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ABSTRACT 

Microcode optimization techniques such as code 
scheduling and resource allocation can benefit 
significantly by reducing uncertainties in program control 
flow. A trace selection algorithm with profiling informa- 
tion reduces the uncertainties in program control flow by 
identifying sequences of frequently invoked basic blocks 
as traces. These traces are treated as sequential codes for 
optimization purposes. Optimization based on traces is 
especially useful when the code size is large and the con- 
trol sttucture is complicated enough to defeat hand optim- 
izations. However, most of the experimental results 
reported to date are based on small benchmarks with sim- 
ple control structures. 

For different trace selection algorithms, we report 
the distribution of control transfers categorized according 
to their potential impact on the microcode optimizations. 
The experimental results are based on ten C application 
programs which exhibit large code size and complicated 
control structure. The measured data for each program is 
accumulated across a large number of input files to ensure 
the reliability of the result. All experiments are performed 
automatically using our IMPACT C compiler which con- 
tains integrated profiling and analysis tools. 

1. Introduction 

Code optimization techniques [l] such as register 
allocation, code compaction, variable renaming, common 
subexpression elimination, copy propagation, dead code 

This research has been supported by the National Science 
Fundation (NSF) under Grant MIP-8809478. a donation from 
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under Contract NASA NAG l-613 in cooperation with the Illinois 
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(ICLASS), and the University of Illinois Campus Research Board. 

removal, constant folding and strength reduction can per- 
form significantly better by favoring the important execu- 
tion paths while penalizing the unimportant ones. Trace 
selection techniques with profiling information identify 
the important execution paths in terms of frequently 
invoked sequences of basic blocks. 

Trace selection was first proposed by Fisher [S] as a 
systematic approach to global microcode compaction. 
Since then, improvements and implementations of optimi- 
zations based on trace selection techniques have been 
reported [9, 10, 11. 123. These techniques are useful for 
generating efficient code for application programs which 
are too large and too complicated to be handoptimized. 
However, most of the experimental results reported on 
using trace selection to assist optimizing large application 
programs have been based on small benchmarks with sim- 
ple control structures. 

The IMPACT (Illinois Microarchitecture Project 
using Advanced Compiler Technology) C compiler [S] 
developed at the University of Illinois employs a set of 
profiling and analysis tcols to guide the trace selection. 
To collect the profile information for a C program, the 
compiler automatically inserts function calls into the pro- 
gram to update the profile database. The C programs with 
probing function calls can then be compiled with standard 
C compilers (including IMPACT C compiler) to collect 
profile information on various host machines. 

To analyze the profile information for a C program, 
the compiler automatically associates the profile data with 
the program control graph and extracts the necessary 
information for trace selection. The compiler has been 
stable enough for us to compile large C programs. This 
alkws us to observe the performance of trace selection 
algorithms on large C application programs over many 
runs. For different trace selection algorithms, we report 
the distribution of control transfers categorized according 
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to their potential impacts on the microcode optimizations. 

1.1.. Structure of the Paper 

This paper is divided to six sections. Section 2 
describes the automatic profiler and compiler interface. 
Section 3 provides a brief review and an analysis of the 
trace scheduling optimization. Section 4 shows three 
trace selection functions. Section 5: outlines the experi- 
ment and presents the experimentaI result. In section 6, 
we offer some concluding remarks. 

2. Weighted Program Control Graph 

In this section, we first introduce the notion of 
weighted program control graph. Then, we briefly 
describe how the automatic profiler and the C compiler 
collaborate to construct the weighted program control 
graph. 

2.1. Program Representation 

In our C compiler, a program is represented by a 
weighted program control graph. Weighted program con- 
trol graph is a directed graph where every node is a basic 
block, and every arc is a branch path between two basic 
blocks. The weight of a node is the average execution 
count of the corresponding basic block for a single run of 
the program. The weight of an arc is the average execu- 
tion count of the corresponding branch path for a single 
run of the program. 

