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Abstrucf-Multiple instruction rollback (MIR) is a technique 
that has been implemented in mainframe computers to provide 
rapid recovery from transient processor failures. Hardware- 
based MIR designs eliminate rollback data hazards by providing 
data redundancy implemented in hardware. Compiler-based MIR 
designs have also been developed which remove rollback data 
hazards directly with data-flow transformations. This paper de- 
scribes compiler-assisted techniques to achieve multiple instruc- 
tion rollback recovery. We observe that some data hazards result- 
ing from instruction rollback can be resolved efficiently by pro- 
viding an operand read buffer while others are resolved more 
efficiently with compiler transformations. The compiler-assisted 
scheme presented consists of hardware that is less complex than 
shadow files, history files, history buffers, or delayed write buff- 
ers, while experimental evaluation indicates performance im- 
provement over compiler-based schemes. 

Index Tenns-Fault-tolerance, error recovery, instruction re- 
try, compilers. 

I. INTRODUCTION 

NSTRUCTION retry is a technique for rapid recovery from I transient faults in a computer system. Multiple instruction 
rollback recovery is particularly appropriate when error detec- 
tion latencies or when error reporting latencies are greater than 
a single instruction cycle. When transient processor errors oc- 
cur, multiple instruction rollback (also referred to as multiple 
instruction retry or simply instruction retry) can be an effective 
alternative to system-level checkpointing and rollback recov- 
ery [ l l ,  [21, [31, [4], [5], [6]. Multiple instruction retry within a 
sliding window of a few instructions [2], [3], [4], [5], or re- 
execution of a few cycles [7], can be implemented in parallel 
with error detection methods for recovery from transient proc- 
essor errors. 

A. Hardware-Based Instruction Rollback 

one of two groups: 
Hardware implemented instruction retry schemes belong to 

1) full checkpointing and 
2) incremental checkpointing. 

Full checkpointing maintains “snapshots” of the required sys- 
tem state space at regular, or predetermined intervals. Upon 
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error detection, the system can be rolled back to the appropri- 
ate checkpointed system state. Incremental checkpointing 
maintains changes to the system state in a “sliding window”. 
Upon error detection the system state is restored by undoing, 
or “backing-out” the system state changes to an instruction 
previous to the one in which the error occurred. 

The issues associated with instruction retry are similar to the 
issues encountered with exception handling in an out-of-order 
instruction execution architecture [8 ] .  If an instruction is to 
write to a register and N is the maximum error detection la- 
tency (or exception latency), two copies of the data must be 
maintained for N cycles. Hardware schemes such as reorder 
buffers, history buffers, future files [9], and micro-rollback [2] 
differ in where the updated and old values reside, circuit 
complexity, processor cycle times, and rollback efficiency. 

Table I gives a description of various hardware-based meth- 
ods to restore the general purpose register file contents during 
single or multiple instruction rollback. In the VAX 8600 and 
VAX 9O00, errors are detected prior to the completion of a 
faulty instruction. For most VAX instructions, updates to the 
system state occur at the end of the instruction. If the error is 
detected prior to updating the system state, the instruction can be 
rolled back and reexecuted. If the system state has changed prior 
to detection of the error, a flag is set to indicate that instruction 
rollback cannot be accomplished. Redundant data storage is not 
required for the VAX 8600 and VAX 9O00. 

The IBM 4341, IBM 3081, IBM patent 4,912,707, IBM 
patent 4,044,337, and history file all require shadow file 
structures to maintain redundant data. This data is used to re- 
store the system state during rollback recovery. Shadow file 
structures can add significant circuit overhead, although the 
level sensitive scan design [14] of the IBM 4341 and IBM 
3081 provides this feature without additional cost over that 
incurred to obtain testability.’ The VAX 8600 and VAX 9000 
schemes avoid shadow files, however, they require an error 
detection latency of only one instruction. 

The micro-rollback scheme also avoids shadow files by us- 
ing a delayed write buffer to prevent old data from being 
overwritten until the error detection latency has expired; ensur- 
ing that the new data is fault-free. In a delayed write scheme, 
the most recent write values are contained in the delayed write 
buffer, and complex bypass and prioritization circuitry is re- 
quired to forward this data on subsequent reads. The perform- 
ance impact introduced by the bypass circuitry is a function of 
the register file size and the maximum rollback distance [2]. 

1 .  The 126 scan rings of the IBM 3081 contains 35,000 bits of data. 
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IBM 4341 [l] 
IBM 3081 [2] 

TABLE I 
HARDWARE-BASED SINGLE AND MULTIPLE INSTRUCTION 

ROLLBACK SCHEMES 

I RollbackScheme I Chedmoii I Rollback I Location of Data I 
5 p e  Distance primary Redundant 
full singleinstr. registerfile shadowfile 
full 102Oinstr. registerfile shadowIYe 

I VAX 8600 131 I full I sindeinstr. I reeisterfile I notrenuired I 
I t F -  I "  .~ .- 

IBM patent 4912,707 [4] I full I variable I register file 1 shadow Me 
IBM patent 4,044,337 [SI I incremental I single instr. I register file I shadow files 
micro-rollback 161 I incremental I variable I write buffer I registex file 
history buffer [71 I incremental I variable I register file I history buffer 

I histon, file 171 I incremental I variable I reeisterfile I shadow file I . .. - 
VAX 9OOO [SI I full I single instr. I registcr file I not required 
IBM WS 9000 [9] I incremental I variable 1 virtualfile I physical file 

The history buffer scheme maintains redundant data in a 
separate push-down array and therefore does not require by- 
pass circuitry [9]. The history buffer does however require an 
extra register file port which complicates the file design and 
can impact performance by increasing file access times. 

