
International Journal of Parallel Programming , Vol . 26, No. 4, 1998

Optimization of Machine Descriptions
for Efficient Use

John C. Gyllenhaal,1 Wen-mei W. Hwu,1 and
B. Ramakrishna Rau2

Received December 1997; revised April 1998

A machine description facility allows compiler writers to specify machine execu-
tion constraints to the optimization and scheduling phases of an instruction-
level parallelism (ILP) optimizing compiler. The machine description (MDES)
facility should support quick development and easy maintenance of machine
execution constraint descriptions by compiler writers. However, the facility
should also allow compact representation and efficient usage of the MDES
during compilation. This paper advocates a model that allows compiler writers
to develop the MDES in a high-level language, which is then translated into a
low-level representation for efficient use by the compiler. The discrepancy
between the requirements of the high-level language and the low-level represen-
tation is reconciled with a collection of transformations that derive efficient low-
level representations from the easy-to-understand high-level descriptions. In
order to support these transformations, a novel approach to representing
machine execution constraints has been developed. Detailed and precise descrip-
tions of the execution constraints for the HP PA7100, Intel Pentium, SUN
SuperSPARC, and AMD-K5 processors, as well as two hypothetical wider-issue
processor configurations, are analyzed to show the advantage of using this new
representation. The results show that performing these transformations and
utilizing the new representation allow easy-to-maintain detailed descriptions
written in high-level languages to be efficientlyused by ILP-optimizing compilers.

KEY WORDS: Instruction scheduling; reservation tables; pipeline resource
hazard; machine description; compiler optimization.

417

0885-7458/98/0800-0417$15.00/0 Ñ 1998 Plenum Publishing Corporation

1 Department of Electrical and Computer Engineering, University of Illinois, Urbana-
Champaign, Illinois 61801. E-mail: {gyllen, hwu}@crhc.uiuc.edu.

2 Hewlett Packard Laboratories, 1501 Page Mill Road, Palo Alto, California 94304. E-mail:
rau@hpl.hp.com.

1. INTRODUCTION

Machine descriptions (MDES) have been used to specify execution con-
straints for several high-performance compilers. (1, 2) These machine descrip-
tions are primarily used to drive the instruction scheduler, which uses this
information to avoid resource conflicts and data dependence interlocks.
However, in future compilers more compiler modules will also need to use
MDES information. As compilers push to increase the performance of
processors by exploiting instruction-level parallelism (ILP) , transforma-
tions such as predication and height reduction also need to use execution
constraints to avoid over-subscription of processor resources.3 Currently
most compiler modules, including some schedulers, forgo the use of a
machine description altogether and instead rely on heuristic `̀ knobs’’ and
algorithmic changes to tune for a specific processor. This is due, in part, to
the difficulties involved in providing these modules with access to an
accurate machine description, in a form they can efficiently use.

Since each scheduling decision, and potentially each optimization
decision, (3) for every operation involves checking execution constraints, the
efficiency of such checks can significantly impact the compile time. As a
result, compiler writers have faced the choice between two undesirable
alternatives. One alternative is to sacrifice portability for accuracy. A com-
piler designed for a particular processor often uses an accurate, very low-
level representation of the machine’s description (commonly coded directly
into the compiler) , that must be tediously modified in order to be effective
for subsequent processors. This approach is not desirable in the highly
competitive microprocessor industry, where complex new processors are
being rapidly designed and brought to the market. Timely development of
effective compilers for these new processors is critical to the realization of
their full performance potential.

The other alternative is to sacrifice accuracy in favor of portability.
Compilers designed to support a wide range of processors, such as gcc,
usually describe the machine to their instruction schedulers with easy-to-
modify metrics, such as the function unit mix and operation latencies, but
these metrics can only approximately model the complex execution con-
straints in today’s superscalar processors. Inaccurate modeling of execution
constraints during compilation makes it difficult for the compiler to
properly address run-time issues such as resource conflicts and data
dependence interlocks. As a result, unexpected execution cycles arise during

418 Gyllenhaal, Hwu, and Rau

3 Although this paper will focus on modeling resource constraints, machine descriptions also
contain other important information such as operation latencies, the modeling of bypassing
and forwarding effects, and the mapping of this information to specific operations based on
their opcode and the type of operands expected.

runtime. In processors that exploit high degrees of instruction-level
parallelism (ILP), these extra execution cycles can have a significant effect
on the overall performance. Accurate modeling of execution constraints is
therefore necessary in order to properly utilize these complex processors.

The possibility of using a generic, high-quality scheduler and ILP
optimizer driven by an MDES that can be quickly targeted to a new
processor is attractive. This paper advocates a model which allows writers
to develop an MDES in a high-level language, which is then translated into
a low-level representation for efficient use by the compiler. The high-level
language should be designed to allow the specification of detailed execution
constraints in an easy-to-understand, maintainable, and retargetable man-
ner. The low-level representation should be designed to allow the compiler
to check execution constraints with high efficiency in both space and time.
The discrepancy between the requirements of the high-level language and
the low-level representation should then be reconciled with a collection of
transformations that derive efficient low-level representations from the
easy-to-understand high-level descriptions.

The two-tier model is analogous to using high-level programming
languages now that contemporary compiler technology has eliminated
the benefits of using assembly language for general purpose programs. The
user of a high-level machine description language is not required to be
intimately familiar with modules using the machine description, and does
not need to manually optimize the description for those modules. In fact,
a few of the transformations described in this paper are adapted from the
classical compiler techniques that helped make high-level programming
languages so well accepted. There are, however, important transformations
introduced in this paper that have no direct correspondence in the optimizing
compiler domain. These transformations take advantage of the unique
characteristics of an MDES to increase the efficiency of the resulting low-
level representation.

In addition to describing and evaluating the transformations, a novel
representation of resource constraints for complex processors is presented.
This representation exposes critical information that can be profitably
exploited by both these transformations and the compiler modules. This
approach to representing machine execution constraints is based on the
AND/OR-tree concept used in search algorithms. In order to show the
effectiveness of the new representation and transformations, detailed and
precise descriptions of the execution constraints for the HP PA7100, Intel
Pentium, SUN SuperSPARC, and AMD-K5 processors, as well as two
hypothetical processor configurations (4-issue and 8-issue), are constructed
in a high-level language. The low-level representation of these descriptions
is then generated and used to drive a multi-platform list scheduler. Using

419Optimization of Machine Descriptions for Efficient Use

a scheduler for the concrete evaluation of these transformations allows the
rationale behind and the effect of each transformation to be clearly shown.
Similar benefits should be seen by other compiler modules that can benefit
from using an accurate machine description.

Although a specific high-level machine description language, (4) low-
level representation, (5) multi-platform compiler, (6) and multi-platform list
scheduler(3, 7) are being used to validate these techniques, the aim of
this paper is to show the general applicability of these techniques, not to
proselytize the specific components used. Concepts key to understanding
the examples and results will be briefly explained, but these explanations
will only describe some of the above components’ capabilities, and the
interested reader is referred to the papers and reports that deal directly
with these components.

A description and analysis of a common mechanism used to model
resource constraints, which is used by this paper’s machine descriptions,
follows this section. A new representation of these resource constraints is
introduced in Section 3, and is shown to be well suited for describing
today’s complex processors. An analysis of each MDES, before any trans-
formations are performed, is presented in Section 4. In Section 5, the
importance of adapting common-subexpression elimination, copy propaga-
tion, and dead-code removal to clean up machine descriptions is shown,
as well as how the new representation facilitates these transformations.
Section 6 provides a brief overview of the implications of using bit-vectors
in the low-level representation of resource constraints in order to set the
stage for the Section 7, which describes transformations that make the bit-
vector representations more effective. Section 8 describes and analyzes a set
of transformations which makes checking resource constraints more
efficient. Section 9 summarizes the aggregate effect of all these transforma-
tions, with and without the new representation. Section 10 analyzes the
effect of these transformations, and the new representation, on scheduling
time in a highly-tuned implementation. In Section 11, a brief summary of
related work is presented and is followed by some concluding remarks.

