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Abstract 
Inline function expansion replaces a function call 

with the function body. With automatic inline function 
expansion, programs can be constructed with many small 
functions to handle complexity and then rely on the com- 
pilation to eliminate most of the function calls. Therefore, 
inline expansion serves a tool for satisfying two 
conflicting goals: minizing the complexity of the program 
development and minimizing the function call overhead of 
program execution. A simple inline expansion procedure 
is presented which uses profile information to address 
three critical issues: code expansion, stack expansion, and 
unavailable function bodies. Experiments show that a 
large percentage of function calls/returns (about 59%) can 
be eliminated with a modest code expansion cost (about 
17%) for twelve UNIX* programs. 

* UNIX is a trademark of the AT&T Bell Laboratories. 
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1. Introduction 

Large computing tasks are often divided into many 
smaller subtasks which can be more easily developed, 
understood, and reused. Function definition and invoca- 
tion in high level languages provide a natural means to 
define and coordinate subtasks to perform to original task. 

Structured programming techniques therefore encourage 
the use of functions. Unfortunately, function invocation 
disrupts compile-time code optimization such as register 
allocation, code compaction, common subexpression 
elimination, and constant propagation. The decreased 
effectiveness of these optimization techniques increases 
memory accesses, decreases pipeline efficiency, and 
increases redundant computation, 

Emer and Clark reported, for a composite VAX 
workload, 4.5% of all dynamic instructions are procedure 
calls and retumsl. If we assume equal numbers of call 
and return instructions, the above number indicates that 
there is a function call instruction for every 44 instructions 
executed. Berkeley RISC researchers have reported that 
procedure call is the most costly source language state- 
ment2. 

1.1. Existing Remedies 

Some recent processors provide hardware support 
for minimizing the extra memory accesses due to function 
calls. For example, the Berkeley RISC processors provide 
overlapping register windows to reduce the number of 
memory accesses required to save/restore registers and to 
pass parameters2. Another example is the CRISP proces- 
sor that uses stack buffers to capture the memory accesses 
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to local variables so that register allocation crossing func- 
tion calls can be simulated in hatdware3. The problems 
with these hardware approaches are that they tend to con- 
sume a signitlcant amount of hardware, stretch the proces- 
sor cycle time, and provide little assistance for enlarging 
the scope of compiler code optimization. 

In the software realm, inter-procedural register allo- 
cation schemes have been shown to reduce the register 
save/restore cost across function call boundaries4. Callers 
and callees can also communicate parameters and results 
through a small number of registers’. Wall has shown 
that combining profiling and inline expansion, link-time 
register allocation is comparable in performance to 
hardware register window scheme@. Inter-procedural 
analysis have been shown to be effective in reducing the 
negative effects of function calls on the code scheduling 
and other code optimization techniques. These software 
remedies assume that frequent function calls can not be 
avoided. If most of the function calls can be eliminated, 
these complicated remedies would be unnecessary. 

1.2, Inline Function Expansion 

Inline expansion replaces a function call with the 
function body. Inline expansion removes the function 
calls/returns costs and provides larger and specialized 
execution plans to the code optimizers. With automatic 

inline function expansion, the advantages of using func- 
tions remain and the costs are reduced. In a recent study, 
Allen and Johnson identified inline expansion as an essen- 
tial part of an optimizing C compiler7-lt. They gave a 
few critical reasons for implementing inline expansion. 
First, the variable abasing problem becomes less onerous 

after inline expansion. Second, the code optimizer can 
work on the real effects of the callee after inlining. Third, 
inlining function calls contained in loops may increase the 
opportunities for vectorization. 

Several code improving techniques may be applica- 
ble after inline expansion. These include register alloca- 
tion, code scheduling, common subexpression elimination, 
constant propagation, and dead code elimination. 
Richardson and Ganapathi have discussed the effect of 
inline expansion and code optimization across pro- 
ceduresJ2. 

Many optimizing compilers can perform inline 
expansion1 l* 13-16. IBM PL.8 compiler does inline expan- 
sion of all leaf-level procedures 13 . In the (3Jl-J C corn- 

piler, the programmers can use the keyword inline as a 
hint to the compiler for inline expanding function calls16 . 
In the MIPS C compiler, the compiler examines the code 
structure (e.g. loops) to choose the function calls for 
inline expansion15. It should be noticed that the careful 
use of the macro expansion and language preprocessing 
utilities has the same effect as inline expansion, when 
inline expansion decisions are made entirely by the pro- 
grammers. 