In an effort to increase the register file size while maintain- 
ing downward code compatibility relative to the 16 architec- 
tural registers, the IBM E/S 9000 introduced a virtual register 
management (VRM) system [15]. The VRh4 circuitry dynami- 
cally maps the 16 architectural registers into 32 physical regis- 
ters. When the data in a physical register becomes obsolete, 
the physical register is released for reassignment as a new vir- 
tual register. Although the VRM system was primarily in- 
tended to reduce register pressure and therefore improve sys- 
tem performance, it has been extended to provide data redun- 
dancy to assist in rollback recovery. In the VRM extension, 
remapping of a physical register to a new virtual register is 
postponed until the error detection latency has been exceeded 
for the data contained in the physical register. 

B. Compiler-Based Instruction Rollback 
Compiler-based approaches to multiple instruction rollback 

recovery have also been developed [3], [4]. Compiler-based 
MIR uses data-flow manipulations to remove data hazards that 
result from multiple instruction rollback. Rollback data haz- 
ards (or just hazards) are identified by antidependencies* of 
length I N ,  where N represents the maximum rollback dis- 
tance. Antidependencies are removed at three levels: 

1)pseudo-code level, or the code level prior to variables 

2) machine-code level, or the code level in which variables 

3) post-pass level, that represents assembler-level code 

Compiler-based multiple instruction rollback reduces the re- 
quirement for data redundancy logic present in hardware-based 
instruction rollback approaches. 

C. Compiler-Assisted Instruction Rollback 
Compiler-based multiple instruction rollback resolves all 

data hazards using compiler transformations. This paper de- 
scribes a compiler-assisted instruction rollback scheme that 

being assigned to physical registers, 

are assigned to physical registers, and 

emitted by the compiler. 

2. For a complete presentation of data-flow properties and manipulation 
methods, see Aho et al. 1161. 

uses dedicated data redundancy hardware to resolve one type 
of rollback data hazard while relying on compiler assistance to 
resolve the remaining hazards. Experimental results indicate 
that by exploiting the unique characteristics of differing hazard 
types, the new compiler-assisted MIR design can achieve su- 
perior performance to either a hardware-only or compiler-only 
instruction rollback scheme. 

11. ERROR MODEL AND HAZARD CLASSIFICATION 

A. Rollback Data Hazard Model 

ror model: 
The following four assumptions are used in the general er- 

1) the maximum error detection latency is N instructions, 
2) memory and I/O have delayed write buffers and can roll- 

back N cycles, 
3)the states of the program counter and program status 

word (PSW) are preserved by an external recording de- 
vice or by shadow registers [2], and 

4) the processor state can be restored by loading the correct 
contents of the register file, program counter, and PSW. 

Given the above assumptions, any error which does not 
manifest itself as an illegal path in the control-flow graph 
(CFG) of the program is allowed provided that the following 
two conditions are satisfied: 

1) register file contents do not spontaneously change, and 
2) data can not be written to an incorrect register location. 

There are four targeted transient error types: 
1) processor errors such as those caused by an ALU failure, 
2) incorrect values read from YO, memory, the register file, 

or external functional units such as the floating point unit, 
3) correcthncorrect values read from incorrect locations 

within the YO, memory, or register file, and 
4) incorrect branch decisions resulting from error types 1,2, 

or 3. 

B. Hazard Classification 
The executable code can be represented as a CFG G(V, E), 

where V is the set of nodes denoting instructions and E is the 
set of edges denoting control-flow. If there is a direct control- 
flow from instruction i ,  denoted Zi, to Zj, where Zi E V and 
4 E V, then there is an edge (Ii. 4) E E. Let d,,,& 4) denote 
the smallest number of instructions along any path from Zi to Zj. 

The hazard set Hregs of the error model is defined as the set 
of pseudo registers (or machine registers) whose values are 
inconsistent during different executions of an instruction se- 
quence due to retry. Two properties3 are used to classify roll- 
back data hazards given the error model of Section 1I.A. 
PROPERTY 1. Hazard register x is an element of Hregs zff there 

exists a sequence of instructions Zl, Z2, ..., ZN which form a 
legal walk4 in G such that x is live at Zl, and x is defined 
during the walk. 

3. A formal treatment of these properties, along with proofs, can be found 

4. A walk is a sequence of edge traversals in a graph where the edges vis- 
in [17]. 

ited can be repeated [ 1 81. 
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PROPERTY 2. Hazards can be classified as one of two types: 
1) those that appear as antidependencies of length I N in 
C(V, E), referred to as on-path hazards, and 2) those that 
appear at branch boundaries, referred to as branch hazards. 
These two hazard types may overlap. 
An on-path or branch data hazard occurs when Zi defines 

variable x, and after rollback, 4 uses the corrupted x value 
prior to its redefinition. Fig. 1 shows an error occurring prior 
to a branch instruction with error detection occurring after the 

before. It is assumed that the read buffer is an integral part of 
the register file and any error in the system does not corrupt 
the transfer to the read buffer or its contents. 

definition of variable x in Zi. Rollback then occurs with the 
program sequence beginning above the branch. 

