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ABSTRACT
This paper describes and evaluates three architectural meth-
ods for accomplishing data parallel computation in a pro-
grammable embedded system. Comparisons are made be-
tween the well-studied Very Long Instruction Word (VLIW)
and Single Instruction Multiple Packed Data (SIM pD)
paradigms; the less-common Single Instruction Multiple Dis-
joint Data (SIM dD) architecture is described and evalu-
ated. A taxonomy is defined for data-level parallel architec-
tures, and patterns of data access for parallel computation
are studied, with measurements presented for over 40 es-
sential telecommunication and media kernels. While some
algorithms exhibit data-level parallelism suited to packed
vector computation, it is shown that other kernels are most
efficiently scheduled with more flexible vector models. This
motivates exploration of non-traditional processor architec-
tures for the embedded domain.

Categories and Subject Descriptors
C.1.1 [Processor Architectures]: Single Data Stream Ar-
chitectures; C.1.2 [Processor Architectures]: Multiple
Data Stream Architectures; C.1.3 [Processor Architec-
tures]: Other Architecture Styles; C.3 [Processor Ar-
chitectures]: Special-Purpose and Application-Based Sys-
tems—Real-time and embedded systems; C.4 [Processor
Architectures]: Performance of systems—Design studies

General Terms
Design

Keywords
Data-Level Parallelism, DLP, ILP, SIMD, Sub-word Paral-
lelism, VLIW, Embedded, Processor, DSP, Telecommunica-
tions, Media, Architecture
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1. INTRODUCTION
Demand for personal device functionality and performance

has made the ability to perform multiple computations per
cycle essential in the digital signal processing (DSP) and
embedded domains. These computations can be gleaned
from multiple forms of program parallelism. Instruction-
level parallelism (ILP) occurs at the operation level when
two or more operations are data-independent from one an-
other and may be executed concurrently. Data-level paral-
lelism (DLP) occurs when the same operation is executed
on each member of a set of data. When the elements of
data parallel computations are narrower than a standard
data width (e.g. 8 instead of 32 bits), sub-word parallelism
(SWP) is present. Superscalar machines detect instruction
parallelism in hardware, but other approaches require ILP,
DLP, and SWP to be explicitly exposed by a compiler or
programmer.
Broad application parallelism categories exist (e.g. nu-

merical applications are highly data parallel and control ap-
plications have little ILP), but most complete applications
contain both instruction-level and data parallelism. In the
embedded domain, repetition of computations across sym-
bols and pixels results in particularly high amounts of data
parallelism. This paper is motivated by the breadth of DSP
and embedded architectures currently available for 2.5G and
Third-Generation (3G) wireless systems, so examples and
analysis will focus on telecommunication and media kernels.
This paper qualitatively and quantitatively analyzes meth-

ods for performing data parallel computation. Three pri-
mary architecture styles are evaluated: Very Long Instruc-
tion Word (VLIW), Single Instruction Multiple Packed Data
(SIM pD), and Single Instruction Multiple Disjoint Data
(SIM dD). Section 3 presents a taxonomy of architectures
and Section 4 describes implementations of these architec-
tures. Comparisons in Section 5 include ease of implemen-
tation and programming; performance; and the ability to
match inherent algorithmic patterns. In Section 6, ker-
nels are grouped according to data access patterns, and the
amount of irregular patterns is quantified. The results of
this analysis motivate definition and exploration of alterna-
tive forms of data access.

2. RELATED WORK
In the uni-processor domain, previous research on data

parallel computation deals primarily with architectures us-
ing packed vector data, meaning that multiple data elements
are joined together into a single register. In the literature,
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this is commonly referred to simply as SIMD – Single In-
struction Multiple Data. For each commercial SIMD ex-
tension, there are many papers which evaluate speedups re-
alized for particular domains. A thorough survey of these
performance studies on the Sun VIS, Intel MMX and SSE,
and IBM PowerPC AltiVec extensions is given in [1]. Most
studies focus on general-purpose video and matrix kernels
and applications. In addition, [2] compares TI C62x VLIW
performance to signal processing and multimedia compu-
tation on a Pentium II with and without MMX support;
and [3] compares execution of EEMBC telecommunication
and consumer benchmarks on a proposed vector processor
(VIRAM) to commercial VLIW and superscalar implemen-
tations.
Aside from performance studies, there are several bod-

ies of work related to overcoming bottlenecks within the
packed vector format. Proposals to increase multimedia
performance include: the MediaBreeze architecture which
improves address generation, loop handling, and data re-
ordering [4]; the MOM (Matrix Oriented Multimedia) ISA
extension for performing matrix operations on two-dimen-
sional data; and use of in-order processors with long vectors
instead of superscalar architectures [1].
Data alignment requirements of the packed vector data

paradigm have also received some attention in the form of
alternate permutation (data re-arrangement) networks and
instruction set modifications. Yang et al. discuss the need
for flexible permutation instructions in packed vector ar-
chitectures, and propose instructions which use a butterfly
permutation network to provide rearrangement of subword
data elements [1].
Little work has considered the extent to which media al-

gorithms are truly or only partially suited to packed vec-
tor computation. Bronson’s work [5] was evaluated in a
multi-processor context, but its premise is that there are al-
gorithms which do not map fully to a SIMD computational
model, and which benefit from a mixed SIMD/MIMD (Mul-
tiple Instruction Multiple Data) system. Faraboschi et al. [6]
advocate a mixed VLIW/SIMD system in which SIMD com-
ponents are programmed by hand, and ILP is scheduled on
VLIW units by the compiler. They discuss tradeoffs be-
tween VLIW and packed vector architectures in terms of
implementation and code generation.
Previous work assumes a packed vector approach is the

only vector method for handling DLP on an embedded sys-
tem. Algorithmic focus has been on video kernels, which are
generally assumed to fit well into a packed vector model.
This work provides a new taxonomy which includes the
SIM dD architecture style (Section 3); extends previous
analyses to cover telecommunication kernels; and quantifies
suitability to various data-level parallel architecture styles
(Section 6).