For example, given that the program consists of 
three basic blocks A, B, and C, where A has an average 
execution count of 100, B has an average execution count 
of 90, and C has au average execution count of 10 in a 
single run. The last instruction of A is a conditional 
branch to either B or C depending o:n some branch condi- 
tion. The arc A->B has a weight of 90 and the arc A-X 
has a weight of 10. Then one can conclude that A is the 
only immediate predecessor of B and C, because the sum 
of the weights of all incoming arcs = the sum of the 
weights of all outgoing arcs = the no& weight. 

The arc A->B is said to be an outgoing arc of node 
A, and is an incoming arc of node B. From the opposite 
perspective, node A is the source and node B is the desti- 
nation of the arc A->B. A node may have several incom- 
ing and outgoing arcs. 

2.2. Control Graph Construction 

The IMPACT C compiler applies constant folding, 
dead code removal, and jump optimization to the program 
control graph to derive a transformed control graph with 
fewer and larger basic blocks. Then it inserts additional 
code in all basic blocks to collect node and arc weights 
dynamically. 

Upon completion of a single program run, a profiler 
routine is automatically activated to store the profiled 
result into a database. The profiler logs the node and arc 
weights, and the number of times the program has been 
profiled. For each run, the profiler updates the program 
profile information according to [W.permanent = 
W.permanent*Nl(N+I) + W.single.runl(N+l); N=N+l] 
where N is the number of time the program has been 
profiled, W.permanent is the accumulated weight, and 
W.singk.run is the weight calculated in the last run. 

The profiler provides functions which can be called 
by the compiler to obtain the profile information. The 
compiler reads in the profile information and assigns node 
and arc weights of the program control graph. 

The resultant weighted control graph is the program 
representation used to study trace selection in the next 
section. 

3. Trace Scheduling 

We refer readers who are unfamiliar with trace 
scheduling to the original paper by Fisher [5]. Trace 
scheduling consists of three major functions : trace selec- 
tion, local compaction, and bookkeep. First, the trace 
selection function selects the most likely to be executed 
program path. Then, local compaction is applied to 
schedule the trace. And finally, the bookkeep function 
inserts patch code at the split and rejoin points to preserve 
correctness. The three functions are described in great 
detail in Ellis’s thesis [ 113. 

Trace scheduling permits the patch code created 
during the bookkeep phase of a trace to be selected and 
compacted as part of later traces. However, we do not 
allow the additional basic blocks generated by the book- 
keep function, unless they can be absorbed by jump 
optimization, to be considered when forming later traces. 
This requirement allows us to apply trace selection 
independently of the local compaction and bookkeep 
functions. 

Code motion moves critical instructions on the pro- 
gram critical paths up to the earliest point that they can be 
executed. The usefulness of the code motion and the cost 
of the bookkeeping on the total program execution time 
depends on the program structure and also on the underly- 
ing microarchitecture. For example, code motion applied 
to a section of a program with large fine-grain parallelism 
will tend to do well due to the large code movement free- 
dom. In a pipelined processor, code motion allows the 
execution of multi-cycle operations to overlap with the 
issuing and execution of less critical operations when 
there is no data dependence. Similarly in a processor 
capable of issuing multiple instructions per cycle, code 
motion reduces execution time by compacking operations 
into fewer instructions. 
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Trace scheduling guides global code motion by 
favoring most frequently executed program paths. There- 
fore the goal of the trace selection function is to identify 
when forming longer traces are desirable and how all 
basic blocks should be partitioned to various traces. It 
would be grossly complicated for the trace selection func- 
tion to deal with micro-architecture dependent factors 
such as degree of hardware parallelism. Disregarding the 
hardware limitations, the trace selection function try to 
form the longest possible traces, limited only by program 
dependent factors. 

The question is what program dependent factors 
must the trace selection function consider. The program 
control flow, local program parallelism, and the code 
mobility as determined by data-flow analysis can all be 
implemented in the trace selector. The program flow 
analysis, either by loop analysis or dynamic profiling, 
allows the trace selector to form traces by grouping series 
of basic blocks which tend to execute together. The local 
program parallelism and code mobility analysis tells the 
trace selector when trace expansion should be stopped due 
to limited code movement freedom. However, the com- 
plexity of the analysis, although required in later phases of 
compilation, hinders the development of a clean selection 
function. It is best to use only the control flow informa- 
tion and to construct the longest traces. 

