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ABSTRACT
As a basic building block of many applications, sorting algo-
rithms that efficiently run on modern machines are key for
the performance of these applications. With the recent shift
to using GPUs for general purpose compuing, researches
have proposed several sorting algorithms for single-GPU sys-
tems. However, some workstations and HPC systems have
multiple GPUs, and applications running on them are de-
signed to use all available GPUs in the system.

In this paper we present a high performance multi-GPU
merge sort algorithm that solves the problem of sorting data
distributed across several GPUs. Our merge sort algorithm
first sorts the data on each GPU using an existing single-
GPU sorting algorithm. Then, a series of merge steps pro-
duce a globally sorted array distributed across all the GPUs
in the system. This merge phase is enabled by a novel pivot
selection algorithm that ensures that merge steps always dis-
tribute data evenly among all GPUs. We also present the
implementation of our sorting algorithm in CUDA, as well
as a novel inter-GPU communication technique that enables
this pivot selection algorithm. Experimental results show
that an efficient implementation of our algorithm achieves
a speed up of 1.9x when running on two GPUs and 3.3x
when running on four GPUs, compared to sorting on a sin-
gle GPU. At the same time, it is able to sort two and four
times more records, compared to sorting on one GPU.
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1. INTRODUCTION
Sorting is a key building block in many High Performance

Computing (HPC) applications. Examples of these are N-
body simulations [1], some high performance sparse ma-
trix-vector multiplication implementations [2], graphics al-
gorithms like Bounding Volume Hierarchy (BVH) construc-
tion [3], database operations [4], machine learning algorithms
[5] and MapReduce framework implementations [6, 7].

A common trend in computing today is the utilization
of Graphical Processing Units (GPUs) that efficiently exe-
cute codes rich in data parallelism, to form high performance
heterogeneous systems [8]. In these CPU/GPU systems, ap-
plication phases rich in data parallelism are executed in the
GPU, while the remaining portions of the application are ex-
ecuted on the CPU. However, depending on the phase of the
application, this pattern requires moving the data back and
forth between the CPU and the GPU, introducing overheads
(in both execution time and power consumption) that can
void the benefit of using GPUs. To avoid these overheads in
GPU accelerated applications that use sorting, several sort-
ing algorithms that execute in the GPU have already been
proposed, including [9, 10, 11, 12, 13]. Most of the existing
GPU sorting algorithms only support single-GPU systems.
This limitation might be unacceptable in applications that
make use of several GPUs for a number of reasons. It would
lead to underutilization of the available resources, increased
overhead of moving the data to one GPU to be sorted and,
since data structures might be distributed across the mem-
ory of all GPUs in the node, their total size can exceed
the memory capacity of a single GPU. To the best of our
knowledge, only the algorithms presented in [9, 14, 15] allow
using more than one GPU, but these algorithms are either
designed for external (out-of-core) sorting or have limita-
tions.

In this paper we present an efficient multi-GPU internal
(in-core) merge based sorting algorithm that allows sorting
data structures already distributed across the memories of
several GPUs, including very large structures that could not
fit in a single GPU and runs on any number of GPUs con-
nected to the same compute node. We do not target cluster
level sorting, although our sorting algorithm could be used
as a node level sort operation when building a cluster level
sort. It consists of two phases: a first phase which performs
a local sort in each GPU, resulting in “per GPU” sorted
data, and a second phase which performs a series of merges
over ordered data from different GPUs. We designed the
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merge step to be able to cope with the distributed nature
of a multi-GPU system, utilize the memory perfectly and
keep the system in complete load balance. This is achieved
by splitting the arrays to be merged in two parts in such a
way that exchanging exactly the same number of elements
between them as two contiguous chunks of memory would
results in the data that can be merged by each GPU to ob-
tain the globally sorted array. Here we introduce a novel
pivot selection algorithm that guarantees these properties.

This paper also presents the CUDA implementation of
our proposed multi-GPU merge sort algorithm. Our imple-
mentation uses peer-to-peer (P2P) GPU access, introduced
in CUDA 4.0, to enable efficient inter-GPU communication,
which is key to accomplish a high performance merge step.
However, P2P GPU access is only available for GPUs con-
nected to the same PCI express (PCIe) controller. To enable
low-overhead inter-GPU communication across GPUs con-
nected to different PCIe controllers, we introduce a novel
inter-GPU communication technique based on the host ma-
pped memory mechanism [16].

The combination of the algorithm and the communication
mechanisms (P2P GPU accesses and our inter-GPU commu-
nication technique) allows us to accomplish a scalable CUDA
implementation of multi-GPU sorting that scales up to 1.9x
when sorting on two GPUs, and up to 3.3x when sorting on
four GPUs, compared to the single-GPU sorting. Further-
more, implementing a fundamental algorithm such is sorting
for a multi-GPU system allows us to evaluate this emerging
platform and the mechanisms it offers.

The paper is organized as follows: Section 2 presents the
necessary background material on sorting algorithms and
the base system we assume in this paper; Section 3 provides
an overview of the algorithm, while Section 4 goes through
all those insights that actually provide an efficient imple-
mentation; Section 5 discusses the experimental evaluation
of the proposed solution; Section 6 presents all the relevant
work related to sorting on GPUs; finally, Section 7 draws
the final conclusions of this work.

2. BACKGROUND AND MOTIVATION
This section presents the necessary background informa-

tion that is required in order to understand the following
sections. We first describe the families of sorting algorithms
and then we describe our target system.

