
In-Place Transposition of Rectangular Matrices on Accelerators

I-Jui Sung
MulticoreWare, Inc

ray@multicorewareinc.com
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Abstract
Matrix transposition is an important algorithmic building
block for many numeric algorithms such as FFT. It has also
been used to convert the storage layout of arrays. With more
and more algebra libraries offloaded to GPUs, a high per-
formance in-place transposition becomes necessary. Intu-
itively, in-place transposition should be a good fit for GPU
architectures due to limited available on-board memory ca-
pacity and high throughput. However, direct application of
CPU in-place transposition algorithms lacks the amount of
parallelism and locality required by GPUs to achieve good
performance. In this paper we present the first known in-
place matrix transposition approach for the GPUs. Our im-
plementation is based on a novel 3-stage transposition al-
gorithm where each stage is performed using an elementary
tiled-wise transposition. Additionally, when transposition is
done as part of the memory transfer between GPU and host,
our staged approach allows hiding transposition overhead
by overlap with PCIe transfer. We show that the 3-stage al-
gorithm allows larger tiles and achieves 3X speedup over
a traditional 4-stage algorithm, with both algorithms based
on our high-performance elementary transpositions on the
GPU. We also show our proposed low-level optimizations
improve the sustained throughput to more than 20 GB/s. Fi-
nally, we propose an asynchronous execution scheme that al-
lows CPU threads to delegate in-place matrix transposition
to GPU, achieving a throughput of more than 3.4 GB/s (in-
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cluding data transfers costs), and improving current multi-
threaded implementations of in-place transposition on CPU.

Categories and Subject Descriptors G.4 [Mathematics
of Computing]: MATHEMATICAL SOFTWARE—Parallel
and vector implementations

Keywords GPU, Transposition, In-Place

1. Introduction
Matrix transposition converts an M -rows-by-N -columns ar-
ray (M×N for brevity) to an N -rows-by-M -columns array.
It is an important algorithmic building block with a wide
range of applications from converting the storage layout of
arrays to numeric algorithms, such as FFT and K-Means
clustering, or computing linear algebra functions as defined
by BLAS libraries.

FFT implementations typically carry out matrix transpo-
sitions before transforming each dimension [1]. This allows
the transforms to access contiguous data, avoiding time-
consuming strided memory accesses. K-Means clustering
also benefits from transposition when partitioning thousands
or even millions of descriptors in image classification ap-
plications [2], in which typical descriptors are multidimen-
sional vectors with up to 256 components.

BLAS libraries, such as GotoBLAS [3] and Intel MKL [4],
use matrix transposition extensively as well. For instance,
MKL includes out-of-place and in-place transposition rou-
tines since release 10.1. Moreover, many level 2 and level 3
functions, such as matrix multiplication (sgemm and dgemm),
include a parameter to specify that input matrices are trans-
posed before executing the operation. When offloading these
BLAS libraries to the GPU, an efficient transposition be-
comes important.

Since matrix transposition merely reorders the elements
of a matrix, performance of matrix transposition is essen-
tially determined by the sustained memory bandwidth of the
system. This makes GPU an attractive platform to execute
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the transposition because of its sheer memory bandwidth
(to its global memory) compared to CPUs. A GPU imple-
mentation of matrix transposition can be used to accelerate
CPU transposition as well by transferring the matrix to GPU
memory, transposing on GPU, and copying back the trans-
posed matrix to CPU memory. Lastly, it can be used as a
building block in more complex GPU applications.

Implementing out-of-place matrix transposition on GPU,
that achieves high fraction of peak memory bandwidth, is
well understood [5]. However, the memory capacity on GPU
is usually a much more constrained resource than its CPU
counterpart. If an out-of-place transposition is employed,
only up to 50% of the total available GPU memory could
be used to hold one or several matrices, that need to be
transposed, since the out-of-place transposition has at least
100% spatial overhead. This leads to the need of a general in-
place transposition library for the accelerator programming
models.

To avoid the high spatial overhead of out-of-place trans-
position, in-place transposition can be employed, which
means the resulting AT occupies the same physical stor-
age locations as A and there should not be much temporary
storage required during transposition. The spatial overhead
is either none (i.e. methods that do not require bit flags but
with extra computations) [6] or at most a small fraction of
the input size (one bit per element) [7].

Mathematically, in-place transposition is a permutation,
that can be factored into a product of disjoint cycles [8].
These cycles are “chains” of shifting, where each data ele-
ment is moved to a destination that is the original location of
another data element. In the special case of square matrices,
the shifting consists of simply swapping symmetric elements
along the diagonal, while the diagonal elements remain in
the same location. There are as many cycles as elements
over (or under) the diagonal, and their length is two. Thus,
the GPU implementation is straightforward. However, in the
general case of rectangular matrices the number of cycles
can be much lower, and their length is not uniform. These
facts make parallelization a challenge. Obtaining a fast par-
allelization of matrix transposition requires the use of tiling,
in order to take advantage of the spatial locality in scratch-
pads or cache memories. In this paper, we propose a new
technique that tackles the general case of arbitrary rectangu-
lar matrices. Our proposal is “in-place” in the sense that AT

is placed in the same global memory space as A. Moreover,
it does not need much temporary storage in global memory
(except 0.1% or less overhead coordination bits), since tiles
are temporarily stored in on-chip memories, which are of a
very small and bounded size.