0 .................... 
0 
o r  .... 

f+==ll *\ 

0 0 
0 

f 
0 .  

error detected +X......--*’ 
0 

Fig. 1.On-path and branch hazards. 

If the post-rollback path is the same as the original path, a 
use of variable x will occur in 4 prior to the re-definition of x 
in Ii. This represents an on-path hazard and is denoted as 
&(i, j, x) in Fig. 1. If the post-rollback path is different from 
the original path (e.g., the error caused an incorrect branch 
decision during the original program sequence), a use of vari- 
able x will occur in prior to a re-definition of x. This second 
case represents a branch hazard and is denoted as hb(i, k, x) in 
Fig. 1. 

111. COMPILER-ASSISTED INSTRUCTION ROLLBACK 

As shown in Section 11, rollback data hazards are of two 
types: 1) on-path hazards, and 2) branch hazards. Previous 
work has shown that compiler-driven data-flow manipulations 
can be used to resolve both on-path [3] and branch [4] hazards. 
Compiler-assisted multiple instruction rollback described in 
this section uses hardware to resolve on-path hazards and re- 
lies on compiler assistance to resolve the remaining branch 
hazards. 

A. On-Path Hazard Resolution Using a Read Buffer 
Fig. 2 shows a hardware scheme to resolve on-path hazards. 

Each time a register is used, its value appears on the read port 
and is saved in the read buffer. If a register rk is defined in Zi 
and it is an on-path hazard, then rk must have been read within 
the last N cycles. In this case, the read buffer will contain the 
old value and it is permissible to write the new value into the 
register file. In the event of a rollback of N instructions, the 
contents of the read buffer are flushed in reverse order and 
stored back to the register file. For an on-path hazard, the path 
taken after the rollback will be the same as the path taken prior 
to rollback and each read of rk will produce the same value as 

I I  1-1 Register File H 
I - - Read Buffer 

A B  C + 
Fig. 2. Read buffer. 

In contrast to a Write history buffer which forces a read of r-k 
prior to writing rk, the read buffer monitors the register file 
ports and stores only the values read as part of the normal pro- 
gram flow and, therefore, should not significantly impact the 
register file performance or processor cycle time. The read 
buffer is twice the width of a register with a depth of N. This is 
twice the size of a delayed Write buffer, but eliminates the re- 
quirement for complex bypassing and prioritization logic. 

A.1. Covering On-Path Hazards 

In addition to resolving all on-path hazards, the read buffer 
will resolve some branch hazards. Fig. 3 shows an on-path haz- 
ard and a branch hazard both with definitions of x in Zi and uses 
of x, after rollback, in instructions 4 and Zkr respectively. Note 
that if path 1 is initially taken, the read buffer will contain the old 
value of x and rollback would be successful. However if path m 
is taken, the read buffer will not contain the old value of x and 
rollback would be unsuccessful. If only paths such as 1 exist, the 
presence of the on-path hazard assures successful rollback or 
“covers” the branch hazard. In this case, resolution of the branch 
hazard using compiler techniques is not necessary. 

, ; ,I, ......................... : 
3% : 
i ;  
i i  

*...i. 

= X  

. I  

Fig. 3. Covering on-path hazard 
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A.2. Post-Pass Transformation 

Given the efficiency of the read buffer in resolving on-path 
hazards, a post-pass transformation on assembler-level code 
becomes possible as an alternative to nop insertion transfor- 
mations [3]. The post-pass transformation creates on-path haz- 
ards when necessary to assure that all branch hazards are re- 
solved by the read buffer. Given one such branch hazard which 
defines physical register rk at instruction Zi, the transformation 
inserts an MOV rk, rk instruction immediately before Zi. This 
guarantees that all paths leading to Zi are like path 1 in Fig. 3. 

B. Branch Hazard Resolution 
Branch hazards are resolved at three levels: 1) pseudo-level, 

2) machine-level, and 3) post-pass level [4]. Pseudo-level haz- 
ards are removed by variable renaming, for example, renaming 
variable x to y in instruction Zi of Fig. 1. Machine-level branch 
hazards occur when register assignments result in branch haz- 
ards that were not present at the pseudo-level. Machine-level 
hazards are resolved by adding hazard constraints to live range 
constraints prior to register assignment. Branch hazards which 
remain after pseudo-level and machine-level transformations 
are resolved at the post-pass level with read insertions as de- 
scribed in Section III.A.2. 

The primary pseudo-level renaming transformation for the 
removal of branch hazards, involves node splitting [4]. This 
section presents a one-pass node splitting algorithm which 
results in marginally reduced code growths and dramatically 
reduced compile-times relative to previous node splitting 
algorithms. 

Figs. 4a and 4b show a typical data dependence (requiring 
node splitting) and the node splitting technique, respectively. 
In Fig. 4a, renaming x in Zi to y will ultimately require the re- 
naming of the use register x in 4 to y since multiple definitions 
of x reach Z,. To break this dependence, the following node 
splitting criterion is used: If multiple definitions of x reach 
and x is in the live-in set of 4, Zk will be split into two identical 
nodes. This "unzipping" is shown in Fig. 4b. Loop protection 
assures that no loop header is split [3]. 

split 
these 

(a) 

Fig. 4. Node splitting. 

