Trace Selection for Compiling Large C Application Programs to
Microcode

Pohua P. Chang
Wen-mei W. Hwu

Coordinated Science Laboratory
1101 W, Springfield Ave,
University of Illinois
Urbana, IL 61801

ABSTRACT
Microcode optimization techniques such as code
scheduling and resource allocation can benefit

significantly by reducing uncertainties in program control
flow. A trace selection algorithm with profiling informa-
tion reduces the uncertainties in program control flow by
identifying sequences of frequently invoked basic blocks
as traces. These traces are treated as sequential codes for
optimization purposes. Optimization based on traces is
especially useful when the code size is large and the con-
trol structure is complicated enough to defeat hand optim-
izations. However, most of the experimental results
reported to date are based on small benchmarks with sim-
ple control structures.

For different trace selection algorithms, we report
the distribution of control transfers categorized according
to their potential impact on the microcode optimizations.
The experimental results are based on ten C application
programs which exhibit large code size and complicated
control structure. The measured data for each program is
accumulated across a large number of input files to ensure
the reliability of the result. All experiments are performed
automatically using our IMPACT C compiler which con-
tains integrated profiling and analysis tools.

1. Introduction

Code optimization techniques [1] such as register
allocation, code compaction, variable renaming, common
subexpression elimination, copy propagation, dead code

This research has been supported by the National Science
Fundation (NSF) under Grant MIP-8809478, a donation from
NCR, the National Aeronautics and Space Administration (NASA)
under Contract NASA NAG 1-613 in cooperation with the [linois
Computer laboratory for Aerospace Systems and Software
(ICLASS), and the University of Tllinois Campus Research Board.

TH0236-0/83/0000/0021$01.00 © 1988 IEEE

21

removal, constant folding and strength reduction can per-
form significantly better by favoring the important execu-
tion paths while penalizing the unimportant ones, Trace
selection techniques with profiling information identify
the important execution paths in terms of frequently
invoked sequences of basic blocks.

Trace selection was first proposed by Fisher [5] as a
systematic approach to global microcode compaction.
Since then, improvements and implementations of optimi-
zations based on trace selection techniques have been
reported [9, 10, 11, 12]. These techniques are useful for
generating efficient code for application programs which
are too large and too complicated to be hand-optimized.
However, most of the experimental results reported on
using trace selection to assist optimizing large application
programs have been based on small benchmarks with sim-
ple control structures.

The IMPACT (Illinois Microarchitecture Project
using Advanced Compiler Technology) C compiler (8]
developed at the University of Illinois employs a set of
profiling and analysis tools to guide the trace selection.
To collect the profile information for a C program, the
compiler automatically inserts function calls into the pro-
gram to update the profile database. The C programs with
probing function calls can then be compiled with standard
C compilers (including IMPACT C compiler) to collect
profile information on various host machines.

To analyze the profile information for a C program,
the compiler automatically associates the profile data with
the program control graph and extracts the necessary
information for trace selection. The compiler has been
stable enough for us to compile large C programs. This
allows us to observe the performance of trace selection
algorithms on large C application programs over many
runs. For different trace selection algorithms, we report
the distribution of control transfers categorized according

to their potential impacts on the microcode optimizations.

L.1. Structure of the Paper

This paper is divided to six sections. Section 2
describes the automatic profiler and compiler interface.
Section 3 provides a brief review and an analysis of the
trace scheduling optimization. Section 4 shows three
trace selection functions. Section 5 outlines the experi-
ment and presents the experimental result. In section 6,
we offer some concluding remarks,

2. Weighted Program Control Graph

In this section, we first introduce the notion of
weighted program control graph. Then, we briefly
describe how the automatic profiler and the C compiler
collaborate to constiuct the weighted program control

graph.

2.1. Program Representation

In our C compiler, a program is represented by a
weighted program control graph, Weighted program con-
trol graph is a directed graph where every node is a basic
block, and every arc is a branch path between two basic
blocks. The weight of a node is the average execution
count of the corresponding basic block for a single run of
the program. The weight of an arc is the average execu-
tion count of the corresponding branch path for a single
run of the program.

For example, given that the program consists of
three basic blocks A, B, and C, where A has an average
execution count of 100, B has an average execution count
of 90, and C has an average execution count of 10 in a
single run. The last instruction of A is a conditional
branch to either B or C depending on some branch condi-
tion. The arc A->B has a weight of 90 and the arc A->C
has a weight of 10. Then one can conclude that A is the
only immediate predecessor of B and C, because the sum
of the weights of all incoming arcs = the sum of the
weights of all outgoing arcs = the node weight.

