brktable
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Figure 3. Region-level reuse example (a)
source code and (b) reuse sequence.

Similar to the block-level example, the region example
of Figure 3 presents several fundamental barriers to exploit-
ing reuse opportunities. First, since control instructions des-
ignate program direction changes, any potential reuse de-
tection mechanism must have the ability to understand the
start and completion of the computation intended for reuse.
Essentially a run-time scheme must construct the implied
control flow graph of Figure 3(b) and the dependence re-
lations among its instructions. Only by constructing such
information can attempts be made to reuse execution re-
sults along separate control paths and loop regions. The
detection mechanism must also identify that certain instruc-
tions within loops, such as the increment of the loop index
variable and the loop-back branch in Figure 3, do not ex-
hibit repetition of all their operands. Such instructions are
integral to the operation of the loop, yet their run-time be-
havior may inhibit the detection mechanism in determin-
ing that the entire loop is indeed reusable. Similarly, the
memory instructions of the loop are an obstacle to effective
reuse. In order to reuse the results of previous loop invoca-
tions, the reuse approach must determine if arraybrktable
remains unchanged along all executed program paths be-
tween an initialization time and a reuse time.

Since the hardware cost to perform complex control
analysis is high, most schemes are limited to only exploit-

ing reuse along sequential sets of instructions. However,
the ability to eliminate redundancy across basic blocks is
fundamental to exploiting the full potential of computation
reuse. Likewise, determining the equivalence of memory
structures at different times requires substantial communi-
cation between the memory system and the reuse mecha-
nism. A compiler-directed reuse approach has the advan-
tage of being able to exploit reuse for large regions of in-
structions by 1) communicating the scope of each region to
the hardware responsible for storing dynamic instances and
2) communicating the equivalence of memory structures at
different times of the program execution.

The communication of a region boundary designates the
section of code that can be dynamically reused. The most
practical region of instructions that can be easily conveyed
to hardware is defined by a single starting point and a single
ending point. This definition allows all control path exe-
cutions between the two points to be potentially exploited
by the underlying hardware reuse mechanism. A compiler-
directed approach could transform the code, as illustrated in
Figure 3(b), by introducing a reuse instruction to inform the
hardware that a sequence could potentially be reused. The
reuse of memory computations can be significantly aided
by the analysis techniques employed by modern optimiz-
ing compilers. Using interprocedural analysis, the com-
plete points-to relation [4] for thebrktablearray can be con-
structed at compile time. As such, the compiler-directed
approach can direct the program points that affect the ar-
ray to invalidate previously recorded computations based on
the contents of the array. This provides potential reduction
in the cost of recording computations using memory since
otherwise the consistency of all 16 entries of thebrktable
array must be maintained. Otherwise, as long as the equiv-
alence is established, future invocations can simply use the
execution results recorded at an earlier time.

2.3. Computation Reuse Potential
Several studies [8][16] have determined the limits of

instruction-level reuse by checking whether a dynamic in-
struction and its current inputs are the same as a previous
execution. In this section we are interested in the poten-
tial of computation reuse occurring at a level greater than
the instruction level. Reuse of a sequence of instructions is
more attractive since a single reuse may eliminate the ex-
ecution of a potentially long sequence of dynamic instruc-
tions. Similarly, code sequences such as the computation of
Figure 1 exhibit recurrence without necessarily having rep-
etition at the instruction level. Therefore, in examining the
reuse potential of our proposed approach, we measure the
amount of program execution that is redundant in the form
of sequences of instructions. To do this, we constructed a
value profiling infrastructure within the IMPACT compiler
and emulation framework to record reuse opportunities for
basic blocks and regions of code. Regions are defined as



paths of basic block segments and include both cyclic and
acyclic formations. Reuse for blocks and acyclic regions is
detected by considering sequences of values consumed and
produced by instructions as a program executes. Store in-
structions were not considered to have reuse opportunities.
Load instructions were considered reusable if their source
memory location had not been accessed by any store oper-
ation between load executions. Reuse for cyclic regions is
detected by monitoring additional program state at the in-
vocation of the respective region headers.
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Figure 4. Dynamic reuse potential.