The IMPACT-I (Illinois Microarchitecture Project 
using Advanced Compiler Technology - stage I) C com- 
piler expands function calls to increase the effectiveness 
of compiler code optimization*7-19. As far as the 
hardware is concerned, the goal of inline expansion is to 
reduce the function calls so that mechanisms such as 
register windows and stack buffers become unnecessary. 
For compiler code optimization, the inline expansion 
serves to enlarge the scope of register allocation, code 
scheduling, and other optimizations. The IMPACT-I 
Profiler to C Compiler interface allows the profile infor- 
mation to be automatically used by the IMPACT-I C 
Compiler. The inline expansion is based on execution 
profile information to ensure that only the important func- 
tion calls are expanded. It is critical that the inputs used 
for executing the equivalent C program are representative. 
Therefore, this approach is more suitable for characteriz- 
ing realistic programs for which representative inputs can 
be easily collex3ed. 

1.3. Organization of Paper 

Section two discusses major implementation issues 
and potential hazards. Section three describes a simple 
inline expansion procedure. Section four shows the 
experimental results. Finally, we give some concluding 
remarks in section five. 

2. Implementation Issues 

The core inline expansion algorithm is fairly sim- 
ple. Most of the implementation difficulties are due to 
hazards, missing information, and minimizing the compi- 
lation time. The implementation issues are listed as fol- 
lows. 

- Determine when inline expansion should be applied. 

- Propose an appropriate program representation. 

- Select call sites for inline expansion, 

-Avoid hazards. 
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- Prevent code eqhsion. main is the first function executed in this program. 

- Prevent control stack overflow. 

- Evaluate cost. 

- Inline a funCrion. 

- Code duplication. 

-Variable retuaming. 
- Changes to variable de&rations. 

- Resolve missing information. 

- Ehinate unreachablejimctions. 

- Reduce the number of expanviom. 

- Order the expansion sequence. 

2.1. When to Perform Mine Function Expansion 

Inline expansion should be performed before other 
code optimizations, such as constant folding and dead 
code elimination. Therefore, tt is natural to perform inline 
expansion at compile-time. Another advantage of per- 
forming Mine expansion at compile-time is that the pro- 
gram structures, such as loop and if-then-else. are visible 
and can be used to make inline expansion decisions. Yet 
another advantage is that if inline expansion can be 
applied to a system-independent three-address code, inline 
expansion can become a part of a portable front-end. 
However, inline expansion requires the function call 
characteristics of all functions including those of library 
functions, and thus imposes restrictions to the separate 
compilation. 

An alternative is to implement inline expansion at 
the link time. Because all functions are available at the 
link time, inline expansion can naturally be performed 
without sacrificing separate compilation. Also it is easier 
to interface to a profiler at this level. The disadvantage is 
that many code optimizations have to be applied after 
inline expansion, and therefore, have to be performed at 
the link time. 

2.2. Program Representation 

Weighted call graphs are suitable for inline expan- 
sion. A weighted call graph G = (N, E, main) is chamc- 
terized by three major components: N is a set of nodes, E 

is a set of arcs, and main is the first node of the call graph. 
Each node in N is a function in the program and has asso- 
ciated with it a weight, which is the expected execution 
count of the function. Each arc in E is a static call site in 
the program and has associated with it a weight, which is 
the expected invocation count of the call site. Finally, 

Each node contains three major pieces of informa- 
tion: 1) the body of the function, 2) the node weight, and 
3) a set of outgoing arcs which points to the callees. Each 
arc contains four essential pieces of information: 1) a 
unique identifier, 2) the caller, 3) the callee, and 4) the arc 
weight. It is necessary to assign each arc a unique 
identifier because there may be several arcs between the 
same pair of caller and callee. Later, we will also associ- 
ate each arc with a status attribute which tells us whether 
this arc should be considered for inline expansion, 
rejected for inline expansion, or inline expanded. 

The node weights and arc weights may be deter- 
mined either by program structure analysis or by profiling. 
Since a node may be entered from any one of its incoming 
arcs, it is necessary to know the weights of all outgoing 
arcs associated with a particular incoming arc. Therefore, 
after inline expansion the arc weights remain accurate. It 
is assumed in the remaining part of this section that we 
have complete and accurate weights for all nodes and 
arcs. 