The contributions of this paper are as follows:

• This is, as of today, the first known in-place full transpo-
sition algorithm for general rectangular matrices on the
GPU [9]. We present a full transposition on GPU that is
a 4-stage technique based on Gustavson/Karlsson imple-

mentation [10, 11]. In each stage, elementary tiled-wise
transpositions are carried out. These were developed by
Sung et al. [12], but they did not explain how to use them
to implement full transposition.
• We propose further a brand new 3-stage tiled transposi-

tion scheme that is optimized for GPUs [9], compared to
4-stage Gustavson/Karlsson transposition, plus insights
to minimize the search space of tile sizes, which is cru-
cial to obtain high throughput.
• We improve Sung’s elementary transpositions by reduc-

ing memory contention due to atomic instructions, and by
modifying the way the work is distributed among work-
groups.
• We develop an asynchronous execution scheme that ac-

celerates CPU matrix transposition by delegating the
work to our GPU implementation. Further improvement
is obtained by overlapping 2 stages of the GPU transpo-
sition with GPU-CPU transfer.
• We compare our in-place matrix transposition on GPU

with state-of-the-art out-of-place and in-place implemen-
tations for multi-core and many-core CPUs, and discuss
under which conditions executing transpositions on an
accelerator is profitable.

Our 3-stage in-place transposition achieves on modern
GPUs more than 20 GB/s of sustained throughput (calcu-
lated as twice the number of bytes of the matrix -once for
reading the matrix and once for writing- divided by the to-
tal execution time). Moreover, a 3X speedup with respect to
the baseline transposition (i.e, 4-stage Gustavson/ Karlsson-
style implementation on GPU) is obtained. OpenCL codes of
the baseline and the new 3-stage transpositions are publicly
available1.

From the CPU’s perspective, our asynchronous execution
scheme offers an effective throughput of more than 3.4 GB/s,
that is, more than 20% faster than Gustavson/Karlsson im-
plementation on a 6-core CPU. This scheme can be very
profitable when in-place transposition is required on CPU
due to the use of very large matrices and memory limita-
tions. In these cases, our 3-stage GPU in-place transposition
can be applied to transpose these matrices, whose size would
be only limited by the GPU memory size.

The rest of the paper is organized as follows. Section 2
presents the related works in the field of matrix transposition
on CPU and GPU. In Section 3, the matrix transposition
is defined, and a basic GPU implementation is presented.
Section 4 describes how the full in-place transposition of
rectangular matrices can be carried out as a sequence of
elementary transpositions. Section 5 explains the low-level
optimizations on the elementary transpositions. Section 6
describes how our in-place transposition on GPU can be
used to accelerate in-place transposition on CPU. Section 7

1 https://bitbucket.org/ijsung/libmarshal/wiki/Home
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presents the experimental results. Finally, the conclusions
are stated.

2. Related Work
2.1 In-Place Transposition and Parallelization for

CPUs
As indicated above, most of sequential in-place transposition
algorithms can be classified as cycle-following. Berman [7]
proposed a bit-table for tagging cycles that have been
shifted, and it requires O(MN) bits of workspace for trans-
posing an M×N matrix. Windley [6] presented the notation
of cycle-leaders as the lowest numbered element. Cate and
Twigg [13] proved a theorem to compute the number of cy-
cles in a transposition.

Achieving fast implementations of in-place transposition
has attracted several research efforts. Recent works took a 4-
stage approach [10, 11, 14], in order to improve cache local-
ity. Moreover, Gustavson et al. [11] proposed parallelization
for multicores up to 8-cores. They noticed load imbalance
issues, even for the relatively small number of threads avail-
able on multicores compared to modern GPUs. To address
this problem, they proposed greedy assignment of cycles to
threads and, for long cycles, splitting the shifting a priori.

2.2 In-Place and Out-of-Place Transposition for GPUs
For many-core processors, previous work [5] studied opti-
mizations for out-of-place transposition. Sung et al. [12] pro-
posed the use of atomically-updated bit flags to solve the
load-imbalance problem for GPUs and introduced elemen-
tary transposition routines that can be used to compose a
multi-stage transposition. However, they do not specify how
one would compose these elementary transpositions to ob-
tain a full transposition.

Previous works on fast Fourier transform for the GPU
such as [15] includes transposition to improve locality for
global memory accesses; the authors did not specify whether
the transposition is in-place or not, but we believe it is an
out-of-place one. We also believe that their work can be
enhanced by employing an in-place transposition algorithm
such as ours to increase the maximum size of dataset allowed
for GPU offloading.

3. Definition of Matrix Transposition
Assume that A is an M × N matrix, where A(i, j) is the
element in row i and column j. The transpose of A is an
N ×M matrix AT , so that the columns of A are the rows of
AT , or formally A(i, j) = AT (j, i).

In a linearized row-major layout, A(i, j) is in offset loca-
tion k = i×N + j. When transposing, A(i, j) at offset k is
moved to AT (j, i) at k′ = j×M + i in the transposed array
AT . The formula for mapping from k to k′ is:

k′ =

{
k ×M modM, if 0 ≤ k <M
M, if k =M

(1)

whereM = M ×N − 1 [11].

for(int k = wi id; k < M * N - 1; k += wg_size){
// Transpose in a temporary array

int k1 = (k * M) % (M * N - 1);

temp[k1] = matrix[k];

}
// Synchronization

barrier();

// Copy to global memory

for(int i = wi id; i < M * N - 1; i += wg_size){
matrix[i] = temp[i];

}

Figure 1. Code segment of in-place matrix transposition
with barrier synchronization (BS). Input matrix matrix is
located in global memory. The temporary array in local
memory is temp. Each work-item wi id belongs to a work-
group size wg size.

The expression in Equation (1) allows us to calculate
the destination for a matrix element. Since we are moving
elements in-place, the original element in the destination has
to be saved and further shifted (according to the involved
permutation) to the next location. This generates cycles or
chains of shifting.