2.1 Sorting Algorithms
Sorting algorithms can be divided into two families de-

pending on their behavior: comparison and non-comparison
based sort. Comparison based sorting algorithms traverse
a list of elements performing an arbitrary comparison op-
eration that can work on any pair of elements. Thus, the
comparison operator defines the ordering (e.g., ascending)
that the resulting list of elements must comply with. This
family includes well-known algorithms such as Quicksort [17]
and Merge sort [18]. By contrast, non-comparison based
sorting algorithms can achieve higher performance by fixing
the potential comparison operators, and thus limiting the
input data types and output ordering (e.g., integer ascend-
ing). This family includes algorithms such as Bucket sort
and Radix sort [18]. In this paper we implement a compari-
son based sorting algorithm, merge sort, because the ability
to define custom comparison operators expands the number
of applications that can potentially benefit of this work.

Most parallel versions of comparison-based sorting algo-
rithms are based on two approaches. Merge-based approach
splits data into chunks, sorts these chunks independently
(using some “small sort” algorithm) and then performs a
number of merge steps to obtain globally sorted data. The
other approach, distribution-based, sets up a number of buck-
ets, for each element computes the destination bucket, scat-
ters all elements to the right buckets, sorts these buckets
independently, and finally concatenates all buckets to get
the globally sorted data. Buckets are usually set up through
sampling (deterministic or random, depending on the ap-
proach) in an effort to balance their occupancy. Picked up
samples represent the bucket range, while some form of his-
togramming is usually performed to determine the size of
each bucket.

2.2 Algorithmic Approach
In this paper we target a merge-based algorithm which

paired with our pivot selection algorithm allows us to build
a sorting mechanism suitable for the distributed structure of
a multi-GPU system. This is achieved by moving the data
in chunks to it’s destination GPU in a series of merge steps
and finally performing the merge locally, in each GPU.

Compared to typical distribution-based sorting mecha-
nisms, our approach to merge sort provides several benefits.
It is able to efficiently utilize the available memory since
there are no data marshalling stages performed and all the
data exchanged by pairs of GPUs is of the same size, so it
can fit in the place of the data that it is being exchanged
with. As a result of this, our algorithm ensures that each
data partition fits in the GPU and is able to keep the system
in complete load balance. Pivot selection is the only part of
the algorithm that could benefit from a shared memory ar-
chitecture and, as we show later, modern GPUs are able to
cope with this.

Distribution-based sorting algorithms are, on the other
hand, optimal regarding the communication (necessary num-
ber of transfers of a single element until it reaches the desti-
nation processor) and hence are the preferred approach for
sorting on big clusters and supercomputers. Because our
targeted systems, described below, are small scale systems,
communication overhead is less of a concern. This is also
shown through the experimental evaluation in Section 5.

2.3 Target System
Even though GPUs are best suited for executing compute

intensive, data parallel algorithms with regular memory ac-
cess, the large number of in-flight threads and high memory
bandwidth also enable some non-compute intensive opera-
tions like database [19], data mining [5] and map-reduce [6]
primitives to achieve high performance when executed on a
GPU. Sorting is not a compute-intensive task, but rather a
combinatorial problem. However, researchers have shown a
number of GPU sorting algorithms that are competitive to,
or faster than, parallel implementations of sorting on CPUs.
This means that GPU applications that rely on the sorting
operation can execute faster than they would if they were
offloading sorting to the CPU.

Recently, integrated CPU/GPU systems that share the
same physical memory, such as AMD Fusion [20] chips, have
been introduced. The rationale behind this integration is to
avoid copies among CPU and GPU memories to improve
their communication latency, which is an important factor
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Figure 1: Physical organization of the target system.

in many gaming and multimedia applications. However, the
different needs of CPUs and GPUs on the memory subsys-
tem (e.g., bandwidth versus latency) make integrated GPUs
deliver a fraction of the performance that discrete GPUs are
currently offering. Thus, this scenario is reserved mainly for
low power and mobile devices, while most workstations and
HPC systems attach one or several GPU cards to the system
via I/O extension slots on a PCI express (PCIe) bus. In this
paper, we target systems with more than one GPU attached
via PCIe buses.

A typical multi-GPU system is shown in Figure 1. It con-
tains multiple CPUs, connected to DRAM memory via on-
chip memory controllers, thus creating a non-uniform mem-
ory access (NUMA) system. CPUs are connected to one or
more PCIe buses, via I/O controllers, to which there are
one or more GPUs attached. All the CPUs are connected
to each other with a full mesh interconnect. In the case of
Intel systems, the network is Intel QuickPathtm Intercon-
nect [21] (QPI), while in the case of AMD systems, CPUs
are interconnected with a similar interconnection network
called Hypertransporttm [22]. Currently, multi-GPU ma-
chines have up to eight GPUs, with most machines having
four or fewer. The number of GPUs in a single machine
is not expected to grow much in the near feature, for simi-
lar reasons as the number of CPU sockets in a node is not
growing (e.g., data sharing issues).

Modern GPUs (NVIDIA from CUDA 4.0 and those that
will support HSA [23]) have a unified virtual address space
(UVAS) [24] for all the GPUs and CPUs in the system. The
UVAS allows GPUs to transparently use P2P communica-
tion, if the underlying interconnect permits it, allowing host-
initiated transfers of data between two GPUs (P2P memory
transfer). This allows a more efficient inter-GPU commu-
nication than in previous GPU generations which required
copying the data from one GPU to host memory, and then
from host memory to the other GPU. UVAS and P2P com-
munication also let the GPU transparently issue load and
store instructions that directly read and write device mem-
ory of another GPU (P2P memory access). In our imple-
mentation we use P2P memory transfers during the merge
steps, and P2P memory accesses in our pivot selection algo-
rithm, as described in Section 4.