The arc A->B is said to be an outgoing arc of node
A, and is an incoming arc of node B. From the opposite
perspective, node A is the source and node B is the desti-
nation of the arc A->B. A node may have several incom-
ing and outgoing arcs.

2.2, Control Graph Construction

The IMPACT C compiler applies constant folding,
dead code removal, and jump optimization to the program
control graph to derive a transformed control graph with
fewer and larger basic blocks. Then it inserts additional
code in all basic blocks to collect node and arc weights

dynamically.

22

Upon completion of a single program run, a profiler
routine is automatically activated to store the profiled
result into a database. The profiler logs the node and arc
weights, and the number of times the program has been
profiled. For each run, the profiler updates the program
profile information according to [W.permanent =
W.permanent*NI/(N+1) + W.singlerun/(N+1); N=N+1I]
where N is the number of time the program has been
profiled, W.permanent is the accumulated weight, and
W.single.run is the weight calculated in the last run.

The profiler provides functions which can be called
by the compiler to obtain the profile information. The
compiler reads in the profile information and assigns node
and arc weights of the program control graph.

The resultant weighted control graph is the program
representation used to study trace selection in the next
section,

3. Trace Scheduling

We refer readers who are unfamiliar with trace
scheduling to the original paper by Fisher [5]. Trace
scheduling consists of three major functions : trace selec-
tion, local compaction, and bookkeep. First, the trace
selection function selects the most likely to be executed
program path. Then, local compaction is applied to
schedule the trace. And finally, the bookkeep function
inserts patch code at the split and rejoin points to preserve
correctness. The three functions are described in great
detail in Ellis’s thesis [11].

Trace scheduling permits the patch code created
during the bookkeep phase of a trace to be selected and
compacted as part of later traces. However, we do not
allow the additional basic blocks generated by the book-
keep function, unless they can be absorbed by jump
optimization, to be considered when forming later traces.
This requirecment allows us to apply tace selection
independently of the local compaction and bookkeep
functions.

Code motion moves critical instructions on the pro-
gram critical paths up to the earliest point that they can be
executed. The usefulness of the code motion and the cost
of the bookkeeping on the total program execution time
depends on the program structure and also on the underly-
ing microarchitecture. For example, code motion applied
to a section of a program with large fine-grain parallelism
will tend to do well due to the large code movement free-
dom. In a pipelined processor, code motion allows the
execution of multi-cycle operations to overlap with the
issuing and execution of less critical operations when
there is no data dependence. Similarly in a processor
capable of issuing multiple instructions per cycle, code
motion reduces execution time by compacking operations
into fewer instructions.

Trace scheduling guides global code motion by
favoring most frequently executed program paths. There-
fore the goal of the trace selection function is to identify
when forming longer traces are desirable and how all
basic blocks should be partitioned to various traces. It
would be grossly complicated for the trace selection func-
tion to deal with micro-architecture dependent factors
such as degree of hardware parallelism. Disregarding the
hardware limitations, the trace selection function try to
form the longest possible traces, limited only by program
dependent factors.

The question is what program dependent factors
must the trace selection function consider. The program
control flow, local program parallelism, and the code
mobility as determined by data-flow analysis can all be
implemented in the trace selector. The program flow
analysis, either by loop analysis or dynamic profiling,
allows the trace selector to form traces by grouping series
of basic blocks which tend to execute together. The local
program parallelism and code mobility analysis tells the
trace selector when trace expansion should be stopped due
to limited code movement freedom. However, the com-
plexity of the analysis, although required in later phases of
compilation, hinders the development of a clean sclection
function. It is best to use only the control flow informa-
tion and to construct the longest traces.

Our IMPACT C compiler allows automatic
profiling and provides accurate execution weights for all
control graph nodes and arcs. The problem now is how to
form traces in such a way that the in-trace transition is
maximized and the off-trace transition is minimized.
Off-trace transitions can be finer partitioned to five dif-
ferent types. Together with in-trace transition, there are a
total of six transisiton types (T1-T6).

T1 connects the last node of a trace to the
start node of a different trace.

T2 connects the last node of a trace to a
middle node of a trace.

T3 connects a middle node of a trace to the
start node of a trace.

T4 connects two middle nodes.

TS5 connects two nodes within a trace.

T6 connects the last node of a trace to the
start node of the same trace.