B.Z. Iterative Node Splitting 
Node splitting breaks equivalence relationships which 

would prevent pseudo register renaming [3], [16]. When two 
definitions of a hazard variable reach a node in which the haz- 
ard variable is live, the node is split. Node splitting to resolve 
one hazard variable often resolves other unrelated hazard vari- 
ables. This implies that the hazard set should be recalculated 
after splitting is performed for each hazard variable. Previous 
node splitting algorithms use this iterative algorithm to avoid 
unnecessary node splitting [3]. 

Fig. 5 demonstrates the effect of the iterative node splitting 
algorithm on an example subgraph. Node splitting relative to 
hazard variable x ensures that the definition of x in node n1 and 
the definition of x in node n2 do not both reach the same use of 
x in node n5. Node splitting relative to y ensures that the defi- 
nition of y in node n3 and the definition of y in node n4 do not 
both reach the same use of y in node n6. 

U q l i l  sub& Split delatin to variables 

"I -2 

U U u u  x x 
Split relative to variabley OptimaUy rplil subgraph 

4 

Fig. 5. Iterative node splitting relative to hazard variables x and y. 

Fig. 5 also shows an optimal subgraph which resolves both 
hazards with less splitting than produced by the iterative al- 
gorithm, indicating that excessive node splitting is possible 
with the iterative algorithm. 

B.2. Node Splitting Using Graph Coloring 

To reduce splitting, a node splitting algorithm is developed 
using the concept of conflicting parents [17]. Ensuring that 
node n does not have conflicting parents enables resolution of 
the hazard using variable renaming. The node splitting strategy 
for a particular node is to group the parents of that node such 
that elements within a group do not conflict. Each group be- 
comes parent nodes for a duplicate of the original node. For 
example, if node n has six parent nodes and these nodes can be 
organized into three nonconflicting groups, then only three 
total copies of n are required. 
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Fig. 6 illustrates the use of conflicting parents and graph 
coloring in node splitting for the QSORT application de- 
scribed in Table I11 of Section 1V.A. Node splitting is per- 
formed on pseudo-level code, which for this example is repre- 
sented by Lcode from the IMPACT C compiler [19]. Fig. 6 
shows node 48 from the QSORT application. Node 48 has six 
parent nodes prior to splitting. These nodes can be arranged in 
a parent conflict graph, where each arc of the graph represents 
two nodes that conflict. Establishing groups can be achieved 
by finding the minimum coloring of the parent conflict graph, 
i.e., coloring the nodes such that no two nodes connected by an 
arc have the same color. For the example shown in Fig. 6, 
three colors are sufficient to color the parent conflict graph, 
resulting in the splitting of node 48 into nodes 48,48’ and 48”. 
The graph coloring heuristic used for our one-pass node split- 
ting algorithm is a modified version of an algorithm used for 
register allocation [16]. 

Node 48 before splitting 

Parent conflict graph 

Node 48.48’, and 48” aftex splitting 

Fig. 6. Node splitting using graph coloring for QSORT. 

B.3. One-Pass Node Splitting Algorithm 

Both live-in(n) and reaching-out(n) [16] analyses are re- 
quired to identify conflicting parent nodes. A one-pass node 
splitting algorithm becomes possible by precalculating live-in 
and the hazard node set, and then, beginning with the root node, 
splitting in a topological traversal of the CFG. A topological 
traversal ensures that when processing node n, all ancestors of n 
have been processed and no descendants of n have been proc- 
essed. This latter case ensures that the presplit calculation of 
live-in(n) can be used for parent conflict identification when 
processing a given node. Unlike live-infn), reaching-out@) is 
affected by the splitting of ancestor nodes. Since reach- 
ing-out(n) is based solely on node n and its ancestors, reach- 
ing-out(n) can be calculated as node splitting proceeds. If a haz- 
ard node is split, each duplicate of the node must be added to the 
hazard node set. Since the root node does not have conflicting 
parents, a topological traversal of the CFG using the graph color- 
ing node splitting technique ensures that no node in the resulting 
graph has conflicting parents. 

Table I1 illustrates the improvement of the one-pass node 
splitting algorithm over the iterative algorithm for the COM- 
PRESS application described in Table I11 of Section W.A. The 
COMPRESS application was compiled on a SPARCserver 490 

using the IMPACT C compiler [ 191 with a rollback distance of 
10. Node count values represent pseudo instructions (Lcode) 
created by the IMPACT C cofrpiler before and after splitting. 
Seven of the 14 COMPRESS functions which required split- 
ting are listed. Algorithm run times represent the overall 
compile times given each of the two node splitting algorithms. 

Table II shows a marginal overall code growth reduction for 
the one-pass algorithm. Although one function demonstrated a 
significant code growth reduction (6.7% compared to 75.6%), 
the function is small and has minimal effect on the overall code 
size. The improvement in compile-time of the one-pass algo- 
rithm is more dramatic, resulting in a speedup factor of 30.2. 