3. TAXONOMY
In a load-store architecture, computation operations use

only register values as sources and destinations, and load

and store operations specify transfers of data between reg-
isters and memory. This paradigm, however, leaves room
for architectural design of register usage and the memory
interface. The following taxonomy of instruction composi-
tion and register specification presents a unique perspective
on data access.

If instructions are viewed as the controllers of data us-
age and production, the most general architectural model
will allow for simultaneous execution of an arbitrary com-
bination of instructions and a similarly flexible use of data
registers. However, to produce useful work, instructions will
inherently have some degree of dependence on one another,
and must therefore be sequenced or combined as dictated
by program control flow. In contrast, data access is not
generally restricted by program flow, but by hardware sim-
plifications made at the time of architecture design.
In [7], Stokes illustrates a Single Instruction Single Data

(SISD) architecture as consisting of a single sequential in-
struction stream which operates on a single data (register)
stream, and produces a single output stream. An adapta-
tion of Stokes’ one-wide, in-order processor representation
is shown in Figure 1(a).
If a statically-scheduled architecture allows simultaneous

and different processing of multiple independent data (reg-
ister) streams, the result is a Very Long Instruction Word
(VLIW) architecture. The instruction stream in Figure 1(b)
is a combination of multiple operations, grouped into an in-
struction word which specifies multiple computations. In-
dividual operations may use any registers, with the restric-
tion that their destinations must generally be unique so as
to avoid write-back ambiguity within a single cycle of exe-
cution. This is the most general of the architecture types
discussed in this paper.
If the VLIW instruction stream is modified to consist of

single, sequential operations, the result is a Single Instruc-
tion Multiple Data (SIMD) architecture. Here single opera-
tions are specified in the instruction stream, but each spec-
ified operation is performed on multiple data elements. For
the general SIMD case, these data elements may come from,
and be written back to, disjoint locations. This separation of
input and output data streams will be indicated by the no-
tation SIM dD (Single Instruction Multiple Disjoint Data),
and is pictured in Figure 1(c).
Current SIMD implementations, however, do not allow

this level of data flexibility. Instead, multiple data elements
for SIMD operations are packed into a single register, of-
ten called a SIMD vector register. Each instruction causes
an operation to be performed on all elements in its source
registers, and there is only one input data stream. This is
depicted in Figure 1(d), and will be discussed in further de-
tail in Section 4.2 as SIM pD (Single Instruction Multiple
Packed Data).
When implemented as pictured in Figure 1(c), there are

many similarities between the SIM dD and VLIW architec-
tures. An alternate implementation, indirect-SIM dD, pic-
tured in Figure 2, provides access to disjoint data values via
vector pointers. Rather than explicitly specifying vector ele-
ments in the SIM dD instruction word, indirect-SIM dD in-
structions have vector pointer source and destination fields,
wherein each vector pointer specifies multiple indices. Data
elements are accessed indirectly through statically specified
pointers, and physical vectors are composed at execution-
time based upon dynamic values in vector pointer registers.
Table 1 enumerates the architectural design space spanned

by the variables Operations per Instruction, Data Count,
and Data Flexibility. These variables are binary: instruc-
tion words may contain one or multiple operations, which
operate on one or multiple data inputs either independent of
one another (disjoint), or joined in a register or other archi-
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Table 1: Taxonomy of access to data values for statically-scheduled architectures.
# Operations per Instruction Data Count Data Flexibility Architectural Style
1 One One Disjoint SISD (Figure 1(a))
2 One One Joined n/a
3 One Multiple Disjoint Flexible SIMD (e.g. SIM dD) (Figure 1(c))
4 One Multiple Joined SIM pD (Figure 1(d))
5 Multiple One Disjoint Compound operations (CISC)
6 Multiple One Joined n/a
7 Multiple Multiple Disjoint VLIW (Figure 1(b))
8 Multiple Multiple Joined SIM pD across multiple processors/clusters

INSTRUCTIONS

SISD

DATA IN DATA OUT

OP Reg Reg Reg

INSTRUCTIONS

VLIW

Seamless 
Reuse

DATA IN DATA OUT

SIMdD

Seamless
Reuse

DATA IN DATA OUT

INSTRUCTIONS
OP Reg Reg Reg Reg Reg Reg Reg Reg Reg Reg Reg Reg

INSTRUCTIONS
OP Vreg Vreg Vreg

Vector 
Permutation

DATA IN DATA OUT

SIMpD
Vector 

Register

(a) Single Instruction, 
Single Data

(c) Single Instruction, 
Multiple Disjoint Data
(SIMdD)

(b) Very Long  
Instruction Word

(d) Single Instruction, 
Multiple Packed Data
(SIMpD)

OP Reg Reg Reg

Figure 1: Taxonomy of architectures.

SIMdD

Pointer 
Manipulation

Vector
Pointers

Vector
Elements

INSTRUCTIONS

DATA IN DATA OUT

OP VP VP VP

Figure 2: Indirect-SIM dD implementation using vec-
tor pointers.

tecture construct. Styles 1, 3, 4, and 7 have been described
above; styles 2 and 6 are not meaningful since a “single”
datum cannot be “joined” to others. The closest technique
to 5 is microcode created to perform multiple operations on
a single data stream in Complex Instruction Set Comput-
ers (CISC). Architecture 8, SIM pD across multiple proces-
sors, is indicative of the fact that at higher dimensions, the
possibilities for combination of architectural techniques are
numerous: homogeneous or heterogeneous combinations of
VLIW, SIM pD, and SIM dD may be formed across clusters
or processors.