Figure 4 illustrates the amount of program execution sat-
isfying the evaluation guidelines. Each figure includes a
blockandregioncolumn respectively indicating the amount
of reuse available in basic block and region forms. For these
results, eight records of previous dynamic information for
each code segment were maintained to check the potential
reuse of program execution. The block reuse shows an up-
per bound on the portion of a program that can be exploited
with previously proposed techniques. On the other hand,
the region-level exploitation subsumes the basic block defi-
nition and can exploit reuse along several control decisions.
These results indicate that region-level reuse mechanisms
can potentially exploit almost twice the amount of program
execution available to block-level approaches.

3. Architecture Support
The Compiler-directed Computation Reuse (CCR)

scheme extends the idea of run-time instruction reuse by
introducing a set of hardware features and instructions to
eliminate the need to dynamically detect reusable computa-
tion. In contrast to run-time instruction reuse schemes, the
reusable computation is designated at compile time. The
proposed architecture mechanism consists of the following
components:

Reuse Architecture Hardware that records the dynamic
computation information. The Reuse Architecture

consists of a Computation Reuse Buffer (CRB) to store
the reuse information.

Reuse Instruction Set ExtensionsInstruction extensions
and execution semantics for conveying program infor-
mation to the Reuse Architecture.

Computation Reuse Microarchitecture Hardware com-
ponents that validate the recorded computations stored
in the CRB and performs the update of architectural
state for successful reuse of the computation instances.

3.1. Computation Reuse Buffer Design
To achieve the reuse goals in the compiler-directed hard-

ware approach, a caching structure is designed. Figure 5
depicts the basic model of the structure, called the Com-
putation Reuse Buffer (CRB). The CRB is a set-associative
structure indexed by an identifier number which is speci-
fied by the proposed ISA extensions in the CCR framework.
The structure is similar in design to a cache that consists of
an array of entries, referred to ascomputation entries. An
entry supports the reuse for a particular compiler specified
region by detecting the situation in which all of the input in-
formation to the region is recurrent. To do this, each active
entry is responsible for recording computation information
for future region executions. As such, each entry contains
four fields: 1) the computation tag; 2) avalid bit indicating
whether the entry currently contains a valid computation;
3) an array of computation instances; and 4) a Least Re-
cently Used (LRU) information array for managing the re-
placement of the computation instances. The computation
tag field contains the computation identifier and is used for
verifying the exact computation. Acomputation instance
is defined as the set of input register operands and their
respective values, the set of output register operands and
their respective result values, and the validation of memory
state used by the computation. A computation instance is
reusable when its input register values match a previous ex-
ecution of the computation and the input memory state has
not been invalidated.

Multiple computation instances are used to record com-
putations with different input values available for reuse.
Each computation instance has two banks that contain an
array of register entries, acomputation instance validbit
indicating whether the instance defines a valid reuse, and a
memory validfield indicating whether the computation ac-
cesses memory and is valid. Each register entry consists
of three fields: the register index, the register value, and a
valid field. The two banks respectively designate the neces-
sary input and output information for the computation being
reused, and the number of register entries is also specified
by the particular implementation. For the input bank, the
register index and register value fields record the necessary
values that the respective registers must hold for the com-
putation instance to be reusable. For the output bank, the
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information fields record the complete results of the compu-
tation that update the architectural register file during reuse.
The valid fields indicate whether the register entry is active
for the computation instance.

Several design enhancements can be made to the base
CRB architecture. These enhancements focus on creating
specific rather than uniform implementations of computa-
tion entries and instances. For instance, one enhancement
might be to partition the design space of the computation
entries to include variations on the type of computation
instances that could be recorded. A second enhancement
would include variations in the number of computation in-
stances available for different computation entries. In Sec-
tion 5 we examine the characteristics of reusable computa-
tions designated by our compiler and evaluate some varia-
tions in the design of the base CRB configuration. However,
we concentrate on evaluating the initial rationale of the ap-
proach, rather than investigating these specific implementa-
tion details.