Our IMPACT C compiler allows automatic 
profiling and provides accurate execution weights for all 
control graph nodes and arcs. The problem now is how to 
form traces in such a way that the in-trace transition is 
maximized and the off-trace transition is minimized. 
Off-trace transitions can be liner partitioned to five dif- 
ferent types. Together with in-trace transition, there are a 
total of six transisiton types (Tl-T6). 

Tl connects the last node of a trace to the 
start node of a different trace. 

l2 connects the last node of a trace to a 
middle node of a trace. 

T3 connects a middle node of a trace to the 
start node of a trace. 

T4 connects two middle nodes. 
TS connects two nodes within a trace. 
T6 connects the lasr node of a trace to the 

start node of the same trace. 

Code motion is permited only for T.5 connections. 
T2 transition requires bookeeping at the rejoin location. 
T3 transition requires bookeeping at the branch location. 
T4 connections require bookeeping at both the branch and 
the rejoin locations. T2, T3, and T4 thus may execute 
longer than the same code without applying trace schedul- 
ing. Global code motion is not allowed across Tl and T6 
connections, and therefore obtains no speedup over local 
code compaction. 

Let %a, %b, %c, %d, %e and %f denote the percen- 
tage of Tl, T2, T3, T4, T5 and T6 transitions respectively, 
in a typical program run. The goal of the trace selector is 
to maximize %e and to minimize %b, %c, and %d. 

The various percentages allow us to compare dif- 
ferent trace selection functions. A trace selection function 
is better than others if it generates higher %e and lower 
%b, %c, and %d, for a given control graph. 

4. Trace Selection 

4.1. General Selection Function 

In his trace scheduling paper (51, Fisher presented 
the following trace selection algorithm with node weights 
as the selection criteria. Later, Ellis in his thesis [ill 
implemented the same general trace selection algorithm 
but use arc weights as the selection criteria. 
algorithm trace-selection 

mark all nodes unvisited; 
while (there are unvisited nodes) 
I* select a seed *I 
seed = the node with the largest execution 

count among all unvisited nodes; 
mark seed visited; 
I* grow the trace forward *I 
current = seed; 
loop 
s = best-sucessor-of(current); 
if (s==O) exit loop; 
add s to the trace; 
mark s visited; 
current = s; 

I* grow the trace backward *I 
current = seed; 
loop 
s = bestgredecessor-of{current); 
if(s==O) exit loop; 
add s to the trace; 
mark s visited; 
current = s; 

I * compaction and bookkeep *I 
trace-compaction; 
book-keep; 

Since we do not consider the additional basic blocks 
generated by the book-keep function in the trace selection 
process, the trace-compaction and the book-keep func- 
tions are not included in the above algorithm. 

To ensure that loop headers become the leading 
nodes of traces, in growing trace forward and backward, 
crossing loop back-edges is prohibited. 
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4.2. Selection According to Node Weight 

Node weight is the execution count of a basic block. 
This number can either be estimated statically by loop 
analysis [l], or dynamically profiled by an automatic 
profiler. In this paper, all weights used in the trace selec- 
tion functions are strictly derived from the average pro- 
gram profile accumulated over many runs. 
best-successor-of(node) 

n = Of all immediate successors qf node, 
n has the highest execution count; 

if (n is visited) return 0; 
return n; 

bestgredecessor-of(node) 
n = Of all immediate predecessors of node, 

n has the highest execution count; 
if (n is visited) return 0; 
return n; 