TABLE I1 
NODE S P L ~ I N G  COMPARISONS FOR COMPRESS 

Iterative Algorithm run time = 614.0 seconds 
One-pass Algorithm run time = 20.3 seconds 
Speedup = 30.2 

C. Performance Enhancement Through Profiling 
C. 1. Post-Pass Transformation Versus Loop Protection 

Some hazards remain after compilation and must be re- 
moved using a post-pass transformation. Previous post-pass 
transformations used nop insertions to increase all antide- 
pendency distances to > N [3]. Since nop insertion can be 
costly to performance, previous compiler transformations re- 
moved all resolvable hazards, leaving only unresolvable haz- 
ards to be removed by the post-pass transformation. 

0 *+...... r ....... .. ............... ... 
0 

&-rollback f - - i Z l  1 

0 

, read 
insertion 

Fig. 7. Post-pass hazard removal using read insertion. 

In Section III.A.2, an alternative post-pass transformation 
was introduced in which nop insertion was replaced by read 
insertions as the primary hazard removal technique. As illus- 
trated in Fig. 7, up to two branch hazards can be removed by a 
single read instruction. Figs. 12 and 14 of Section 1V.B show 
performance overhead comparisons between compiler-driven 
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data-flow manipulations and the post-pass transformation for 
the PUZZLE and TBL applications described in Table I11 of 
Section 1V.A. Comp/PP indicates that hazards are resolved by 
the compiler where possible, while the remaining hazards are 
resolved at the post-pass level. PP (post-pass) indicates that 
compiler transformations have been disabled and that all haz- 
ards are removed at the post-pass phase. 

For the PUZZLE application, compiler transformations pro- 
duce better performance than the post-pass transformation 
alone. For the TBL application, using the post-pass transfor- 
mation to remove all hazards produces slightly better perform- 
ance than the combination of compiler and post-pass transfor- 
mations. Hazard elimination via read insertion introduces a 
guaranteed but small performance impact due to the longer 
instruction path length. As demonstrated by the PUZZLE ap- 
plication, pseudo register renaming can eliminate hazards 
without impacting performance when loop protection is infre- 
quent. The savehestore operations of loop protection can re- 
sult in more performance impact than read insertion when loop 
protection is frequent, as demonstrated by results for the TBL 
application. 

Fig. 8 illustrates the potential effect on performance given 
the following two types of hazard removal: 

1) hazard removal using register renaming that results in 

2) hazard removal using read insertion. 
loop protection, and 

If the protected loop of Fig. 8 is executed 20 times and the 
hazard instruction is executed two times, loop protection 
would require the execution of 40 additional instructions, 
where read insertion would require the execution of only two 
additional instructions. If the loop and hazard instruction exe- 
cution frequencies were reversed, then read insertion would 
produce more performance impact than loop protection. As 
shown in Fig. 8, profiling data can be used to aid in loop pro- 
tection decisions. 

LOopPmtection Read Insmion 

I .*. ....... ....-. 11.... . 
rollback . .. r,desd ..... ...... 1"" ........-.. c??; 

0 ........... " ................. ................ "I..._ 

1 I :  . 

I 
Fig. 8. Loop protection versus read insertion. 

C.2. Profiling Effectiveness 
Profile data was included in the pseudo-level transforma- 

tions of Section 1II.B. The profile data is comprised of both 
dynamic profile sampling and static prediction. The static 
prediction is used as a supplement for areas of the application 
code that are not executed during profile sampling. For static 
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profiling, a loop is assumed to iterate ten times. Inner loops, 
therefore, iterate multiples of 10 times depending on the depth 
of loop nesting. All loop header nodes and hazard nodes are 
assigned weights based on the profile data. 

Protection of loop 1 due to hazard node nh is required based on 
the following condition: if nkweight > 3*(hdr_node(l)-weight), 
then protect loop 1. The constant 3 adjusts the weights to ac- 
count for both direct and indirect loop protection costs. Direct 
loop protection costs result from the savehestore instruction 
pair shown in Fig. 8. Indirect loop protection costs result from: 

l )an  increased number of hazards which in turn required 
more node splitting and more loop protection, and 

2) increased register usage due to the savehestore instruc- 
tions which can result in additional register spills. 

Fig. 9 shows the run-time overhead for the TBL application 
with rollback distances from 1 to 10. ProfPP indicates that 
profiling data was used in loop protection decisions. 

-2 4 i I 2  3 4 5 6 7 8 9 10 

Rollback Distance 

Fig. 9. TBL profile data used for loop protection decisions. 

The results show that the use of profile data can improve 
application performance by postponing some hazard resolu- 
tions until the post-pass phase. Using profile data to aid in 
loop protection decisions did not produce performance equal 
to that for the post-pass transformation, for the TBL applica- 
tion. As an extension to this work, profile data can be used to 
aid in register allocation. As discussed in Section III.B, haz- 
ards that are present after pseudo register renaming are re- 
solved by adding hazard constraints to live range constraints 
prior to register allocation. These additional constraints can 
cause increased register spillage and impact performance. 
Similar techniques to those developed for loop protection can 
be used to enhance register allocation decisions. 

IV. PERFORMANCE EVALUATION 

A. Implementation and Application Programs 
The hazard removal algorithms have been implemented in 

the MIPS processor code generator of the IMPACT C com- 
piler [ 191. Transformations resolving pseudo register hazards 
(loop protection, node splitting, and loop expansion) are in- 
voked just before register allocation. Transformations resolv- 
ing machine register hazards are invoked after the live range 
constraints have been generated and before physical register 
allocation. The nop insertion algorithm, or post-pass algo- 
rithm, is called before the assembly code output routine. 