3.2. Instruction Set Extensions
The CCR approach involves the introduction of new in-

struction extensions and two new instructions. The new
extensions designate certain aspects of reusable computa-
tion to the reuse framework. The two new instructions are:
1) computation reuse, which directs the hardware to deter-
mine if a computation has already been performed; and 2)
computation invalidate, which directs the hardware to in-
validate computations based on memory state changes. If
the hardware does not find an opportunity to reuse previ-
ous computation results, the reuse instruction will branch
to the computation code, which executes the sequence of
instructions and updates the computation buffer. The reuse
instruction provides a low overhead method of communicat-
ing with the hardware about the state of the machine, and is
similar to the proposed mechanisms in data speculation [7]

and software-controlled value prediction [5].
The introduction of the reuse opcode and instruction ex-

tensions allows the compiler to designate regions of com-
putation that can be executed and then subsequently reused.
The approach accomplishes this by a having aregion mem-
oizationmode of execution that begins when the reuse in-
struction fails to find a valid computation instance. Upon
starting the mode, the LRU computation instance is selected
and construction of a new instance begins. Any register
used before being defined while in this mode will record
its information in the input bank of the instance. Addition-
ally, instructions executed in the memoization mode have
specific requirements for updating the records of the reuse
instance and terminating the memoization mode. As such,
the proposed ISA extensions enable the following execution
semantics during the memoization mode:

Live-Out Register One new instruction extension is used
to designate instructions generating live-out values.
Destination registers defined for instructions marked
with live-out extensions record the respective informa-
tion in the output bank of the instance.

Load Instruction Load instructions executed during the
memoization mode set the computation instance’s
memory valid flag.

Control Instruction The compiler designates the end of
the memoization mode by marking certain control in-
structions with new extensions to indicate computation
region reuse endpoints and region exits. The recording
of a computation instance occurs when a reuse end-
point instruction is used to leave the region.

The execution results gathered during a successful mem-
oization mode define a particular path in the region of in-
structions selected by the compiler. The compiler has the
responsibility of insuring that the number of registers in the
statically assigned reusable region can fit within the capac-
ity of the computation instances. Similarly, another com-
piler responsibility is the program-level placement of in-
validation instructions for regions accessing memory. The
invalidations instruct the region computations that changes
have potentially been made to the region’s input data, and
the computation instances may no longer be valid.

3.3. CCR Microarchitecture

The interaction of the microarchitecture pipeline and the
computation reuse buffer is illustrated in Figure 6. For the
initial study of the proposed approach, an in-order issue mi-
croarchitecture model is assumed, although the discussion
contains relevant material applicable to a generic dynam-
ically scheduled superscalar processor. Four unique tasks
define the reuse execution for a particular computation re-
gion: accessing the CRB computation entry, reading the ar-
chitectural state for the computation instances, validating
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reusable computation results, and issuing the results. If a
resuable result is found, the recorded results are committed.

During the CRB access step, the CCR architecture either
detects a valid computation entry for the reusable region,
or flushes partially executed instructions and directs the in-
struction fetch stage to begin executing new instructions at
the location of the resuable code segment. For valid compu-
tation entries, it is necessary to read the architectural state
corresponding to the input registers of the corresponding
computation instances. To do this, a summary set of the
active input registers for all of the computation instances
is maintained during the creation of the the instances. The
summary set is the set of registers that require operand val-
ues from either the committed architectural state of the reg-
ister file or uncommitted instruction results. In-flight in-
struction results and in-flight invalidate instructions force
the reuse instruction to wait in order to validate the recorded
computation instances. An interlocking mechanism exists
between the computation reuse instruction, the processor re-
tirement stage, and the register bypass circuitry to determine
the necessary wait scenarios. Since the performance of the
reuse scheme is determined by the reuse latency and the per-
centage of reused instructions, these timing considerations
have been simulated within the evaluation environment.

After reading the stable computation instance input sets,
the computation instances are validated. There are two pos-
sible cases that result from the validation step: the nonex-
istence of reusable computation and the presence of valid
computation results. For successful reuse determination,
the live-out registers are updated by issuing multiple results
to the retirement buffer. Otherwise the processor flow of
control is directed to the computation code after the pipeline
is cleared of partially executed instructions.

4. Compiler Support

Our current compiler implementation relies on profil-
ing information and dataflow analysis to direct the hard-
ware to the regions of code that should be dynamically
reused. Compiler support of the CCR approach involves
four components: deterministic computation, value pro-

filing, reusable computation regions, and reuse selection
heuristics. Support for compiler-directed computation reuse
is implemented in the IMPACT compiler framework. This
section describes the four components related to the deter-
mination of reusable computation within general purpose
imperative programming languages.