Both PCIe and current CPU interconnects support P2P
communication, but communication of peers on different
PCIe buses is not possible. This means that P2P transfers
and P2P accesses are possible only between GPUs attached
to the same PCIe bus. Today, most of the manufacturers of
GPU systems design their machines with one or two GPUs
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Figure 2: Measured peak bandwidths (H is host, D
is device) when performing a single memory transfer
(1x) or two concurrent memory transfers on differ-
ent devices (2x). Bandwidths for concurrent trans-
fers are per device (not aggregated). Local transfers
are inside the same NUMA domain, remote trans-
fers are between two NUMA domains.

per PCIe bus to prevent the bus from becoming a bottleneck,
since the bandwidth of the PCIe bus is shared among all the
GPUs on that bus. Most systems with four GPUs attach one
pair of GPUs per PCIe bus, and thus P2P communication
can only be used between pairs of GPUs. In these systems,
P2P transfers between GPUs on different PCIe buses are
emulated using intermediate host memory copies.

The NUMA nature of our target system has major impli-
cations on the performance of applications and thus it must
be treated carefully [25]. In order to obtain maximum per-
formance when transferring data between device and host,
host memory needs to be allocated in the physical memory
that is closer to the PCIe bus where the GPU is attached to
(see Figure 1). Such a GPU is called“local” to the CPU clos-
est to that physical host memory. Figure 2 shows the mea-
sured bandwidths on our test machine, which is described
in more detail in Section 5.

The first set of experiments measure the bandwidth for
a single transfer from the host (host mapped buffer) to a
device (HtoD) and vice versa (DtoH ). In the case of using
a local device, the transfer is limited by the bandwidth of
PCIe, while for the case of a remote device the available
bandwidth decreases due to the hop transfer through the
QPI interconnect. Being a full duplex bus, QPI is able to
sustain the bandwidth while handling two concurrent trans-
fers (see “2x HtoD”).

The second set of experiments measures the bandwidth for
two concurrent transfers from one device to another, which
is one of the basic operations performed in this work. When
GPUs are on the same PCIe bus (DtoD local), bandwidth is
as expected. When GPUs do not share the same PCIe bus
(DtoD remote), bandwidth in our system drops dramati-
cally. As already stated, there is no P2P transfer support
between two GPUs attached to different PCIe buses, mean-
ing that the runtime needs to allocate intermediate host
buffers, transfer the data from one GPU to host memory,
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and then back from the host to the other GPU. Since this
transfer operation is an important part of our proposed al-
gorithm, we have implemented an optimized version that is
NUMA-aware and performs double-buffering using pinned
intermediate host buffers. As can be seen in Figure 2 (DtoD
remote optimized), the achieved bandwidth is substantially
higher than that of the default implementation provided by
CUDA. This is however still significantly lower than what
is expected (bandwidth close to the “2x HtoD”). We suspect
that concurrent memory reads and memory writes neces-
sary to implement double-buffering cause contention in the
host memory controllers, preventing us to achieve expected
bandwidth.

3. ALGORITHM OVERVIEW
This section presents and analyzes the two-phase multi-

GPU merge sort algorithm along with its key enabler, the
efficient pivot selection algorithm.

3.1 Algorithm Structure
Initially, the records to be sorted are evenly distributed

among the memories of the GPUs in the system. The pro-
posed multi-GPU merge sort algorithm consists of two main
phases. First, each GPU independently sorts the records
hosted in its memory. The second phase consists of one or
several merge stages, depending on the number of GPUs.
The choice of the single GPU sorting algorithm used in this
first phase is independent of the second phase of the algo-
rithm. In this section we discuss each of the phases.

3.2 Single-GPU Sorting Phase
Merge sort can be implemented starting from n arrays

containing one single record and then performing log2 n steps
of pairwise merging (where n is the number of records to be
sorted). However, this approach usually leads to inefficient
implementations, so merge sort is often implemented as a
hybrid sorting algorithm, consisting of two phases:

1. The input array is divided into multiple chunks of m
records each. Then, an algorithm to efficiently sort the
small number of records within each chunk is used.
There are several suitable alternatives for the small
sort stage, such as quicksort, a bitonic sorting network
or an odd-even sorting network.

2. log2
n
m

pairwise merging stages are performed with n
m

already sorted arrays. After each merge stage, the
number of sorted chunks is halved, and the size of each
chunk is doubled.

A naive single-GPU merging implementation, which se-
quentially merges pairs of arrays, loses half of the available
parallelism in each step, and thus is not suitable for execu-
tion on a massively parallel system such as a GPU. To avoid
this problem, for a single-GPU sorting we use an implemen-
tation based on the parallel merge sort described in [10],
taken from the Thrust library [26]. This algorithm uses an
odd-even sorting network for its first phase. The second
phase is based on finding the ranks of the elements. The
rank of one element in an array is defined as the number of
elements in the array that are smaller than the given ele-
ment. For every record in each pair of arrays to be merged,
the final position of the record is calculated as the sum of
the two record’s ranks (one for each array). The rank of one

element in its originating array is trivially given by its po-
sition (index) in that array, while the rank in its pair array
can be found via binary search for the given element in the
pair array. Hence, the final positions of all the elements from
both arrays can be found in parallel. To improve locality,
the blocking mechanism proposed in [27] is also used in this
single-GPU sorting algorithm.