4.3. Selection According to Arc W’eight 

Each node (basic block) of the control graph can 
have several incoming and outgoing arcs. Each arc 
represents a possible branch path connecting two nodes. 
Trace scheduling yields some performance gain when the 
program flows through an arc within a trace, and suffers 
when an off-trace is taken. Hence, arc weight is a better 
selection criterian than node weight. 
best-successor-of(node) 

e = Of all edges leaving no&, e has the 
highest execution count {highest probability); 

n = the destination of e; 
if (n is visited) return 0; 
return n; 

bestgredecessor-of(node) 
e = Of all edges entering node, e has the 

highest execution count (highest probability); 
n = the source of e; 
if (n is visited) return 0; 
return n; 

4.4. Selection with Minimum Arc Probability Require- 
ment 

Some nodes have many incoming and outgoing 
arcs. If there is not a single arc which dominates all oth- 
ers, the performance gain that can be extracted by includ- 
ing the most likely to be taken arc by a trace will be 
overshadowed by the combined off-trace cost of all other 
arcs. In such instances, it is better to stop the trace expan- 
sion. To detect such cases, a minimum arc probability 
requirement is added to the selection function. 

The probability that an outgoing arc Ai will be 
taken, given that the program control is already at node Nj 
which is the source of Ai, is simply [arc-weight(Ai) / 
node-weight(Nj)]. The probability a node Na is reached 
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through an arc Ab is [arc-weight(Ab) / 
node-weight(Na)]. In section 5, we measure the perfor- 
mance of this selection heuristic with several MIN-PROB 
values. 
best-successor_afnode) 

e = Of all edges leaving no&, e has the 
highest execution count (highest probability); 

if (probability(e) < = MIN-PROB) return 0; 
n = the destination of e; 
if (n is visited) return 0; 
return n; 

bestgredecessor-of(node) 
e = Of all edges entering node, e has the 

highest execution count (highest probability); 
if (probability(e) <= MIN-PROB) return 0; 
n = the source of e; 
if (n is visited) return 0; 
return n; 

probability(e) 
s = source of e; 
d = destination of e; 
return min((weight(e)lweight(s)). 

(weight(e)lweight(d))); 

5. Experiments 

5.1. Procedure 

The compiler compiles and profiles the benchmark 
programs by inserting extra code to record the execution 
count of basic blocks and branch paths. The compiled 
programs are installed and tested with many inputs. For 
each run, the profiler updates the accumulated average 
execution count of basic blocks and branch paths for a 
typical run of the program. With the profile information, 
the compiler constructs the weighted control graph. Then, 
trace selection is applied to the weighted control graph, 
and the percentage of the six connection types (%a %b 
%c %d %e %f) are measured. 

5.2. The Benchmark 

Ten programs from several application domains are 
chosen mainly because of their popularity and substantial 
program size. Each of the ten programs is run at least ten 
times with realistic inputs. We have also made a special 
effort to exercise nearly all program options. 

In table 1, the nume column lists the program name, 
the line column shows the number of non-empty lines of 
C code after preprocessing in each of the benchmarks. 
The run column indicates the number of runs under 
profiler monitoring. 



5.3. Percentage of Transaction Types 

We report the percentage of each of the six transi- 
tion types executed in a typical run of the benchmark pro- 
gram. The loop column in the following tables is the 
average number of basic blocks in a executed inner loop. 
The truce column is the average number of basic blocks 
of all traces executed. Table 2 corresponds to the selec- 
tion according to node weight function. Table 3 
corresponds to the selection according to arc weight func- 
tion. Table 4 to 7 demonstrates the effect of imposing 
additional minimum branch probability requirement. 

5.4. Discussion of Result 

As we have expected, arc weight is a better selec- 
tion criterian than node weight. The additional minimum 
branch probability requirement furthur reduces the off- 
trace cost. As the minimum branch probability require- 
ment increases, %b, %c, and %d percentages decline 
slightly. However as the minimum requirement rises, 
fewer and smaller traces are formed, leading to low per- 
centage of in-trace transitions. 

In any case, the in-trace transition (%e) is several 
times larger than the off-trace transitions (%b, %c, %d). 
This essentially tells us that even a small improvement in 
in-trace code movement can compensate for much larger 
bookkeep cost. 