The most important reason for using a weighted call 
graph is because graph algorithms are well understood. 
For example, detecting recursion is equivalent to finding 
cycles in the call graph. For another example, function- 
level dead code removal is equivalent to finding unreach- 
able nodes from the tin node. 

Inlining a static call is to absorb a frequently exe- 
cuted arc by expanding a copy of the callee to the caller at 
a particular call site designated by the instruction id attri- 
bute of the arc. The removal of an arc may cause the cal- 
lee to become unreachable from the tin node. In this 
case, the original copy of the callee function may be elim- 
inated. 

When a node has an outgoing arc to itself, the 
corresponding function is obviously recursive. There are 
standard ways of removing tail recursion and expanding 
simple recursive functions. In the rest of this paper, we 
call a cycle which contains only one node a simple recur- 
sion. 

2.3. Select Expansion Sites 

We do not deal with simple recursion in this paper. 
Although a simple recursive function can be inline 
expanded, recursive call(s) made from the function must 
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be to the original copy of the function and thus only the 
6rst iteration of the recursion can be absorbed by inline 
expansion. This may be useful only if the recursive calls 
are rarely made. 

Considering the general inline expansion decision, 
it is desirable to expand as many heavily weighted arcs as 
possible. However, several things prevent us from doing 
so. First, to avoid excessive code expansion, it is neces- 
sary to set an upper limit to the program size. Second, 
expanding a call which uses a lot of control stack space 
into a recursion may cause control stack explosion. 
Below, we describe each of the two possible hazards in 
more detail. 

23.1. Code Explosion 

In order to expand a call site, the body of the callee 
must be duplicated and the new copy of the callee must be 
transformed and absorbed by the caller. Obviously, this 
code duplication process increases program space. It may 
be true that many C functions are called once, and thus the 
original copies of these call-once functions can be elim- 
inated by finding unreachable nodes from the muin node 
after inline expansion. In a later subsection, we will show 
it is not always possible to eliminate all unreachable nodes 
in an incomplete call graph. In fact, most call graphs of 
large programs are incomplete due to system calls. 

It is necessary to set an upper bound on the instruc- 
tion space usage. This limit may be specified as a fixed 
number or as a function of the original program size. For 
virtual space limited machines, such as PDPl 1, a fixed 
upper limit for the program space is man&tory. On the 
one hand, the problem with using a fixed limit is that the 
largest program ever going to be compiled in the system 
can not be known. On the other hand, setting the upper 
limit as a function of the original program size tend to 
favor large programs. 

23.2. Control Stack Overflow 

Parameter passing, register saving, local variable 
declarations, and returned value passing associated with a 
call can all contribute to the control stack usage. A sum- 
marized control stack usage can be computed for each call 
site. A control stack overflow may occur when inline 
expanding a call site with extremely high control stack 
usage into a recursion. For example, a recursive function 

m(x) and another function n(x) are defined as follows. 

m(x) { return (x?m(x-I)+rn(x-2)+n(x):l); J 

n(x) { inty[l&?OOO]; . . . . . J 

If m(x) tends to be called with a large x value, expanding 
n(x) will dramatically increase the control stack size. 

To prevent control stack overflow, a fixed limit on 
the control stack usage can be imposed for inline expand- 
ing a call into a recursion. 

2.3.3. Cost Function 

Given a weighted call graph, a cost function is pro- 
vided to determine the most plausible arc(s) for inline 
expansion. Then, the inline expansion problem can be for- 
mulated as an optimization problem which attempts to 
minimize the cost of inline expansion in an arbitrary 
number of inline expansion steps. Because the real costs 
of code expansion and the real benefits of inlining a static 
call site are unknown at the compile time, it is not possible 
to derive optimal solutions. Also, the search space of this 
optimization problem is too large for a practical imple- 
mentation. Therefore, it is desirable to use heuristic and 
keep the search space small. In designing the cost func- 
tion, we not only need to prevent hazards but also need to 
eliminate unimportant arcs. 

cost(G, arc Ai) = 

if ((calleT is recursive) and 

(control_srack_usagefAi)~3OUND)) then 

cost = INFINITY; 

else 

if (weight(Ai)<MIN) then 

cost = INFINITY; 

else 

gf (inrtruc!ion_space_after_expanrion 

(G, Ai)dfAX) then 

cost = INFINITY; 

else 

cost = Code lkpmion Cost of Ai - 

Benefits of Inlining Ai; 

The code expansion costs are the increase in 
memory space to accommodate the program and the 
effect on the instruction cache memory performance. Pre- 
cise costs can not be obtained at compile-time. A rough 
estimate of the cost may be derived by multiplying a con- 
stant number to the marginal increase in the code size. 