4.1. Deterministic Computation
The compilation techniques for dynamic computation

reuse are based on the concept ofdeterministiccomputa-
tion regions. A deterministic computation region is an arbi-
trary, connected subgraph of the program control flow graph
that can be analyzed to determine the location of all input
operands that affect the region’s computation. In the con-
text of the CCR framework, two classes of deterministic re-
gions exist:Stateless(SL) andMemory Dependent(MD).
Stateless regions are simply paths of code that define com-
putation results which are based only on register operands
and not on memory state. Memory dependent regions are
paths of code that define computation based on both register
operands and memory state, with the requirement that the
memory dependence be either completely or conservatively
determined at compile time. The compiler first performs
program-level alias analysis to identify such load instruc-
tions and annotates them asdeterminable, indicating that
all potential store instructions can be determined at com-
pile time. Both globally and locally-named structures are
reused, whereas anonymous data structures are the subject
of ongoing research. In our current implementation, nei-
ther stateless nor memory dependent regions are allowed to
change the contents of memory.

4.2. Value Profiling
The nature of detecting a repeatable sequence requires

some estimation of the run-time behavior of a program.
The most direct method is value profiling [2]. Value pro-
filing is an effective method of finding the value recurrence
and potential reuse of instructions. Applying dynamic in-
formation with formal analysis [15] can also find relation-
ships among computations and understand the fundamental
source of program redundancy and predictability.

As the initial implementation of the proposed mecha-
nism is completely directed at compile time, an accurate es-
timation of program reuse potential is essential. The Reuse
Profiling System (RPS) was developed as a result of this
work and is designed to report accurate reuse information
for three components: instruction-level repetition, reusabil-
ity for memory operations, and cyclic computation recur-
rence. Instruction-level reuse information consists of the
frequency of individual values and the recurrence of values
within a set time interval. Memory reuse information con-
sists of the frequency of updates to the referenced memory
locations of each memory instruction. Cyclic computation
recurrence is gathered by profiling the input registers at the
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Figure 7. Abstract reusable region.

start of cyclic region invocation, by recording the number of
iterations for each loop invocation, and by relating the indi-
vidual memory reuse information of every cyclic iteration
to the reusability of cyclic invocation.

4.3. Reusable Computation Regions (RCRs)

Several constraints exist in developing effective tasks for
the reuse mechanism. The essence of our reuse scheme is
that the compiler directs the hardware to regions of code
that have reuse potential and can be conveyed through the
instruction set architecture modification previously men-
tioned. Therefore, to use the mechanism effectively, the
regions selected are those that have the maximal number
of reusable paths (acyclic or cyclic) between a starting and
ending point. The reusable computation of such paths is
a subgraph of a deterministic computation region, called a
reusable computation region(RCR). Figure 7 illustrates an
abstraction of the reusable computation region concept. A
reusable computation region delineates the section of pro-
gram code that will be dynamically reused in the CCR
framework and involves four region points:

Inception Point Starting point for memoization mode and
location for reuse instruction.

Finish Point Ending point for memoization mode. Any
computation within the path between the inception
point and finish point can be reused.

Exit Point Side exit from computation region and termina-
tion of memoization mode. No reuse along paths from
inception to exit point. Exit points do not necessarily
exist for RCRs.

Entry Point Side entrance to reusable region that is not in-
volved with reuse or memoization of computation. En-
try points do not necessarily exist for RCRs.

4.4. Reuse Selection Policy

After generating reuse profiling information, the reuse
characteristics of the code segments are known. Our cur-
rent process of selecting reusable computation regions is
heuristic-based and divides the computation into cyclic and
acyclic region formation.

Cyclic region formation. Cyclic reusable regions are
identified by detecting inner-nested loops with determinis-
tic computation. This restricts the loops from altering mem-
ory state with store and subroutine instructions. Similarly,
load instructions within the loop must be classified as de-
terminable. These same regions are identified earlier by
the profiling system in such a way that reuse information
is gathered for each invocation of the loop. The cyclic pro-
filing information is used to check that a loop has a greater
than 40% opportunity to reuse results and that greater than
60% of the loop invocations have multiple loop iterations.

Acyclic region formation. The decision process for
acyclic computation regions consists of five primary steps:
seed selection, successor formation, predecessor formation,
and subordinate path formation, and reiteration of the pre-
vious formation steps. The first step is to select a starting
instruction for creating a computation region, known as the
reuse seed. A seed instruction is selected from the set of
all instructions within a function, ordered by the weight of
the instruction execution, reuse potential, and the number of
dependent instructions within instruction’s basic block.