The focus of this paper will be VLIW (style 7), general
and indirect-SIM dD (style 3), and SIM pD (style 4) archi-
tectures. Characteristics and commercial implementations
of each of these styles are discussed in the following section.
Analysis of kernel access patterns and their correspondence
to these architectures is presented in Section 6, motivat-
ing exploration of new architecture design space. Vector
(or array) processors in which vector elements are processed
sequentially through a pipeline typically require a different
programming model, so are not included in this discussion.

4. IMPLEMENTATIONS OF DATA PARAL-
LELISM

4.1 VLIW architectures
A statically-scheduled architecture with issue width greater

than one operation per cycle is the simplest extension to
traditional processors which issue one instruction per cycle.
The power and performance advantages of this technique
have motivated the adoption of VLIW techniques for signal
processing applications. Available products include those
from Philips [8], Infineon [9], Texas Instruments (TI C6x),
and StarCore [10].
VLIW instruction words specify multiple operations on

different source data, and thus inherently represent MIMD
(Multiple Instruction Multiple Data) computation. This is
illustrated at the top of Figure 1(b), where the sample in-
struction contains four opcodes (OP), and three registers
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for each operation (one destination and two sources). Data
parallelism is accomplished in the VLIW paradigm by spec-
ifying separate execution of the same operation on multiple
data items, so the same opcode must be duplicated for each
operation.
Since implementations may differ significantly, for the pur-

poses of comparison with other architectures, the term VLIW
will be used in the following sections to refer to a statically-
scheduled 32-bit load-store architecture with an instruction
issue width of four. Function unit mix is assumed to be
uniform across the issue slots, including availability of four
memory ports.

4.2 SIM pD architectures
The first SIMD machine was the ILLIAC IV [11], with

sixty-four 64-bit processors operating in parallel. Following
the ILLIAC IV were commercial SIMD machines produced
by ICL (Distributed Array Processor, DAP) and Goodyear
(Massively Parallel Processor, MAP) [12]. These machines
were used for scientific, military, and air traffic control prob-
lems which required high computational throughput. SIMD
entered the desktop processing domain in the 1990s in or-
der to accelerate graphics and gaming processes. Today,
SIMD is finding new applications as current embedded per-
formance falls short of emerging 3G wireless and consumer
media requirements.
Support for single instruction, multiple data computa-

tion is most commonly provided in the form of special in-
structions which operate on wide, multi-element vector reg-
isters (shown in Figure 1(d)). For the generic case, the
SIM pD vector file consists of r registers of n elements, where
each element is of size b bits. Instructions require log2(r)
bits to specify each source and destination register. When
an instruction is issued, the operation is performed on all n
elements in the SIM pD vector register. This imposes strict
placement requirements for the elements in the registers,
since every element needed for a data-parallel computation
must reside in the same vector register.
For purposes of comparison with other architectures, this

paper will assume a SIM pD approach in which n = 4 and
b = 32. This eliminates the need for discussion of special-
purpose instructions used for computation on 8- and 16-bit
quantities.
General-purpose SIM pD extensions
As mentioned, most general-purpose architectures cur-

rently incorporate some form of SIMD to support high-speed
graphics. These extensions generally have their own vector
computation units and vector register file which sit beside
the standard integer and/or floating point processing paths.
The registers themselves are commonly 64 to 256 bits in
length, and hold subword quantities of 8, 16, or 32 bits.
The SIM pD unit as a whole generally serves as an on-chip
accelerator. Computation kernels which are data parallel
are vectorized and their processing occurs in the processor’s
SIM pD unit.
The AltiVec architecture is the most flexible of the general-

purpose SIM pD implementations. Its instructions exploit
data parallelism at a granularity of 8, 16, or 32 bits; data-
reordering, combining, and masking capabilities are also
provided. Specifically, AltiVec’s vector permute instruc-
tion provides alignment and element merging capabilities
which are absent from MMX and VIS. The flexibility of
AltiVec makes its use in domains other than graphics and

gaming plausible, so it is the primary SIM pD ISA refer-
enced in this work.
SIM pD Embedded/DSP processors

SIM pD processing has become popular for DSPs intended
particularly for consumer media processing, i.e. video, tele-
conferencing, image processing, and broadband applications.
Among designs which include SIM pD instructions are Ana-
log’s ADSP-21161, Equator’s MAP-CA Broadband Signal
Processor (BSP), 3DSP’s UniPHY, Tensilica’s Xtensa Vec-
tra extension [10], and Philips’ TriMedia CPU64 [8]. In ad-
dition, special ISA support is provided on general embedded
processors: Motorola’s Signal Processing Engine (SPE) [13]
is a SIM pD processing unit with special support for tradi-
tional DSP operations; Wireless MMX extensions to Intel’s
XScale architecture provide 64-bit versions of MMX, SSE,
and other multimedia instructions for the embedded mar-
ket [14]; and MIPS-3D instructions are 2-way SIM pD op-
erations intended for three-dimensional graphics processing
on a MIPS64 architecture [15].

4.3 SIM dD architectures
A Single Instruction Multiple Disjoint Data (SIM dD) ar-

chitecture implements SIMD computation without the align-
ment and placing restrictions of SIM pD approaches. As
pictured in Figure 1(c), each instruction specifies a single
computation to be performed on more than one datum, but
the source registers of the data elements are arbitrary. The
instruction shown indicates that it is possible to accomplish
this flexibility using very long instructions which contain
fields for each source and destination data element. For
four-wide SIMD, this requires eight source and four destina-
tion register fields, making the instructions longer as com-
pared to SIM pD. The authors are not aware of any gen-
eral SIM dD implementations.
An alternative method of data specification uses vector

pointers to specify the elements used for computation. Fig-
ure 2 shows the level of indirection this adds to a general
SIM dD architecture. Each vector pointer has n indices
which point to vector elements to be used for computation,
and instructions specify two source vector pointers and a
destination vector pointer. Pointers may be set explicitly or
loaded from memory, as described in [16]. An example of
an indirect-SIM dD architecture implemented using vector
pointers is IBM’s eLiteDSP [17].
For the remainder of this paper, an indirect-SIM dD ar-

chitecture will be assumed to have vector pointers which
specify access to four elements at a time, with a data ele-
ment size of 32 bits. These four elements are obtained and
processed simultaneously.

