
HPS, A NEW MICROARCHITECTURE: RATIONALE AND INTRODUCTION

Yale N. Patt, Wen-mei Hwu, and Michael Shebanow

Computer Science Division
University of California, Berkeley

Berkeley, CA 94720

ABSTRACT

HPS (High Performance Substrate) is a
new microarchitecture targeted for
implementing very high performance
computing engines. Our model of execution is
a restriction on fine granularity data flow. This
paper introduces the model, provides the
rationale for its selection, and describes the
data path and flow of instructions through the
microengine.

1. Introduction
A computer system is a multilevel structure,

algorithms at the top, gates and wires at the bottom. To
achieve high performance, one must optimize at all levels
of this structure. At most levels, the conventional wisdom
suggests exploiting concurrency. Several proposals have
been put forward as to how to do this. We also argue for
exploiting concurrency, focusing in particular on the
microarchitecture level.

1.1. Restricted Data Flow.
We are calling our engine HPS, which stands for

High Performance Substrate, to reflect the notion that
what we are proposing should be useful for implementing
very dissimilar ISP architectures. Our model of the
microengine (i.e., a restriction on classical fine
granularity data flow) is not unlike that of Dennis [3],
Arvind [Zl, and others, but with some very important
differences. These differences will be discussed n detail
in section 3.

For the moment, it is important to understand that
unlike classical data fiow machines, only a small subset
of the entire program is in the HPS microengine at any
one time. We define the “active window” as the set of
ISP instructions whose corresponding data flow nodes are
currently part of the data flow graph which is resident in
the microengine. As the active window moves through

Permission to copy without fee all or part of this material is granted
provided that the copies arc not made or distributed for direct
commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by
permission of the Association for Computing Machinery. To copy
otherwise, or to republish, requires a fee and/or specific permission.

the dynamic instruction stream, HPS executes the entire
program.

1.2. Potential Limitations of Other Approaches.
We believe that an essential ingredient of high

performance computing is the effective utilization of a lot
of concurrency. Thus we see a potential limitation in
microengines that are limited to one operation per cycle.
Similarly, we see a potential limitation in a microengine
that underutilizes its bandwidth to either instruction
memory or data memory. Finally, although we
appreciate the advantages of static scheduling, we see a
potential limitation in a microengine that purports to
execute a substantial number of operations each cycle,
but must rely on a non-run-time scheduler for
determining what to do next.

1.3. Outline of this paper.
This paper is organized in four sections. Section 2

delineates the fundamental reasons which led us to this
new microarchitecture. Section 3 describes the basic
operation of HPS. Section 4 offers some concluding
remarks, and describes where our research in HPS is
heading.

2. Rationale.

2.1. The Three Tier Model.
We believe that irregular parallelism in a program

exists both locally and globally. Our mechanism exploits
the local parallelism, but disregards global parallelism.
Our belief is that the execution of an algorithm should be
handled in three tiers. At the top, where global
parallelism can be best identified, the execution model -..
should utilize large granularity data flow. much like the
proposal of the CEDAR project [41. In the middle, where
forty years of collected experience in computer processing
can be exploited probably without harm, classical
sequential control flow should be the model. At the
bottom, where we want to exploit local parallelism, fine
granularity data flow is recommended. Our three tier
model reflects our conception that the top level should be
algorithm oriented, the middle level sequential control
flow ISP architecture oriented, and the bottom level
microengine oriented.

Q 1985 ACM O-89791-172~5/85/0012/0103$00.75

2.2. Local Parallelism.
We feel obliged to re-emphasize the importance of

local parallelism to our choice a4 execution model.
indeed, we chose this restricted form of data flow
specifically because our studies have shown that the
parallelism available from. the middle control flow tier
(i.e., the sequential control flow architecture) is highly
localized. We argue that, by restricting the active
instruction window, we can exploi,t almost all of the
inherent parallelism in the program while incurring very
little of the synchronization costs which would be needed
to keep the entire program around as a total data flow
graph.

2.3, Stalls, Bandwidth, and Concurrency.
We believe that a high performance computing

engine should exhibit a number of characteristics. First,
all ita components must be kept busy. There must be few
stalls, both in the flow of information (i.e., the path to
memory, loading of registers, etc.) and in the processing
of information (i.e., the functional units). Second, there
must be a high degree of concurrermy available, such as
multiple paths to memory, multiple processing elements,
and some form of pipelining, for example.