Table 111 lists the eleven application programs used in the 
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evaluations. The applications were cross-compiled on a 
SPARCserver 490 and then the compiled program was run on 
a DECstation 3100. Static Size is the number of assembly in- 
structions emitted by the code generator, not including the 
library routines and other fixed overhead. 

TABLE 111 
APPLICATION PROGRAMS 

The results are summarized in Figs. 10 through 14. Each fig- 
ure contains two plots: The first plot shows the percent of run- 
time overhead (Time OH) of the referenced hazard resolution 
scheme, and the second plot shows the percent of code growth 
overhead (Size OH) relative to the base values in Table 111. 

Four hazard resolution techniques were evaluated. Compiler 
I resolves on-path hazards only, using the compiler-driven 
data-flow manipulations. Compiler 2 extends the compiler 
transformations to resolve both on-path and branch hazards. 

PP (post-pass) disables the compiler transformations and 
relies solely on the post-pass transformation presented in Sec- 
tion III.A.2. Comp/PP uses compiler transformations to re- 
solve branch hazards with the techniques described in Sec- 
tion III.B, assumes a read buffer to resolve on-path hazards, 
and uses the post-pass transformation to remove remaining 
branch hazards. Comp/PP represents the compiler-assisted 
multiple instruction rollback scheme. 

Due to the excessive compile times of the previous Compiler 
I and Compiler 2 algorithms for large applications, the evalua- 
tions of these schemes were restricted to applications QUEEN, 
WC, COMPRESS, CMP, PUZZLE, and QSORT. Both 
Comp/PP and PP were evaluated for all 11 applications. 

B. Performance Analysis 
Compiler transformations used for the removal of data haz- 

ards can impact performance in several ways. Loop protection 
inserts savehestore operations at the head and tail of the loop, 
increasing the path length and, therefore, the run time. Addi- 
tional arcs in the dependency graph can cause more spill code 
to be generated, increasing memory references and cache 
misses. Nop insertion can be costly since up to N nops could 
be inserted for each unresolved hazard. The insertion of MOV 
rk, rk instructions to create covering on-path hazards in the 
post-pass transformation also increases path lengths, although 
typically less than with nop insertions. Finally, the increase in 
code size, mainly due to loop expansion, may cause more 
run-time cache misses. The performance numbers shown in 
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Fig. 10. Run-time and code size overhead for QUEEN. 
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Fig. 11. Run-time and code size overhead for WC, COMPRESS, and CMP. 

Figs. 10 through 14 are for execution of the eleven application 
programs on a DECstation 3 100 after they have been compiled 
with the transforms described. 

C. Results: Compiler 2 
As can be seen in Figs. 10 through 12, extending the com- 

piler hazard resolution scheme to include branch hazards in- 
troduces little incremental performance impact or code growth 
overhead. Given a rollback distance of 10, resolving both on- 
path and branch hazards using compiler transformations re- 
sulted in a maximum performance impact of 35.4% and an 
average performance impact of 15.4%. This compares with 
maximum and average impacts of 32.6% and 12.6%, respec- 
tively, for compiler-driven on-path hazard resolution only. The 
maximum code size overhead measured for the extended 
compiler-based technique was 372% with an average overhead 
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Fig. 12. Run-time and code size overhead for PUZZLE, QSORT, and GREP. 

of 225%, for a rollback distance of 10. This compares with a 
maximum and average overhead of 328% and 207%, respec- 
tively, for the unextended compiler-based scheme. 

These results indicate a small incremental run-time per- 
formance overhead and a small code size overhead given 
compiler-based branch hazard removal compared to compiler- 
based on-path hazard removal alone. Three factors account for 
these small incremental impacts. First, on-path hazards domi- 
nate in frequency of occurrence. Second, resolving an on-path 
hazard at instruction Zi through renaming can sometimes re- 
solve a branch hazard at instruction Zi. Third, resolving on-path 
hazards with nop insertion may resolve a corresponding 
branch hazard by increasing the distance between the hazard 
node and its nearest predecessor branch node. 

D. Results: PP 
Figs. 10 through 14 show the run-time and code size over- 

heads for each application studied using the read buffer to re- 
solve on-path hazards and the post-pass transformation de- 
scribed in Section 111 to cover all branch hazards. The results 
are worst case in that many of the branch hazards could have 
been resolved with no performance impact using the compiler 
techniques; instead, they are resolved by the insertion of MOV 
instructions which cause a guaranteed, although small, per- 
formance impact. Given a rollback distance of 10, the post- 
pass transformation produced a maximum performance impact 
of 7.7% with an average performance impact of 2.4%, signifi- 
cantly below the levels produced by the compiler-based 
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Fig. 13. Run-time and code size overhead for LEX, YACC, and CCCP. 
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Fig. 14. Run-time and code size overhead for TBL. 

scheme. Code growth overhead measurements were corre- 
spondingly lower with a maximum overhead of 13.0% and an 
average overhead of 8.6%. 