5. ARCHITECTURE TRADEOFFS
The following sections discuss hardware, code generation,

and performance tradeoffs associated with each architecture
type. Specific implementations provide features to acceler-
ate particular computations, overcome the memory bottle-
neck, or re-order data for particular applications. To the
extent possible, this analysis abstracts away from these dif-
ferences which are not fundamental to the VLIW, SIM pD,
or SIM dD computation models. In some cases, however,
the eLiteDSP processor will be discussed separately from
general SIM dD characteristics, since it is the only known
SIM dD implementation, and some of its indirect-SIM dD fea-
tures are relevant to the comparisons made. In each tradeoff
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subsection, when an architecture has no particular bene-
fits/drawbacks associated with it, it will not be mentioned.

5.1 Impact on hardware implementation
Data and instruction memory typically consume 40% of

an embedded processor’s real estate, and are predicted to
dominate by 2005 [18]. Sizing of both memory types can be
significantly affected by an architecture’s data access and
storage methods.
Data memory size
The most commonly-cited drawback of programming for

current SIM pD architectures is the requirement that data
be aligned to vector-length boundaries in memory. This oc-
curs because vector memory operations are specified using
a single address, from which n sequential vector data ele-
ments are loaded into a single vector register. Since there
is usually no unaligned addressing support, the programmer
must ensure that all data is aligned to the architected vec-
tor length, or else multiple vector loads and registers may
be needed to compose a single vector from memory. This
induces memory waste if a programmer/compiler is forced
to pad data in order to meet alignment requirements and
minimize on-chip re-arrangement of loaded/stored data.
Instruction memory size
With regard to instruction storage, if a single loop iter-

ation does not contain enough parallelism to fully utilize
a processor’s execution resources, multiple loop iterations
must be co-scheduled. Loop unrolling is the most straight-
forward technique to accomplish iteration co-execution, but
incurs significant code size expansion. Modulo scheduling
has become a common embedded processing technique to
increase the throughput of statically scheduled loops, while
keeping code size manageable. “Generic” modulo scheduling
requires modulo variable expansion (MVE) which uses ex-
tra registers and instructions to keep unique variable copies.
Code expansion incurred for loop unrolling and MVE in-
creases the required instruction memory size.
If an architecture provides rotating registers, code size

may be reduced because the burden of register renaming is
moved from the compiler to hardware. While some general-
purpose VLIW-like implementations (e.g. Itanium) include
rotating register support, this is not yet a feature in embed-
ded VLIW processors, and current SIM pD implementations
do not include the ability to rotate vector registers (though
this might be beneficial to many algorithms).
The eLiteDSP SIM dD implementation includes an auto-

update mechanism for vector pointers, which allows a form
of register rotation more flexible than VLIW implementa-
tions [17]. Register rotation and pointer update mechanisms
significantly reduce loop code sizes, and thus processor mem-
ory requirements.
Program code size is impacted not only by operation counts,

but also by the size of individual operation encodings. As
evident from the instruction fields in Figures 1 and 2, VLIW
and general SIM dD implementations have the largest in-
struction sizes. SIM pD and indirect-SIM dD operations
specify multiple computations much more compactly. Addi-
tionally, since each SIM pD register holds n elements, for a
given element count, e, there will be r = e/n vector registers
for a SIM pD implementation, as opposed to the e registers
need for a VLIW. This reduces the number of bits needed
to specify source and destination registers to log2(r =

e
n
) in

SIM pD operations, from log2(e) for VLIW/general SIM dD.

Inclusion of pointer auto-update in an indirect-SIM dD im-
plementation does not necessarily require additional opcode
bits, if an update stride is associated with each vector pointer
(see Section 6); several additional opcode bits may be nec-
essary to support more complex auto-update mechanisms.
Data memory ports
As previously described, elements of SIM pD and indirect-

SIM dD registers are stored in sequential memory locations.
While restrictive from a data ordering perspective, this means,
however, that if one vector load/store is allowed per cycle,
only one memory port and address computation unit are
needed to obtain n data elements. In contrast, a VLIW or
general SIM dD architecture would need n address compu-
tations and n memory ports to obtain the same number of
data elements, since elements are not necessarily sequential.
Register files
A register file’s size and power consumption is impacted

by its number of ports. VLIW and SIM dD register files will
be the largest: three times the processor issue width, and
three times the vector width, respectively. SIM pD ports
will be the widest (since multiple data elements are obtained
through a single register), but there need only be three ports.
All architectures will have a data element register file, but

indirect-SIM dD requires an additional file for vector point-
ers. This will likely be small and fairly simple, but if pointers
and data must be accessed in the same pipeline stage, this
may necessitate extention of the indirect-SIM dD processor
cycle. More likely, however, pointers will be accessed in a
pipeline stage separate from data, so general and indirect-
SIM dD architectures should have register access times sim-
ilar to those for a VLIW. A SIM pD register access should
be faster, since the file is smaller.
Functional units
For a VLIW architecture, DLP computations are per-

formed using the same resources which produce ILP re-
sults. In contrast, SIM pD capability is commonly added
to a processor as a separate DLP unit which operates beside
units for standard integer code and control. Even if inte-
ger or floating point registers and function units are used to
achieve SWP computation, SIM pD architectures will gen-
erally need a unit to re-arrange data elements. Permute

and merge operations are logically crossbars, so this addi-
tional unit will generally require additional hardware. An
indirect-SIM dD implementation also requires an additional
functional unit: a vector pointer manipulation unit capable
of pointer loads, stores, and simple arithmetic.
While the VLIW paradigm is most flexible due to the ease