Accurate benefits of inline expansion are equally 
difficult to obtain. If one assumes that the register 
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save/restore and the control transfer costs dominate the 
costs of function calls, and if these costs are approxi- 
mately equal for all calls, the benefit term can be elim- 
inated from the cost function, because this term would be 
the same for all call sites. 

2.4. Wine a Function 

After determining the expansion sites and the 
sequence of expansions, physical expansion step 
proceeds. The work involved in inlining a call site 
include three major tasks: 1) duplication of the callee, 2) 
variable renaming, and 3) modifications of the symbol 
table. 

The work required to duplicate the callee is trivial. 
However, the actual implementation difficulty is in cach- 
ing the definitions of the most frequently inlined functions 
in memory to reduce the number of file reads. 

Variable renaming of the formal parameters and the 
local variables must be made for the new copy of the cal- 
lee before inserting the code into the caller. For source 
code level inline expansion, a new scope may be intro- 
duced to simplify the local variable renaming and only 
formal parameters need to be renamed. New local tem- 
porary variables may be introduced to buffer the results of 
the actual parameters. And the formal parameters are 
replaced by these temporary variables. Finally, copy pro- 
pagation and other optimizations can be applied to elim- 
inate unnecessary overhead instructions. 

2.5. Resolve Missing Information 

When the compiler or the linker fails to access the 
internal function calling and variable usage characteristics 
of some functions, the call graph is incomplete. For exam- 
ple, if system calls may access user data and call user 
functions, a large piece of the call graph can not be 
detected at compile-time. Similarly, library functions and 
archives may not be accessible by the compiler. In later 
sections of this paper, an inaccessible function to the com- 
piler is called an external function. 

Call through pointer is a peculiar feature of C that 
introduces ambiguities to the call graph. If a call through 
pointer may results in one of several functions, the call 
graph must appropriately reflect this situation in order to 
identify all recursions. 

It is appropriate to introduce special arc types to 
represent call to external functions and call through 
pointers. Interprocedural datatlow flow analysis may 
reduce the potential callee sets of call-through-pointer 
sites. 

Given an incomplete call graph, one must make the 
worst case assumptions. It must be assumed that external 
functions may call any function in the call graph. There- 
fore, a call to an external function may go to any function 
in the call graph. This results in many more cycles in the 
call graph and the original copy of an inlined call-once 
function can no longer be deleted. 

Because calls through pointers are rare, it is possi- 
ble to assume all calls through pointers reach every func- 
tion which can be called through pointer. This maximum 
set is simply the set of all functions whose addresses have 
been used in computation. However, in the presence of 
external functions, precise computation of this maximum 
set is no longer possible. Again, we have to assume that 
all functions can be reached from a call through pointer. 

2.6. Eliminate Unreachable Functions 

Because programs always start from the muin func- 
tion, any function which is not reachable from the main 
function will never be used and can be removed. A func- 
tion is reachable from the muin function if there is a 
(directed) path in the call graph from the muin function to 
the function, or if the function may be called by the 
exception handler or be activated by some other asynchro- 
nous events. In C, this can be easily detected by identify- 
ing all functions whose addresses are used in computa- 
tions. However, if there is external function, it must be 
assumed that all functions can be reached. 

2.7. Reduce the Number of Expansions 

An inline expansion decision not only selects the 
expansion sites but also determines an order in which 
these expansion sites should be expanded. Let (A+B) 
denote inline expanding A into B, IX Y Z] be an ordered 
sequence of events, starting from X, to Y and finally to Z, 
and [X Y Z) denotes three unordered events which all 
must be carried out. The exact ordering of the expansion 
sequence is important. For example, [(A+B) (B+C)] is 
different from [(B+C) (A+B)]. 
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[(A-B) (B-S)] == [(B’ = A+B) (C* = B’+C)] 

[(B-Q (A+B)] == [(C’ = B+C) (8’ = A+B)] 

Several different sequences may achieve the same final 
effect. For example, [(C+A) (C+B)] is equivalent to 

W--W G+Nl . 
[((?+A) (C+B)] == [(A’ = A+C) (B’ = B+C)] 

[(C+B) (C+A)] == [(B’ = B+C) (A’ = A+C)] 

In complex situations, the number of expansions 
required to accomplish all expansions depends on the ord- 
ering of the expansion. For example, ((D+C) (C+A) 
(C+B)) can be realized by at least two sequences. 