2. MODELING RESOURCE CONSTRAINTS

This paper’s machine descriptions model the processor’s resource con-
straints through the use of a set of reservation tables, (8) an approach used
by several high-performance MDES-driven compilers. (1, 2) In particular,
this paper’s machine descriptions are based on the approach used by the
Cydra 5. (1) Each reservation table specifies a particular way an operation
may use a processor’s resources as that operation executes. For example,
the resources used by the execution of a SuperSPARC’s one-cycle integer

420 Gyllenhaal, Hwu, and Rau

load can be modeled with the six reservation tables (each called a reserva-
tion table option, or simply an option) that are shown in Fig 1. An integer
load must use the SuperSPARC’s only memory unit (M), but may use any
of the three decoders (Decoder) and two register write ports (Wr Pt). The
register read ports for the address generation unit are dedicated and do not
need to be modeled. All option lists are prioritized (option 1 having highest
priority), so for the order shown in this figure, the first available (lowest
numbered) decoder and register write port will be used by the integer load.
The ² Cycle ² column of these tables indicates the usage time, which
indicates when each of these resources is used, relative to some chosen time
point in the processor’s pipeline. For all the examples and machine descrip-
tions used in this paper, the point chosen to be time ² zero ² is the first stage
of the execution pipeline. Therefore resources used during decoder stages
have negative usage times, and resources used after execution completes,
such as result buses and register write ports, have usage times around the
operation’s latency. A resource used at a particular usage time will be
referred to as a resource usage. It should be noted that the resources
modeled often do not represent actual processor resources, but are abstrac-
tions used to model the processor’s scheduling rules. This approach was
used in the construction of the machine descriptions used in this paper.
These machine descriptions were designed to accurately and precisely
model the processor’s scheduling rules, and intuitive resource names were
used solely to enhance the clarity of the machine descriptions.

Many of this paper’s examples are drawn from the SuperSPARC
MDES, so a brief and somewhat simplified overview of the SuperSPARC’s
execution constraints is necessary before continuing. The SuperSPARC (9) is
an in-order superscalar processor that has three full decoders, four integer
register read ports (RP), two integer register write ports, two integer ALU

Fig. 1. The six reservation tables that represent the resources used by the
SuperSPARCs integer load operation.

421Optimization of Machine Descriptions for Efficient Use

(IALU) units, one barrel shifter, one memory unit with a dedicated address
generation unit, one branch unit, and support for one floating-point opera-
tion per cycle. The address generation unit and the floating-point function
units have dedicated register ports which do not need to be modeled, but
it is important to model the usage of the SuperSPARC’s integer register
read and write ports. All of the common integer operations have a one
cycle latency, and the load operations also have a one cycle latency.
However, load and store operations can cause address generation inter-
locks if they are not scheduled properly.

The SuperSPARC’s design also allows the execution of two flow-
dependent IALU operations in the same cycle. The second IALU opera-
tion, which utilizes this feature to execute a cycle early, is referred to as
a cascaded IALU operation. The number of reservation table options
required to model an IALU operation depends on the number of register
source operands that the operation has. A noncascaded IALU operation
with one register source may use any one of the decoders, read ports,
IALU units, and write ports, yielding

1
3
1 2 1

4
1 2 1

2
1 2 1

2
1 2 = 48

distinct combinations of these resource usages. The same non-cascaded
IALU operation with two register sources, requiring two read ports, has

1
3
1 2 1

4
2 2 1

2
1 2 1

2
1 2 = 72

distinct combinations of resource usages. Each of these distinct combina-
tions of resource usages is modeled by a reservation table option. There
is only one IALU available to execute cascaded IALU operations, so
cascaded IALU operations only have half the reservation table options of
noncascaded IALU operations. The appropriate set of reservation table
options is chosen based on an operation’s incoming dependence distances.

A breakdown of the number of reservation table options used to model
the various operations in the SuperSPARC MDES is shown in Table I.
This first column specifies the number of scheduling options. The second
column indicates the percentage of the time that a multi-platform list
scheduler, driven by this MDES and scheduling SuperSPARC SPECint92
assembly code, attempted to schedule an operation with that many options
during prepass scheduling. The last column gives a brief summary of the
types of operation that have that many options. Note that for the Super-
SPARC and the PA7100 MDES, branches are modeled as always using the

422 Gyllenhaal, Hwu, and Rau

Table I. Option Breakdown and Scheduling Characteristics
for the SuperSPARC MDES

No. of % of scheduling
options attempts Operations modeled

1 13.41% Branches and serial ops
3 0.72% Floating-points ops
6 14.37% Load ops

12 4.92% Store ops
24 9.24% Shifts and cascaded IALU ops that use 1 read port
36 3.00% Shifts and cascaded IALU ops that use 2 read ports
48 50.29% IALU ops that use 1 read port
72 4.05% IALU ops that use 2 read ports

last decoder in order to maximize scheduling freedom (since nothing may
issue after a branch on these machines) .

Although all of the reservation table options must be tested in order
to determine that an operation cannot be scheduled, a variable number of
the options need to be tested in order to determine that the operation can
be scheduled. Figure 2 shows the distribution of options actually checked
while scheduling for the SuperSPARC. On average, 2.05 scheduling attempts
were required per operation, so roughly half of the time a scheduling
attempt fails. The 30.05% peak at 48 options checked is primarily due to

Fig. 2. Distribution of options checked during each scheduling attempt using the Super-
SPARC MDES.

423Optimization of Machine Descriptions for Efficient Use

the fact that 58.50% of unsuccessful scheduling attempts were on opera-
tions with 48 options. Overall, 45.52% of the scheduling attempts required
between 24 and 72 options to be checked. The 38.02% peak for one
scheduling option checked is due mainly to scheduling attempts that suc-
ceed with the first option attempted. For successful scheduling attempts,
73.75% succeed with the first option tested, 8.23% tested between 2 and
16 options, 16.71% tested between 17 and 32 options, and 1.31% tested
more than 32 options.

In the following sections, transformations will be presented that make
testing each option nearly as efficient as possible. However, unless the num-
ber of options checked can be reduced, modeling complex machines exactly
will remain expensive in terms of compile time. A new representation,
presented in the next section, can dramatically reduce the number of
options checked in complex machine descriptions.

3. A NEW REPRESENTATION: AND/OR-TREES

The primary reason so many options need to be checked for complex
processor descriptions is that the traditional representation for resource
constraints hides useful information from the compiler. By exposing this
useful information with the new representation presented below, the com-
piler can more efficiently check the resource constraints. This representa-
tion can also inherently reduce the MDES size (Section 4) , facilitate
size-reducing transformations (Section 5), and facilitate transformations to
further optimize for resource conflict detection (Section 8). Before describing
this new representation, a brief review of the traditional representation is in
order.

The traditional representation can be viewed as an OR-Tree, as shown
in Fig. 3a. This figure shows the six reservation table options for the Super-
SPARC integer load (the same options that are shown in Fig. 1). The
options are in priority order (with the highest priority first), and if
the resources for any of the options are available, the operation can be
scheduled. The advantage of this representation is that for OR-trees with a
small number of options, the OR-tree’s resource constraints can be quickly
and efficiently checked. For processors which have execution constraints
that can be modeled with just a few reservation table options, it is difficult
to improve upon the efficiency of this OR-tree representation.

The disadvantage of this OR-tree representation is that it does not
allow an easy or efficient way of using information about why an option
was not available. For example, if Option 1 (the top option) in Fig. 3a is
unavailable because write port 0 (Wr Pt 0) is unavailable, then Options 2
and 3 are also guaranteed to be unavailable. Although an inference engine

424 Gyllenhaal, Hwu, and Rau

Fig. 3. Two methods of modeling the resource constraints of a SuperSPARC
integer load operation: (a) The traditional OR-Tree representation; and (b) The
proposed AND/OR-Tree representation.

could be programmed into the resource constraint check algorithm to
eliminate these options, the overhead would more than negate the benefit.

