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ABSTRACT 

HPS (High Performance Substrate) is a 
new microarchitecture targeted for 
implementing very high performance 
computing engines. Our model of execution is 
a restriction on fine granularity data flow. This 
paper introduces the model, provides the 
rationale for its selection, and describes the 
data path and flow of instructions through the 
microengine. 

1. Introduction 
A computer system is a multilevel structure, 

algorithms at the top, gates and wires at the bottom. To 
achieve high performance, one must optimize at all levels 
of this structure. At most levels, the conventional wisdom 
suggests exploiting concurrency. Several proposals have 
been put forward as to how to do this. We also argue for 
exploiting concurrency, focusing in particular on the 
microarchitecture level. 

1.1. Restricted Data Flow. 
We are calling our engine HPS, which stands for 

High Performance Substrate, to reflect the notion that 
what we are proposing should be useful for implementing 
very dissimilar ISP architectures. Our model of the 
microengine (i.e., a restriction on classical fine 
granularity data flow) is not unlike that of Dennis [3], 
Arvind [Zl, and others, but with some very important 
differences. These differences will be discussed n detail 
in section 3. 

For the moment, it is important to understand that 
unlike classical data fiow machines, only a small subset 
of the entire program is in the HPS microengine at any 
one time. We define the “active window” as the set of 
ISP instructions whose corresponding data flow nodes are 
currently part of the data flow graph which is resident in 
the microengine. As the active window moves through 
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the dynamic instruction stream, HPS executes the entire 
program. 

1.2. Potential Limitations of Other Approaches. 
We believe that an essential ingredient of high 

performance computing is the effective utilization of a lot 
of concurrency. Thus we see a potential limitation in 
microengines that are limited to one operation per cycle. 
Similarly, we see a potential limitation in a microengine 
that underutilizes its bandwidth to either instruction 
memory or data memory. Finally, although we 
appreciate the advantages of static scheduling, we see a 
potential limitation in a microengine that purports to 
execute a substantial number of operations each cycle, 
but must rely on a non-run-time scheduler for 
determining what to do next. 

1.3. Outline of this paper. 
This paper is organized in four sections. Section 2 

delineates the fundamental reasons which led us to this 
new microarchitecture. Section 3 describes the basic 
operation of HPS. Section 4 offers some concluding 
remarks, and describes where our research in HPS is 
heading. 

2. Rationale. 

2.1. The Three Tier Model. 
We believe that irregular parallelism in a program 

exists both locally and globally. Our mechanism exploits 
the local parallelism, but disregards global parallelism. 
Our belief is that the execution of an algorithm should be 
handled in three tiers. At the top, where global 
parallelism can be best identified, the execution model -.. 
should utilize large granularity data flow. much like the 
proposal of the CEDAR project [41. In the middle, where 
forty years of collected experience in computer processing 
can be exploited probably without harm, classical 
sequential control flow should be the model. At the 
bottom, where we want to exploit local parallelism, fine 
granularity data flow is recommended. Our three tier 
model reflects our conception that the top level should be 
algorithm oriented, the middle level sequential control 
flow ISP architecture oriented, and the bottom level 
microengine oriented. 
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2.2. Local Parallelism. 
We feel obliged to re-emphasize the importance of 

local parallelism to our choice a4 execution model. 
indeed, we chose this restricted form of data flow 
specifically because our studies have shown that the 
parallelism available from. the middle control flow tier 
(i.e., the sequential control flow architecture) is highly 
localized. We argue that, by restricting the active 
instruction window, we can exploi,t almost all of the 
inherent parallelism in the program while incurring very 
little of the synchronization costs which would be needed 
to keep the entire program around as a total data flow 
graph. 

2.3, Stalls, Bandwidth, and Concurrency. 
We believe that a high performance computing 

engine should exhibit a number of characteristics. First, 
all ita components must be kept busy. There must be few 
stalls, both in the flow of information (i.e., the path to 
memory, loading of registers, etc.) and in the processing 
of information (i.e., the functional units). Second, there 
must be a high degree of concurrermy available, such as 
multiple paths to memory, multiple processing elements, 
and some form of pipelining, for example. 