[(CT’ = D+C) (A’ = C’+A) (B’ = C’+B)] 

[(A’ = A+C) (B’ = B+C) (A” = A’+D) (B” = B’+D)] 

It can be observed that larger the fan-in degree of the cal- 
lee, more likely excessive number of expansions will 
occur. Since in structured programming a low-level func- 
tion may be called from many different sites, this problem 
is severe. Therefore, among several sequences which 
offer comparable benefits, it is critical that the shortest 
sequence be used 

3. Our Approach 

A simple inline function expander has been imple- 
mented in the IMPACT-I C compiler. In order to deter- 
mine the execution counts of the functions and the 
numbers of invocations made from the call sites, profiling 
provides program dynamic information. The execution 
counts are converted into weights of the call graph. Then 
a linear sequence of the functions in the call graph is 
determined. Inline expansion is constrained to follow this 
linear sequence to minimize the number of expansions. 
Based on this linear order and the weight information, 
some call sites are selected for expansion. Finally, the 
actual expansion process is executed. 

3.1, Profiling 

A system independent profiler has been integrated 
into the IMPACT-I C compiler. The profiler accumulates 
the average run-time statistics over many runs of a pro- 
gram. From the profile information, the IMPACT-I C 
compiler can determine the execution counts of all 
instructions and the frequencies of each of the possible 
directions of branch instructions. From the execution and 
branch frequencies, the node weights and arc weights of 
the call graph can be inferred. The node weight is simply 

the number of times a function is called in a typical run of 
the program. The arc weight is the execution count of a 
call instruction. 

3.2. Weighted Call Graph Construction 

The call graph construction procedure is straight 
forward, except when dealing with external functions and 
call through pointers, for which we always assume the 
worst case behavior. 

When a function calls an external function, it is 
assumed that all functions may be reached. In order not to 
create a large number of outgoing arcs for the function, a 
special node, $33, is created to represent the summarized 
effect of external functions. A function which calls exter- 
nal functions requires only one outgoing arc to the $46 
node. In turn, the $43 node has many outgoing arcs, one 
to each user function. One arc to the $SS node sufficiently 
represent the effect of calling external functions, because 
calls to external functions can not be inlined expanded, 
cycle detection algorithm works, and conservative 
function-level dead code elimination is used. 

For similar reasons, we use another special node, 
###, to represent the effect of calling through pointers. 
We simply assume all functions which may be called 
through pointers can be reached by all calls made through 
pointers. When there is at least one call to an external 
function, a call through pointer is assumed to be able to 
reach any user function. This allows us not to implement 
a specialized inter-procedural dataflow analysis for this 
purpose. An inter-procedural analysis for detecting 
minimal callee sets for all call sites provides little help 
because of calls to external functions. 

1. Allocate a new node for each function; 

2. Connect nodes corresponding to the static calls; 

3. Handle calls to external functions and calls 

through pointers as &scribed above; 

3.3. Linearization 

In order to speed up the expansion site selection 
procedure and also reduce the number of file writes in the 
physical inline expansion step, inline expansion is con- 
strained to follow a linear order. A function X can be 
inlined into another function Y if and only if function X 
appears before function Y in the linear sequence. There- 
fore, all inline expansions pertaining to function X must 
already have been done before function Y is processed. 
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This also allows us to cache the most recent definitions of 
functions. A write-back replacement policy can be imple- 
mented. 

When determining this linear sequence, functions 
which tend to be absorbed by other functions should be 
placed in front of the list. For example, if the call graph is 
a tree, it is desirable to have all leaf-level functions appear 
in front of the linear list. 

We have implemented a simple heuristic, which 
places functions randomly into the list, and then sort the 
functions by their execution counts. The most frequently 
executed function leads the linear list. We have chosen 
this heuristic because functions which are executed fre- 
quently are usually called by functions which are executed 
less frequently. Also, it is difficult to define the levels of 
the call graph with the presence of cycles. 