with which arbitrary data are accessed, using 32- or 64-bit
integer or floating point registers and computation units is
wasteful for exploiting the small data type DLP commonly
available in telecommunication and media applications (of-
ten 8, 13, or 16 bit granularity).
Architecture extensibility
Whereas a SIM pD architecture requires log2(r) bits to

specify each register, operand specification in an indirect-
SIM dD architecture is independent of the number of vector
registers, and only depends on the number of architected
vector pointers. This allows expansion of the number of
data registers without sacrificing code compatibility. This
is unique because VLIW and SIM pD register counts must
be architected, and are not extensible across processor im-
plementations within the same architecture family.
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5.2 Impact on code generation
Compiled code
Code for architectures with vector data types must first

be vectorized into DLP computations which match the ar-
chitected vector length. Auto-vectorization is the process
of automatically generating code which expresses data par-
allelism. This process has been well-explored for numer-
ical Fortran code, which contains clearly parallelizable do

loops. Signal processing code, however, when not writ-
ten in assembly language, is almost exclusively written in
C. This presents several difficulties to a vectorizer. First,
pointer use gives rise to aliasing. If compiler alias anal-
ysis is unable to prove independence of two arrays, some
loops which use these arrays may not be vectorized. Sec-
ond, use of function calls or break statements in C program
for loops also causes difficulties for auto-vectorizers. Ad-
ditionally, global arrays are often used in C with little at-
tention paid to data alignment. Most auto-vectorizers target
the SIM pD paradigm, which requires memory alignment for
vector load and store operations, so the compiler must
understand correlations between array indices and align-
ment. If a loop’s array accesses cannot be determined to be
aligned, the loop will not generally be vectorized because the
overhead of manual vector alignment is prohibitive. Loops
in telecommunication and media kernels generally contain
high amounts of DLP, but the language characteristics de-
scribed above present many potential pitfalls to compilers
auto-vectorizing code for a DLP processor.
The premise of VLIW architecture is to move complexity

from a processor’s hardware to its software, so VLIW archi-
tectures are generally quite regular, and thus good compiler
targets. Unlike SIM pD or SIM dD architectures, they do
not require vectorization. If a compiler is unable to fully re-
solve array dependences or a loop contains a cross-iteration
dependence, available ILP may still be exploited. This can
be a distinct performance advantage for automated compi-
lation.
Programmer effort
Because vectorization is difficult to achieve automatically,

but essential to SIM pD performance, the burden of SIM pD
code generation is often placed on the code developer, even
when using the C language. For the AltiVec ISA extensions,
Motorola has defined pragmas and intrinsics which program-
mers use to describe vectorization in AltiVec pseudo-assembly
[19]. All vector assignments and computations are stated
explicitly in the C code, and their translation to AltiVec
assembly instructions is nearly one-to-one.
For algorithms with irregular data patterns (see Section 6),

it is sometimes possible to manipulate their computations in
such a way as to regularize DLP patterns. This is generally
tedious (extends software development time) and may re-
quire programmer understanding of the mathematical un-
derpinnings of an algorithm. While expensive at devel-
opment time, algorithmic modifications generally also cost
run-time cycles and register resources. Given VLIW or
SIM dD data access flexibility, algorithmic modification is
generally unnecessary.
While auto-vectorization is difficult for a compiler, assem-

bly programmers generally find VLIW code hard to schedule
because it is difficult to track many in-flight instructions re-
lated in irregular ways. Paradoxically, vectorized code gen-
eration may be easier for assembly programmers, once an
algorithm is converted to regular data access patterns.

5.3 Execution impact
Telecommunication and media applications can generally

be considered loop-dominated, and can be viewed as sets of
performance-critical loops connected by control code. Given
the same number of function units and equivalent operation
types, actual data computation should proceed in any archi-
tecture at roughly the same rate. However, the manner in
which data is obtained and arranged for computation may
have a significant impact on performance, since it may not
always be possible to supply function units with a constant
stream of productive operations. In this section, the impact
of the three described architectural styles on a program’s ex-
ecution time will be evaluated for the dominant application
phases of loop prologue/epilogues and loop computation ker-
nels.
Prologue/epilogue overhead
As previously described, SIM pD implementations gen-

erally require data to be aligned to vector-length memory
bounds. In addition to this restriction, SIM pD input data
must appear in memory in an order close to that used for
calculation since they must reside in a single vector register
when an operation is issued. When a loop needs data in an
order different from that stored in memory, or when a ker-
nel produces data in a pattern different from that needed by
a subsequent kernel (such as FFT bit reversal), cycles are
spent re-arranging data in the prologue or epilogue.
While SIM dD loads also require data alignment in mem-

ory, sequentially fetched elements are not necessarily writ-
ten into adjacent registers, since arbitrary, disjoint, elements
may be specified either explicitly (general SIM dD) or by
means of a vector pointer (indirect-SIM dD). There is there-
fore no need to spend cycles re-arranging elements before or
after access to memory, and it is less important that data
be aligned to particular memory boundaries. Also, register
pressure may be eased because the need for permutations is
eliminated, reducing register spills, and thus aiding execu-
tion time.
While the cost of SIM dD memory access may improve

pro/epilogue execution relative to SIM pD architectures, in-
direct specification of source and destination operands for an
indirect-SIM dD implementation requires prologue pointer
initialization instructions. For arbitrary initialization, the
number of bits required to indicate any four separate data
elements will likely necessitate several operations (or a single
long operation with multiple immediate fields). For exam-
ple, kernels vectorized for the eLiteDSP architecture were
found to use an average of 5.1 (hand assembly) and 5.9 (com-
piled) vector pointers. Initializing these pointers extends
kernel prologues beyond those for a VLIW or SIM pD ar-
chitecture. Figure 3 shows an example of prologue vector
pointer set-up and subsequent loop execution for a stan-
dard FIR filter on an indirect-SIM dD architecture. Two
vector pointers are initialized: one whose members all point
to a coefficient value, and a second pointer to indicate input
data. As filter processing progresses, the vector values will
be updated by the indicated stride (1), so that sequential co-
efficients and input values are used as inputs to the vector
multiply-accumulate operations.
Computation kernel overhead
VLIW, SIM pD, and SIM dD differ in the ease with which

recently computed data may be reused for subsequent com-
putations. For a VLIW architecture, register data reuse is
trivial: the destination of a previous computation is simply
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0 00 0 64 65 6766 Initialize vp0 to (0,0,0,0), stride 1
(vp0 holds coefficient array h [ ] )