3.3 Multi-GPU Merge Phase
Merging the data distributed among GPUs in our algo-

rithm relies on a key observation (Observation 1). Given the
two sorted arrays Aα and Aβ , there exist a pivot point P in
Aβ and its “mirrored” counterpart P ′ in Aα that partition
the input arrays into two parts, upper and lower, such that
elements from both lower parts are smaller than or equal to
the elements from both upper parts while the number of ele-
ments in the lower part of each array is equal to the number
of elements in the upper part of the other array. Merging
lower parts and merging upper parts will result in two sorted
arrays which when concatenated provide one, sorted array.

Observation 1. Given two sorted arrays Aα and Aβ:

∃P ∈ {0 . . . |Aβ | − 1}, P ′ ∈ {0 . . . |Aα| − 1}
∣∣

P ′ = |Aα| − P − 1

where P and P ′ partition Aα and Aβ into:

Aα,lower ≡ Aα[0 . . . P ′], Aα,upper ≡ Aα[P ′ + 1 . . . |Aα| − 1],

Aβ,lower ≡ Aβ [0 . . . P − 1], Aβ,upper ≡ Aβ [P . . . |Aβ | − 1]

such that:

Aα,lower ≤ Aβ,upper, Aβ,lower ≤ Aα,upper

It is important to note that in Observation 1 the rela-
tion between pivots P ′ and P guarantees that Aα,upper and
Aβ,lower will have the same number of elements. This en-
ables an efficient inter-GPU merge operation, where a simple
swap of consecutive records (Aα,upper and Aβ,lower) paired
with a merge stage allows the merging of arrays distributed
on several GPUs. Being able to just swap two parts of mem-
ory means that there are no additional data marshalling
stages, new memory allocations, etc.. Furthermore, this al-
gorithm allows keeping the data evenly distributed across
GPUs and ensures that each data partition always fits in
the GPU memory. Note that when multiple candidate piv-
ots exist, the smaller pivot P is used in order to minimize
the amount of data to swap. A more detailed descriptions
of swap operation and the pivot selection algorithm are pro-
vided later.

Once the input records are sorted in each GPU (initial
state of arrays A0...3 in Figure 3), log2 G merge stages are
performed, where G is the number of GPUs being used.
Each merge stage takes two sorted input arrays of m records,
each array distributed across g GPUs, and produces a sin-
gle sorted array of 2m records distributed across 2g GPUs.
When each input array of a merge stage is spread on two
or more GPUs, a series of intermediate merge steps need to
be performed which, breaking the problem of merging into
smaller merge steps, until they can finally be performed in-
side one GPU.

Figure 3 illustrates the algorithm for the case of four
GPUs. The first stage only involves pairs of GPUs (steps 1
through 3 in Figure 3), so one pivot and its counterpart have
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Figure 3: Execution of the algorithm when sorting on 4 GPUs.

to be found for each pair of GPUs (step 1 in Figure 3). Then,
the “inner” sub-arrays identified by the pivots are swapped
between pairs of GPUs (step 2 in Figure 3), and a merge is
performed locally by each GPU (step 3 in Figure 3). As a
result, each pair of GPUs contain one sorted array (A0 ≤ A1

and A2 ≤ A3) due to the pivot properties stated in Obser-
vation 1.

Subsequent stages need to find pivots for arrays that span
two or more GPUs. In the case of four GPUs (steps 4
through 7 in Figure 3), a pivot has to be found anywhere
in the space comprised by two sorted arrays distributed in
two GPUs (as well as the mirrored pivot in the other two
GPUs). After the pivots are found (step 4 in Figure 3), the
“inner” records of the sorted arrays are swapped (step 5 in
Figure 3). Because pivots can fall in any of the GPUs, two
or four GPUs (depending on where the pivots fall) will have
to swap some of the records with their peers. After swapping
records, all the elements in A0 and A1 are smaller than or
equal to any element in A2 and A3. The array relationships
A0 ≤ A1 and A2 ≤ A3 accomplished in step 3 in Figure 3
no longer hold true, but now it holds that A0...1 ≤ A2...3.
Steps 6 and 7 in Figure 3 ensure that we obtain the final
globally sorted array where A0 ≤ A1 ≤ A2 ≤ A3. This same
procedure can be repeated as many times as necessary to
perform a merge sort using an arbitrary number of GPUs.

3.4 Pivot selection
To efficiently find the pivot, we utilize a binary search like

pattern where candidate pivots are picked from one array
and compared with the records at the “mirrored” index in
the other array (see Algorithm 1).

Algorithm 1 Pivot selection

function pivot selection(array a, array b)
pivot← len(a)/2
stride← pivot/2
while stride > 0 do

if a[len(a)− pivot− 1] < b[pivot] then
if a[len(a)− pivot− 2] < b[pivot + 1] &

a[len(a)− pivot] > b[pivot− 1] then
return pivot

else
pivot← pivot− stride

end if
else

pivot← pivot + stride
end if
stride← stride/2

end while
return pivot

end function
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Figure 4: Pivot selection that results in the correct
pivot after three steps.

First, the middle elements of each sub-array are selected
as candidate pivots. If these values fulfill the stop condi-
tion that the keys smaller than the pivot in one array are
smaller than their mirrored keys in the other array, and the
keys bigger than the pivot in one array are bigger than their
mirrored keys in the other array, the algorithm stops. If the
pivots lie further apart or closer than the current candidate
pivots, a new pair of pivots is selected. New pivots are picked
by adding or subtracting (depending on the comparison of
candidate pivots outcome) the next candidate distance to
the indexes of the current candidate pivots. Like in a binary
search, the distance is getting halved in each step, thus lead-
ing to a logarithmic complexity. The pattern is depicted in
Figure 4 for the case where pivots are found in three steps.