The solution proposed in this paper is to use a new representation
that is based on the AND/OR-tree concept used in search algorithms.(10)

This new representation is, in essence, an AND-tree of OR-trees, allowing
multiple OR-trees to be used together in order to represent the resource
constraints. An example of this new AND/OR-tree representation is shown
in Fig. 3b. The AND/OR-tree shown specifies the resource requirements for
the SuperSPARC’s integer load as requiring the memory unit(M), one of
the two write ports (Wr Pt), and one of the three decoders. By utilizing the
short-circuit properties of AND and OR, the resource constraint check
algorithm can quickly determine which of the required resources are
available (or if they are not available) , without performing any unnecessary
checks.

The algorithm overhead incurred by using this new representation is
minimal, since it is built upon the OR-tree representation and does not
require any new information from the OR-tree resource constraint checker
(i.e., which option, if any, is available) . In Fig. 3, each of the OR-trees,
which are enclosed in dotted boxes, can have the same internal representa-
tion and may have the same resource constraint checker algorithm applied
to them. The compiler used for this paper’s experiments does so and,
for implementation efficiency, adds an outer loop around the OR-tree’s

425Optimization of Machine Descriptions for Efficient Use

algorithm that processes the array of OR-trees associated with an AND/
OR-tree. Although some additional space is required to represent the
AND-level of the tree, the use of AND/OR-trees can significantly reduce
the size of the resource constraint description in the MDES, as shown in
Section 4.

4. ORIGINAL MDES CHARACTERISTICS

In this paper, detailed and precise descriptions of the execution
constraints for the HP PA7100, Intel Pentium, Sun SuperSPARC, and
AMD-K5, as well as two hypothetical processor configurations (4-issue
and 8-issue), are analyzed to show the rationale behind the transformations
presented in the following sections and the advantages of using the
AND/OR-tree representation. For this analysis, each of these machine
descriptions is used to drive a multi-platform list scheduler, which is then
used to schedule SPECint92 assembly code for that platform. Each plat-
form’s assembly code (between 201011 and 311824 static operations) was
generated using the level of profile-driven inlining, classical optimization,
ILP optimization, and peephole optimization that had been found, through
extensive tuning, to yield the highest possible execution-time performance
for that platform.4 The analysis also focused on prepass scheduling for the
SuperSPARC, PA7100, and the two hypothetical processors, and on post-
pass scheduling for the Pentium and K5. Prepass scheduling was not per-
formed for the X86 processors due to the limited number of registers
available. The SuperSPARC was described in Section 2, and the reservation
table option breakdown of its machine description was shown in Table I.
A brief description of the other processors modeled, and their reservation
table option breakdowns, is in order before analyzing the original charac-
teristics of each MDES.

The PA7100 (11) is an in-order superscalar processor that has two
decoders, and supports executing one floating-point operation in parallel to
an integer or memory operation. The relative order of these two operations
does not matter, so there are two options for most operations, as shown in
Table II. The Pentium (12) is an in-order superscalar X86 processor that has
two execution pipelines. A detailed set of pairing rules is used to specify the
operation combinations that may execute in parallel. Each operation has
one or two reservation table options, as shown in Table III. The K5 (13) is
a four-issue, out-of-order, superscalar X86 processor that the MDES

426 Gyllenhaal, Hwu, and Rau

4 The relative performance level for each platform and benchmark varied, but each bench-
mark’s performance was either close to, or better than, the published peak SPECint92
numbers for that platform.

Table II. Option Breakdown and Scheduling
Characteristics of the PA7100 MDES

No. of % of scheduling
options attempts Operations modeled

1 18.81 % Branch ops
2 81.19 % Ops that can use either decoder

models as an in-order processor that can buffer operations between decode
and execution. This processor converts X86 operations into one or more
Rops (internal RISC operations), which may be dispatched in different
cycles if the required resources are not available. Accurate modeling allows
the scheduler to take advantage of this dynamic behavior, potentially
increasing decoder and execution utilization. The K5’s design allows up to
four X86 operations to be decoded each cycle and up to four Rops to be
dispatched each cycle. It also has up to two execution units available for
each type of Rop. As shown in Table IV, 89.44% of scheduling attempts
are for one-Rop X86 operations that have 16 or 32 reservation table
options. However, up to 768 reservation table options are required to
accurately model a multi-Rop X86 operation, which can be dispatched over
multiple cycles. Failure to model these operations correctly can impact
performance in critical loops.

To clarify the notation in the tables, it should be noted that for both
of the X86 processors, the compiler bundles each branch together with
an appropriate condition-code-setting operation, in order to maximize
scheduling freedom. The reservation tables for these bundled operations
model the resources required by all the operations in the bundle. After
scheduling, these bundled operations are converted back into individual
operations.

The two hypothetical processor configurations, four-issue and eight-
issue, are in-order superscalar processors with the resource constraints
shown in Table V. Both processors execute the same instruction set as the

Table III. Option Breakdown and Scheduling
Characteristics of the Pentium MDES

No. of % of scheduling
options attempts Operations modeled

1 45.42 % Ops that can execute in only 1 pipe
2 54.58 % Ops that can execute in either pipe

427Optimization of Machine Descriptions for Efficient Use

Table IV. Option Breakdown and Scheduling Characteristics
of the K5 MDES

No. of % of scheduling
options attempts Operations modeled

16 14.72% 1 Rop ops with 1 unit choice
24 0.14% 2 Rop ops dispatched in 1 cycle (1 unit choice)
32 74.72% 1 Rop ops with 2 unit choices
48 5.91% 2 Rop bundled cmp+ br dispatched in 1 cycle
64 2.56% 3 Rop bundled cmp+ br dispatched in 1 cycle
96 0.19% 2 Rop ops dispatched in 1 cycle (2 unit choices)

128 0.66% 2 Rop bundled cmp+ br dispatched over 2 cycles
192 0.15% 3 Rop ops dispatched over 2 cycles (subset of)
256 0.37% 2 Rop ops dispatched over 2 cycles (2 unit choices)
384 0.43% 3 Rop bundled cmp+ br dispatched over 2 cycles
768 0.15% 3 Rop ops dispatched over 2 cycles (subset of)

HP PA7100, except that nontrapping load operations have been added.
The machine description used for each configuration was an enhanced and
parameterized version of the PA7100 MDES that models all the resource
constraints shown in Table V. The same highly optimized superblock code,
with more aggressive ILP optimizations applied than was used for the
PA7100, is used to evaluate each configuration’s MDES.

The four-issue processor configuration, which has similar complexity
to several current processors, has the scheduling characteristics shown in
Table VI. The eight-issue processor configuration, with approximately
twice the resources, has the scheduling characteristics shown in Table VII.
The option breakdown is more varied for the eight-issue configuration

Table V. The Two Hypothetical Processor
Configurations Evaluated

Processor configuration

Processor resources Four-issue Eight-issue

Decoders 4 8
Branch units 1 2
Integer ALUs 2 4
Floating-point ALUs 1 2
Memory (load/store) units 2 3
Integer register file read ports 6 12
Integer register file write ports 3 6

428 Gyllenhaal, Hwu, and Rau

Table VI. Option Breakdown and Scheduling Characteristics
for the Four-Issue Processor Configuration

No. of % of scheduling
options attempts Operations modeled

1 2.95% Jumps ops
3 3.23% JSR (function call) ops
4 0.26% Floating-point ALU/multiply/divide/branch ops
6 5.65% Integer conditional branch/hashing jump ops that use 1 read port

15 3.95% Integer conditional branch ops that use 2 read ports
18 0.06% Hashing JSR (address in register)
24 0.38% Integer literal load ops
48 0.09% Floating-point load/store ops that use 1 read port

120 4.41% Integer store, Floating-point load/store ops that use 2 read ports
144 74.30 % Integer ALU/load ops that use 1 read port
360 4.72% Integer ALU/load ops that use 2 read ports

because the number of memory units was only increased by 50% instead
of being doubled. Although the same code was scheduled for both, the
attempt distribution is different because, on average, the eight-issue
processor configuration required fewer scheduling attempts per operation
(especially for IALU operations).