In our view, the restricted data flow model, with its 
out-of-order execution capability, best enables the above 
two requirements, as follows: The center of our model is 
the set of node tables, where operations await their 
operands. Instruction memory feeds the microengine at 
a constant rate with few stalls. Data memory and I/O 
supply and extract data at constant rates with few stalls. 
Functional units are kept busy by nodes that can fire. 
Somewhere in this system, there has to be “slack.” The 
slack is in the nodes waiting in the node tables. Since 
nodes can execute out-of-order, there is no blocking due 
to unavailable data. Decoded instructions add nodes to 
the node tables and executed nodes remove them. The 
node tables tend to grow in the presence of data 
dependencies, and shrink as these dependencies become 
fewer. Meanwhile, our preliminary measurements 
support, the multiple components of the microengine are 
kept busy. 

3. The HPS Model of Execution. 

3.1. Overview. 
An abstract view of HPS is shown in figure 1. 

Instructions are fetched and decoded from a dynamic 
instruction stream, shown at the top of the figure. The 
figure implies that the instruction stream is taken from a 

sequential control flow ISP architecture. We need to 
emphasize that this is not a necessary part of the HPS 
specification. Indeed, we are investigating having HPS 
directly process multinode words (i.e., the nodes of a 
directed graph) which would be produced as the target 
code of a (for example) C compiler. What is necessary is 
that, for each instruction, the output of the decoder 
which is presented to the Merger for handling by HPS is 
a data flow graph. 

A very important part of the specification of HPS is 
the notion of the active instruction window. Unlike 
classical data flow machines, it is not the case that the 

data flow graph for the entire program is in the machine 
at one time. We define the active window as the set of 
ISP instructions whose corresponding data flow nodes are 
currently being worked on in the data flow microengine. 

As the instruction window moves through the 
dynamic instruction stream, HPS executes the entire 
instruction stream. Parallelism which exists within the 
window is fully exploited by the microengine. This 
parallelism is limited in scope; ergo, the term “restricted 
data flow.” 

The Merger takes the data flow graph corresponding 
to each ISP instruction and, using a generalized 

‘Tomasulo algorithm to resolve any existing data 
dependencies, merges it into the entire data flow graph 
for the active window. Each node of the data flow graph 
is shipped to one of the node tables where it remains 
until it is ready to fire. 

When all operands for a data flow node are ready, 
the data flow node fires bv transmittine the node to the 
appropriate functional unit. The functional unit (an 
ALU, memory, or I/O device) executes the node and 
distributes the result, if any, to those locations where it 
is needed for subsequent processing: the node tables, the 
Merger (for resolving subsequent dependencies) and the 
Fetch Control Unit (for bringing new instructions into 
the active window). When all the data flow nodes for a 
particular instruction have been executed, the 
instruction is said to have executed. An instruction is 
retired from the active window when it has executed 
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and all the instructions before it have retired. All 
side effects to memory are taken care of when an 
instruction retires from the active window. This is 
essential for the correct handling of precise interrupts 
[ll. 

The instruction fetching and decoding units 
maintain the degree of parallelism in the node tables by 
bringing new instructions into the active window, which 
results in new data flow nodes being merged into the 
data flow node tables. 

3.2. Instruction Flow 
Figure 2 shows the global data path of HPS. 

Instructions enter the data path as input to the Merger. 
This input is in the form of a date flow graph, one per 
instruction. The data flow graph can be the result of 
decoding an instruction in a classical sequential 
instruction stream, or it can be the output of a non- 
conventional compiler. In either case, the Merger sees a 
set of data flow nodes (and data dependencies), one for 
each operation that must be performed in the execution 
of that instruction, operations are, for example, reads, 
writes, address computations and ALU functions, In the 
example of figure 3, the data flow graph corresponding to 
the VAX instruction ADDW #lOOO,A,B consists of three 
nodes: a memory read, memory write, and an ALU 
operation. Figure 3 also shows the structure of the three 
nodes and the five value buffer entries required for the 
instruction. 

The Merger, using the Register Alias Table to 
resolve data dependencies not explicit in the individual 
instruction, forms the set of data flow nodes which are 
necessary to execute the instruction, Nodes are then 

transmitted to the appropriate node tables. Node tables, 
as we shall see, are content addressible memories, and 
thus should be kept small. The size of each node table is 
a function of the size of the active window and the 
decoding rate of the Von Neumann instruction stream. 
In our experiments with the VAX architecture, for 
example, an active window of 16 instructions, coupled 
with a decoding rate of eight nodes per cycle, required at 
most a 35 entry node table. 