The off-trace transitions (%b, %c, %d) are low, 
because benchmark programs have predictable branch 
behavior. The profile information shows that, on the aver- 
age, the branch direction of more than 90% of all branch 
instructions executed can be correctly predicted statically. 
Excluding function calls and returns, the average control 
flow predictability, including all conditional, uncondi- 
tional and multi-way branchs, for the benchmarks is sum- 
mer&d in table 8. 

I table 8 : Control Flow Predictabilitv. I 
CPP .8803 w .9561 

espresso .8095 8v .9632 
more -9764 mpla .9226 
nroff .9770 pit .9553 
tbl .9658 WC 9250 

A few of the benchmark programs show substantial 
inner loop back-edge transitions (%f). Loop unrolling can 
be applied to exploit program parallelism across loop 
iterations. When N copies of a loop exist, the loop back- 
edge of the first (N-l) instances can be transformed into 
normal connection between two distinct nodes. These 
(N-l) connections between different iterations of the loop 
can be selected for trace expansion. Since many iterations 
are usually taken before the program control leaves the 
loop, the expanded loop structure will form a long trace 
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covering the most important path of all unrolled instances 
of the loop. 

For several benchmarks, the number of function 
calls are substantial, more than one function call per every 
six basic blocks executed. The program tbl shows the 
highest function call frequency, about one function call 
for every two basic blocks executed. The profile result 
shows that the most frequently executed function in tbl 
consists of only one basic block. Similarly in the other 
programs, the most frequently executed functions tend to 
be small, and can be easily in-line expanded. Since func- 
tion in-line expansion not only gives larger traces, but also 
eliminates register saving and resming around the func- 
tion boundaries, the potential gain seems to be more sub- 
stantial than loop unrolling. 

Of all traces actually executed, the average trace 
size is about three to four basic blocks for various selec- 
tion functions. The relatively small size is due to control 
uncertainties and small function body. One can expect 
some increase in trace length after function in-line expan- 
sion. 

An inner loop as seen by the IMPACT C compiler 
is a trace whose last node branches back to the trace 
header. The average size of all inner loops executed is 
about three basic blocks. In another word, one can expect 
two conditional branchs in inner loops. Therefore, loop 
unrolling and software pipelining techniques for large 
integer programs must cope with at least two conditional 
branchs in inner loops. 

5.5. Bookkeeping Cost 

Since the percentage of off-trace transition (%b, 
%c, %d) is much smaller than m-trace transition (%e), 
trace scheduling can tolerate large off-trace cost. In sec- 
tion three, we have stated that the new basic blocks gen- 
erated by the bookkeep function will not be considered in 
forming later traces. The performance penalty of that 
decision in terms of execution time is small. 

6. Conclusion 

Using profiling data in our trace selection algo- 
rithm, we have reduced some control uncertainties. Furth- 
ermore, our experiments with various trace selection func- 
tions have shown that trace scheduling can guide global 
code motion effectively with very little off-trace penalty. 
The percentage of off-trace transitions (%b, %c, %d) can 
be reduced by increasing the minimum branch probability 
requirement. For some of the benchmark programs we 
have tested, function in-line expansion and loop unrolling 
should be exploited to obtain additional performance. 
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name 

CDD 

line 

3355 

table 1 : Benchmark Set. 

run 

34 

description 

GNU C nrenrocessor 

ew 3775 10 

espresso 10405 18 

PifeD 447 10 

typeset mathematics for nroff/ditroff 

boolean minimization 

pattern search 

more 

mpla 

nroff 

1644 10 browse through a text file 

1134 18 technology independent PLA generator 

10263 10 format documents for distktv 

pit 

tbi 

7916 20 format pictures for nroff/ditroff 

3403 14 format tables for nroff/ditroff 

WC 116 10 word count program 

I %a 

table 2 : Selection According to Node Weight. 