Although it is not necessary for the high-level MDES language to sup-
port AND/OR-trees, AND/OR-trees provide a concise way of specifying

Table VII. Option Breakdown and Scheduling Characteristics
for the Eight-Issue Processor Configuration

No. of % of scheduling
options attempts Operations modeled

2 3.70% Jumps ops
6 4.13% JSR (function call) ops

16 0.32% Floating-point ALU/multiply/divide/branch ops
24 7.22% Integer conditional branch/hashing jump ops that use 1 read port
72 0.07% Hashing JSR (address in register)

132 4.74% Integer conditional branch ops that use 2 read ports
192 0.54% Integer literal load ops
288 0.12% Floating-point load/store ops that use 1 read port

1584 5.50% Integer store, Floating-point load/store ops that use 2 read ports
1728 14.54 % Integer load ops that use 1 read port
2304 54.14 % Integer ALU/load ops that use 1 read port
9504 1.76% Integer load ops that use 2 read ports

12672 3.22% Integer ALU ops that use 2 read ports

429Optimization of Machine Descriptions for Efficient Use

complex resource usages. The machine descriptions used in this paper’s
experiments are written in a high-level MDES language that supports the
specification of both OR-trees and AND/OR-trees. Every MDES, except
the Pentium MDES, uses AND/OR trees extensively. (The Pentium’s
execution constraints do not have the flexibility that benefits from the use
of AND/OR-trees.) In order to generate the OR-tree MDES representa-
tions for this paper’s experiments, each MDES that uses AND/OR-trees
was run through an MDES preprocessor that expanded out each AND/
OR-tree specification into the corresponding OR-tree specification.

The scheduling characteristics for these machine descriptions, before
any transformations are performed, are shown in Table VIII. The second
and third columns indicate how many operations were scheduled, and how
many scheduling attempts were required, on average, before an operation
was successfully scheduled. These two numbers will remain constant
throughout all of the transformations (with either representation) , and the
exact same schedule is produced in each case, since all the execution
constraints described in the machine descriptions are being preserved. It
should be noted that the number of scheduling attempts required per
operation can increase significantly with the use of more advanced scheduling
techniques such as iterative modulo scheduling(14) and operation scheduling,
and with the application of more ILP optimizations to the assembly code.
However, the selected experimental setup closely models current compiler
practices, and the benefit of this paper’s AND/OR-tree representation and
MDES transformations should only increase as more scheduling attempts
are required, since they speed up detection of resource-constraint conflicts.

The fourth and sixth columns of Table VIII show the average number
of reservation table options checked for each scheduling attempt, for the

Table VIII. Original Scheduling Characteristics of the Machine Descriptions
for Each Target Machine

OR-trees AND/OR-trees

Total Avg. sched. Avg. Avg. Avg. Avg. Percent
ops attempts options checks/ options checks/ checks

MDES sched. per op attempt attempt attempt attempt reduced

PA7100 201011 1.94 1.56 1.47 1.45 1.96 20.6%
Pentium 207341 1.47 1.49 3.99 1.49 3.99 0.0%

S-SPARC 282219 2.05 21.48 31.09 4.38 4.83 84.5%
K5 203094 1.62 19.59 35.49 5.20 5.73 83.9%

4-issue 311824 1.98 84.64 174.96 6.28 7.59 95.7%
8-issue 311824 1.40 917.19 2009.54 8.46 10.24 99.5%

430 Gyllenhaal, Hwu, and Rau

OR-tree and AND/OR-tree representations, respectively. The fifth and
seventh columns show the average number of resource checks that were
required for each scheduling attempts. The last column shows that for com-
plex machine descriptions, before any transformations are performed, the
use of the AND/OR-tree representation can reduce the number of resource
checks per reservation table option by up to 99.5%.

The memory required to internally represent the resource constraints
in the compiler used for this paper’s evaluation is shown in Table IX.
Although this internal representation has been extensively tuned to maxi-
mize the performance of the resource constraint checking algorithm, it also
was designed to minimize memory requirements in ways that incur no per-
formance penalty. To this end, the internal representation allows common
information to be shared among AND/OR-trees and OR-trees, but in some
cases a small amount of header information per item is duplicated to
prevent performance degradation. Both the OR-tree and the AND/OR-tree
internal representations have the same number of trees. However, the table
shows that the AND/OR-tree representation, because it does not require
the explicit enumeration of all the resource usage combinations (OR-tree
options), can significantly reduce the memory required (a 99.9 % reduction
for the eight-issue processor configuration). Thus, before any MDES
optimizations, the AND/OR-tree significantly reduces both the internal
representation size and the number of checks required per attempt for com-
plex resource constraint descriptions. This advantage will remain definitive
after both representations are fully optimized.

The sizes shown in this paper for the AND/OR-tree representation
reflect the extra memory required to store the AND level of the tree. In the
Pentium MDES, the AND level always points to one OR-tree, so the
AND/OR-tree representation will always be slightly larger. It should also
be noted that the common information to be shared is entirely specified by

Table IX. Original MDES Memory Requirements

OR-trees AND/OR-trees

No. of Table Size Table Size % Size
MDES Trees options (bytes) options (bytes) reduced

PA7100 15 40 2504 16 1384 44.9%
Pentium 37 34 14824 34 15416 2 4.0 %

S-SPARC 24 333 17120 40 2624 84.7%
K5 33 4424 312640 64 4376 98.6%

4-issue 30 4979 314456 41 2664 99.2%
8-issue 30 146510 9695344 116 4776 99.9%

431Optimization of Machine Descriptions for Efficient Use

the external MDES representation, in order to minimize the time required
to load the MDES into memory. The number of trees and reservation table
options shown in the table reflects only what the writer of the MDES
specified as being shared. It is easy and natural to specify shared informa-
tion in the high-level MDES language used, so most of the common infor-
mation is shared in these machine descriptions. However, common infor-
mation is often not shared in order to make the machine description more
readable or easier to modify. In fact, some of the information in the MDES
may not even be used. The transformations presented in the Section 5 will
deal with these issues.

5. ELIMINATING REDUNDANT OR UNUSED MDES
INFORMATION

Machine descriptions tend to evolve as a processor’s execution con-
straints become more thoroughly understood, as the compiler’s vocabulary
of operations increases, and as these machine descriptions are ported to dif-
ferent or experimental processors in the family. As the machine descriptions
evolve, the amount of redundant and unused information in the MDES
tends to grow because, for an MDES writer, it is typically easier to just
make a local copy of the information to be changed than to do the careful
analysis required to safely modify or delete existing information. In fact,
this was experienced both at Cydrome Inc., with creation and maintenance
the Cydra 5 MDES, and by the authors of this paper’s machine descriptions.

This redundant and unused information can be eliminated from the
MDES by adapting the classical compiler optimizations (common sub-
expression elimination, copy propagation, and dead-code removal) (15) to
the MDES domain. In this paper’s implementation, common sub-expres-
sion elimination and copy propagation were combined into one step that
finds redundant MDES information and points all various references
to that information to only one particular copy, and an adaptation of
dead-code removal eliminates unreferenced information. These techniques
greatly reduced the size required to represent all of the aspects of the
MDES, such as resource constraints, operation latency, and operation
format. Their effect on the resource-constraint description size in particular
is shown in Table X.

It is interesting to note that the AND/OR-tree representation for
the SuperSPARC and K5 machine descriptions benefited more from elimi-
nating redundant information than the OR-tree representation. This is
because the reservation table options in the AND/OR-tree representation
typically specify the resource usages at a finer granularity (less usages per
option) than the OR-tree options, allowing them to be shared more

432 Gyllenhaal, Hwu, and Rau

Table X. MDES Memory Requirements After Eliminating Redundant and
Unused Information

OR-trees AND/OR-trees

No. of Table Size % Size Table Size % Size
MDES trees options (bytes) reduced options (bytes) reduced

PA7100 13 24 1712 31.6% 14 1232 11.0%
Pentium 30 28 10816 27.0% 28 11296 26.7%

S-SPARC 19 277 14752 13.8% 30 1896 127.7 %
K5 27 3704 266032 14.9% 55 3592 17.9%

4-issue 17 3263 211648 32.7% 37 1840 30.9%
8-issue 17 107148 7244960 25.3% 109 4040 15.4%

aggressively. In addition, the OR-trees in an AND/OR-tree tend to be
more general-purpose, allowing entire OR-trees to be shared by several
AND/OR-trees. An example of this second case is shown in Fig. 4, where
the OR-trees for decoder and register write port resource usages are shared
by the SuperSPARC’s integer load AND/OR-tree and the SuperSPARC’s
integer ALU (with two register sources) AND/OR-tree. In this way the
AND/OR-tree representation facilitates further reduction of the MDES
size.