The former transformation can be implemented on GPU
by assigning matrix elements to work-items (i.e., a thread in
OpenCL terminology), as the code in Figure 1 shows. In this
kernel, called Barrier-sync (BS), one work-group transposes
a matrix that fits the on-chip memory (registers or local
memory). Although this implementation does not directly
apply to arrays larger than tens of kilobytes in size, it can be
used as a building block when transposing larger matrices.

4. In-place Transposition of Rectangular
Matrices

In a general implementation of in-place transposition of
rectangular matrices, the cycles are generated using Equa-
tion (1). For instance, we can use a row-majored 5 × 3
matrix transposition example, i.e. M = 5, N = 3,M =
M × N − 1 = 14. We start with element 1, or the location
of A(0, 1). The content of element 1 should be moved to
the location of element 5, or the location of AT (1, 0). The
original content at the location of element 5, or the loca-
tion of A(1, 2), is saved before being overwritten and moved
to location of element 11, or the location of AT (2, 1); The
original content at the location of element 11 to the location
of element 13, and so on. Eventually, we will return to the
original offset 1. This gives a cycle of (1 5 11 13 9 3

1). For brevity, we will omit the second occurrence of 1 and
show the cycle as (1 5 11 13 9 3). The reader should
verify that there are five such cycles in transposing a 5 × 3
row-majored matrix: (0) (1 5 11 13 9 3)(7)(2 10 8

12 4 6)(14).
Prior works [11] targeting multicores parallelize by as-

signing each cycle to a thread. As cycles by definition never

209



overlap, they are an obvious source of parallelism that could
be exploited by parallel architectures. In [12] this implemen-
tation is called P-IPT. However, for massively parallel sys-
tems that require thousands of concurrently active threads to
attain maximum parallelism, this form of parallelism alone
is neither sufficient nor regular. In fact, for the vast majority
of other cases the amount of parallelism from the sheer num-
ber of cycles is both much lower and varying except when
M = N or square arrays. Even for larger M and N , the
parallelism coming from cycles can be low. Also, as proven
by Cate and Twigg [13], the length of the longest cycle is
always several times the lengths of other cycles. This creates
significant load imbalance problem.

Sung et al. [12] have proposed an atomic-operation-based
approach to coordinate the shifting to reduce load imbal-
ance. The gist of their method, called PTTWAC, is to have
multiple threads participating in the shifting of elements in
one cycle, and use atomic operations to coordinate the shift-
ing among threads. However, the problem is that modern
GPUs lack bit-addressable atomic operations as the small-
est addressable unit is a 4-byte word. As we shall show in
Section 5, simulating atomic bit operations naı̈vely can lead
to significant performance loss due to the conflicts among
concurrent threads. In this regard, we have also been in-
spired by recent works on histogram calculation, which is a
class of atomic-intensive application that has attracted many
research efforts in the GPU computing community. They
minimize the impact of atomic conflicts by replicating the
histogram in local memory in combination with the use of
padding [16] or a careful layout [17].

4.1 Full Transposition As a Sequence of Elementary
Tiled Transpositions

Good locality is crucial for modern memory hierarchies.
Therefore staged transpositions that trade locality with extra
data movements can be favorable. A full transposition of a
matrix can be achieved by a series of blocked transpositions
in four stages [10, 11, 14]. As shown further, on a modern
NVIDIA K20 GPU, a 4-stage Gustavson/Karlsson-style in-
place transposition reaches around 7 GB/s with optimized
blocked transposition whereas a single-stage in-place trans-
position only runs at 1.5 GB/s, due to poor locality.

A Gustavson/Karlsson style transposition first considers
an M × N matrix as an M ′ ×m by N ′ × n matrix where
M = M ′ × m and N = N ′ × n. Then the elementary
transpositions are designed in such a way that they only swap
adjacent dimensions among the four dimensions. In this
case, the problem becomes finding a sequence of elementary
transpositions to reach N ′ × n ×M ′ ×m. We employ the
factorial numbering system [18] to refer each stage: Table 1
lists possible permutations that refer to swapping of adjacent
dimensions. Intuitively, each digit of the factorial number
for a particular permutation can be thought as an item from
an imaginary queue of items, with offset starting from zero
for the leftmost element. If we insert items from the right

Table 1. Permutations in Factorial Numbering System.
#Dimensions From To Factorial Num. Sung’s terminology [12]

3D (A, B, C) (A, C, B) 010! AoS-ASTA transpose
(A, B, C) (B, A, C) 100! SoA-ASTA transpose

4D (A, B, C, D) (B, A, C, D) 1000!
(A, B, C, D) (A, C, B, D) 0100! A instances of SoA-ASTA
(A, B, C, D) (A, B, D, C) 0010! A×B instances of AoS-ASTA

end of the queue and take the items from the left end of
the queue, we maintain the original order. However, when
an item reaches the left end, if we take its right neighbor
instead for the next turn, we reverse the order between the
two items. If we have 4 items, (A,B,C,D) in the queue,
we can generate a sequence of 4 numbers by generating 0
whenever we remove the leftmost item (offset 0) and 1 for
the item right to the leftmost item (offset 1). So if we reverse
the order between B and C, we would generate 0100!, which
is the factorial number for a permutation from (A,B,C,D)
to (A,C,B,D).

The elementary transpositions were used by Sung et
al. [12] to transform data layouts from Array-of-Structures
(AoS) or Structure-of-Arrays (SoA) to an intermediate
layout called Array-of-Structures-of-Tiled-Arrays (ASTA).
Thus, Sung’s implementation of transposition 010! consid-
ers AoS as a M ′×m×N 3-D array (where N is the number
of elements in each structure), and each of these m×N tiles
is assigned one work-group (in OpenCL terminology), that
is in charge of transposing the corresponding tile. Thus, their
AoS-to-ASTA marshaling is essentially an elementary trans-
position that converts M ′ ×m×N (AoS) to M ′ ×N ×m
(ASTA). Similarly, their SoA to ASTA (i.e. transposition
100!) transformation essentially is from N ×M ′×m (SoA)
to M ′ × N × m (ASTA), in which every m-element tile
is treated as a super-element that is then shifted in order to
obtain ASTA.