E. Results: Comp/PP 
The compiler-assisted scheme achieved consistently low 

performance overheads across all applications and slightly 
better performance than with the post-pass transformation 
only. Given a rollback distance of 10, the compiler-assisted 
scheme produced a maximum performance impact of 6.6% 
with an average performance impact of 2.0%, and a maximum 
code growth overhead of 5 1.2% with and an average overhead 
of 15.5%. The run time results of PUZZLE, YACC, and CCCP 
indicate that compiler techniques are still useful in reducing 
run-time performance penalties. These compiler techniques, 
however, have the disadvantage of requiring recompilation and 
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additional code growth. The primary advantage of the com- 
piler-assisted and post-pass schemes are their utilization of the 
read buffer to resolve the more frequent on-path hazards. 

V. READ BUFFER SIZE REDUCTION 

A practical lower bound and average size requirement for 
the read buffer are established in this section by modifying the 
design to save only the data required for rollback, The study 
measures the effect on the performance of ten application pro- 
grams using six read buffer configurations with varying read 
buffer sizes. Two alternative configurations are shown to be 
the most efficient. 

Rollback is accomplished with a read buffer by first flush- 
ing the read buffer back to the general purpose register file in 
the reverse order of which the values were saved. Provided 
that the depth of the dual first-in-first-out (FIFO) read buffers 
is N, redundant copies of the appropriate register values are 
available to restore the register file given a rollback of IN. 

The read buffer size requirement of 2N is the worst case. 
The buffer maintains the last N register reads from the register 
file, assuring data redundancy for all values required. The read 
buffer may also save data that is not required during rollback. 
Register reads that must be saved can be determined at com- 
pile time. If this information is added to the instruction encod- 
ing (e.g., as an extra bit field for source 1 and for source 2), 
then the read buffer can be designed to save only those values 
required. As long as the required values are maintained for N 
cycles, a read buffer size of less than 2N is possible. 

Fig. 15 illustrates a case in which all register reads do not 
have to be placed in the read buffer. The register values 
(denoted value(r,)) that require saving are marked with an "*." 
Since only the required values are saved, the read buffer total 
size can now potentially be less than N. In this case, however, 
the instruction count must also be saved so that the value can 
be maintained for at least N cycles. In the event that the read 
buffer overflows, the oldest value in the buffer must be pushed 
to memory and a record kept so that during rollback the value 
can be retrieved from memory. Given a dual FIFO depth of M, 

bus. Configuration A2 allows access to either FIFO from either 
source bus. Configuration B1 contains a single FIFO and as- 
sumes that both source operands can be written into the single 
FIFO within the same cycle. This latter split-cycle-save as- 
sumption is consistent with a register file design that writes 
during the first half of the cycle and reads during the second 
half of the cycle [20] .  Configuration B2 assumes no split- 
cycle-save capability. Configuration C contains a single level 
dual queue to absorb a simultaneous operand save and con- 
figuration D extends this design to allow access to either queue 
from either source bus. 

s1 
S2 

Config. A2 
T- Contig. B 1 

Config. B2 contig. c Config. D 

Fig. 16. Read buffer configurations, 

The read buffer was simulated at the instruction level. The 
s-code emitted by the IMPACT C compiler [19] was instru- 
mented with procedure calls to a simulation program contain- 
ing models for the six read buffer configurations. Branch haz- 
ards were removed by the compiler for a rollback distance of 
10. Parameters such as which operands require saving in the 
read buffer were determined at the post-pass level and instru- 
mentation code segments were adjusted to pass this informa- 
tion to the simulation program. Table I11 lists the ten5 applica- 
tion programs used in the evaluations. The applications were 
cross-compiled on a SPARCserver 490 and run on a DECsta- 
tion 3100 with read buffer sizes ranging from 0 to 20 (note that 
20 represents the maximum read buffer size of 2N). 

B. Evaluation Results 
memory would serve the function of the remaining N - M of 
the two FIFOs. B.1. Detailed Analysis: QUEEN 

Fig. 17 shows changes in performance overhead (Cycles 
OH) for various read buffer sizes and configurations running 
the QUEEN application. Looking at Fig. 17, configuration Al,  
it can be seen that significant performance impact is incurred 
even with a modest reduction in read buffer size. Configura- 
tion A1 was consistently the least efficient of the six alterna- 
tives across the ten applications studied.6 This is due to the fact 
that the dual FIFO's are dedicated to a single source bus. In 
many cases saving S1 will cause an overflow because the S1 
FIFO is full, even though there is room in the S2 FIFO. Con- 
figuration A1 does allow for simultaneous saves of S1 and S2, 
given sufficient room in each, but this feature does not com- 
pensate for the latter inefficiency. Configuration A2 demon- 

5.  The TBL application was not included in the read buffer size evaluation. 
6. ~n efficient configuration is one with a low performance overhead given 

I l I S t N C t h  
mllback4 Sequence 

rollback 2 

Fig. IS. Read buffer of size < 2N. 

A. Read Buffer Designs and Evaluation Methodology 

tion AI, shown in Fig. 16, has a separate FIFO for each source 
six read buffer were studied. 

a small read buffer size. 
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strates the improvement gained by allowing either source bus 
access to either FIFO. Configuration B1 was the most efficient 
of the six configurations for the QUEEN application. In this 
configuration a total read buffer size of 13 would produce zero 
performance impact with a 35% reduction in read buffer size. 

40 

0 
.O 4 8 12 , 16 20 

Read Buffu Size 

Fig. 17. Cycle overhead for QUEEN. 