Code motion is permited only for TS connections.
T2 transition requires bookeeping at the rejoin location.
T3 transition requires bookeeping at the branch location.
T4 connections require bookeeping at both the branch and
the rejoin locations. T2, T3, and T4 thus may execute
longer than the same code without applying trace schedul-
ing. Global code motion is not allowed across T1 and T6
connections, and therefore obtains no speedup over local
code compaction.

23

Let %a, %b, %c, %d, %e and %f denote the percen-
tage of T1, T2, T3, T4, TS and T6 transitions respectively,
in a typical program run. The goal of the trace selector is
to maximize %e and to minimize %b, %c, and %d.

The various percentages allow us to compare dif-
ferent trace selection functions. A trace selection function
is better than others if it generates higher %e and lower
%Y, %c, and %d, for a given control graph.

4. Trace Selection

4.1. General Selection Function

In his trace scheduling paper [5], Fisher presented
the following trace selection algorithm with node weights
as the selection criteria. Later, Ellis in his thesis [11]
implemented the same general trace selection algorithm
but use arc weights as the selection criteria.
algorithm trace_selection

mark all nodes unvisited;
while (there are unvisited nodes)
* select a seed */
seed = the node with the largest execution
count among all unvisited nodes;
mark seed visited;
/* grow the trace forward */
current = seed;
loop
s = best_sucessor_of{(current);
if (s==0) exit loop;
add s to the trace;
mark s visited;
current = s;
/* grow the trace backward */
current = seed;
loop
s = best_predecessor_of{current);
if (s==0) exit loop;
add s to the trace;
mark s visited;
current = s;
/* compaction and bookkeep */
trace_compaction;
book_keep;

Since we do not consider the additional basic blocks
generated by the book_keep function in the trace selection
process, the trace_compaction and the book_keep func-
tions are not included in the above algorithm.

To ensure that loop headers become the leading
nodes of traces, in growing trace forward and backward,
crossing loop back-edges is prohibited.

4.2. Selection According to Node Weight

Node weight is the execution count of a basic block.
This number can either be estimated statically by loop
analysis [1], or dynamically profiled by an automatic
profiler. In this paper, all weights used in the trace selec-
tion functions are strictly derived from the average pro-
gram profile accumulated over many runs.
best_successor_of(node)
n = Of all immediate successors of node,
n has the highest execution count;
if (n is visited) return 0;
return n;
best_predecessor_of(node)
n = Of all immediate predecessors of node,
n has the highest execution count;
if (n is visited) return 0;
return n;

4.3. Selection According to Arc Weight

Each node (basic block) of the control graph can
have several incoming and outgoing arcs. Each arc
represents a possible branch path connecting two nodes.
Trace scheduling yields some performance gain when the
program flows through an arc within a trace, and suffers
when an off-trace is taken. Hence, arc weight is a better
selection criterian than node weight.
best_successor_of(node)

e = Of all edges leaving node, e has the
highest execution count (highest probability);

n = the destination of e;

if (n is visited) return 0;

return n;

best_predecessor_of(node)

e = Of all edges entering node, e has the
highest execution count (highest probability);

n = the source of e;

if (nis visited) return 0,

return n;

4.4, Selection with Minimum Arc Probability Require-
ment

Some nodes have many incoming and outgoing
arcs. If there is not a single arc which dominates all oth-
ers, the performance gain that can be extracted by includ-
ing the most likely to be taken arc by a trace will be
overshadowed by the combined off-trace cost of all other
arcs. In such instances, it is better to stop the trace expan-
sion. To detect such cases, a minimum arc probability
requirement is added to the selection function.

The probability that an outgoing arc Ai will be
taken, given that the program control is already at node Nj
which is the source of Ai, is simply [arc_weight(Ai) /
node_weight(Nj)]. The probability a node Na is reached

24

through an arc Ab is [arc_weight(Ab) /
node_weight(Na)]. In section 5, we measure the perfor-
mance of this selection heuristic with several MIN_PROB
values.
best_successor_of(node)

e = Of all edges leaving node, e has the

highest execution count (highest probability);

if (probability(e) <= MIN _PROB) return 0;

n = the destination of e;

if (n is visited) return 0;

return n;
best_predecessor_of(node)

e = Of all edges entering node, e has the

highest execution count (highest probability);

if (probability(e) <= MIN_PROB) return 0,

n = the source of e;

if (n is visited) return 0;

return n;
probability(e)

s = source of e;

d = destination of e;

return min((weight(e)iweight(s)),

(weight(e)iweight(d)));

5. Experiments

5.1. Procedure

The compiler compiles and profiles the benchmark
programs by inserting extra code to record the execution
count of basic blocks and branch paths. The compiled
programs are installed and tested with many inputs. For
each run, the profiler updates the accumulated average
execution count of basic blocks and branch paths for a
typical run of the program. With the profile information,
the compiler constructs the weighted control graph. Then,
trace selection is applied to the weighted control graph,
and the percentage of the six connection types (%a %b
%c %d %e %f) are measured.