1 %b %c 1 %d 1 %e I %f I lOOD I trace 

CPP .1387 .0350 .1054 .0106 .3764 .3339 1.78 1.84 

eqn .0416 .1740 -1796 .oooo .563 1 .0419 3.95 2.58 

eSDreSS0 .2632 .0813 -1285 .078 1 .294 1 .1547 1.97 1.88 

grep .2743 .0984 .1077 .0038 .4379 .0780 3.01 2.17 

more .0956 .1366 .1380 .0095 .5964 -0240 4.74 3.83 

mpla .1090 .0611 .0848 .1276 .5309 -0866 3.88 2.78 

m-off .0246 .0981 JO62 -0120 .7159 Ml4 5.39 3.74 

pit .0202 .1009 .1085 .0203 .7104 .0386 2.02 3.57 

tbl .0343 .0816 .0909 .0050 .7023 .0859 1.90 2.45 

WC .0943 .1093 -1369 .oooo .5734 .0860 6.00 3.25 

I %a 

table 3 : Selection According to Arc Weight. 

1 %b I %c I %d I %e I %f I loon I trace 

CPP .1256 .0098 .0804 .0203 .4299 .3339 1.82 1.97 

eqn .1969 .0103 .0219 .0215 .73 14 -0181 1.33 3.07 

espresso .1490 .0571 .0968 .1862 .4025 -1083 2.10 2.16 

grep .1775 .0206 .0289 .0087 .6799 .0845 4.93 3.42 
more .2010 .0160 .0213 .0073 .7514 .003 1 2.95 4.41 

mpla .1232 .0468 -0737 .1276 .5421 -0865 3.88 2.77 

m-off .0506 .0079 .0169 .0184 .8711 .0356 6.66 5.11 

pit .0942 .o 147 a411 .0133 .7928 &I39 5.60 3.94 

tbl .0649 JO77 -0176 .0153 .8128 .08 14 1.52 2.73 

WC .0703 JO38 .0278 ,024 1 .7880 .0860 7.00 5.73 

21 



CPP 
eqn 

espresso 
grep 
more 
mpla 
muff 
pit 
tbl 
WC 

%a 
.3582 
-2372 
.5663 
.0198 
-2016 
.2899 
.0585 
.1498 
.0906 
.0703 

table 5 : Minimum Branch Probability = 70%. 
%b %c %d %e 

.OCRO .0146 -0181 .3409 

.005 1 .0144 .0082 .7186 

.01.45 .0217 .0870 .2017 

.0157 .0240 .0002 .6746 

.0159 ,021l JO72 -7512 

.0087 .023 1 .1270 .4937 

.007 1 .0140 .0177 .8670 

.0106 .0256 .0102 .769 1 

.OO69 .0105 .0134 .7972 

.0038 .0278 .024 1 .7880 

%f 
.2590 
.0166 
.1089 
.0866 
SKI31 
.0577 
.0356 
.0349 
.08 14 
.0860 

1WP 
1.74 
1.31 
1.88 
4.89 
2.99 
3.19 
6.64 
1.85 
1.48 
7.00 

trace 
1.58 
2.65 
1.57 
3.24 
4.40 
2.14 
4.97 
2.83 
2.56 
5.73 
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I %a %b %t %d %e %f bP I trace 
CPP 1 &%a .QQ44 .twY .QQ82 ,288 1 .2427 1.61 1 1.43 
em I 2827 .oQQ9 m69 m77 I 6866 .0154 1.22 1 236 

mO7 .m9 .QQ65 1 .1417 1 ~0831 f 1.34 1 1.20 
$002 .0083 .QQQQ .6Q97 .M66 1 4.89 258 1, _ 1 1 
ml4 .oQ63 a073 I .6908 I .Qo31 I 295 I 3.34 

mph .w3 .oQ81 .1270 1 A270 1 AM13 3.48 ] 1.81 
nmff .1762 m13 .0696 .7295 .Q197 2.63 3.28 _ .im~ 1 1 
pit : ,3254.. ml12 JO18 .0054 1 d5491 .0171 1.72 1.98 L 
tbl .1265 .*53 Jm3 .0114 j ,768l 1 .QW 1.46 2.42 

I WC SY98 I a002 1 .Qoo2 1 .QQoo I ,419-Y I .QQQQ I 0.00 I 1.72 I 
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