4. IMPLEMENTATION DETAILS
Even though our algorithm is designed for multi-GPU sys-

tems from the ground up, the implementation still had to
overcome some of the practical limitations of current sys-
tems. Here, we present the details of the implementation
along with the novel technique for communication of GPUs
on different PCIe buses that allowed us to implement the
algorithm efficiently.

4.1 Inter-GPU Communication: Pivot Selec-
tion

As described in Section 3, the pivots are found using an al-
gorithm similar to binary search. This operation can be im-
plemented in parallel by splitting the input arrays in smaller
chunks, performing independent local pivot selections and
using a reduction to obtain the final pivot position. How-
ever, a parallel implementation of the pivot selection would
provide little benefit, if any, since this is a very fast operation
whose contribution to the total execution time is marginal.
Because of this, we implement a single-threaded version of
the pivot selection algorithm to keep our source code as
simple as possible, without paying the performance penalty.
When P2P access between two GPUs is available, we im-
plement pivot selection using a single GPU. The code uses
regular load instructions to read the values from both the
local and the remote GPU memories, which are compared
to determine if any of the read values is the pivot. This
serial implementation of pivot selection requires, at most,
log2(n) steps (i.e., 30 steps for 1 Giga records), and each
step performs only three P2P memory accesses. The little
contribution to the total execution time (around 0.01% for
the case of two GPUs) makes the serial pivot implementa-
tion a competitive approach. When P2P access between two
GPUs is not available, we emulate it using host-mapped
memory, as illustrated in Figure 5. We allocate four host
memory variables: two synchronization variables, a variable
to store the index of candidate pivots and a small buffer
to store the keys. Because all these variables are allocated

Req Ack Idx

“Client” GPU “Server” GPU

Host

2 4 31

Idx’ K−1 K+1

Figure 5: Emulated P2P access through host-
mapped memory.

in host-mapped memory, any GPU or CPU in the system
can read and write to these variables. In this process, one
GPU is designated to be the client while the other GPU is
the server. The client asks the server for the candidate key
by writing the desired index to the shared variable (step 1
in Figure 5), and setting the request variable (step 2). Af-
ter this, the client starts busy waiting (polling the synchro-
nization variables) until the request is served. The server
GPU busy waits until a request is received. When this hap-
pens, it reads the index variable, writes the candidate pivot
and the two surrounding keys (for optimization purposes)
to the buffer (step 3), and signals the client that the re-
quest is served by setting the acknowledge variable (step 4).
This process is repeated until the client finds the pivot, after
which the server is signaled to stop. A combination of native
and emulated P2P accesses is used when the keys are spread
across more than two GPUs in which some can use the P2P
access and some cannot. This operation is less efficient than
the case where P2P accesses between two GPUs are possi-
ble, but it still contributes very little (around 0.07% for the
case of four GPUs) to the overall execution time.

4.2 Data Transfers: Merge Phase
Once the pivot is found, the CPU needs to read it so

that it can orchestrate the swapping of data between GPUs.
Instead of issuing a memory transfer from device to host
memory, just to transfer the pivot index, we optimize this
transfer by using host mapped memory so that the CPU can
access the pivot as soon as the pivot selection kernel finishes
executing. After that, portions of the records between the
two sorted arrays are exchanged. We exploit that merge sort
is not an in-place algorithm, and thus each GPU requires
two equally sized internal buffers, one for the input data
and the other one for the output data of each merge stage.
Our data swapping routine uses both buffers: records com-
ing from another GPU are written to the idle buffer, which
is also filled with the remaining records from the other local
buffer. Since the data transfer inside the device memory is
fast, compared to transfer between two GPUs, this technique
leads to faster overall execution than in-place swap, because
it avoids the overhead of synchronization. This data ex-
change phase might easily become an important bottleneck
if not implemented in an efficient way. Thus it is crucial
that data transfers exploit the full-duplex capabilities of the
interconnects (i.e., PCIe bus and QPI in our system). This
is achieved by overlapping data transfers during the data
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swapping phase, i.e., each pair of GPUs are simultaneously
sending and receiving data. When available, asynchronous
P2P memory transfer commands are issued over two sepa-
rate CUDA streams. This implementation achieves the two
aforementioned goals: maximization of the PCIe bandwidth,
and overlapping of data transfers in both directions.

Since the P2P memory transfers are not possible across
GPUs connected to separate PCIe buses, a temporary buffer
in the host memory is used in this case. The data is first
transfered from the source GPU, and then send to the des-
tination GPU thus enabling the emulation of P2P memory
transfers and offering a common API to programmers. Dur-
ing the implementation we have detected that the CUDA
provided implementation of emulated P2P memory trans-
fers is not NUMA aware (see Section 2), which produces
an underutilization of the available interconnect bandwidth.
We implement our own data transfer routine that spawns
one host thread per GPU in the system, and pins each host
thread to the CPU connected to the same PCIe bus as the
GPU. This ensures that the operating system schedules
threads for execution only on the set of optimal CPUs, and
that all the host memory allocations of the thread are per-
formed in the memory local to the thread’s CPU. We also
double buffer each data transfer to mitigate the performance
penalty of performing two DMA transactions, i.e., from the
source GPU memory to host memory, and from host mem-
ory to the destination GPU. We use pinned memory for
the intermediate host memory buffers to avoid intermediate
memory copies between user-level threads and the operating
system kernel. The combination of all these implementation
techniques, allows our data transfer code to achieve a higher
data transfer bandwidth (around 60%) than the default im-
plementation provided by CUDA.