Figure 2 illustrates our 4-stage implementation of a full
in-place transposition based on [10], which employs the
mentioned elementary tiled transpositions. Initially, the ma-
trix is considered as a 4D array. Then, the first stage applies
transposition 0100!, that is, M ′ instances of transpositions of
m × N ′ matrices that are formed by super-elements of size
n. Although m × N ′ can be large, this stage always moves
super-elements of size n that can be tuned to fit cache line
and/or DRAM burst size, thus maintaining locality. The sec-
ond stage employs 0010! to transpose M ′ × N ′ instances
of n ×m matrices. This stage can be realized by holding a
temporary array of n ×m in fast on-chip memory of GPUs
for each instance. The third stage, which applies the factorial
1000!, can be considered as one instance of transposition of
an N ′×M ′ array of super-element sized n×m. The fourth
stage is similar to the first one but with a different dimen-
sionality.

4.2 3-Stage Full In-place Transposition on GPU
The transposition 1000! in the 4-stage approach moves
super-elements of m × n elements, so that its best perfor-
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Figure 2. 4-stage full in-place transposition. In every figure, memory addresses increase from left to right and from top
to bottom. Yellow halos indicate the part of the matrix that is brought into focus in the subsequent step. Black halos
represent super-elements, which are shifted as a whole.

mance is obtained when these super-elements fit on-chip
memory. Thus, values for m and n resulting in a high
throughput for that transposition in stage 3, can perform
poorly for transposition 0100! in stage 1 and 4, where the
size of the super-elements is only n and m, respectively.

To address this problem, we propose to eliminate the
intermediate transposition 1000! without sacrificing locality.
One such improved 3-stage approach is:

1. Treat matrix M × N as a 3-dimensional array of M ×
N ′×n. Perform transposition of n-sized super-elements,
i.e. M × N ′ × n to N ′ ×M × n. This is transposition
100!.

2. Treat matrix N ′ × M × n as a 4-dimensional array of
N ′ × M ′ × m × n. Perform N ′ × M ′ instances of
transposition of m × n matrices, i.e. N ′ ×M ′ ×m × n
to N ′ ×M ′ × n×m. This is transposition 0010!.

3. Perform N ′ instances of transposition of m-sized super-
elements, i.e. N ′ ×M ′ × n ×m to N ′ × n ×M ′ ×m.
This is transposition 0100!.

In this improved algorithm, there are only three steps, and
a much larger values of m and n can be used in the first and
the third stage respectively for transposition 0100! without
overflowing the on-chip memory.

5. Performance Improvements for
Elementary Transpositions

Sung et al. [12] suggests parallelization strategies that are
useful for the elementary transpositions shown in the previ-

ous section. However, their transposition algorithms suffer
from the following bottlenecks, if implemented literally. On
the one hand, AoS-ASTA transformation is burdened by se-
rious atomic memory contention. On the other hand, SoA-
ASTA transformation has several limitations related to the
work-group size, that are detailed below. In the following
sections we describe improvements to those transposition
building blocks.

5.1 Transposition 010! (aka AoS-ASTA)
Sung et al. present two versions of transposition 010!: the
first one is the fast Barrier-sync (BS) kernel, that we have
already shown in Figure 1. As we also pointed out, for BS the
tile size (the product of sizes of the lowest two dimensions)
is limited, since it cannot exceed the size of on-chip memory
accessible to a work-group (i.e., OpenCL local memory or
register file). The second one is devised for large tiles and is
based on the PTTWAC algorithm.

In their PTTWAC-based algorithm for large tiles, each
work-item of a work-group shifts scalar values inside a tile
directly from global memory. In order to ensure load bal-
ancing and coalesced global memory reads, adjacent work-
items start to read adjacent elements and then follow the cor-
responding cycle. Recall that given a current element, the
next one in the cycle is calculated by Equation (1).

One 1-bit flag per element per tile is stored in local mem-
ory, so that work-items can mark the elements they shift.
When one work-item finds a previously set flag, it termi-
nates. Sung et al. pack the flag bits in local memory 32-
bit words using an intuitive layout. The local memory word
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Flag word , where the flag bit for element Element position
is stored, is given by Equation (2). Element position stands
for the one-dimensional index of an element within a tile.

Flag word =
⌊Element position

32

⌋
(2)

Reading or setting a flag is a 1-bit atomic operation.
Since the smallest hardware atomic operation size available
is 32 bits wide, an atomic logic OR function is used to
simulate bit-addressable atomics. This will cause conflicts
among work-items updating flags in the same 32-bit word.
Particularly burdening are intra-warp atomic conflicts2, as
explained by Gómez-Luna et al. [19]. In that work, the
authors showed the latency is roughly increased by a factor
equal to the number of colliding threads, which is called
position conflict degree.

5.1.1 Spreading the Flag Bits
The position conflict degree can be diminished by spreading
the flag bits over more local memory words. In Equation (3),
the spreading factor stands for the reduction in the number
of flag bits per local memory word. Thus, the maximum
spreading factor is 32, unless the local memory available
becomes a constraint 3.