Initialize vp1 to (64,65,66,67), stride 1 
(vp1 holds input data array x [ ] )

vp0 vp1

Vector
Registers h0 xnh1 h2 h3 xn-2xn-1

MAC

Prologue

KernelVector multiply-accumulate

stride
1

stride
1

Operations

xn-3

0 1 2 3 64 65 66 674 68

MAC MAC MAC

Figure 3: Indirect-SIM dD vector pointer set-up: FIR filter.

Table 2: Qualitative comparisons.

VLIW SIM pD SIM dD indirect-SIM dD
Data memory
alignment

Not needed; values
loaded individually

Strict alignment to vec-
tor bounds

Alignment to vector
bounds, but flexible reg.
placement

Alignment to vector
bounds, but flexible reg.
placement

Program size Large; better if rotating
registers implemented

Moderate Large Small if pointer auto-
update implemented;
else Moderate

Instruction
size

Large Small Large Small

Memory
ports

Large Small Large Small

Data register
ports

3 * processor width 3 wide ports 3 * vector width 3 * vector width

Function
Units

Control logic,
arithmetic

Control logic,
arithmetic, vector per-
mutation

Control logic,
arithmetic

Control logic,
arithmetic, pointer
arithmetic

Extensibility Vector size determined
by VLIW size; instr.
length dependent on
reg. count

Vector size can be
changed

Vector size can be
changed; # vector
elements changes in-
struction length

Vector size can be
changed; instr. length
independent of # vect.
elements

Code
generation

Compilation straight-
forward;
assembly difficult

Vectorization needed;
assembly straight-
forward if algorithm
packs easily

Vectorization needed Vectorization needed

Data (re)use Arbitrary specification;
no data movement
required

Contiguous data: per-
mutations required

Arbitrary specification;
no data movement
required

Arbitrary specification;
no data movement
required

Prologue
overhead

None Data align / permute None Pointer set-up

Kernel
overhead

None Permutations possible None Pointer arithmetic (but
may be automated)

specified as one of the sources for a subsequent operation.
There is no need for data re-organization, regardless of how
disperse data are in the register file. The same is true for
general SIM dD architectures.
Indirect-SIM dD computation requires somewhat more

overhead, but is still quite flexible. The programmer or
compiler must keep track of the locations to which data are
written (indicated by a destination pointer), and set a source
pointer to access the newly produced data. If data are used
in the same order as they are produced, it may be possible
to simply copy the destination pointer to a separate source
pointer in the loop prologue, thus avoiding a pointer set-up
instruction sequence. In the ideal case, a modulus will have
been established for the destination pointer which causes it
to wrap around to the beginning of a data region once all
data has been processed. This pointer can then become the
source of subsequent instructions which iterate over the new

results. In this way no additional instructions or cycles are
required for data reuse.
In contrast to the relative ease with which VLIW and

SIM dD register data may be reused, SIM pD presents obsta-
cles to non-sequential data reuse. If computed data values
do not reside in vector register locations which are exactly
aligned to those of a second vector source register, then data
must be re-organized. Not all current SIM pD architectures
provide meaningful permute instructions, so this character-
istic of subword-parallel computation can cause performance
problems. Flexible permute and merge operations allow ar-
bitrary data reordering with a single register and between
multiple registers, meaning that they provide for combina-
tion of vector elements from multiple registers into a single
SIMD vector register. These can reduce the performance
penalty of data reorganization to a single cycle. However,
since the elements in each source register of a SIM pD oper-

165



int real 32 hz (int ntaps,vector signed short *c,
int ndat,vector signed short *x,
vector signed short *y) {

vector signed short x0, x1, coef;
vector signed int tmp1, tmp2, tmp3, tmp4;
vector signed int tmp5, tmp6, ac0, ac1, ac2;
vector signed int ac3, ac4, ac5, ac6, ac7;
int i, j, op, ndatavec, ncoefvec;

op = 0;
ndatavec = ndat >> 3;
ncoefvec = ntaps >> 3;

for (i = 0; i < ndatavec; i++) {
x0 = x[i]; /* load next 8 input samples */
/* clear accumulators (accs) */
do { /* The j loop computes 8 outputs */

coef = c[j];
x1 = x[i+j+1];
ac0 = vec msums(coef, vec sld(x0, x1, 2), ac0);
/* Similar operations on ac1...ac7 */
x0 = x1; /* x1 contains x0 val for next iter */
j += 1;

} while (j < ncoefvec);
/* Round & sum across acc for each output */
ac0 = vec sums(ac0, ROUND);
/* Same operation on ac1...ac7 */
/* Copy high 16 bits of last elem. of each acc
to single output vector (containing 8 outputs) */
tmp1 = vec mergel(ac0, ac1);
/* Merge ac2...ac7 */
y[op] = vec perm((vector signed short) tmp5,

(vector signed short) tmp6, PR);
op += 1;

} /* for i */
return op*8;

}

Figure 4: AltiVec FIR filter in C with Motorola ex-
tensions.