5.2. The Benchmark

Ten programs from several application domains are
chosen mainly because of their popularity and substantial
program size. Each of the ten programs is run at least ten
times with realistic inputs. We have also made a special
effort to exercise nearly all program options.

In table 1, the name column lists the program name,
the line column shows the number of non-empty lines of
C code after preprocessing in each of the benchmarks.
The run column indicates the number of runs under
profiler monitoring,.

5.3. Percentage of Transaction Types

We report the percentage of each of the six transi-
tion types executed in a typical run of the benchmark pro-
gram. The loop column in the following tables is the
average number of basic blocks in a executed inner loop.
The trace column is the average number of basic blocks
of all traces executed. Table 2 corresponds to the selec-
tion according to node weight function. Table 3
corresponds to the selection according to arc weight func-
tion. Table 4 to 7 demonstrates the effect of imposing
additional minimum branch probability requirement.

5.4. Discussion of Result

As we have expected, arc weight is a better selec-
tion criterian than node weight. The additional minimum
branch probability requirement furthur reduces the off-
trace cost. As the minimum branch probability require-
ment increases, %b, %c, and %d percentages decline
slightly. However as the minimum requirement rises,
fewer and smaller traces are formed, leading to low per-
centage of in-trace transitions.

In any case, the in-trace transition (%e) is several
times larger than the off-trace transitions (%b, %c, %d).
This essentially tells us that even a small improvement in
in-trace code movement can compensate for much larger
bookkeep cost.

The off-trace transitions (%b, %c, %d) are low,
because benchmark programs have predictable branch
behavior. The profile information shows that, on the aver-
age, the branch direction of more than 90% of all branch
instructions executed can be correctly predicted statically.
Excluding function calls and returns, the average control
flow predictability, including all conditional, uncondi-
tional and multi-way branchs, for the benchmarks is sum-
merized in table 8.

table 8 : Control Flow Predictability.
cpp .8803 eqn 9561
espresso .8095 grep 9632
more 9764 mpla 9226
nroff 9770 pic 9553
tbl 9658 wc 9250

A few of the benchmark programs show substantial
inner loop back-edge transitions (%f). Loop unrolling can
be applied to exploit program parallelism across loop
iterations. When N copies of a loop exist, the loop back-
edge of the first (N-1) instances can be transformed into
normal connection between two distinct nodes. These
(N-1) connections between different iterations of the loop
can be selected for trace expansion. Since many iterations
are usually taken before the program control leaves the
loop, the expanded loop structure will form a long trace

25

covering the most important path of all unrolled instances
of the loop.

For several benchmarks, the number of function
calls are substantial, more than one function call per every
six basic blocks executed. The program tbl shows the
highest function call frequency, about one function call
for every two basic blocks executed. The profile result
shows that the most frequently executed function in tbl
consists of only one basic block. Similarly in the other
programs, the most frequently executed functions tend to
be small, and can be easily in-line expanded. Since func-
tion in-line expansion not only gives larger traces, but also
climinates register saving and restoring around the func-
tion boundaries, the potential gain seems to be more sub-
stantial than loop unrolling.

Of all traces actually executed, the average trace
size is about three to four basic blocks for various selec-
tion functions. The relatively small size is due to control
uncertainties and smail function body. One can expect
some increase in trace length after function in-line expan-
sion,

An inner loop as seen by the IMPACT C compiler
is a trace whose last node branches back to the trace
header. The average size of all inner loops executed is
about three basic blocks. In another word, one can expect
two conditional branchs in inner loops. Therefore, loop
unrolling and software pipelining techniques for large
integer programs must cope with at least two conditional
branchs in inner loops.

5.5. Bookkeeping Cost

Since the percentage of off-trace transition (%b,
%c, %d) is much smaller than in-trace transition (%e),
trace scheduling can tolerate large off-trace cost. In sec-
tion three, we have stated that the new basic blocks gen-
erated by the bookkeep function will not be considered in
forming later traces. The performance penalty of that
decision in terms of execution time is small.