The transformations for removing redundant information can also be
adapted to more MDES specific circumstances, such as removing options
from an OR-tree that can be determined to be impossible to satisfy. An
option can be removed from an OR-tree if its resource usages are identical
to, or a superset of, the resource usages for a higher-priority option, since
the higher-priority option will always be selected if these resources are
available. This case can arise when the use of preprocessor directives

Fig. 4. An example of how the AND/OR-tree representation can facilitate the sharing of
OR-trees.

433Optimization of Machine Descriptions for Efficient Use

Table XI. The Scheduling Characteristics After Removing Unnecessary
Options for Memory Operations

OR-tree AND/OR-tree

Total Avg. sched. Avg. Avg. Average Avg. Percent
ops attempts options checks/ options checks/ checks

MDES sched. per op attempt attempt attempt attempt reduced

PA7100 201011 1.94 1.42 2.32 1.38 1.89 18.5%
4-issue 311824 1.98 80.84 165.78 6.10 7.36 95.7%
8-issue 311824 1.40 874.13 1875.38 8.20 9.87 99.5%

enumerates the various OR-tree options, and it can also arise as a machine
description evolves, which is the case for the PA7100 MDES and the
four-issue and eight-issue processor configurations that were based on the
PA7100 MDES. The PA7100 MDES was derived from the MDES for an
earlier HP PA processor. During the retargeting, two of the reservation
table options for the PA7100’s memory operations became identical, but
the MDES author never realized this since correct output was still
generated. The effect this has on the PA7100’s, four-issue’s, and eight-
issue’s scheduling characteristics are shown in Table XI.

6. UTILIZING BIT-VECTOR REPRESENTATIONS

The results presented so far have not taken advantage of the fact that
most resource-constraint checking algorithms, including the one used in
this paper, use bit-vectors(16, 17, 18) to keep track of the resources used each
cycle in what is referred to as a resource usage map (RU map). This design
allows the RU map size to be minimized and efficiently initialized, and
allows multiple resource usages to be checked (and reserved) with a single
AND (OR) operation. In addition, using bits in the MDES to represent
multiple resource usages can significantly decrease the MDES size. Although
it is possible to pack more than one cycle’s resource usages into a single
memory word, it is not necessary to do so for the machine descriptions in
this paper. The resource usage time transformation presented in the next
section will reduce the number of checks to almost the minimum of one
resource check per reservation table option.

The incremental effect of packing each cycle’s resource usages into one
memory word is shown in Table XII and Table XIII. Before using bit-
vectors, each resource usage was represented as a cycle/resource pair (one
resource usage per check) . After using bit-vectors, the resource usages were

434 Gyllenhaal, Hwu, and Rau

Table XII. MDES Size Characteristics Before and After a Bit-Vector
Representation is Used (One Cycle/Word)

Memory requirements (in bytes)

OR-tree representation AND/OR-tree representation

MDES Before After Diff. Before After Diff.

PA7100 1712 1408 17.8% 1232 1128 8.4%
Pentium 10816 3224 70.2% 11296 3704 67.2%

S-SPARC 14752 11152 24.4% 1896 1640 13.5%
K5 266032 183280 31.1% 3592 3136 12.7%

4-issue 211648 167440 20.9% 1840 1720 6.5%
8-issue 7244960 5666144 21.8% 4040 3512 13.1%

represented as a cycle/resource-vector pair (multiple resource usages per
check possible, if the usages are in the same cycle) . Although both
representations require two words to represent each pair, the bit-vector
representation typically requires less pairs per table. The Pentium MDES
shows the most benefit, since modeling the Pentium’s resource constraints
required checking several resource usages in every cycle. The other machine
descriptions didn’t benefit as much, since their resource usage did not
always fall within the same cycle. For example, the reservation table
options shown in Fig. 3a do not benefit from packing a cycle’s resource
usage into a single memory word, since there is only one usage per cycle.
However, the resource usage time transformation presented in the next
section will resolve this issue.

Table XIII. Scheduling Characteristics Before and After a Bit-Vector
Representation is Used (One Cycle/Word)

Average checks per scheduling attempt

OR-tree representation AND/OR-tree representation

MDES Before After Diff. Before After Diff.

PA7100 2.32 2.18 6.0% 1.89 1.76 6.9%
Pentium 3.99 2.31 42.1% 3.99 2.31 42.1%

S-SPARC 31.09 26.69 14.2% 4.83 4.62 4.3%
K5 35.49 34.35 3.2% 5.73 5.30 7.5%

4-issue 165.78 135.65 18.2% 7.36 7.25 1.5%
8-issue 1875.38 1515.51 19.2% 9.87 9.74 1.3%

435Optimization of Machine Descriptions for Efficient Use

7. OPTIMIZING FOR BIT-VECTOR REPRESENTATIONS

The use of the actual resource usage times, as in Fig. 3a, can significantly
reduce the effectiveness of using a bit-vector representation that packs one
cycle’s worth of resource usages into a single memory word. We address this
problem by making use of the theory of pipelined, multi-function unit
design.(8, 19) For any ordered pair of reservation table options (A, B) , t is a
forbidden latency (i.e., an operation using reservation table option B cannot
be initiated t cycles after an operation that uses reservation table option A)
if and only if A and B have resource usages for some common resource at
times i and j, respectively, such that i is greater than or equal to j and
i 2 j= t. The set of all forbidden latencies between A and B is termed the
collision vector for the ordered pair (A, B) . A given schedule results in no
resource conflicts if and only if, for every pair of operations, the difference
in their scheduled times never violates the collision vector for the corre-
sponding pair of reservation tables. Note that the actual reservation table
options A and B are not directly important; only the collision vector for
(A, B) is. Consequently, we could substitute any reservation table options A ¢
and B ¢ for A and B, respectively, as long as the collision vector for (A ¢ , B ¢)
is the same as that for (A, B) . Further note that, in computing a forbidden
latency, only the difference between the resource usage times i and j matters,
not their actual values. In particular, we could add a common constant to
both resource usage times without altering the forbidden latency.

With this in mind, the optimization that we use, for each resource, is
to subtract a strategically selected constant from the originally specified
resource usage times for that resource in every reservation table option,
with a view to concentrating resource usages into as few time slots as
possible. The constant may be different for each resource. This optimization
is related to the one used by Eichenberger and Davidson.(20) Although mini-
mization techniques can be used to find those constants that maximize the
benefit, a simple heuristic was found to be highly effective for the forward-
scheduling list scheduler and the processors considered in this paper. The
heuristic is, for each resource, to pick the constant to be the earliest resource
usage time for that resource (across all reservation table options). The result
of this heuristic is to concentrate a far larger number of resource usages
than before at time zero, thereby making the bit-vector approach more
effective. For a backward-scheduling list scheduler, the constants should be
chosen to make the latest usage time to be zero (or some constant). Apply-
ing this transformation to Fig. 3a yields the OR-tree shown in Fig. 5.