ation must be aligned to one another, it is commonly neces-
sary to insert SIM pD data permutations within loop bod-
ies. In tight kernels, even one additional cycle can be costly.
Some SIM pD implementations provide instructions to re-
arrange data within a single register, but few allow data
values to be combined from multiple registers. As previ-
ously mentioned, AltiVec includes vector permute, vector
shift, and vector select instructions which provide com-
plete element re-ordering capabilities. These instructions,
however, only operate on two SIMD vector registers at a
time, meaning that if a new register must be composed of
elements from more than two vector registers, longer se-
quences of re-order operations may be required.
As an example of the kernel execution penalty of SIM pD,

Figure 4 shows excerpts of Motorola’s sample FIR program [20].
For this code, vec perm=vector permute; vec sld=vector
shift left double; and vec mergel=vector merge low. As in-
dicated in bold, data re-arrangement operations are neces-
sary within both the inner and outer loops. In contrast,
for the eLiteDSP FIR filter in Figure 3, both the coeffi-
cient (vp0) and input (vp1) vectors are initialized with an
auto-update stride of 1. This eliminates the need for vector
shifting within the kernel.

5.4 Tradeoff summary
Table 2 provides a summary of the qualitative compar-

isons made among the three primary architecture types in

the previous sections. There are costs associated with each
architecture type, but as will be shown in the next sec-
tion, the flexibility afforded by some styles may more closely
match fundamental algorithmic computation patterns, and
thus warrant the additional hardware or programming cost
for particular application domains.

6. DLP COMPUTATION PATTERNS
This section provides a quantitative description of DLP

access patterns found in kernels essential to current and fu-
ture telecommunication and media standards. These include
filters of various lengths and types, vector and matrix op-
erations, bit packing, an inverse discrete cosine transform
(IDCT), and pitch estimation. While this study only exam-
ined kernels (as opposed to entire applications), they repre-
sent the major portion of many applications. Some kernels
were written in assembly language by experienced program-
mers, based upon a C language specification (Hand kernels
in Table 3); separate results are based upon code generated
by the vectorizing compiler described in [17] (Compiled ker-
nels). Execution traces were collected using the simulator
described in [17].
While measurements were made on a particular architec-

ture (the eLiteDSP), this analysis is not bound to that spe-
cific architecture type or implementation, and similar results
should be observed if derived from code for other architec-
tures. Since these kernels were written and compiled under
the assumption of full indirect-SIM dD architecture flexibil-
ity, it can fairly safely be assumed that register usage which
follows SIM pD conventions arises from the underlying algo-
rithms, and corresponds to the manner in which code would
have been vectorized for a SIM pD architecture. The eLit-
eDSP ISA gives preference to SIM pD-like pointer initializa-
tions, so where possible, SIM pD patterns will generally be
used.
Two metrics were used in deriving these results: ∆ and

ψ. As shown in Figure 5(a), ∆ is the distance between el-
ements located by a single indirect-SIM dD vector pointer.
The eLiteDSP ISA provides an automatic pointer update
option, in which all elements of a vector pointer are incre-
mented by a constant stride, ψ, each time the pointer is used
(Figure 5(b)). Figure 6 demonstrates how use of R0 and
then R2 in a SIM pD context ((∆, ψ) = (1, 8)) correlates to
a vector pointer change in the indirect-SIM dD model.
For these experiments, if access occurs to a vector in which

each element location is separated by a constant difference
∆, the Vector Stride Register value ψ is also recorded. These
values are then assigned a DLP pattern name, according
to the categories listed in Table 4. In general, preference
is given to SIM pD architectures, meaning that if a given
(∆, ψ) pair can be handled efficiently by multiple architec-
tures, it is attributed to the SIM pD pattern. For this rea-
son, the case (∆ = 0, ψ = 0) is assigned to pattern SIM pD,
since it is easily handled in a SIM pD architecture via a
splat instruction which places a single value into all el-
ements of a given vector register. The ROT pattern in-
dicates accesses which would be easily handled with some
form of automated register shifting, such as rotating regis-
ters. Any (∆, ψ) pair not listed in Table 4 is assumed to
require SIM dD or VLIW flexibility and is categorized as a
FLEX pattern.
Figures 7 and 8 show the measured distribution of DLP

read access patterns for hand and compiled codes. Each
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Table 3: Benchmark kernels.
Benchmark Description

Hand-Generated Code
bkfir Real block FIR filter; T=16 taps, N=40

(block size)
corr mat 1 Autocorrelation matrix

cxfir Complex block FIR filter
decimator 1 Decimator, 2:1 (M=2)

divide Integer divide
dotp Vector dot product
fft 256-pt, rad-4 FFT
iir1 IIR filter

interpolator 1 Interpolator, 1:2 (L=2)
lin com 1 Linear comb. of 2 vectors

lms Least-Mean-Square filter
max fraction Find max of vector of rational fractions

– from GSM-EFR codebook search
pitch fr GSM-FR pitch est. (vect. convolution)
ssfir Single sample FIR

syndromes Syndrome computation for (255,239)
Reed-Solomon

vecmax Vector maximum
vecsum vef Vector sum – VEF preloaded

Compiler-Generated Code
addsvec Add two vectors, one un-aligned; N=40
bkfir1 Real block FIR filter; T=16, N=40
bkfir2 Alternate coding style: real block FIR

filter; T=16, N=40, no delay line
bkfir2 max Real block FIR filter; T=16, N=40

Bprob B-probability implemented as squared
Euclidean distance; N=40

corr3 3-vector correlation; N=64
cxfir1 Complex block FIR filter; N=40, T=16

cxfir2 sat Alternate coding style: complex block
FIR filter; N=40, T=16

cxfir2 str Alternate vectorization used: complex
block FIR filter; N=40, T=16

decimator Decimator, 2:1; N=‖h‖=16, ‖x‖=96
dot product Vector dot product; N=40

e4 prld Synthetic test case
e4 ver1 Synthetic test; different compilation

method
eudistance Euclidian distance between two vectors;