The second step is to extend the region from the reuse
seed by selecting a path of reusable successor instructions.
Selection of each successor is based on three criteria: in-
struction reusability, region inputs, and region accordance.
An instruction is considered reusable if the weight of the
topk recorded executions detected during profiling account
for a large fraction of the instruction execution. Profiling
support allows the ten most recent instruction executions
to be maintained. Load instructions must satisfy two ad-
ditional conditions: (1) the memory location referenced is
reusable (defined by the frequency that stores access a loca-
tion used by the load) and (2) be annotated as determinable.
Control flow transitions between basic blocks are consid-
ered likely if the weight of the control flow edge is60%
of the weight of instructioni, Exec(i). Otherwise, the in-
variance of reusing both branch operands is used to select
the successor path. Essentially instruction-level profiling
information is used to find the individual repeating instruc-
tions and to construct large regions of potential reuse in a
bottom-up fashion. Therefore, an instructioni is reusable
to the region if it first satisfies the heuristic functions shown
below.

Reuse(i) =

�
Invariance[k](i)

Exec(i)
� R

�
(1)

MemReuse(i) =

�
V alid(i)

Exec(i)
� Rm

�
(2)

Empirical evaluation found that settingR andRm to .65
and the number of invariant values to five produces good
instances of reusable computation. Lower values tend to
admit too many instructions in the region that are not suc-
cessfully reused in reasonably sized CRBs.

The region input heuristic is used to determine if the in-
struction inputs overlap with the inputs of other instructions



already selected. Similarly, when considering a successor
instruction, value analysis is performed to detect an occur-
rence when a source register value is confined to a limited
set of values with the currently selected region. Finally, the
total number of live-in and live-out registers within a com-
putation region are limited to eight. The region accordance
heuristic is used to prevent the inclusion of memory instruc-
tions to the region that increase the potential of invalidating
the computation region already selected. As such, the accor-
dance heuristic limits the number of distinguishable mem-
ory elements to four in order to reduce the creation of in-
effectual memory dependence regions. Early experimental
variations on the accordance heuristic revealed this setting
to be productive.

These three characteristics find successor instructions
that have good individual reuse, minimize the unnecessary
invalidations, and minimize the number of input register
dependences to the computation. The selection process
attempts to reorder instructions to create larger reuse se-
quences. This prevents the original program ordering from
hiding potential reuse. The process of adding successors to
the region continues until the successor path can no longer
be extended using the successor heuristics.

The third step of RCR formation is to expand the com-
putation path by adding predecessor instructions that flow
to the original reuse seed. The conditions for adding a pre-
decessor instruction are analogous to the conditions of suc-
cessors. The successor and predecessor points define the
principle reuse path in the control flow graph representa-
tion. The fourth step is to add subordinate paths of reuse
defined along the principle path. Such paths are selected
by applying the similar heuristics as the main path selection
algorithm. Side entrances, other than the inception instruc-
tion point to the selected set of paths are annotated as entry
points. Exit points are defined by all branch instructions that
are directed to code outside of the selected set of paths. The
final step of the reuse selection policy is to continuely repeat
the process of growing successors, predecessors, and subor-
dinate paths until the region can no longer be expanded. By
analyzing the newly formed region contents after each in-
terval, the value-flow analysis heuristics are able to improve
the reuse opportunities. At the end of iterative process, the
top-most resulting instruction is established as the incep-
tion point for the reusable computation. The bottom-most
instruction is defined as the finish point.

The overall algorithm consists of cylic region formation,
acyclic region formation, and region transformations. The
transformations remove subsumed regions, partially dupli-
cate benefical regions, and combine regions using minimal
tail duplication. A complete description of the reuse heuris-
tics and selection algorithm is available in [3].

5. Experimental Evaluation

5.1. Methodology

The IMPACT compiler and emulation-driven simulator
were enhanced to support a model of the proposed archi-
tecture framework and the region formation techniques re-
spectively introduced in Section 3 and Section 4. The
benchmarks used in all experiments consist of SPECINT92,
SPECINT95, UNIX, and MediaBench programs. The base
level of code consists of the the best code generated by
the IMPACT compiler, employing function inlining, su-
perblock formation, and loop unrolling.