In addition to making the bit-vector representation more effective, this
transformation also has a subtle effect on the characteristics of the resource
usage checks that can be taken advantage of. The resource usages that

436 Gyllenhaal, Hwu, and Rau

Fig. 5. The OR-tree modeling the
resource constraints for a SuperSPARC
integer load operation, after transforming
the resource usage times in order to better
utilize the bit-vector representation.

cause most of the resource conflicts now tend to be concentrated at time
zero. The resource usages with times greater than zero are usually conflict
free and are primarily there to delay the execution of later operations. For
example, the non-zero-time divide-unit usages for a divide operation rarely
prevent the operation from being scheduled (if the divide unit is available at
time zero). However, while scheduling the next divide operation, the divide
unit will not be available at time zero until the previous divide completes.
Thus for a forward-scheduling list scheduler, the average number of checks
before a conflict is detected is minimized by sorting the resulting usage
checks so that time zero is checked first. In this manner, the same machine
descriptions can be automatically tuned for other types of schedulers by
adjusting the heuristic for picking the resource usage time shift constants
and for the sorting of the resulting usage checks.

The MDES memory requirements after transforming the resource
usage times are shown in Table XIV. The size of the OR-tree representation

Table XIV. MDES Memory Requirements Before and After Transforming
Resource Usage Times (One Cycle per Word)

Memory requirements (in bytes)

OR-tree representation AND/OR-tree representation

MDES Before After Diff. Before After Diff.

PA7100 1408 1168 17.0% 1128 1032 8.5%
Pentium 3224 3080 4.5% 3704 3560 3.9%

S-SPARC 11152 7016 37.1% 1640 1584 3.4%
K5 183280 125488 31.5% 3136 3096 1.3%

4-issue 167440 94712 43.4% 3512 3432 2.3%
8-issue 5666144 4058000 28.4% 3512 3432 2.3%

437Optimization of Machine Descriptions for Efficient Use

Table XV. Scheduling Characteristics Before and After Transforming
Resource Usage Times and Sorting the Resulting Usages

to Check Time Zero First (One Cycle per Word)

OR-tree representation AND/OR-tree representation

Avg. checks/attempt Avg. checks/attempt
checks/ Checks/

MDES Before After Diff option Before After Diff. option

PA7100 2.18 1.59 37.1% 1.12 1.76 1.55 11.9% 1.12
Pentium 2.31 1.57 32.0% 1.05 2.31 1.57 32.0% 1.05

S-SPARC 26.69 21.59 19.1 % 1.01 4.62 4.49 2.8% 1.03
K5 34.35 19.87 42.2% 1.01 5.30 5.25 0.9% 1.01

4-issue 135.65 81.69 39.8% 1.01 7.25 6.10 15.9% 1.00
8-issue 1515.51 1026.86 32.2% 1.17 9.74 8.40 13.8% 1.02

is reduced up to 43.4% by using this transformation. There is less reduc-
tion for the AND/OR-tree representation since this representation tends to
have fewer resource usages per option. The transformations presented in
the next section do not change the MDES size, so these sizes are the final
MDES sizes after full optimization.

The MDES scheduling characteristics after transforming the resource
usage times and sorting the resulting usages to check time zero first are
shown in Table XV. This transformation reduced the average number of
resource checks per option to between 1.00 and 1.12, which matches or is
close to the ideal case of one check per option. As a result, the average
number of options checked per attempt is what is truly dictating the
number of checks required. Although the AND/OR-tree already has a clear
advantage, the number of options checked is further reduced by the trans-
formations in Section 8.

8. OPTIMIZING AND/OR-TREES FOR RESOURCE CONFLICT
DETECTION

The structure of the AND/OR-tree representation allows additional
transformations to be performed that can increase the chance of detecting
resource conflicts early. The first transformation is to sort the sub OR-trees
in the AND/OR-tree so that the OR-tree most likely to have a resource
conflict (heuristically determined) is checked first. The following heuristic-
based sort criteria were found to produce the most consistent results. The
OR-trees are first sorted by the earliest usage time in each tree, since after

438 Gyllenhaal, Hwu, and Rau

the resource usage time transformation, most conflicts occur at usage time
zero. For OR-trees with the same earliest usage time, sort by the number
of options in each OR-tree, so that OR-tree with the fewest options is
checked first. To break ties at this point, preference is given to the OR-trees
that are shared by the most number of AND/OR-trees, since this gives an
indication of which OR-trees have resources that are heavily used. Finally
the original order specified is used to break any remaining ties. Fig. 6a
shows the OR-tree order originally specified in the MDES (and used for all
previous analysis), and Fig. 6b shows the order after sorting the OR-trees
using the above criteria (only the second criterion applies) .

A second transformation that can be applied is to remove resource
usages that are common to all of the OR-tree options and place them in
an OR-tree with just one option (creating one if necessary). This transfor-
mation works well when a resource common to all options is likely to
cause a resource conflict. By pulling it out, this resource conflict can be
detected earlier. This transformation can also be used to create some simple
AND/OR-trees from OR-tree descriptions. Application of this transforma-
tion can actually increase the number of resource checks required, but the
following application heuristics were found to yield good results. First, if
there is already a one-option OR-tree that has a resource usage with the
same usage time as the common usage, apply the transformation. (With
bit-vectors, this transformation cannot hurt performance.) Also, apply the

Fig. 6. An example of optimizing the order of the OR-trees in an
AND/OR-trees for resource conflict detection. (a) Original order
specified; and (b) After optimizing the order.

439Optimization of Machine Descriptions for Efficient Use

Table XVI. Scheduling Characteristics Before and After Optimizing
AND/OR-Trees for Resource Conflict Detection

AND/OR-tree representations

Options per attempt Checks per attempt

MDES Before After Diff. Before After Diff.

PA7100 1.38 1.38 0.0% 1.55 1.55 0.0%
Pentium 1.49 1.49 0.0% 1.57 1.57 0.0%

S-SPARC 4.38 2.97 32.2% 4.49 3.08 31.4%
K5 5.20 4.32 16.9% 5.25 4.38 16.6%

4-issue 6.10 3.81 37.5% 6.10 3.81 37.5%
8-issue 8.20 6.12 25.4% 8.40 6.31 24.9%

transformation if the common usage is the only usage in the OR-tree with
that usage time (each option in the OR-tree then has one less check, and
in exchange only one check is added). Otherwise, the transformation
should not be applied. In the machines descriptions used in this paper, all
the applications of this transformation occurred due to the first application
rule. After the usage time transformation the second case becomes rare or,
for these descriptions, nonexistent.

The incremental effect of these transformations on the AND/OR-tree
scheduling characteristics is shown in Table XVI. Most of the AND/OR-
trees are reordered so that availability of the function units is checked first
(the most constraining resources), which significantly reduces the average
number of options checked before a resource conflict is detected. The
MDES sizes did not change due to these transformations.

9. AGGREGATE EFFECT OF ALL TRANSFORMATIONS

There are two important machine description aspects that are
optimized by the transformations presented in this paper. The first one is
the amount of memory needed by the compiler to represent the processor’s
resource constraints. Minimizing this size allows more MDES information
to fit within the first-level cache during compilation and also reduces the
overall memory requirements of the compiler. The aggregate effect on
required memory of all the transformations presented in this paper is
shown in Table XVII. When applied to an OR-tree representation, these
transformations reduce representations by as much as a factor of five.

440 Gyllenhaal, Hwu, and Rau

Table XVII. Aggregate Effect of All Transformations on MDES
Resource-Constraint Representation Size

Memory requirements (in bytes)

Fully optimized with bit-vector representation
Unoptimized

MDES OR-trees OR-trees Reduction AND/OR-trees Reduction

PA7100 2504 1168 53.4% 1032 58.8%
Pentium 14824 3080 79.2% 3560 76.0%

S-SPARC 17120 7016 59.0% 1584 90.7%
K5 312640 125488 59.9% 3096 99.0%

4-isue 314456 94712 69.9% 1672 99.5%
8-issue 9695344 4058000 58.1% 3432 99.9%

When these transformations are further combined with the AND/OR-trees,
representations up to 2800 times smaller than the unoptimized OR-tree
representation are produced.5 As the execution constraints for processors
become more flexible, combining these transformations with the AND/OR-
tree representation becomes even more effective.