Flag word =
⌊Element position × Spreading factor

32

⌋
(3)

5.1.2 Padding to Reduce Bank and Lock Conflicts
When using transposition 010! in the second stage of the
previously proposed full in-place transposition, the tile di-
mensions m× n are determined by the factors of the matrix
dimensions M ×N . Thus, typical values m and n might be
power-of-2. And recall that Equation (1) multiplies the offset
by m. So a power-of-two value of m will cause new conflicts
that are even more frequent when spreading the flags, as ex-
plained in Figure 3 (a) and (b). These new conflicts can be
categorized as bank conflicts and lock conflicts [19]. Bank
conflicts are due to concurrent reads or writes to different
addresses in the same local memory bank. Lock conflicts are
caused by the limited number of locks associated to atomic
operations that are available in the hardware. This produces
a similar effect to position conflicts.

Padding can be used to remove both types of conflicts.
This optimization technique consists of keeping some mem-
ory locations unused, in order to shift the bank or lock ac-
cessed by concurrent threads. For instance, as the NVIDIA
Fermi architecture contains 32 local memory banks and
1024 locks, inserting one unused location each 32 words

2 Warps are SIMD units in NVIDIA devices. AMD counterparts are called
wavefronts.
3 Practically, we could use any spreading factor up to 16, because 32 would
entail 100% local memory overhead, that would allow us to use the faster
BS kernel.
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Figure 3. Consecutive work-items access consecutive ele-
ments in iteration 1. In the following iterations, the next
elements in the cycle are computed with Equation (1). In
this example, m = 16 and n = 215. Representative con-
flicts are highlighted: position conflicts (white), bank con-
flicts (yellow), lock conflicts (green). In case (a), the flag
word is obtained through Equation (2). Many position con-
flicts appear. In case (b), the flag words are obtained with
Equation (3). Position conflicts are removed, but bank and
lock conflicts appear. 32 banks and 1024 locks are consid-
ered, as shown by Gómez-Luna et al. for NVIDIA Fermi
architecture. In case (c), the use of padding avoids the
lock conflicts and most bank conflicts.

will remove most bank and lock conflicts. This is shown in
Figure 3 (c).

5.2 Transposition 100! (aka SoA-ASTA)
Sung’s implementation of SoA-ASTA transformation essen-
tially converts from N×M ′×m to M ′×N×m. Adjacent m
elements are treated as a super-element that is then shifted in
order to obtain the ASTA layout. Such a task is carried out by
N ×M ′ work-groups of m work-items. Thus, coordination
between work-groups must be done with atomic operations
on global memory. Hence, the shared-memory-oriented op-
timization techniques above are not applicable here.

Optimization efforts on this kernel can be oriented to
overcome some limitations in Sung’s implementation that
are related to the fact that m is derived from the factors of
the matrix dimensions:

1. The runtime imposes a maximum limit on the number
of active work-groups in a GPU (e.g., 8 per streaming
multiprocessor in NVIDIA Fermi). This entails low oc-
cupancy (i.e., the ratio of active work-items to the max-
imum possible number of active work-items) because of
typical values of m (between 8 and 64). For instance,
m = 32 means 16% occupancy for Fermi while the min-
imum recommended is 50% [20].

2. Every m that is not a multiple of the SIMD unit size4

entails idle work-items, that is, further occupancy reduc-
tion.

4 NVIDIA’s warp = 32 work-items; AMD’s wavefront = 64 work-items.
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3. If m is larger than the SIMD unit size, barriers are needed
to synchronize the SIMD units belonging to the same
work-group. This degrades performance, as SIMD units
need to wait for each other.

4. The maximum possible m is limited to the maximum
number of work-items per work-group (only 256 in AMD
devices).

5.2.1 Improving Flexibility and Performance
The aforementioned limitations can be alleviated by using
one SIMD unit to move m elements, instead of one work-
group as in [12]. This increases occupancy, saves costly
barriers, and expands the value range of m.

In Sung’s implementation, each element of a super-
element was temporally stored in one register per work-item.
Since m might be longer than the SIMD unit size in our ap-
proach, local memory tiling is required in the pursuit of
flexibility. First, each SIMD unit will need several iterations
to store its m elements in local memory. Then, the SIMD
unit will move its m elements to the new location in global
memory.

Further performance improvement can be achieved for
particular cases where m is a divisor or a multiple of the
SIMD unit size using register tiling, because register ac-
cesses are faster than local memory accesses [21].

6. Using GPU Full In-place Transposition
from CPU Host

The high memory bandwidth of GPUs makes them attractive
to accelerate matrix transposition. Out-of-place matrix trans-
position on GPU [5] has demonstrated a very high through-
put, but it is not suitable for large matrices, as it needs 100%
memory overhead. In these cases, our 3-stage in-place ap-
proach can be employed. It is not strictly in-place by the def-
inition from CPU’s perspective as we are using 1X memory
in the accelerator, but still the in-place algorithm works for
datasets up to 100% of GPU accelerator’s on-board memory
theoretically. Thus, in-place matrix transposition is virtually
executed on CPU, but physically executed on GPU. Figure 4
shows a high-level plan on how to implement this. The entire
matrix must be transferred from CPU to GPU through the
PCIe bus (1). Then, the in-place transposition is executed on
GPU (2). Finally, the matrix is copied from GPU memory to
the same location in CPU memory (3). The total execution
time (including data transfers) will determine the effective
throughput from CPU’s perspective.

The use of several concurrent command queues can help
us to accelerate this in-place matrix transposition. Using
more than one command queue in OpenCL codes allows
programmers to overlap data transfers and computation on
a heterogenous system. This is a way to alleviate the bottle-
neck caused by data transfers.