It should be noted that configuration B 1 assumes that simul- 
taneous saves of S1 and S2 can be handled within the same 
cycle. If this latter assumption is invalid, Fig. 17, configuration 
B2, shows that no less than 9.4% performance impact is 
achieved regardless of the read buffer size. The “leveling off’ 
of B2 is due to the bottleneck at the single FIFO entry point 
and not the depth of the FIFO. The flat part of the curve shows 
the percent of instructions requiring simultaneous saves of S 1 
and S2 in the QUEEN application. 

Fig. 17, configuration C, shows how a single level dual queue 
placed between the source bus and the single FIFO can alleviate 
some of the bottleneck effects. The dual queue can absorb a 
single simultaneous save of S1 and S2, distributing the saves 
over multiple cycles. A nonzero minimum performance over- 
head is still present due to cases in which the dual queue has not 
emptied before the next simultaneous save occurs. 

Fig. 17, configuration D, shows the results of an improved 
queue structure that permits saves from either bus into either 
queue. This configuration avoids stalls in some cases (e.g., S2 
must be saved while the queue dedicated to S2 in configura- 
tion C is full and the other queue is empty). Configuration D 
also has a nonzero minimum performance overhead but gives 
better performance than configuration C. 

The simulation results for QUEEN show that configuration 
A1 is the least efficient and that given the ability to do split- 
cycle-saves, configuration B 1 is the most efficient. Without the 
split-cycle-save capability, configuration D is the best of the 
single FIFO designs resulting in a minimum performance over- 
head of 4.5%, and configuration A2 is the best of the dual FIFO 
designs resulting in a 1.7% performance overhead with a read 
buffer size of 14. For configurations B1, B2, C, and D, a total 
read buffer size of 13 is sufficient to maximize performance? 

B.2. Evaluation of All Application Programs 

Results for the other nine application programs are similar 
to those for QUEEN [17]. The differences between the appli- 
cation results are the points at which the curve “levels off’ 

7. Two must be added to each read buffer size value in C and D to account 
for the queues. 

&e., the buffer size) and, in the case of configurations B2 
through D, at what level the performance overhead stabilizes. 
Table IV summarizes measurements obtained for the ten ap- 
plications given the two most efficient configurations, A2 and 
B1. Configuration comparisons are made at read buffer size 
values that produce low values of performance overhead. 
Configuration A2 does not level off like configuration D and 
does not rapidly approach zero like configuration B1. For a 
better comparison of configurations A2 and B1, Table IV 
gives the read buffer size value where the performance over- 
head value drops below 3%. The read buffer size value is re- 
ferred to as RB-size and the performance overhead value is 
referred to as OH-level. 

TABLE N 
READ BUFFER SIZE EVALUATION SUMMARY 

It can be seen from Table IV that the read buffer size re- 
quirement is roughly the same, per application, regardless of 
the split-cycle-save assumption (i.e., comparing configurations 
A2 and Bl). The size requirement is application dependent- 
from 8 for WC to 15 for QSORT and YACC. The measure- 
ments show that a considerable reduction in read buffer size is 
achievable. Given the split-cycle-save assumption and configu- 
ration B1, a minimum of 25%. a maximum of 60%, and an 
average of 42% reduction was achieved. For configuration A2 
and no split-cycle-save assumption, a minimum of 20%, a 
maximum of 50%, and an average reduction of 38% was 
achieved. The measurements indicate that care should be taken 
relative to the ultimate selection of read buffer size. Given the 
steepness of the B1 curve around the RB-size value, small 
decreases in size can produce large performance overheads. 

In summary, a dual FIFO with source bus access to each 
buffer (configuration A2) and the single FIFO with the split- 
cycle-save capability (configuration B 1) consistently out- 
performed the other four configurations. There were moderate 
variances between the buffer sizes required for minimum per- 
formance impact between the ten applications studied and the 
performance stabilization value assuming no split-cycle-save 
capability. Up to a 55% read buffer size reduction was 
achieved with an average reduction of 39.5% given the most 
efficient read buffer configuration for the applications. Al- 
though significant read buffer size reductions are possible 
without adversely affecting performance, it should be noted 
that such an approach requires an additional data-path to the 
memory unit and more complex recovery logic. 
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VI. CONCLUDING REMARKS 

This paper presented a compiler-assisted multiple instruc- 
tion rollback scheme that combines compiler-driven data-flow 
manipulations with dedicated data redundancy hardware to 
remove data hazards resulting from multiple instruction roll- 
back. Experimental evaluation of the compiler-assisted scheme 
with a maximum rollback distance of ten showed performance 
impacts of no more than 6.6% and an average of 2.0%, over 
the eleven application programs studied. The performance 
evaluation indicates performance penalties that are lower than 
for previous compiler-only approaches and hardware com- 
plexity that is less than previous hardware-only approaches. 
Six read buffer configurations were studied to determine the 
minimum size requirement for general applications. It was 
found that a significant read buffer size reduction is achiev- 
able, but the additional control logic to handle read buffer 
overflows may limit the overall hardware savings. Current 
research includes application of compiler-assisted multiple 
instruction rollback recovery to super-scalar, VLIW, and paral- 
lel processing architectures. Extensions of compiler-assisted 
multiple instruction recovery to speculative execution repair 
are also under development. 
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