1. Place all node.9 in a list randomly; 

2. Sort the iist by the node weights; 

3.4. Mine Expansion Decisions 

Because we force the inline expansion to follow a 
linear order, all ‘arcs which violate this linear order can be 
marked as not_expandable. Also all arcs connecting the 
#I#### node and the $$$ node are also no-expandable. All 
other arcs are marked as expandable. We then consider 
from the most frequently executed expandabk arc to the 
least frequently executed expandable am. excluding arcs 
whose weights are below a threshold value to cut down 
the compilation time. 

1. Place all expandable arcs randomIy in a list; 

2. Sort the iist according to the arc weights; 

3. From the most important to the least important arc, 

if (cost(Ai) < lNFINlTY) then 

mark Ai nr to-be-expanded; 

It should be noticed that inline expansion changes 
code sizes of functions. Therefore, the code size of each 
function body must be re-evaluated as new function calls 
are considered for expansion. 

3.5. Physical Iniine Expansion 

According to the linear ordering which we have 
determined in the expansion site selection step, expand all 
to-be-expanded arcs. As we have described in the previ- 
ous section, code duplication, variable renaming and sym- 
bol table update am applied to each expansion site, 

4. Experimentation 

The purpose of this experiment is to answer the fol- 
lowing questions. 

1. How many call sites are free of hazards and have 
significant benefits when inlined? 

2. For all call sites which are considered for inline expan- 
sion, how many dynamic calls can be eliminated? 

3. How much code expansion is incurred by inline expan- 
sion? 

4. Do most programs have similar static and dynamic 
function call characteristics? 

5. How frequently are the function calls executed before 
and after inline function expansion. 

This experiment consists of four major steps. First, 
we select a benchmark suite of twelve frequently used 
UNIX programs. Second, representative inputs for each 
benchmark are applied to establish reliable profile infor- 
mation. For example, we select from many sources 20 
files of C programs, ranging from 100 to 3000 lines, as 
inputs for cccp, the GNU C language preprocessor. We 
also make special effort to exercise as many program 
options as possible. Third, the benchmarks are recom- 
piled using profile information. Finally, we measure the 
effect of inline expansion. 

4.1. Benchmarks 

Table 1 summarizes several important characteris- 
tics of our benchmarks. The C lines column shows the 
static code sizes of the C benchmark programs measured 
in the number of program lines. The runs column gives 
the number of different inputs used in the experiment. 
The IL’s column gives the average dynamic code sizes of 
the benchmark programs, measured in number of 
thousands of intermediate instructions executed in a typi- 
cal run of the programs. The control column gives the 
average dynamic count of thousands of control transfers, 
other than function call/return, executed in a typical run of 
the programs. The input description describes the nature 
of the inputs used in the experiment. 

Note that we use the dynamic counts of intermedi- 
ate instructions rather than those of machine instructions 
to keep the data general. The experiment involves meas- 
urements based on more than three billion intermediate 

instructions worth of program execution. The benchmark 
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programs exhibit very different code sizes, control struc- 
tures, and applications. There does not seem to be any 
direct relation between the static and dynamic code sizes 
of these benchmark programs. 

4.2. Static Characteristics 

Table 2 shows the static function call characteris- 
tics. The total column gives the number of different func- 
tion calls in the static program. Note that different static 
function calls could be calling the same function. We 
categorize the static function calls into four types. The 
externu2 column gives the percentage of static function 
calls to functions whose body are unavailable to inline 
expansion, and to system functions (syscall). The pointer 
column gives the percentage of static function calls 
through pointers. Function calls through pointers defeat 
inline expansion. The unsafe column gives the number of 
static function calls which either introduce function bodies 
into recursive paths and may cause control stack explo- 
sion, or have an estimated execution count less than 10. 
The safe column gives the percentage of the static func- 
tions which can be safely inline expanded. Only the safe 
function calls are considered for inline expansion. 

All benchmarks show large percentages of unsafe 
functions (average abut 65%). Only very small percen- 
tages of static calls are considered sufe (average about 
11%). This observation suggests future research in deter- 
mining whether or not inhne expansion decisions based 
on program structure analysis without profile information 
are sufficient. Failure to identify the smallest possible set 
of s@e static calls may result in excessive code expansion. 

The numbers of static call sites are approximately 
l/10 of the program sizes measured in lines of C code. 