For each node, a slot is reserved in the global 
multi-port value buffer for storing the result of the 
operation of that node. The index of each slot is 
designated as a tag for the corresponding node, and is 
carried along with the node until it completes its 
execution. Value buffer slots are assigned in a circular 
queue, the size of the buffer being large enough to 
guarrantee retirement of an instruction before its value 
buffer slot is again needed. (In the case of our simulated 
implementation of the VAX architecture, an active 
window of 16 instructions, having approximately four 
nodes per instruction, means that a value buffer of 136 
entries is more than adequate.) 

A node remains in its node table until all of its 
operands are available, at which point it is ready to fire 
(i.e., it is executable). A node is fired by transmitting its 
operator, tag, and set of operands to one of the functional 
unita associated with that node table. When execution 
completes, the result and its tag are distributed to each 
poti of the value buffer. In the case of a result destined 
for a general purpose register, the corresponding tag is 
also transmitted to the Register Alias Table to update 
information stored there. The corresponding tag is also 
transmitted to the node tables for the purpose of setting 
the ready bits in those nodes awaiting this result. 



nodes. The number of results that can be distributed in 
a single cycle is a function of the bus structure and the 
organization of the node tables. The intent is that in 
each cycle, multiple nodes will be in each stage of the 
process. 

#DO& 3 I IOOO, A, 8 3.3. Data Dependencies and their Resolution. 

ftclm 3. 
Memory read and write nodes present additional 

complications. Although these will be discussed in 
greater detail in [‘71, a few observations here are in order. 
First is the fact that at the time memory access nodes 
are issued by the Merger (depending of course on the 
addressing ’ structure of the target architecture), the 
address of the memory access may be unknown, and the 
addresses of other memory accesses which could block 
the node being issued may also be unknown. A Memory 
Alias Table and a Read Staging Unit are provided to 
handle these problems, Second is the fact that writes can 
occur out of order coupled with our requirement that 
exception handling must allow the machine state to be 
recovered “precisely.” A Write Buffer and an algorithm 
for retiring instructions are provided for handling this 
problem. 

One final observation about the processing of nodes 
must be made. The stages that a node goes through (i.e., 
merging, waiting for operands, firing, executing, and 
distributing its results) is independent of the other nodes 
in the node tables. That is, for example, the number of 
nodes firable in a given cycle is limited by the ability to 
detect that multiple nodes are firable and the number of 
functional unite available for concurrent processing of 

Fundamental to the correct, fast, out-of-order 
execution of operations in HPS is the handling of data 
dependencies and, as we will see, the absence of blocking 
in those cases where blocking is unnecessary. Since our 
locally concurrent implementation model has to conform 
to the target architecture, the local concurrency exploited 
must not cause incorrect execution results. 

3.3.1. Data, Anti, and Output Dependencies. 
A micro-operation B depends on another micro- 

operation A if B has to be executed after A in ‘order to 
produce the correct result. There are three ways in 
which a micro-operation can depend on another micro- 
operation through register usage: data, anti, and output 
dependencies. 

A data (read-after-write) dependency occurs when A 
is going to write to the register from which B is going to 
read. In this case, A supplies information essential to 
the execution of B. An anti (write-after-read) 
dependency occurs when A is going to read from the 
register to which B is going to write. An output (write- 
after-write) dependency occurs when A and B are going 
to write to the same register. 

In the last two cases, the execution of A does not 
supply any information necessary for the execution of B. 
The only reason B depends on A is that a register has 
been allocated to two different temporary variables due 
to a shortage of registers. In fact, if we had an unlimited 
number of registers, different temporary variables would 
never have to be allocated to the same register and the 
second and the third dependencies would never occur. So, 
a proper renaming mechanism and extra buffer registers 
would remove anti and data dependencies. Then, the 
only type of dependency that could delay micreoperation 
execution would be a data dependency. In other words, a 
micro-operation could be executed as soon as its input 
operands are properly generated. This is exactly the 
description of a data tlow execution model. 