5. EXPERIMENTAL EVALUATION
To show the effectiveness of our proposed algorithm and

communication techniques, we analyze the performance and
scalability of our implementation, compare it with a multi-
core CPU implementation of sorting, and analyze the effects
of key size on the performance.

Our test system consists of four NVIDIA Tesla C2070
GPUs clocked at 1.15 GHz, with 6GB of memory each, two
Intel Xeon E5620 CPUs with four cores (each core is two-
way SMT) clocked at 2.4 GHz, and 24GB of RAM memory
on the host. Two PCIe 2.0 x16 buses (two GPUs per bus)
are present in the system and the CPUs are interconnected
with Intel Quickpath Interconnect (like in Figure 1). On
the software side, we are running Linux with the 3.2.0 ker-
nel, CUDA runtime version 4.1, NVCC version 4.1 and GCC
version 4.5.3.

All measurements are repeated 32 times and the average
value is shown together with the confidence interval of ±
standard deviation (envelopes in Figure 6). The number of
records that can be sorted is limited only by the available
GPU memory. To allow the single GPU sorting routine to
efficiently use the available memory bandwidth by coalescing
memory accesses, we follow the approach of splitting the
records into the pairs of keys and values proposed in [10]
and adopted by recent publications on GPU sorting. We
have tested our system with both integer and floating point
keys, and observed no difference in performance for keys of
the same size. Because of that, we report the results for

floating point keys only (single and double precision). In all
experiments, values are 32 bits.

5.1 Sorting Performance
Figure 6 shows the sorting rates when using multiple GPUs

and CPUs. Sorting rates for one, two and four GPUs with-
out initial data transfer from the host and final data trans-
fer from the GPUs are shown in Figure 6(a), while sorting
rates for one and two CPUs and one, two and four GPUs
with these transfers accounted for are shown in Figure 6(b).
Keys are 32-bit floating point numbers (single precision),
generated randomly with a uniform distribution. The total
number of sorted records (×220), regardless of the number
of processing units (GPUs or CPUs) used, is shown on the
x axis, while the sorting rate (×220records/s) is on the y
axis.

As already mentioned in Section 1, applications usually
sort data produced by previous stages and consumed by
next stages. This scenario is covered in Figure 6(a). Config-
urations with two and four GPUs are able to sort two and
four times more records (512 mega records and 1024 mega
records) than the single GPU is able to (256 mega) due to the
doubled and quadrupled amount of available memory. The
sorting rate for a single GPU peaks at 1 mega records, fol-
lowed by a slight decreasing trend due to the n logn nature
of the merge sort. The sorting rates on two and four GPUs
closely follow that trend and reach the peak performance
when sorting around 1 mega records per GPU. Sorting on
four GPUs does not reach the peak performance for datasets
smaller than 4 mega records because the single-GPU sorting
does not reach the peak until that point and because of the
synchronization overhead imposed by the CPU threads that
are controlling the execution on GPUs. There are more syn-
chronization points and more threads are participating in
the case of sorting on four GPUs than in the case of two.
This also results in a higher variability of sorting rate in
the configuration with four GPUs (thicker envelope in Fig-
ure 6(a) and Figure 6(b)).

When data transfers to and from the host are accounted
for (shown in Figure 6(b)) sorting rates are clearly lower
than the ones without data transfers (Figure 6(a)) due to
overhead that these data transfers introduce. It is also worth
noting that the sorting rates for one and, especially four
GPUs in Figure 6(b) vary significantly from one input size
to the other, which is explained later in the Section 5.4

5.2 Comparison with CPU Sorting
We also compare the sorting rates of a multi-core sorting

implementation with our multi-GPU implementation for the
same sets of records in Figure 6(b). In this case, we included
the data transfers to the GPU memory and back to the
CPU memory in the measurements. For the CPU sorting
algorithm, we use the parallel version of the sorting routine
from GCC libstd++ [28] which is also a two-phase merge
sort, like ours. Each thread first sorts independent chunks
of data using a fast single threaded sorting algorithm (in-
trospective sort [29]) and then merges the sorted chunks.
We measured the sorting rate of the CPU algorithm when
executing on one CPU (four cores, eight threads) and both
CPUs (eight cores, sixteen threads) in our system by setting
the affinity of the operating system process to only one of
the CPUs or both. The results show that for the compared
algorithms in our system, using the same number of GPUs
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Figure 6: Sorting rates of one, two and four GPUs and one and two CPUs.
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Figure 7: Strong scalability of the proposed solution
using 2 and 4 GPUs.

as CPUs results in similar sorting rates when the data is in
the CPU memory. GPU sorting is slightly faster when com-
paring one CPU and one GPU for number of records smaller
than 64 mega records (up to 10% for 2 mega records) and
when comparing two CPUs with two GPUs for number of
records smaller than 256 mega records (up to 20% for 2 mega
records). When using all four available GPUs or both avail-
able CPUs, sorting on the GPUs is clearly faster for 2 or
more mega records (up to 80% for 16 mega records). Hard-
ware configurations similar to our test system (more GPUs
than CPUs) are becoming more common in many machines
designed to exploit GPU’s high performance per watt. In
this case, applications can use all the GPUs in the system
to achieve a higher sorting rate than with the CPU version,
which makes this work even more relevant.