In our view, the restricted data flow model, with its
out-of-order execution capability, best enables the above
two requirements, as follows: The center of our model is
the set of node tables, where operations await their
operands. Instruction memory feeds the microengine at
a constant rate with few stalls. Data memory and I/O
supply and extract data at constant rates with few stalls.
Functional units are kept busy by nodes that can fire.
Somewhere in this system, there has to be “slack.” The
slack is in the nodes waiting in the node tables. Since
nodes can execute out-of-order, there is no blocking due
to unavailable data. Decoded instructions add nodes to
the node tables and executed nodes remove them. The
node tables tend to grow in the presence of data
dependencies, and shrink as these dependencies become
fewer. Meanwhile, our preliminary measurements
support, the multiple components of the microengine are
kept busy.

3. The HPS Model of Execution.

3.1. Overview.
An abstract view of HPS is shown in figure 1.

Instructions are fetched and decoded from a dynamic
instruction stream, shown at the top of the figure. The
figure implies that the instruction stream is taken from a

sequential control flow ISP architecture. We need to
emphasize that this is not a necessary part of the HPS
specification. Indeed, we are investigating having HPS
directly process multinode words (i.e., the nodes of a
directed graph) which would be produced as the target
code of a (for example) C compiler. What is necessary is
that, for each instruction, the output of the decoder
which is presented to the Merger for handling by HPS is
a data flow graph.

A very important part of the specification of HPS is
the notion of the active instruction window. Unlike
classical data flow machines, it is not the case that the

data flow graph for the entire program is in the machine
at one time. We define the active window as the set of
ISP instructions whose corresponding data flow nodes are
currently being worked on in the data flow microengine.

As the instruction window moves through the
dynamic instruction stream, HPS executes the entire
instruction stream. Parallelism which exists within the
window is fully exploited by the microengine. This
parallelism is limited in scope; ergo, the term “restricted
data flow.”

The Merger takes the data flow graph corresponding
to each ISP instruction and, using a generalized

‘Tomasulo algorithm to resolve any existing data
dependencies, merges it into the entire data flow graph
for the active window. Each node of the data flow graph
is shipped to one of the node tables where it remains
until it is ready to fire.

When all operands for a data flow node are ready,
the data flow node fires bv transmittine the node to the
appropriate functional unit. The functional unit (an
ALU, memory, or I/O device) executes the node and
distributes the result, if any, to those locations where it
is needed for subsequent processing: the node tables, the
Merger (for resolving subsequent dependencies) and the
Fetch Control Unit (for bringing new instructions into
the active window). When all the data flow nodes for a
particular instruction have been executed, the
instruction is said to have executed. An instruction is
retired from the active window when it has executed

104

and all the instructions before it have retired. All
side effects to memory are taken care of when an
instruction retires from the active window. This is
essential for the correct handling of precise interrupts
[ll.

The instruction fetching and decoding units
maintain the degree of parallelism in the node tables by
bringing new instructions into the active window, which
results in new data flow nodes being merged into the
data flow node tables.

3.2. Instruction Flow
Figure 2 shows the global data path of HPS.

Instructions enter the data path as input to the Merger.
This input is in the form of a date flow graph, one per
instruction. The data flow graph can be the result of
decoding an instruction in a classical sequential
instruction stream, or it can be the output of a non-
conventional compiler. In either case, the Merger sees a
set of data flow nodes (and data dependencies), one for
each operation that must be performed in the execution
of that instruction, operations are, for example, reads,
writes, address computations and ALU functions, In the
example of figure 3, the data flow graph corresponding to
the VAX instruction ADDW #lOOO,A,B consists of three
nodes: a memory read, memory write, and an ALU
operation. Figure 3 also shows the structure of the three
nodes and the five value buffer entries required for the
instruction.

The Merger, using the Register Alias Table to
resolve data dependencies not explicit in the individual
instruction, forms the set of data flow nodes which are
necessary to execute the instruction, Nodes are then

transmitted to the appropriate node tables. Node tables,
as we shall see, are content addressible memories, and
thus should be kept small. The size of each node table is
a function of the size of the active window and the
decoding rate of the Von Neumann instruction stream.
In our experiments with the VAX architecture, for
example, an active window of 16 instructions, coupled
with a decoding rate of eight nodes per cycle, required at
most a 35 entry node table.

For each node, a slot is reserved in the global
multi-port value buffer for storing the result of the
operation of that node. The index of each slot is
designated as a tag for the corresponding node, and is
carried along with the node until it completes its
execution. Value buffer slots are assigned in a circular
queue, the size of the buffer being large enough to
guarrantee retirement of an instruction before its value
buffer slot is again needed. (In the case of our simulated
implementation of the VAX architecture, an active
window of 16 instructions, having approximately four
nodes per instruction, means that a value buffer of 136
entries is more than adequate.)