6. Conclusion

Using profiling data in our trace selection algo-
rithm, we have reduced some control uncertainties. Furth-
ermore, our experiments with various trace selection func-
tions have shown that trace scheduling can guide global
code motion effectively with very little off-trace penalty.
The percentage of off-trace transitions (%b, %c, %d) can
be reduced by increasing the minimum branch probability
requirement. For some of the benchmark programs we
have tested, function in-line expansion and loop unrolling
should be exploited to obtain additional performance.

Acknowledgements [12] Michael A. Howland, Robert A. Mueller and Philip
The authors would like to acknowledge Sadun H. Sweany, "Trace Scheduling ()Ptlmlzatm_n In a
Anik, Nancy Warter, Thomas Conte, and the other Retargetable Microcode Compiler,” Proceedings of

members of the Computer System Group for their invalu- the 20th Inter "a’i‘?"al Microprogramming
able comments and suggestions. Workshop, Colorado Springs, Dec., 1987.

Reference

[1] A.V. Aho, R. Sethi, and J.D. Ullman, Compilers: Prin-
ciples, Techniques, and Tools, Addison-Wesley
Publishing Company, 1986.

{2] D.J. Kuck, R.H. Kuhn, D.A, Padua, B. Leasure and M.
Wolfe, "Dependence Graphs and Compiler Optimi-
zattons," Proceedings of the 8th ACM Symposium
on Principles of Programming Languages, Jan.,
1981.

[3]1 Ron Cytron and Jeanne Ferrante, "The Value of
Renaming for Parallelism Detection and Storage
Allocation,” Proceedings of the 1987 International
Conference on Parallel Processing, Aug., 1987.

[4] Mario Tokoro, Eiji Tamura and Takashi Takizuka,
"Optimization of Microprograms,” IEEE Transac-
tions on Computers, vol. ¢-30, no.7, July, 1981.

[5] Joseph A. Fisher, "Trace Scheduling: A Technique for
Global Microcode Compaction,” IEEE Transactions
on Computers, vol. ¢-30, no.7, July, 1981.

[6] John Hennessy and Thomas Gross, "Postpass Code
Optimization of Pipeline Constraints,” ACM Tran-
sactions on Programming Languages and Systems,
vol, 5, no.3, July, 1983.

[71 B. Su, S. Ding, and J. Xia, "URPR - An Extension of
URCR for Software Pipelining,” Proceedings of the
19th Microprogramming Workshop, New York,
NY, Dec., 1986.

[8] Wen-mei W. Hwu and Pohua P. Chang, "Exploiting
Parallel Microprocessor Microarchitectures with a
Compiler Code Generator,” The 15th Annual Inter-
national Symposium on Computer Architecture,
Honolulu, Hawaii, May, 1988.

[9] J.L. Linn, "SRDAG Compaction: A Generalization of
Trace Scheduling to Increase the Use of Global
Context Information,” Proceedings of the 16th
Microprogramming Workshop, Downingtown, PA.,
Oct., 1983,

[10] B. Su, S. Ding, and L. Jin, "An Improvement of
Trace Scheduling for Global Microcode Compac-
tion,” Proceedings of the 17th Microprogramming
Workshop, New Orleans, LA., Nov., 1984.

[11] J.R. Ellis, Bulldog: A Compiler for VLIW Architec-
tures. The MIT Press, 1985, PhD thesis, Yale, 1984,

26

table 1 : Benchmark Set.

name line run description
cpp 3355 34 GNU C preprocessor
eqn 3775 10 typeset mathematics for nroff/ditroff
€Spresso 10405 18 boolean minimization
grep 447 10 pattern search
more 1644 10 browse through a text file
mpla 1134 18 technology independent PLA generator
nroff 10263 10 format documents for display
pic 7916 20 format pictures for nroff/ditroff
tbl 3403 14 format tables for nroff/ditroff
wC 116 10 word count program
table 2 : Selection According to Node Weight.
%a %ob FoC %od %e %of loop trace
cpp 1387 0350 .1054 0106 3764 3339 1.78 1.84
eqn 0416 1740 1796 0000 5631 0419 3.95 2.58
€Spresso 2632 .0813 1285 0781 2941 1547 1.97 1.88
grep 2743 .0984 1077 0038 4379 0780 3.01 2.17
more 0956 .1366 .1380 0095 .5964 0240 4.74 3.83
mpla 1090 0611 0848 1276 5309 0866 3.88 2.78
nroff 0246 0981 1062 0120 7159 0414 5.39 3.74
pic 0202 .1009 1085 0203 7104 0386 2.02 3.57
tbl 0343 0816 0909 0050 7023 0859 1.90 2.45
wC 0943 .1093 1369 .0000 5734 .0860 6.00 325
table 3 : Selection According to Arc Weight.
%a %b e %d %e %f loop trace
cpp 1256 .0098 .0804 0203 4299 3339 1.82 1.97
eqn .1969 0103 0219 0215 7314 0181 1.33 3.07
€SPresso .1490 0571 0968 1862 A025 .1083 2.10 2.16
grep 1775 .0206 0289 0087 6799 .0845 4.93 3.42
more 2010 .0160 0213 0073 7514 0031 2.95 441
mpla 1232 0468 0737 1276 5421 .0865 3.88 2.77
nroff 0506 0079 0169 0184 8711 0356 6.66 5.11
pic 0942 0147 0411 0133 7928 0439 5.60 3.94
tbl 0649 0077 0176 0153 8128 .0814 1.52 273
we 0703 .0038 0278 0241 .7880 0860 7.00 5.73