5.3 Scalability Analysis
Figure 7 shows the speedup obtained when sorting on two

and four GPUs, compared to sorting on one GPU and the
speedup obtained when sorting on four GPUs compared to
sorting on two for the sorting rates from Figure 6(a). The
total number of records to be sorted (x axis) is distributed
among all the GPUs that participate in the sorting, thus
the strong scalability of the algorithm is measured. As can
be seen from the figure, speedup when using two GPUs in-
stead of one is more than 1.7x and approaches the peak
of 1.9x as the number of records to be sorted grows. The
speedup when using four GPUs over two is visible from 2
mega records, and reaches 1.7x for 512 mega records. This
results in the speedup of more than 3x for 8 or more millions
of records and the maximum obtained speedup of 3.3x (for
256 mega records) when using four GPUs compared to the
base single-GPU case. The performance improvement when
using four GPUs instead of two is smaller than the perfor-
mance improvement obtained when using two GPUs instead
of one due to two main factors. First, when using two GPUs,
all the communication and data transfers in our system go
through the PCIe bus which is utilized efficiently. When us-
ing four GPUs, the communication and transfers are done
through the PCIe and the processor interconnect (QPI in
our case) which is not being fully utilized, as explained in
Section 2. Second, because the data is merged across four
GPUs (four physical domains), the problem is first reduced,
via one merge stage, to two smaller and independent (two
GPUs) problems and then finally solved, as explained in Sec-
tion 3. Other than speedup, an equally important effect of
increasing the number of GPUs is that the total amount of
data that can be sorted is also being increased, because the
cumulative device memory has increased.

5.4 Execution Breakdown and Sensitivity to
Key Size

Figure 8 shows the ratio of time spent in data transfers
with the host (labeled as “Host to Device” and “Device to
Host”) and all of the sorting phases (labeled as “Sorting”)
when using four GPUs. Records have 32 bit single precision
(SP) or 64 bit double precision (DP) floating point keys and
32 bit integer values. Data transfers take from 17% to 32%

8



1 2 4 8 16 32 64 12
8

25
6

51
2 1 2 4 8 16 32 64 12

8
25

6
51

2

Records (×220)

0

10

20

30

40

50

60

70

80

90

100
Ti

m
e

(%
)

32b (SP) 64b (DP)

Host to Device
Device to Host
Sorting
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Figure 9: Execution breakdown of the sorting on
four GPUs for 32 bit (Single Precision) and 64
bit (Double Precision) keys and total numbers of
records. In all configurations, values are 32 bit in-
tegers.

of the execution time and, as can be seen, the reasons for
the varying sorting rate in Figure 6(b) are the slow memory
transfers from device to host for some data sizes. We have
also observed similar behavior in other multi-GPU applica-
tions we examined and we believe that this is a driver or
runtime issue and thus should be fixed in future releases of
the NVIDIA CUDA toolkit. This behavior can not be seen
in Figure 6(a) because it shows the sorting rate without
transfers from and to host.

Execution of the actual sorting is further split and shown
in Figure 9. The execution time is dominated by sorting
partitions on each GPU using the single-GPU sorting algo-
rithm (from 60% to 70% on average). Pairwise swap and
pairwise merge in both initial and final steps take roughly

the same amount of time, and are collapsed here for clarity
into “Initial pair-wise swap & merge” and “Final pair-wise
swap & merge”. Global swap and merge stages are also
collapsed into “Global pair-wise swap & merge”, which is
dominated by the global swap (roughly 80% of the stage).
Pair-wise pivot selection with P2P access (0.01%) and four-
GPU pivot selection with emulated P2P access (0.07%) take
an insignificant amount of time (not shown separately in the
graph). Because the sorting rate for one GPU reaches the
peak performance for 1 mega records, the percentage of time
spent in single-GPU sorting decreases until 4 mega records
(1 mega records per GPU) after which it slowly increases. If
the inter-GPU communication over the processor intercon-
nect was fully utilized, transfers would be faster (as shown
in Figure 2), resulting in an up to 30% shorter“Global swap”
stage. The number of necessary communication steps would
remain the same. The breakdown of the execution time for
two GPUs is not shown separately, but can be extracted
from Figure 9, taking into account only the single-GPU sort
and initial pair-wise swap and merge stages. In that case,
the bulk of the time is spent in single-GPU sorting, while
swap and merge stage take from 7% to 13%. Note that
the number of records is also halved (the x axis shows the
number of records spread across all four GPUs).

Changing keys from 32 bit to 64 bit floating point results
in 9% to 11% lower sorting rate for the single-GPU sorting
stage. Due to the 50% increase in the size of the record (key
size doubles, values stay the same), data transfers take 50%
more time. This results in an overall sorting rate of 79% to
85% (with an average of 83%) of the sorting rate obtained
with the 32 bit keys.

6. RELATED WORK
Researchers have been working on sorting mechanisms

for parallel machines, both theoretical and practical, for
decades. Batcher was the first one to describe an elegant
parallel sorting mechanism in the form of bitonic sorting
network [30]. Later, as the interest in parallel algorithms
started growing, sorting got a lot of attention, being a fun-
damental, yet hard, problem to solve efficiently. Most of
these algorithms were proposed for different variations of
the theoretical Parallel Random Accesses Machine model,
some of which include [31, 27].