The second aspect of the machine descriptions to be optimized is the
number of resource checks per scheduling attempt. Minimizing this number
reduces the time required to check resource constraints, making room in
the compiler’s time budget for more advanced scheduling or optimization
techniques. The aggregate effect of all the transformations presented in
this paper on the average number of resource checks required per sched-
uling attempt is shown in Table XVIII. As described in Section 4, these
check-per-attempt statistics were generated using an MDES-driven
multi-platform list scheduler to schedule SPECint92 assembly code for each
platform. When compared to the checks-per-attempt of the unoptimized
OR-tree representation, these transformations reduced the number of
checks required by the OR-tree representation by up to a factor of 2.6.
When these transformations are combined with the AND/OR-trees, the
number of checks were reduced by as much as a factor of 395.1. As was
seen with the MDES-size aspect, combining these transformations with the
AND/OR-tree representation is especially effective at reducing the number
of checks required as the execution constraints become more flexible.

The trend that these tables show is that as the processors become
more powerful and flexible, the AND/OR-tree representation, combined

441Optimization of Machine Descriptions for Efficient Use

5 As described in Section 4, the Pentium MDES does not take advantage of AND/OR-trees.
The size increase is due to representation overhead.

Table XVIII. Aggregate Effect of All Transformations on
MDES Scheduling Characteristics

Average checks per scheduling attempt

Fully optimized with bit-vector representation
Unoptimized

MDES OR-trees OR-trees Reduction AND/OR-trees Reduction

PA7100 2.47 1.59 35.6% 1.55 37.2%
Pentium 3.99 1.57 60.7% 1.57 60.7%

S-SPARC 31.09 21.59 30.6% 3.08 90.1%
K5 35.49 19.87 44.0% 4.38 87.7%

4-isue 174.96 81.69 53.3% 3.81 97.8%
8-issue 2009.54 1026.86 48.9% 6.31 99.7%

with the described transformations, becomes crucial for keeping under con-
trol both the MDES size and the number of checks per scheduling attempt.
We expect the K5 MDES results to be representative of the latest genera-
tion of microprocessors, such as the Intel Pentium II and the HP PA8000.

10. SCHEDULE-TIME BENEFIT

The last section showed that the MDES transformations, combined
with the AND/OR-tree representation, can significantly reduce the number
of resource checks required per scheduling attempt. This section evaluates
the effect on schedule time required by a highly-tuned DHASY list
scheduler implemented within the IMPACT compiler’s schedule-time trans-
formation framework. (3) The time measurements were performed on an
unloaded 180MHz HP PA8000 workstation running HP-UX B.10.20 in
multiuser mode with 384 Mbytes of main memory. The scheduler was com-
piled with the HP C Compiler 10.23.03 using the SPEC base optimization
settings (i.e., +Oall +P) and profiled using the four-issue processor
configuration scheduling SPECint92.

The time measurements were performed with the times() function that
reports both the user and system time used by a processor (which were
added together) with a resolution of 10 milliseconds. To compensate for
the small, but unavoidable, time variations due to modern processor and
operating system design, each measurement was performed 25 times
and the results were sorted. The top and bottom five measurements were
discarded and the remaining 15 measurements were averaged. Unfor-
tunately, the standard deviation of these remaining 15 measurements was

442 Gyllenhaal, Hwu, and Rau

still as high as 0.2 seconds. As a result, the time differences shown for the
PA7100 and the Pentium fall within the noise.

The time required to schedule the code for each processor is shown in
Table XIX. In addition to presenting the total time required for scheduling,
the portion of the scheduling time not spent constructing (or freeing)
the dependence graph is also presented (core scheduling algorithm).
(Dependence graph construction includes a function-level dataflow pass of
live variable analysis.) This table shows that for complex processors, the
total scheduling time is significantly reduced. Excluding dependence graph
construction puts these times into better perspective, showing the effect of
MDES optimizations on the core scheduling algorithm (checking resource
constraints, operation priority calculation, selection and placement of
operations, etc.) . Although the MDES optimization techniques presented
reduced the resource checks by up to a factor of 395, the core scheduling
time is only reduced by up to a factor of 24. This is because, after MDES
optimizations, the time required for resource constraint checking is reduced
to an average of only about 5% of the core scheduling time. Therefore,
after MDES optimizations, the compile-time cost of utilizing a detailed
machine description facility (versus hand-coding the processor execution
constraints into the compiler) is insignificant. However, without MDES
optimizations, describing complex execution constraints would be
significantly less practical.

Another benefit of MDES optimizations is that it enables efficient use
of a new algorithm for applying execution-constraint-sensitive transforma-
tions that increase instruction-level parallelism.(3) Many aggressive ILP

Table XIX. Time Required to List-Schedule All Control Blocks Using the
DHASY Scheduling Heuristic

Time required to schedule all control block (in seconds)

Total Core scheduling algorithm

Unoptimized Optimized Unoptimized Optimized
MDES OR-trees AND/ OR-trees Reduction OR-trees AND / OR-trees Reduction

PA7100 14.6 14.5 1% 1.9 1.8 5%
Pentium 15.2 15.0 1% 1.9 1.7 11%

S-SPARC 30.1 27.9 7% 6.3 4.1 35%
K5 15.9 15.2 4% 2.6 1.9 27%

4-issue 50.1 37.0 26% 18.6 5.5 70%
8-issue 153.6 36.5 76% 122.1 5.0 96%

443Optimization of Machine Descriptions for Efficient Use

transformations must be carefully applied, (3, 21 { 25) because over-application
may cause performance degradation. One way to prevent this degradation
is to perform these transformations during schedule time, so that the effect
of each transformation on the schedule height can be used to judge the
transformation’s benefit. In essence, those transformations that are found to
increase schedule height can then be undone and the remaining transforma-
tions kept. This allows the application of these transformations to be
automatically tuned for the execution constraints of the processor, resulting
in consistently solid performance improvement, even for processors with
severe execution constraints. This paper’s MDES optimizations significantly
reduce the compile-time cost of this approach (due to the repeated invoca-
tion of the core scheduling algorithm). When coupled with the application
technology described in Ref. 3, it was found that a large number of such
transformations can be effectively applied with this application algorithm
with reasonably low compile-time cost. Therefore, the MDES optimizations
described in this paper are one of the key technologies for making MDES-
driven ILP optimization a practical reality.

11. RELATED WORK

Eichenberger and Davidson (20) recently proposed a minimization algo-
rithm which, for each reservation table option, generates an equivalent
reservation table option with a minimum number of resource usages. This
algorithm uses heuristics to avoid exhaustive searches. Although true mini-
mums may not always be found, the results are near optimal. The total
number of resources used to model the processor is also minimized, which
facilitates packing multiple cycles of resource usages into a bit-vector.
This algorithm, combined with a bit-vector representation, was shown to
minimize both the memory required to represent each option and the
number of resource checks per option.

The transformations presented in this paper reduce the number of
resource checks and memory required per option to an equivalent level to
that obtained using the Eichenberger and Davidson algorithm, although a
different and more straightforwardapproach is used. In addition, Eichenberger
and Davidson do not address the problem of reducing the number of
option checks per scheduling attempt. This paper’s transformations, when
combined with the proposed AND/OR-tree representation, simultaneously
optimize the number of options checks per scheduling attempt, the number
of resource checks per option, and the memory required to represent the
processor’s resource constraints.

Proebsting and Fraser, (26) MuÈ ller, (27) and Bala and Rubin(28) have
proposed approaches that use finite-state automata, instead of resource

444 Gyllenhaal, Hwu, and Rau

reservation tables, to determine if an operation may be scheduled without
a resource conflict. These techniques, when compared with the use of
unoptimized reservation tables and representations, have shown significant
reductions in the number of checks per scheduling attempt and in repre-
sentation size. However, the combination of the proposed MDES optimiza-
tions and AND/OR-tree representation appear to mitigate these advantages,
even for complex resource constraints.