A node remains in its node table until all of its
operands are available, at which point it is ready to fire
(i.e., it is executable). A node is fired by transmitting its
operator, tag, and set of operands to one of the functional
unita associated with that node table. When execution
completes, the result and its tag are distributed to each
poti of the value buffer. In the case of a result destined
for a general purpose register, the corresponding tag is
also transmitted to the Register Alias Table to update
information stored there. The corresponding tag is also
transmitted to the node tables for the purpose of setting
the ready bits in those nodes awaiting this result.

nodes. The number of results that can be distributed in
a single cycle is a function of the bus structure and the
organization of the node tables. The intent is that in
each cycle, multiple nodes will be in each stage of the
process.

#DO& 3 I IOOO, A, 8 3.3. Data Dependencies and their Resolution.

ftclm 3.
Memory read and write nodes present additional

complications. Although these will be discussed in
greater detail in [‘71, a few observations here are in order.
First is the fact that at the time memory access nodes
are issued by the Merger (depending of course on the
addressing ’ structure of the target architecture), the
address of the memory access may be unknown, and the
addresses of other memory accesses which could block
the node being issued may also be unknown. A Memory
Alias Table and a Read Staging Unit are provided to
handle these problems, Second is the fact that writes can
occur out of order coupled with our requirement that
exception handling must allow the machine state to be
recovered “precisely.” A Write Buffer and an algorithm
for retiring instructions are provided for handling this
problem.

One final observation about the processing of nodes
must be made. The stages that a node goes through (i.e.,
merging, waiting for operands, firing, executing, and
distributing its results) is independent of the other nodes
in the node tables. That is, for example, the number of
nodes firable in a given cycle is limited by the ability to
detect that multiple nodes are firable and the number of
functional unite available for concurrent processing of

Fundamental to the correct, fast, out-of-order
execution of operations in HPS is the handling of data
dependencies and, as we will see, the absence of blocking
in those cases where blocking is unnecessary. Since our
locally concurrent implementation model has to conform
to the target architecture, the local concurrency exploited
must not cause incorrect execution results.

3.3.1. Data, Anti, and Output Dependencies.
A micro-operation B depends on another micro-

operation A if B has to be executed after A in ‘order to
produce the correct result. There are three ways in
which a micro-operation can depend on another micro-
operation through register usage: data, anti, and output
dependencies.

A data (read-after-write) dependency occurs when A
is going to write to the register from which B is going to
read. In this case, A supplies information essential to
the execution of B. An anti (write-after-read)
dependency occurs when A is going to read from the
register to which B is going to write. An output (write-
after-write) dependency occurs when A and B are going
to write to the same register.

In the last two cases, the execution of A does not
supply any information necessary for the execution of B.
The only reason B depends on A is that a register has
been allocated to two different temporary variables due
to a shortage of registers. In fact, if we had an unlimited
number of registers, different temporary variables would
never have to be allocated to the same register and the
second and the third dependencies would never occur. So,
a proper renaming mechanism and extra buffer registers
would remove anti and data dependencies. Then, the
only type of dependency that could delay micreoperation
execution would be a data dependency. In other words, a
micro-operation could be executed as soon as its input
operands are properly generated. This is exactly the
description of a data tlow execution model.

3.3.2. Our Modified Tomasulo Algorithm.
Our algorithm for enforcing data dependencies and

removing anti and output dependencies is similar to the
Tomasulo algorithm which was used in the Floating
Point Unit of the IBM 360191 161. During execution, the
algorithm manages two major data structures: a register
alias table and a set of node tables. Each entry in the
register alias table keeps track of the dynamic
information for a register necessary either to supply an
input operand value or to establish dependency arcs.
There are two fields in each register alias table entry.
The first is a ready bit. This bit, if cleared, indicates that
there is an active micro-operation which is going to
supply the register value. The second field is the tag field
which provides an index into a result buffer. This
indicates where the register value can be found if the
ready bit is set.

106

Each entry in a node table corresponds to a micro-
operation and has an operation field, a result tug field,
and two operand records. The operation field specifies
the action that will be performed on the input operands,
The result tug field provides the location in the result
buffer that the result value will be shipped to after the
execution of the micro-operation, Each operand record
consists of two fields. The first is a ready bit. This bit is
set when the input operand has been properly produced.
The second field is the tag field which contains an index
into the operand buffer. This indicates where the
operand can be found if the ready bit is set.

A data path designed for our modified Tomasulo
algorithm is presented in figure 2. There are two phases
in each machine cycle: merging/scheduling and
distribution, Initially all register alias table entries are
ready and the initial register values are in result buffer
entries whose index is in the tag fields of the
corresponding register alias table entries.

Merging/Scheduling
A new micro-operation is assigned an entry in a
node table and is given a unique result tag , First,
the contents of both fields in the register alias table
for each input operand are copied to the
corresponding fields in the operand records of the
new node table entry. Second, the ready bit of the
register to be written by the micro-operation is reset
and the result tag for the micro-operation is written
into the tag field of the alias table entry. If both
operands of a node are marked ready, this node can
fire. The tags in the operand records are used to
index into the result buffer and obtain the operand
values. The operation and the operand values are
sent to the function unit for execution. The result
tag, which will be used to distribute the result, is
also sent to the function unit.