27

table 4 : Minimum Branch Probability = 60%.

%a %b 9oC %d %e %f loop trace

cpp 3344 0098 0212 0200 3553 2591 1.74 1.64
eqn 2171 0074 0186 .0090 7298 0181 1.40 2.94
€SPIesso 2304 0465 0764 1615 3667 1185 1.94 1.82
grep 1918 0172 0240 0042 6758 0866 4.89 3.31
more 2014 0160 0212 0073 7512 0031 295 4.40
mpla 2897 0087 0231 1270 4938 0577 3.19 2.14
nroff 0568 0073 0144 0178 8680 0356 6.64 5.00
pic 1296 0134 0312 0102 7799 0358 1.99 3.19
tbl 0735 0071 0145 0155 .8080 0814 1.48 2.65
we 0703 0038 0278 0241 .7880 0860 7.00 5.73

table 5 : Minimum Branch Probability = 70%.

Yoa %b %oC od %e %t loop trace

cpp 3582 L0090 0146 0181 3409 2590 1.74 1.58
eqn 2372 0051 0144 0082 7186 0166 1.31 2.65
€Spresso 5663 0145 0217 .0870 2017 .1089 1.88 1.57
grep .0198 0157 0240 0002 6746 0866 4.89 3.24
more 2016 0159 0211 0072 7512 0031 2.99 440
mpla 2899 0087 0231 1270 4937 0577 3.19 2.14
nroff 0585 0071 0140 0177 .8670 0356 6.64 497
pic .1498 0106 0256 0102 7691 0349 1.85 283
tbl .0906 0069 0105 0134 7972 0814 1.48 2.56
wC 0703 0038 0278 0241 .7880 0860 7.00 5.73

table 6 : Minimum Branch Probability = 80%.

%a %b %cC %d Joe %t loop trace

Cpp 4053 0055 0111 0144 3103 2532 1.67 1.49
eqn .2686 0013 0086 .0077 6972 0166 1.31 244
€Spresso .6748 0076 0081 .0518 1569 1008 1.74 1.43
grep .1990 0157 0240 0002 6745 0866 4.89 3.24
more 2021 0158 0210 0074 7507 0031 2.95 4,39
mpla .3286 0084 0138 1270 4646 0577 3.19 1.97
nroff 0862 0046 0128 0711 7942 0311 2.87 422
pic 2109 0028 0124 0174 7217 0350 1.90 227
tbl 1128 0065 20095 0110 7788 0813 148 2.46
wC 0703 0038 0278 0241 .7880 .0860 7.00 573

2%

~ table 7 : Minimum Branch Probability = 90%.

%a %b % %d %e [loop trace

¢pp A468 0044 0097 0082 2881 2427 1.61 1.43
eqn 2827 0009 0069 0077 6866 0154 1.22 2.36
espresso 7661 0007 | 0019 0065 1417 0831 1.34 1.20
grep 2052 - 0002 0083 .0000 6097 0866 4.89 2.58
more 2912 0014 | 0083 0073 6908 0031 2.95 3.34
mpla 3902 0063 L0081 1270 4270 0413 3.48 1.81
nroff d762 | 0013 0037 0696 7295 0197 2.63 3.28
~ pic 3254 0012 0018 00354 6491 0171 1.72 1.98
tbl 1265 0053 0083 0114 7681 0804 1.46 242
we 5798 0002 {0002 .0000 4197 0000 0.00 1.72

29