OpenCL command queues are similar to CUDA streams,
which were thoroughly studied in [22]. They are defined as
sequences of operations that are executed in order, while

CPU 
memory

CPU 
cores Matrix

GPU 
memory

GPU 
coresMatrix

(1)

(3)

(2)

Figure 4. Scheme of an in-place matrix transposition on
CPU memory using a GPU. In (1) the matrix is transferred
to GPU memory. In-place matrix transpose is performed
on GPU (2). In (3) the matrix is moved back to the same
location in CPU memory.

different streams are executed asynchronously5. Data trans-
fers and computation can be divided into a number of com-
mand queues. Thus, data transfers belonging to one com-
mand queue can be overlapped with computation belonging
to a different command queue. Similar to the asynchronous
scheme we propose below, in [23] data transfers are over-
lapped with memory layout reorganization kernels using
CUDA streams.

As explained in Section 4.1, stages 2 and 3 in our 3-
stage transposition execute independent instances of trans-
pose 010! and transpose 100!, respectively. These indepen-
dent instances work with separate memory areas. Thus, they
can be executed asynchronously: work-groups can be split
into Q command queues (see Figure 5 (b) with Q = 4). This
will allow us to overlap stages 2 and 3 and GPU-CPU trans-
fer.

The number Q can range from 1 to a maximum number
that still keeps the GPU multiprocessors busy (i.e., with the
same occupancy as the synchronous execution) and lever-
ages the PCIe bandwidth. Moreover, it should also be taken
into account that the creation of multiple command queues
entails an overhead.

Unfortunately, stage 1 (transpose 100!) cannot be over-
lapped with data transfers. This elementary transposition is
made up of a number of cycles that shift super-elements
across the entire memory space where the matrix is located.
For this reason, transpose 100! cannot be divided into inde-
pendent command queues.

7. Experimental Results
Experiments in this section have been performed on two
current NVIDIA devices and one AMD device, using sin-
gle precision versions of the algorithms. NVIDIA GeForce
GTX 580 with Fermi architecture has a peak bandwidth
192.4 GB/s. The recently released NVIDIA Tesla K20 with
Kepler architecture achieves up to 208 GB/s. The AMD
Radeon HD7750 Cape Verde has a peak memory bandwidth
72 GB/s.
7.1 Transposition 010!
The effect of spreading and padding on throughput has been
measured with the same inputs used by Sung et al. [12] Fig-

5 OpenCL also supports out-of-order execution within a command queue
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(b)

1  command queue

1  command queue 4  command queues
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Figure 5. Timeline comparison. (a) Synchronous execution of the 3-stage in-place GPU transposition. (b) Asynchronous
execution of the 3-stage in-place GPU transposition. Stages 2 and 3 and GPU-CPU transfer are divided into 4 command
queues.

ure 6 shows the results on an NVIDIA Tesla K20 GPU. The
experiment resizes matrices from M ′×m×n to M ′×n×m.
The reduction in the amount of position conflicts produces in
average 1.77× increased throughput. Moreover, the use of
padding minimizes the bank and lock conflicts, so that 12%
additional improvement is achieved. Some significant per-
formance drops are noticeable when increasing the spread-
ing factor (e.g., test problem bccstk31 with m equal to 32
and 64). These are caused by an occupancy value under 50%,
due to the increase of local memory needs.

We have compared our optimized PTTWAC (with spread-
ing and padding) to the original algorithm for n between 16
and 256 (in steps of 1) and m between 16 and 64 (in steps
of 1). The average (minimum / maximum) speedup is 1.85
(1.36 / 3.49) on NVIDIA GeForce GTX 580, 1.79 (1.30 /
5.29) on NVIDIA Tesla K20, and 1.90 (1.15 / 3.34) on AMD
Cape Verde.

The optimized PTTWAC has been compared to the P-IPT
version [12], introduced in Section 1. P-IPT outperformed
the original PTTWAC algorithm in some well load-balanced
cases, but it is defeated by the optimized PTTWAC.

7.2 Transposition 100!
The new version of the transpose 100! results in impressive
speedups compared to Sung’s original implementation on
NVIDIA devices. Experiments resize from N ×M ′ ×m to
M ′×N×m. We have tested with matrices of m between 16
and 64 (in steps of 1), and M ′ between 16 and 256 (in steps
of 1). In order to obtain the highest throughput, the work-
group size has been chosen to maximize the occupancy. An-
alyzing the need for registers and local memory, we noticed
that the occupancy is limited on Fermi by the number of reg-
isters (22 registers per thread). Thus, the highest occupancy
is obtained for 192 threads/block. On Kepler, such a limita-
tion does not appear. The highest occupancy can be obtained
with a number of threads per block that is a multiple of 128.

The average (minimum / maximum) speedup is equal to
2.95 (1.97 / 4.09) on GTX 580 and 2.58 (1.54 / 3.50) on

Table 2. Throughput of our 3-stage approach and Karlsson/-
Gustavson 4-stage approach on a Kelper K20. Best perform-
ing tile sizes have been used. Both implementations include
the low-level optimizations presented in Section 5.

3-stage 4-stage (+fusion)
7200× 1800 20.59 GB/s 7.11 (7.67) GB/s
5100× 2500 18.49 GB/s 6.87 (7.38) GB/s
4000× 3200 20.73 GB/s 7.23 (7.79) GB/s
3300× 3900 18.80 GB/s 7.23 (7.79) GB/s
2500× 5100 17.29 GB/s 6.86 (7.37) GB/s
1800× 7200 18.70 GB/s 7.07 (7.60) GB/s

K20, when using local memory tiling. Register tiling can
be applied for m that is multiple or divisor of the warp
size. In these cases, performance further increases by 16%
on GTX 580 and 23% on K20. The P-IPT version [12] is
always outperformed by these new versions. Unfortunately,
on AMD we did not observe speedups (albeit being more
flexible, as explained in Section 5.2).