The base processor modeled can issue in-order six opera-
tions up to the limit of the available functional units: four in-
teger ALU’s, two memory ports, two floating point ALU’s,
and one branch unit. The instruction latencies used match
the HP PA-7100 microprocessor (integer operations have
1-cycle latency, and load operations have 2-cycle latency.)
The execution time for each benchmark was obtained using
detailed cycle-level simulation. The parameters for the pro-
cessor include separate 32K direct-mapped instruction and
data caches with 32-byte cache lines, and a miss penalty of
12 cycles; 4K entry BTB with 2-bit saturating counters, and
a branch misprediction penalty of eight cycles. Failure to
correctly reuse computations causes the processor to expe-
rience a delay similar to the branch misprediction penalty.
For our simulations, the computation buffer had 32, 64, or
128 direct-mapped entries with 4, 8, or 16 computation in-
stances (CIs) per entry. Each CI supports an input and out-
put 8-entry register array.

5.2. Results and Analysis

Three categories of results are presented. The overall
performance of the CCR approach is first examined. Sec-
ond, some of the characteristics of the reusable computa-
tions are presented. Third, some general results relevant to
the compiler-directed scheme are evaluated.

Performance. The overall cycle-time speedups for the
compiler-directed approach are presented in Figure 8. Two
variations in the CRB design are evaluated: variation in
the number of computation instances per computation entry
and variation in the number of computation entries. Perfor-
mance is reported as speedup which is derived by dividing
the execution cycles for the base architecture by that of the
architecture with the CCR framework.

The first CRB variation considered is the number of
computation instances per computation entry. Figure 8(a)
presents the effect on performance for varying the number
computation instances. On average, a processor with 128
computation entries has speedups of 20% for a computa-
tion entries with 4 CIs, 25% for 8 CIs, and 30% for 16
CIs. The reuse of computation using the CCR approach is
most effective for124.m88ksim, where there are a number
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Figure 8. Speedup for processor with CCR
support (a) varying the number of instances
and (b) varying the number of entries.

of substantial computations that are frequently reused. Vari-
ation in the number of computation instances substantially
increased the performance speedup ofpgpencode. This was
mainly due to the type of computations being reused. In
this benchmark, a number of stateless computation regions
were formed using the heuristics based on average reuse oc-
currence, but the computations have considerable dynamic
variation. A large number of computation instances is able
to effectively handle this variation. Overall, the average per-
formance improvements indicate that the 128-entry compu-
tation buffer with 8 CIs per entry is potentially the most
cost effective. In improving the processor performance, the
CCR approach eliminates an average 40% of the dynamic
instruction repetitions that occur on the base processor con-
figuration.

The next CRB variation considered is the number of
computation entries. Figure 8(b) illustrates the effect on
performance for varying the number of computation en-

tries. For a model with 8 computation instances, the average
speedups are 20% for 32 computation entries, 23% for 64
computation entries, and 25% for 128 computation entries.
The benefits of reuse are sustained for even a small number
of computation entries. On average, the majority of bench-
marks are characterized by a small number of reusable com-
putations that account for a large portion of the overall ex-
ecution time. This indicates that the amount of region-level
reuse can potentially be exploited with a moderate number
of computation entries.

Reuseable Computation. Several important aspects of
the computations being reused in the CCR approach were
investigated. The first is the class of computation and the
second is the type of computation. The classification of
computation is either Stateless (SL) or Memory Dependent
(MD). The classes can be subdivided into groups indicat-
ing the general input type of the computation. The group
naming convention of SLfnuminputg is used to indicate
the group of stateless computations dependent onnuminput
registers. Similarly, MDfnuminputg fnummemg is used
to indicate the group of memory dependent computations
dependent onnuminput registers andnummem distin-
guishable memory structures. The number of distinguish-
able memory structures for each MD group is determined
by the compiler’s region formation heuristics. Overlapping
group results are included within some of the group entries.
For instance, group SL8 includes the computations of SL7
but not SL6 since the group SL6 is also presented. Sim-
ilarly, MD 6 1 includes all computations dependent on a
single memory structure and up to six register inputs.