4.3. Dynamic Characteristics 

Table 3 presents the dynamic behaviors of function 
calls. A static function call can correspond to many 
dynamic function calls. Only those static call sites 
corresponding to a large number of dynamic function calts 
should be considered for inline expansion. Note that for 
most benchmarks, the static calls corresponding to a large 
number of dynamic calls are safe for expansion. The only 
exception is WC, where function calls are unimportant 
because they are invoked very infrequently. 

Although the percentages of static safe calls are 
small, safe call sites correspond to large percentages of 
dynamic calls (average about 69%). This means that by 
expanding few static call sites, a large number of dynamic 
calls can be eliminated. 

The percentages of unsafe dynamic calls are amaz- 
ingly small. This supports our previous observation that a 
small number of static calls contribute to most of the 
dynamic calls. 

4.4. Effectiveness of Inline Expansion 

Table 4 offers the most important results of inline 
expansion. The code inc column gives the percentages of 
increase in static code sizes due to inline expansion. The 
cull dec column gives the percentage of dynamic function 
calls eliminated by inline expansion. The IL’s per cull 
column gives the average number of dynamic intermedi- 
ate instructions executed between dynamic function calls 
after inline expansion. The CT s per cull column gives the 
average number of dynamic control transfers executed 
between dynamic function calls after inline expansion. 

Note that inline expansion mechanism eliminates 
large percentages of dynamic function calls for function 
call intensive programs. For programs with less frequent 
function calls to begin with, the inline expansion mechan- 
ism does not eliminate large percentages of dynamic func- 
tion calls. This is a desirable behavior because the overall 
goal is to ensure infrequent function calls rather than to 
achieve high elimination percentages. 

After inline expansion, function calls only account 
for about 1% of the control transfers (see the CT s per cull 
column). Therefore, function calls become less important 
in the hardware design considerations. Also, large scopes 
for compiler optimizations can be expected for the critical 
parts of the programs. The code expansion, on the aver- 
age, is about 17% increase in static code size. 

At the time we took these measurements, constant 
folding and jump optimization were applied before the 
inline expansion procedure, but not after it. Because 
inlined call/return instructions were replaced with uncon- 
ditional jump instructions into/out of the inlined function 
bodies, we have measured substantially more uncondi- 
tional branch instructions. The IL’s per cull and CT s per 
cull should be somewhat smaller if comprehensive code 
optimizations have been applied after inline expansion. 
However, we expect the magnitudes of these reductions to 
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benchmark 

=cp 

cmp 

compress 

w 

espresso 

greP 

lex 

make 

tar 

tee 

WC 

yacc 

C lines 

371 

1941 

4167 

11545 

1302 

3251 

7043 

1063 

3186 

345 

3333 

runs IL’S control 

20 585K 1llK 

16 135K 3OK 

20 981K 155K 

20 1809K 53713 

20 544%K 8522K 

20 2357K 857K 

4 152630K 56295K 

20 7629K 1620K 

14 809K 104K 

20 24K 9.5K 

20 392K 112K 

8 15668K 3935K 

Table 1. Benchmark characteristics. 

input description 

C programs (100-3000 lines) 

similar/disimilar text files 

same as cccp 

papers with .EQ options 

original espresso benchmarks* 

exercised .+“^$ options 

lexers for C, Lisp, awk, and pit 

makeiiles for cccp, compress, etc. 

save/extract files 

same as coop 

same as cccp 

grammar for a C compiler, etc. 

Table 2. Static function call characteristics. 

* See R. Rudell, “Espresso-MV: Algorithms for Multiple-Valued Logic Minimization, hoc. Cust. Int. Circ. Conf., May 1985. 
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Table 3. Dynamic function call behavior. 

benchmark code lnc 

cccp 17% 

cmp 3% 

compress 4% 

eqn 22% 

espresso 24% 

grep 31% 

lex 23% 

make 34% 

tar 16% 

tee 0% 

WC 0% 

yacc 24% 

AVG 16.5% 

SD 12.0% 

call dec IL’s per call 

55% 506 

49% 265 

91% 2324 

81% 197 

70% 616 

99% 11214 

77% 7807 

59% 388 

43% 983 

0% 15 

0% 18310 

80% 1205 

58.7% 3653 

32.1% 5804 

Table 4. Mine expansion results. 

CT’s per call 

95 

58 

368 

58 

96 

407 1 

2880 

82 

127 

6 

5146 

303 

1108 

1832 
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