N=48
fir 32 Dbl-precision FIR filter; N=40, T=16
idct 8x8 block 2D-IDCT

interpolator Interpolator, 1:2; N=‖h‖=16, ‖x‖=64
lms Least-Mean-Square filter; block size 40,

T=32
lin comb Linear combination of 2 vectors; N=40
mad byBlk Minimum absolute distance (8x8 block);

for motion estimation
mad byRow Minimum absolute distance (8x8 block);

for motion estimation
matrix Multiply 4x4 matrix by a vector
quant H.263 quantization of 8x8 coefficient

block
quant2 Quantize 15 bit (+sign) bit samples to 5

bit (+sign)
sad no abs Sum of absolute distance calculations for

H.263; N=16x16
ssfir1 Single sample FIR filter; N=1, T=16
ssfir2 Single sample FIR filter; T=16

SoftBitPack1 Pack 6 soft bits into 32-bit vectors; 1 soft
bit per vector

vecmax Find max in an array and return index
of first occurrence; N=40

viterbi Viterbi algorithm to decode convolu-
tional codes in GSM full rate standard;
N=189

Table 4: DLP patterns.
Delta (∆) Stride (ψ) Description Pattern

Name
0 0 Constant SIM pD
0 > 0 SIM pD SIM pD
1 0 Constant SIM pD
1 1 Shift/Rot. ROT
1 2 Shift/Rot. by

non-unit stride
ROT

1 3 Shift/Rot. by
non-unit stride

ROT

1 [4,8,12,...] SIM pD SIM pD
2 1 alternating

even/odd
FLEX

4 1 4x4 matrix col.
traversal

FLEX

8 1 8x8 matrix col.
traversal

FLEX

16 1 16x16 matrix col.
traversal

FLEX

Non-const. any Random element
access

FLEX

set of kernels is grouped into categories: those requiring
high, moderate and low amounts of flexibility in their data
ordering. Kernels with the most rigid DLP patterns (right-
hand side of the graphs; SWP = 90-100%) would be ef-
ficiently computed on a SIM pD architecture with packed
vector registers. Those with large percentages of FLEX pat-
terns (e.g. interpolation or vector maximum search) are
algorithms with inherently irregular computation patterns
and would incur execution penalties on an architecture with
strict data alignment requirements.
The vast majority of the FLEX accesses in Figures 7 and 8

occur with constant stride (ψ) values, but a non-unit ele-
ment separation (∆ > 1) (see categories in Table 4). For
example, it was advantageous in the 2:1 decimation calcula-
tion (the decimator kernel) to use every other data element
as the input to vector multiplies, i.e. elements (1, 3, 5, 7)
then (2, 4, 6, 8), etc. Assuming availability of an automatic
pointer update mechanism (increment pointer values by a
constant after use), these FLEX patterns represent data re-
arrangement which could occur with little or no penalty on
the SIM dD architecture, but would require permutations or
data regularization on a SIM pD architecture.
FLEX usage is also found in manipulation of complex

numbers. If numbers C0, C1, C2, C3 are stored as sequential
(real, imag) pairs in locations (0...7), then accessing only
real or only imaginary elements occurs with ∆ = 2, i.e. el-
ements (0, 2, 4, 6) are real, while (1, 3, 5, 7) are imaginary.
Accessing complex numbers in reverse order of their storage
sequence requires a non-constant element separation. If four
elements may be accessed at once, C3 and C2 will be used
first, then C1 and C0. This corresponds to access of loca-
tions (6, 7, 4, 5) and (2, 3, 0, 1) together, which are irregular,
or FLEX, access patterns.
Some FLEX usage results from pointer arithmetic opera-

tions available for the eLiteDSP. These include the capabil-
ity to bit-reverse vector pointer values (used for the FFT)
and to left-shift pointer values. Such instructions can be
assumed to cost 1 cycle for an indirect-SIM dD architec-
ture, but would be performed on a different datapath than
computations on vector elements, so could be performed in
parallel with vector calculations. They are thus low-cost,
but allow easy access to data values in patterns inherent to
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important kernels. As an example, the SIM dD eLiteDSP
vector pointer shift left instruction is used for the vec max
and max fraction benchmarks; its equivalent on SIM pD Al-
tiVec would be to issue a load vector for shift [right,left]
operation, followed by vector permute.
It is apparent from these results that some computation

kernels contain DLP patterns conducive to efficient pro-
gramming on an architecture with packed data vectors. How-
ever, this is not a consistent property of all telecommunica-
tion and media kernels, and depending on a target applica-
tion’s combination of kernels, it appears beneficial to con-
sider use of an alternate architecture style, such as indirect-
SIM dD, which would allow irregular data patterns to be
exploited using the same vector mechanism capable of reg-
ular DLP operations.

7. CONCLUSIONS
Figure 9 depicts a subset of the uni-processor design space

available to embedded processor architects. On the left, la-
beled as VLIW/Superscalar, are architectures which realize
data parallel computation directly through instruction-level
parallelism. The circle on the right represents SIM pD ar-
chitectures, which pack quantities into vector registers and
use these aligned groups of data as inputs to computation.
In the embedded and DSP domains, commercially avail-
able and published processor designs currently fall into the
ILP or SIM pD categories, or contain computation units
for each of these styles. The SIM dD class of architec-
tures can be viewed as a bridge between these two design
forms: SIM dD provides flexible access to data elements (a
likeness to VLIW); but also has separate, compact instruc-
tions for performing data parallel computations. The eLit-
eDSP’s indirect vector access mechanism is a particular im-
plementation of the general SIM dD class which bridges the
ILP→SIM pD design space.
This study indicates that many telecommunication and

media kernels contain opportunities for data parallel com-
putation which do not map well to the SIM pD paradigm.
These computational patterns motivate exploration of em-
bedded and DSP architectures whose design points lie out-
side the space currently implemented in the VLIW/Superscalar
and SIM pD domains.
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