Several research efforts have also explored how to port
parallel sorting algorithms to specific systems. Often time,
this research came to different conclusions, because specific
features of a given machine will determine which algorithm is
the optimal. For example, Blelloch et al. [32] evaluated sam-
ple sort, radix sort and Batcher’s bitonic sort on a massively
parallel machine, Thinking Machine CM-2. They concluded
that radix sort is the fastest, while sample sort is the fastest
comparison based sort on their target machine. Solomonik
et al. [33] compared histogram sort, merge sort, and radix
sort on two modern, homogeneous supercomputers. This
work concluded that an improved histogram sort, proposed
by the authors, was the fastest algorithm on both machines.
Satish et al. [10] compared their merge sort with radix sort
on one of NVIDIA’s previous architectures (GT200), con-
cluding that radix sort was faster than merge sort. Satish
et al. [34] compared merge sort and radix sort on CPUs and
GPUs and showed that for the future large SIMD widths,
merge sort is the more promising approach.

Adoption of GPUs for general purpose computing resulted
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in a number of papers on sorting on the GPUs. First ap-
proaches of comparison based sorting on GPUs were mainly
implementations of various sorting networks. Cederman et
al. [13] proposed an efficient quick sort algorithm on GPUs.
Satish et al. [10] proposed implementations of radix sort and
merge sort algorithms. Their implementation of merge sort
based on [27] was a significant improvement over previous
approaches, while their radix sort implementation was sig-
nificantly faster, and still is one of the fastest sorting al-
gorithms on GPUs. Xiaochun et al. [11] proposed an opti-
mization technique in which they use buckets of warp size
instead of thread block size. Because this technique omits
explicit synchronization in one thread block (warps are im-
plicitly synchronized) [16] they were able to obtain speedup
over a merge sorting network and the merge sort algorithm
proposed in [10] when applying this technique. Leischner et
al. [12] proposed an implementation of sample sort which
was the fastest implementation of a comparison based sort
for the NVIDIA GT200, architecture. Unlike previous ap-
proaches that target only keys of fixed length, Davidson et
al. [35] proposed a merge sort based algorithm for keys with
variable length. All of these algorithms were proposed for
system with a single GPU and all of them can be used as
a first step of our algorithm (to sort data in each GPU).
Green et al. [36] proposed a novel single-GPU merging algo-
rithm which can also be used in our algorithm for the local,
single-GPU, merges to further improve the performance.

To the best of our knowledge, there is no GPU sorting al-
gorithm designed for multi-GPU systems. Sintron et al. [9]
proposed a two phase algorithm for GPUs which they also
adopted for use with two GPUs. The first phase consists of
the distribution of elements to their destination buckets, fol-
lowed by sorting the buckets independently with merge sort.
The drawback of this method is that the process of calcu-
lating the buckets is performed by the CPU and results in a
series of communications between GPU and CPU to refine
the initial partition selection. Also, this scheme uses an ad-
ditional array to store the position of each element before
moving them to the buckets, utilizing the available memory
inefficiently. The algorthm is proposed for the first genera-
tion of CUDA capable GPUs and evaluates it analytically,
disregarding the communication costs and the limitations of
the real machine. There were also efforts to propose external
sorting algorithms in which the data size is larger than the
GPU memory capacity, but it fits in the backing memory
(system memory in this case). Peters et al. [15] proposed
sorting chunks of data independently by the GPU, bring-
ing them one by one back to the host memory, partitioning
them using the CPU, and then returning the partitions to
the GPU to merge them. Ye et al. [14] adopted the deter-
ministic sample-based parallel sorting [37] in their external
sorting algorithm. They also proposed an innovative strat-
egy to quickly select good samples for the algorithm they
use for sorting inside the GPU. Both of these external sort-
ing algorithms can be naturally extended to use multiple
GPUs by sorting independent chunks on multiple GPUs in
parallel, but both of them are designed to sort large amount
of data that does not fit into GPU’s memory, and this is
when they perform the best. Unlike our efficient pivot se-
lection algorithm, none of the solutions that can use more
than one GPU can split the input data to be sorted perfectly
among GPUs, thus none of them can fully utilize the avail-

able memory in the GPU. Furthermore, all three solutions
utilize execution on the CPU to some extent.

7. CONCLUSIONS
The importance of porting fundamental algorithms, like

sorting, on emerging platforms is two-fold. On one hand it
allows other algorithms that depend on them to be ported to
these emerging platforms. On the other hand it also evalu-
ates the features and flaws of these platforms. In this paper
we have presented a high performance merge sort algorithm
for multi-GPU systems which suits the need for efficient sort-
ing operations in current and future systems comprised of
several CPUs and GPUs.

A key part of the work is a pivot selection algorithm that
enables sorting data structures spread across the memory of
all the GPUs in the system by ensuring that at any stage
of the algorithm data is always evenly distributed. Another
key point of this work is the insight on how to efficiently im-
plement the proposed algorithm using CUDA for NVIDIA
GPUs. In our implementation we have introduced a novel
inter-GPU communication scheme for GPUs connected to
separated PCIe buses. This technique is not specific to our
sorting implementation and can be applied to other algo-
rithms that require inter-GPU communication over inter-
connection networks that do not directly support it.

Experimental evaluation of our algorithm shows that it
scales to 1.9x when moving from a single-GPU implementa-
tion to a system with two GPUs and 3.3x when moving to a
system with four GPUs while allowing the dataset to double
and quadruple in size. When the data is in the GPU, it out-
performs analogous sorting algorithms running on multi-core
CPUs when comparing the same number of CPUs against
GPUs in our test system. It also shows performance slightly
better when the data resides in the CPU memory. This
means that our algorithm is not only applicable to cases
where the data to be sorted is already in the GPU mem-
ory (enabling GPU-based algorithms to use an intermediate
sorting step in the GPU), but also to speed up both CPU
and GPU applications in the “GPU-heavy” systems (more
or higher class GPUs than CPUs) that rely on the sorting
operation.
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