In addition, the nature of finite-state automata makes it more difficult,
and potentially more time-consuming, to apply some advanced scheduling
techniques, such as iterative modulo scheduling, (14) which strategically
unschedule operations in order to remove the resource conflicts that are
preventing an operation from being scheduled. This requires the ability to
identify and unschedule the operations that are causing the resource
conflicts. Modulo scheduling also uses a cyclic scheduling model that is
difficult to efficiently implement with finite state automata. Both these
required features can be efficiently implemented in a straightforward
manner with reservation tables (implemented in Ref. 14). In addition,
reservation tables cannot be totally eliminated even if finite-state automata
are used, because analysis of reservation tables in order to calculate
scheduling priorities is an integral part of iterative modulo scheduling.
Utilizing reservation tables for all scheduling algorithms therefore provides
a more consistent and, for several scheduling algorithms, more efficient
method of specifying execution constraints.

12. CONCLUSIONS

This paper advocates a model which allows compiler writers to
develop easy-to-understand, maintainable machine descriptions in a high-
level language, which is then translated into a low-level representation for
efficient use by the compiler. To reconcile the discrepancy between the
requirements of the high-level language and the low-level representation, a
collection of transformations was presented that derives efficient low-level
representations from descriptions written in a high-level MDES language.
In addition, a new resource constraint representation, AND/OR-trees, was
introduced that facilitates the efficient description of complex execution
constraints. Experiments showed that this AND/OR-tree representation,
combined with the proposed transformations, produces small and efficient
low-level representations requiring less than 3.5 k bytes of compiler
memory. This combination was also shown to greatly reduce, by up to a
factor of 395, the number of resource checks per scheduling attempt
required to model complex execution constraints. These results strongly
support the assertion that precise and accurate machine descriptions,

445Optimization of Machine Descriptions for Efficient Use

designed to be easy-to-maintain and written in a high-level language, can
be translated into a low-level representation that can be efficiently used by
an ILP compiler.

ACKNOWLEDGMENTS

The authors would like to thank Rick Hank for the use of the HP-PA
codegenerator and PA7100 machine description, Sabrina Hwu for the use
of the Sparc codegenerator and the SuperSPARC machine description,
Dan Lavery, Dave Gallagher, and Andrew Hsieh for the use of the X86
codegenerator and machine descriptions, and the IMPACT compiler team
in general. The authors would also like to thank Mike Schlansker, Vinod
Kathail, and the rest of the CAR group at HP Labs for valuable insight
and discussion concerning countless machine description issues.

This research has been supported by the National Science Foundation
(NSF) under grant CRR-9629948, Intel Corporation, Advanced Micro
Devices, Hewlett-Packard, SUN Microsystems, NCR, and the National
Aeronautics and Space Administration (NASA) under Contract NASA
NAG 1-613 in cooperation with the Illinois Computer Laboratory for
Aerospace Systems and Software (ICLASS).

REFERENCES

1. J. C. Dehnert and R. A. Towle, Compiling for the Cydra 5, J. Supercomputing , 7:181± 227
(January 1993).

2. P. G. Lowney, S. M. Freudenberger, T. J. Karzes, W. D. Lichtenstein, R. P. Nix, J. S.
O’Donnell, and J. C. Ruttenberg, The multiflow trace scheduling compiler, J. Super-
computing , 7:51± 142 (January 1993) .

3. J. C. Gyllenhaal, An efficient framework for performing execution-constraint-sensitive
transformations that increase instruction-level parallelism, Ph.D. Thesis, Department of
Electrical and Computer Engineering, University of Illinois, Urbana, Illinois (1997).

4. J. C. Gyllenhaal, B. R. Rau, and W. W. Hwu, Hmdes version 2.0 specification, Technical
Report IMPACT-96-3, The IMPACT Research Group, University of Illinois, Urbana,
Illinois (1996).

5. J. C. Gyllenhaal, A machine description language for compilation, Master’s Thesis,
Department of Electrical and Computer Engineering, University of Illinois, Urbana,
Illinois (1994).

6. P. P. Chang, S. A. Mahlke, W. Y. Chen, N. J. Warter, and W. W. Hwu, IMPACT: An
architectural framework for multiple-instruction-issue processors, Proc. 18th Int. Symp .
Computer Archit., pp. 266 ± 275 (June 1991).

7. R. A. Bringmann, Compiler-controlled speculation, Ph.D. Thesis, Department of
Computer Science, University of Illinois, Urbana, Illinois (1995).

8. E. S. Davidson, L. E. Shar, A. T. Thomas, and J. H. Patel, Effective control for pipelined
computers, Spring COMPCON’75 Digests , pp. 181± 184 (February 1975) .

9. G. Blanck and S. Krueger, The superSPARC microprocessor, COMPCON Spring ,
pp. 136 ± 141 (1992).

446 Gyllenhaal, Hwu, and Rau

10. P. H. Winston, Artificial Intelligence, Addison-Wesley, Reading, Massachusetts (1984).
11. T. Asprey, G. S. Averill, E. DeLano, R. Mason, B. Weiner, and J. Yetter, Performance

features of the PA7100 microprocessor, IEEE Micro, pp. 22± 35 (June 1993).
12. Intel, The Pentium Microprocessor , Santa Clara, California (1993).
13. Dave Christie, Developing the AMD-K5 architecture, IEEE Micro, pp. 16± 26 (April

1996).
14. B. R. Rau, Iterative modulo scheduling: An algorithm for software pipelining loops, Proc.

27th Ann. Int. Symp . Microarchit., pp. 63± 74 (November 1994).
15. A. Aho, R. Sethi, and J. Ullman, Compilers: Principles, Techniques , and Tools , Addison-

Wesley, Reading, Massachusetts (1986).
16. R. L. Kleir, A representation for the analysis of microprogram operation, Proc . Seventh

Ann. Workshop Microprogr . (September 1974).
17. D. J. DeWitt, A control-word model for detecting conflicts between microprograms, Proc.

Eighth Ann. Workshop Microprogr. (September 1975).
18. J. A. Fisher, The optimization of horizontal microcode within and beyond basic blocks;

An application of processor scheduling with resources. Ph.D. Thesis, New York Univer-
sity (1979).

19. P. M. Kogge, The Architecture of Pipelined Computers , McGraw-Hill, New York (1991).
20. A. E. Eichenberger and E. S. Davidson, A reduced multipipeline machine description that

preserves scheduling constraints, Proc. Confer . Progr. Lang . Design and Implementation,
pp. 12± 20 (May 1996) .

21. S. A. Mahlke, W. Y. Chen, J. C. Gyllenhaal, W. W. Hwu, P. P. Chang, and T. Kiyohara,
Compiler code transformations for superscalar-based high-performance systems, Proc.
Supercomputing , pp. 808 ± 817 (November 1992).

22. S. A. Mahlke, Exploiting Instruction Level Parallelism in the Presence of Conditional
Branches, Ph.D. Dissertation, Department of Electrical and Computer Engineering,
University of Illinois, Urbana, Illinois (1996) .

23. M. Schlansker, V. Kathail, and S. Anik, Height reduction of control recurrences for ILP
processors, Proc. 27th Int. Symp . Microarchit., pp. 40± 51 (December 1994).

24. W. W. Hwu, R. E. Hank, D. M. Gallagher, S. A. Mahlke, D. M. Lavery, G. E. Haab,
J. C. Gyllenhaal, and D. I. August, Compiler technology for future microprocessors, Proc.
IEEE, 83(12):1625 ± 1640 (December 1995).

25. D. M. Gallagher, W. Y. Chen, S. A. Mahlke, J. C. Gyllenhaal, and W. W. Hwu, Dynamic
memory disambiguation using the memory conflict buffer, Proc. Sixth Int. Conf . Archit.
Support Progr. Lang . Oper. Syst ., pp. 183 ± 193 (October 1994).

26. T. A. Proebsting and C. W. Fraser, Detecting pipeline structural hazards quickly,
21st Ann. ACM SIGPLAN-SIGACT Symp . Principles of Progr . Lang ., pp. 280± 286
(January 1994).

27. T. MuÈ ller, Employing finite automata for resource scheduling, Proc. 26th Ann. Int. Symp .
Microarchit., pp. 12± 20 (December 1993).

28. V. Bala and N. Rubin, Efficient instruction scheduling using finite state automata, Int.
J. Parallel Progr ., pp. 53± 82 (April 1997).

447Optimization of Machine Descriptions for Efficient Use