3.3.2. Our Modified Tomasulo Algorithm. 
Our algorithm for enforcing data dependencies and 

removing anti and output dependencies is similar to the 
Tomasulo algorithm which was used in the Floating 
Point Unit of the IBM 360191 161. During execution, the 
algorithm manages two major data structures: a register 
alias table and a set of node tables. Each entry in the 
register alias table keeps track of the dynamic 
information for a register necessary either to supply an 
input operand value or to establish dependency arcs. 
There are two fields in each register alias table entry. 
The first is a ready bit. This bit, if cleared, indicates that 
there is an active micro-operation which is going to 
supply the register value. The second field is the tag field 
which provides an index into a result buffer. This 
indicates where the register value can be found if the 
ready bit is set. 

106 



Each entry in a node table corresponds to a micro- 
operation and has an operation field, a result tug field, 
and two operand records. The operation field specifies 
the action that will be performed on the input operands, 
The result tug field provides the location in the result 
buffer that the result value will be shipped to after the 
execution of the micro-operation, Each operand record 
consists of two fields. The first is a ready bit. This bit is 
set when the input operand has been properly produced. 
The second field is the tag field which contains an index 
into the operand buffer. This indicates where the 
operand can be found if the ready bit is set. 

A data path designed for our modified Tomasulo 
algorithm is presented in figure 2. There are two phases 
in each machine cycle: merging/scheduling and 
distribution, Initially all register alias table entries are 
ready and the initial register values are in result buffer 
entries whose index is in the tag fields of the 
corresponding register alias table entries. 

Merging/Scheduling 
A new micro-operation is assigned an entry in a 
node table and is given a unique result tag , First, 
the contents of both fields in the register alias table 
for each input operand are copied to the 
corresponding fields in the operand records of the 
new node table entry. Second, the ready bit of the 
register to be written by the micro-operation is reset 
and the result tag for the micro-operation is written 
into the tag field of the alias table entry. If both 
operands of a node are marked ready, this node can 
fire. The tags in the operand records are used to 
index into the result buffer and obtain the operand 
values. The operation and the operand values are 
sent to the function unit for execution. The result 
tag, which will be used to distribute the result, is 
also sent to the function unit. 

Distribution 
When a function unit finishes executing a micro- 
operation, the result tag of that micro-operation is 
used to select a result buffer entry and the result 
value is stored into the entry. The result tag is also 
distributed to the register alias table and the node 
table. Both the register alias table and the node 
table are content addressable memories. Entries in 
these tables are addressed by the value of the result 
tag. All of the register alias table entries and all of 
the operand records in the node table entries set 
their ready bit if the distributed result tug matches 
their tag field contents. 

After execution, all the register alias table entries are 
ready and the corresponding register values are in the 
result buffer entries whose indices are in the tag fields. 

The algorithm described above is a win on at least 
two counts. First, it removes anti and output 
dependencies without producing incorrect results. In 
fact, it can he shown that reservation schemes without 
renaming can not remove anti and output dependencies 
without producing incorrect results. Second, unlike 
Scoreboarding (for example), the issuing process never 
has to stall due to dependencies. It can also be shown 
that any reservation scheme without renaming will have 
to stall for some dependencies. 

4. Concluding Remarks. 

The purpose of this paper has been to introduce the 
HPS microarchitecture. Current research at Berkeley is 
taking HPS along four tracks. First, we are attempting 
to design, at high performance, three very dissimilar 
architectures: the microVAX, a C machine, and a Prolog 
processor. Equally important, we are investigating the 
limits of this microarchitecture, both from the standpoint 
of a minimal implementation and from the standpoint of 
a cadilIac version. 

As is to be expected, there are issues to be resolved 
before an effective HPS implementation can be 
,achieved. For example, if HPS is to implement a 
sequential control based ISP architecture, then there are 
decoding issues, including the question of a node cache, 
which need to be decided. Second, HPS requires a data 
path that (1) has high bandwidth and (2) allows the 
processing of very irregular parallel data. Third, HPS 
needs a scheduler which can determine, in real-time, 
which nodes are firable and which are not. Fourth, the - 
out-of-order execution of nodes requires additional 
attention to the design of the memory system, the 
instruction retirement and repair mechanisms, and the 
I/O system. These issues are the subject of a companion 
paper 171 in these Proceedings. 
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