Figure 7.2 shows the throughput of transposition 100! on
K20 and Cape Verde for values of m and M ′ under 256.
The best performance on K20 is obtained with m between
64 and 160. This range ensures enough work per work-item
in the warp, and does not reduce the occupancy due to local
memory needs for tiling. Similar results have been observed
on GTX 580. On Cape Verde the best performance results
occur with m over 128 (wavefront size doubles warp size).
Local memory needs are not an issue, because the amount
of local memory per wavefront is larger. To maximize oc-
cupancy, we typically use 40 wavefronts for 64 KB of local
memory on Cape Verde [24], while 64 warps for 48 KB of
local memory on K20 [20].

7.3 3-Stage and 4-Stage Transposition
Table 2 summarizes the throughput difference on a Tesla
K20 of our 3-stage approach compared to the 4-stage ver-
sion, which we have developed following the original ap-
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Figure 7. Throughput (GB/s) of transpose 100! for m and M ′ under 256. The experiment converts from N ×M ′ ×m
to M ′ ×N ×m.

proach by Gustavson [11] and Karlsson [10], using the
dataset configuration from their paper. Both approaches are
implemented using the same set of elementary transposition
routines.

Note as also pointed out by Karlsson and Gustavson, the
stage 2–3 in the 4-stage approach in Figure 2 could be fused.
We present the throughput of their approach with fusion in
the second column (values inside parentheses) of Table 2.
The reason why our 3-stage method is significantly faster
than the 4-stage method is not only eliminating one stage
(which can be achieved by fusion in 4-stage approach any-
way), but the 3-stage algorithm allows much bigger tile sizes
which is crucial for transposition 100! including derived
0100!, and 1000!. For Tesla K20, the throughput of transpo-
sitions 100! et al., is dominated by tile size used: 12.5 GB/s

for tile size 8, 24.5 GB/s for tile size 16, 47.6 GB/s for tile
size 32, 69 GB/s for tile size 64 on average. In fact, the best
performing tile sizes (m,n) for transposing a 7200 × 1800
matrix is (20, 16) for 4-stage transposition, but (32, 72) for
the 3-stage algorithm on a Tesla K20.

7.4 Choosing Tile Sizes for Full Transposition
Tile sizes are crucial to the throughput of full transposition.
Naı̈vely, we could exhaustively search on all possible m and
n combination and use the best one, but that is too time-
consuming especially for M and N values having many
possible dividends. We can prune the search space by taking
into consideration these three factors: Transposition 100!
and 0100! obtain a better throughput if the tile size is larger.
This limits the stage 1 (tile size = n) and stage 3 (tile size
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Figure 8. Tile Sizes versus Performance

= m). Transposition 0010! obtains a better throughput if the
tile (in this case m×n) fits into shared memory, because the
barrier-synchronization kernel can be used.

Figure 8(a) plots some of the best combinations of tile
sizes (m and n) in a 7200x1800 in-place transposition on
one Tesla K20 (Kepler). The best ones achieved a throughput
of 20.59 GB/s in an exhaustive search. It is clear that the
tile sizes that lead to best throughput (80%+ of the best
performing combinations) are actually within a very small
subset roughly along the curve of m × n < 3600 (which
is roughly the shared memory capacity) and with mostly m
and n around 60. Figure 8(b) shows a similar trend but on
an AMD Radeon HD7750 (Cape Verde). We can see that
for AMD GPUs the best performing combinations are also
confined in a small region, but the shape is different from an
NVIDIA GPU. For all three GPUs, a good guess for m and
n will be from 50 to 100 with m × n less than the maximal
shared memory capacity: this simple heuristic can yield at
least 80% of the best throughput.

That exposes the only limitation of our algorithm. When
the algorithm cannot choose a good tile size (e.g., prime-
number dimensions), the throughput would be degraded 6.

7.5 Comparison to Matrix Transposition on CPU
We compare our 3-stage in-place transposition on GPU with
Intel MKL [4] and Gustavson/Karlsson [11] out-of-place
and in-place transpositions on CPU. From Intel MKL we use
mkl somatcopy() and mkl simatcopy(), single precision

6 Contemporary to the preparation of this paper is another work [25] that
addresses this limitation for a particular architecture (NVIDIA Kepler),
obtaining a comparable performance.

routines for out-of-place and in-place transposition, respec-
tively. Gustavson/Karlson original implementations are dou-
ble precision. We have moved them to single precision for a
fair comparison. Figure 9 shows the throughput results for
the best configurations. The same matrix sizes as in Sec-
tion 7.3 have been used. CPU transposition implementations
have run on a 6-core 3.47 GHz Intel Xeon W3690 and our
3-stage GPU in-place transposition on a Tesla K20.

It is remarkable that MKL in-place transposition is a
sequential implementation. Thus, it achieves less than 0.1
GB/s, so that the corresponding column is not represented in
the figure. MKL out-of-place transposition is a parallel im-
plementation. Its throughput is not limited by the number of
cores, but the memory bandwidth, since it does not scale for
more than 4 threads. As it entails 100% memory overhead,
its main drawback is that it is not suitable for applications in
which the memory resources are constrained.

Gustavson/Karlsson implementations are also parallel
and launch as many threads as CPU cores. The average
throughput of their in-place transposition is 2.85 GB/s. Our
3-stage implementation on GPU is up to 6.7X faster than
Gustavson/Karlsson’s.

If our 3-stage implementation on GPU is used by a CPU
thread, both data transfers (CPU-GPU and GPU-CPU) times
must be added when using a synchronous execution scheme.
For those matrix sizes, both transfers take around 15 ms
to complete. Thus, the resulting average throughput from
CPU’s perspective is 2.87 GB/s, that is, slightly faster than
Gustavson/Karlsson’s method on CPU. Using an out-of-
place transposition on GPU [5], instead of our 3-stage in-
place approach, would only result in a minimally higher
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Table 3. Assessment of in-place and out-of-place matrix transposition methods on CPU and GPU. Throughput figures are
average results for the matrix sizes in Table 2. CPU codes have been tested on a 6-core Xeon, while GPU implementations
have run on a Tesla K20.