Figure 9 compares the static and dynamic distribution of
seven groups of computation that account for the most reuse
of program execution. Figure 9(a) presents the static distri-
bution of the computation groups. On average, nearly 90%
of the computations are included within the seven selected
groups. The distribution indicates that stateless computa-
tions account for an average of 65% of the static computa-
tions created by applying the current RCR heuristics to op-
timized programs. Evaluation determined that the acyclic
formations of the the seven computation groups replace the
execution of an average of 10 instructions. Figure 9(b) il-
lustrates the dynamic distribution of the seven computation
groups. On average, the dynamic execution of stateless
computation regions accounts for 60% of the reuse exe-
cution. Several of the benchmarks are able to effectively
reuse computation results stored in memory by employing
the computation groups MD3 1 and MD6 1. These re-
sults indicate that the CRB could be designed to have only
a portion of the computation entries with memory reuse ca-
pabilities.

Figure 10 presents the amount of reuse execution dis-
tributed by the percentage of active computations. Four sets
are used to indicate the amount of dynamic reuse generated
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Figure 9. Computation group (a) static distri-
bution and (b) dynamic distribution.

by 40% of static computations. Each set includes 10% of
the computations which are sorted by their contribution to
the total reuse execution. For instance, TOP 10% indicates
the reuse attributed to the top 10% of contributing computa-
tions. We see that the cumulative results indicate that 40%
of static computations account for nearly 90% of total reuse.
129.compressis one of the few benchmarks for which dif-
ferent reuse distributions exist. In this case, each of the pro-
gram computations are closely weighted in the amount of
reuse execution that they contribute. Nevertheless, the av-
erage characteristics of Figure 10 is a good indicator of the
possibility of exploiting redundancy with limited hardware.

General Approach Evaluation. Due to the nature
of determining reusable computation at compile time, the
performance potential of the CCR framework depends on
utilizing effective heuristics and having accurate run-time
estimation of program behavior. To determine the signifi-
cance of using value profiling information outlined by our
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Figure 10. Dynamic reuse distribution.

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

00
8.

es
pr

es
so

 

07
2.

sc
 

09
9.

go
 

12
4.

m
88

ks
im

 

12
6.

gc
c 

12
9.

co
m

pr
es

s 

13
0.

li 

13
2.

ijp
eg

 

14
7.

vo
rt

ex
 

le
x 

ya
cc

 

m
pe

g2
en

c 

pg
pe

nc
od

e 

av
er

ag
e 

Benchmarks

P
er

fo
rm

an
ce

 S
pe

ed
up

Training Input
Reference Input

Figure 11. Performance for training and refer-
ence input data sets.

approach to make these decisions, we measured the perfor-
mance of an input data set different from the one used to
determine reusable computation. The training and reference
input sets were then evaluated, and the results compared to
each input’s respective base performance. Figure 11 exam-
ines these results for a 128-entry CRB model with 8 CIs
per entry. The average performance speedup for the train-
ing input set is 26%, and the average for the reference input
set is 23%. Although on average there is a reduced relative
speedup for the reference input set, several of the bench-
marks achieved higher relative speedups for the reference
input set. In addition, the average amount of instruction-
level redundancy eliminated using the reuse architecture av-
eraged 33%. This level is close to the average 40% instruc-
tion repetition eliminated during the evaluation of the train-
ing input set, and helps illustrate the general applicability of
directing the reuse of computation at compile time.



6 Summary

In this paper, we introduced a compiler-directed ap-
proach for exploiting dynamic redundancy with several ad-
vantages. The approach uses the compiler to decide and
annotate code segments with the potential for reuse. This
enables the underlying hardware architecture to capture
the reuse potential in regions of code rather than basic
blocks and individual instructions, thereby exploiting more
substantial opportunities. Additionally, the approach cap-
tures the redundancy of high-level computations that do
not possess instruction-level repetition. We evaluated the
effectiveness of the proposed approach using several dif-
ferent resource models, varying the size of the computa-
tion reuse buffer and the number of computation instances
recorded for each computation. The resulting speedup of
the approach measured with a moderate architecture model
(128-entry CRB with 16 computation instances per entry)
achieved an average 30% speedup.

This paper presents only an initial study of the ability of
the compiler-directed approach to exploit dynamic redun-
dancy. There is a considerable amount of future work to
investigate in both the compiler and architecture domains.
In the compiler domain, the aspect of directing the CCR ar-
chitecture at the function level could potentially reduce a
significant amount of time spent executing calling conven-
tion and spill codes. In the architecture domain, we will in-
vestigate reuse buffers with nonuniform capacities and the
use of value speculation techniques to hide the latency of
validating reuse opportunities.
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