Distribution
When a function unit finishes executing a micro-
operation, the result tag of that micro-operation is
used to select a result buffer entry and the result
value is stored into the entry. The result tag is also
distributed to the register alias table and the node
table. Both the register alias table and the node
table are content addressable memories. Entries in
these tables are addressed by the value of the result
tag. All of the register alias table entries and all of
the operand records in the node table entries set
their ready bit if the distributed result tug matches
their tag field contents.

After execution, all the register alias table entries are
ready and the corresponding register values are in the
result buffer entries whose indices are in the tag fields.

The algorithm described above is a win on at least
two counts. First, it removes anti and output
dependencies without producing incorrect results. In
fact, it can he shown that reservation schemes without
renaming can not remove anti and output dependencies
without producing incorrect results. Second, unlike
Scoreboarding (for example), the issuing process never
has to stall due to dependencies. It can also be shown
that any reservation scheme without renaming will have
to stall for some dependencies.

4. Concluding Remarks.

The purpose of this paper has been to introduce the
HPS microarchitecture. Current research at Berkeley is
taking HPS along four tracks. First, we are attempting
to design, at high performance, three very dissimilar
architectures: the microVAX, a C machine, and a Prolog
processor. Equally important, we are investigating the
limits of this microarchitecture, both from the standpoint
of a minimal implementation and from the standpoint of
a cadilIac version.

As is to be expected, there are issues to be resolved
before an effective HPS implementation can be
,achieved. For example, if HPS is to implement a
sequential control based ISP architecture, then there are
decoding issues, including the question of a node cache,
which need to be decided. Second, HPS requires a data
path that (1) has high bandwidth and (2) allows the
processing of very irregular parallel data. Third, HPS
needs a scheduler which can determine, in real-time,
which nodes are firable and which are not. Fourth, the -
out-of-order execution of nodes requires additional
attention to the design of the memory system, the
instruction retirement and repair mechanisms, and the
I/O system. These issues are the subject of a companion
paper 171 in these Proceedings.

Acknowledgement.

The authors wish to acknowledge first the Digital
Equipment Corporation for supporting very generously
our research in a number of positive ways: Linda Wright,
formerly Head of Digital’s Eastern Research Lab in
Hudson Massachusetts for providing an environment
during the summer of 1984 where our ideas could
flourish, Bill Kania, formerly with Digital’s Laboratory
Data Products Group, for providing major capital
equipment grants that have greatly supported our ability
to do research; Digital’s External Research Grants
Program, also for providing major capital equipment to
enhance our ability to do research; and Fernando Colon
Osorio, head of Advanced Development with Digital’s
High Performance Systems/Clusters Group, for providing
funding of part of this work and first-rate technical
interaction with his group on the tough problems. We
also acknowledge the other members of the HPS group,
Steve Melvin, Chien Chen, and Jia-juin Wei for their
contributions to the HPS model as well as to this paper,
Finally, we wish to acknowledge our colleagues in the
Aquarius Research Group at Berkeley, Al Despain,
presiding, for the stimulating interaction which
characterizes our daily activity at Berkeley.

5. References.

1. Anderson, D. W., Sparacio, F. J., Tomasulo, R. M.,
“The IBM Systed360 Model 91: Machine
Philosophy and Instruction - Handling,” IBM
Journal of Research and Development, Vol. 11, No.
1, 1967, pp. 8-24.

107

2. Arvind and Goostelow, K. P., “A New Interpreter for
Dataflow and Its Implications for Computer
Architecture,” Department of Information and
Computer Science, University of California, Irvine,
Tech. Report 72, October 1975.

3. Dennis, J. B., and Misunas, D. I’., “A Preliminary
Architecture for a Basic Data Flow Processor,”
Proceedings of the Second International Symposium
on Computer Architecture, 1975, pp 126132.

4. Gajski, D., Kuck, D., Lawrie, D., Sameh, A., “CEDAR
-- A Large Scale Multiprocessor,” Computer
Architecture News, March 1983.

5. Keller, R. M., “Look Ahead Processors,” Computing
Surveys, vol. 7, no. 4, Dec. 1975.

6. Tomasulo, R. M., “An Efficient Algorithm for
Exploiting Multiple Arithmetic Units,” IBM
Journal of Research and Development, vol. 11, 1967,
pp 25 - 33. Principles and Examples, McGraw-Hill,
1982.

7. Patt, Y.N., Melvin, SW., Hwu, W., and Shebanow,
MC., “Critical Issues Regarding HPS, a High
Performance Microarchitecture, Proceedings of the
18th International Microprogramming Workshop,
Asilomar, CA, December, 1985.

108