Implementation Executed on... Throughput (GB/s) CPU memory overhead GPU memory overhead
Intel MKL out-of-place [4] 6 CPU cores 12.07 100% -

Intel MKL in-place [4] 1 CPU core < 0.1 0% -
Gustavson/Karlsson out-of-place [11] 6 CPU cores 2.36 100% -

Gustavson/Karlsson in-place [11] 6 CPU cores 2.85 0% -
GPU out-of-place [5] + data transfers GPU cores 3.57 0% 100%
3-stage GPU in-place + data transfers GPU cores 3.43 0% '0%
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Figure 9. Throughput results for Intel MKL out-of-place
transposition on CPU, Gustavson/Karlsson (GKK) out-
of-place and in-place transposition on CPU, and 3-stage
in-place transposition on GPU. The throughput of MKL
in-place transposition is < 0.1 GB/s in all cases. CPU
results have been obtained on a 6-core Xeon. GPU results
correspond to a Tesla K20.

overall performance: data transfers are still the main perfor-
mance bottleneck, even though the out-of-place transposi-
tion achieves more than 120 GB/s on a K20. Furthermore,
our in-place approach has the additional advantage that it can
transpose larger matrices, as it needs a negligible memory
overhead.
7.6 Overlapping Stages 2 and 3 with GPU-CPU

Transfer
As explained in Section 6, stages 2 and 3 of our 3-stage
in-place GPU transposition can be overlapped with GPU-
CPU data transfer. We have evaluated this asynchronous
execution scheme with the same matrix sizes and all possible
combinations of m and n (6444 tests).

In these tests, the asynchronous execution scheme (Q
command queues) outperforms the synchronous execution
scheme (1 command queue) by an average 9% and a max-
imum 24%. In the asynchronous execution, the best num-
ber Q is typically under 8. Larger values lower the result-
ing throughput because of the overhead derived from the
creation of the command queues [22]. Such a throughput
degradation is not attributable to an underutilization of either
GPU resources (the occupancy value is maintained) or PCIe
bandwidth (data transfers are still larger than 1 MB, which
ensures a linear timing behavior of PCIe transfers [26]).

If only the best configurations are considered, the asyn-
chronous execution scheme increases the effective average

throughput from CPU’s perspective from 2.87 to 3.43 GB/s,
that is, 19% improvement. Thus, this virtual in-place trans-
position achieves more than 20% speedup with respect to
Gustavson/Karlsson in-place implementation on CPU.

As a summary, Table 3 compares all in-place and out-of-
place implementations from CPU’s perspective. Throughput
results and memory overheads are presented.

It can be noticed that our 3-stage GPU in-place transposi-
tion has GPU memory overhead approximately equal to 0%.
This is thanks to using on-chip memory for temporary stor-
age. An insignificant global memory overhead is due to coor-
dination bits in elementary transposition 100!, as explained
in Section 5.2. Such an overhead is negligible because only
one bit per super-element is needed. Thus, it depends on the
number of super-elements, not the size of the matrix. As-
suming m and n between 50 and 100 (as indicated in Sec-
tion 7.4), the overhead is less than 0.1%.

7.7 Testing our implementations on a non-GPU
accelerator

As our 4-stage and 3-stage in-place matrix transpositions are
implemented in OpenCL, we have tested them on a 60-core
Intel Xeon Phi [27]. The average results of the best config-
urations for the matrix sizes in Table 2 are 2.81 and 5.02
GB/s for our 4-stage and our 3-stage implementations, re-
spectively. Thus, the 3-stage approach improves throughput
by 1.8X.

The lack of on-chip scratchpad memory on Xeon Phi
makes these implementations not strictly in-place, since
OpenCL local memory is emulated on the regular GDDR
memory. We leave for future work an implementation with
a reduced memory overhead.

8. Conclusion
We have presented the design and implementation of the first
known general in-place transposition of rectangular matrices
for modern GPUs. We have enhanced both the performance
of building blocks proposed by earlier works as well as
the overall staged approach. Combined with insights that
lead to greatly improved performance of elementary tiled
transformations, a new 3-stage approach that is efficient
for the GPUs is presented and we have shown that this is
much faster than traditional 4-step approaches. We have also
observed that the tile size greatly affects performance of
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in-place transposition, especially for the GPUs since it can
affect the algorithm choice due to hardware limitations of
on-chip resources. Though the search space for tile sizes can
be big, we have also identified pruning criteria that helps
user to choose good tile sizes for current GPUs. Finally,
we have proposed an asynchronous execution scheme that
allows CPU threads to transpose in-place, obtaining 20%
speedup to the fastest state-of-the-art in-place transposition
for multi-core CPUs. As a future work, besides the above
mentioned implementation for Xeon Phi, we plan to extend
our work to multi-GPU environments. We believe that our
efficient 3-stage approach can be used as a building block
for a multi-GPU version.
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[19] Gómez-Luna, J., González-Linares, J.M., Benavides, J.I.,
Guil, N.: Performance modeling of atomic additions on GPU
scratchpad memory. IEEE Transactions on Parallel and Dis-
tributed Systems 24(11) (2013) 2273–2282

[20] NVIDIA: CUDA C Programming Guide 5.0 (July 2012)

[21] Volkov, V., Demmel, J.W.: Benchmarking GPUs to tune dense
linear algebra. In: Supercomputing, Piscataway, NJ, USA,
IEEE Press (2008) 31:1–31:11
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