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Abstract

In this paper we present a set of isomorphic control trans-

formations that allow the compiler to apply local scheduling

techniques to acyclic subgraphs of the control flow graph.

Thus, the code motion complexities of global scheduling are

eliminated. This approach relies on a new technique, Reverse

If-Conversion (RI C), that transforms scheduled If-Converted

code back to the control flow graph representation. This

paper presents the predicate internal representation, the al-

gorithms for RIC, and the correctness of RIC. In addition,

the scheduling issues are addressed and an application to

software pipelining is presented.

1 Introduction

Compilers for processors with instruction level parallelism

hardware need a large pool of operations to schedule from.

In processors without support for conditional execution,

branches present a scheduling barrier that limits the pool

of operations to the basic block. Since basic blocks tend to

have only a few operations, global scheduling techniques are

used to schedule operations across basic block boundaries.

Global scheduling consists of two phases, inter-block code

motion and local (basic block) scheduling. The engineering

problem of global scheduling is to determine how to properly

order these phases to generate the best schedule.

In this paper we present a set of isomorphic control trans-

formations (ICTS) that simplify the task of global schedul-

ing to one that looks like local scheduling. This is achieved

by defining a predicate intermediate representation (predi-

cate IR) that embodies the code motion properties and thus

eliminates the need for an explicit code motion phase dur-

ing scheduling. The ICTS convert from the control flow

graph representation to the predicate IR and vice-versa. If-

conversion, a well known technique [I] [2], is used to convert

an acyclic control flow graph into an enlarged basic block
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Figure 1: Overview of the Isomorphic Control Transforma-

tion (ICT) approach for global scheduling.

of predicated operations called a hyperblock [3] [4]. After

scheduling, a new technique, Reverse If-Conversion (RI C), is

used to convert from the scheduled hyperblock to the sched-

uled control flow graph. Figure 1 shows an overview of the

ICT approach to global scheduling.

If-Conversion is considered an isomorphic control transfor-

mation because an operation in the original acyclic control

flow graph will have the same condition for execution in the

hyperblock. Likewise, RIC is isomorphic because an oper-

ation in the scheduled hyperblock will have the same con-

dition for execution in the regenerated acyclic control flow

graph. Furthermore, we assume that no operations are in-

serted during RIC. If an operation is inserted during RIC,

it may violate the schedule. This assumption is particularly

important for VLIW processors which rely on precise timing

relationships.

This paper is organized as follows. In Section 2, we derive

the predicate IR. If-Conversion, the scheduling issues, and

Reverse If-Conversion are presented in Sections 3 through

5, In Section 6 we prove the correctness of the ICTS, and

in Section 7, present an application of the ICT approach for

software pipelining acyclic loop bodies. We conclude with a

discussion of the strengths and limitations of scheduling un-

der ICT as compared to other global scheduling techniques,

2 Intermediate Representation

The primary program representation is the control flow

graph. The problem addressed in this paper is to define

an intermediate representation for acyclic subgraphs of the

control flow graph that allows the compiler to generate

a globally-scheduled control flow graph by applying local

scheduling techniques. Other researchers have noted the

inadequacies of the control flow graph for applying com-

piler transformations and have proposed more powerful in-

termediate representations such as the Program Dependence

Graph (PDG] [5][6][7] [8] [9]. Our intermediate representation
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Figure 2: Rules of code motion for global scheduling,

builds on the PDG concepts but is designed specifically to

assist global instruction-level scheduling.

Before presenting the intermediate representation, we

want to analyze the difficulty of scheduling an acyclic control

flow graph.

Definition 1: An acyclic control fiow graph is a directed

acyclic graph G with a unique entry node START and a set

of exit (EXIT) nodes such that, each node in the graph has

at most two successors. For any node N in G there exists

a path from START to N and a path from N to one of the

EXIT nodes.

The nodes of a control flow graph are commonly referred

to as basic blocks. Applying global scheduling to an acyclic

control flow graph involves two phases, code motion be-

tween basic blocks, and scheduling within basic blocks. Fig-

ure 2 illustrates the rules of code motion for global schecLul-

ing [10][1 1]. These rules can also be viewed as the basic steps

needed for moving operations in the control flow graph. For

example, an operation in basic block F can be moved into

basic blocks C, D, and E by applying rule 5. The operatims

can then be scheduled in these basic blocks or the identical

operations in D and E can be merged into B by applying

rule 1. Again, the operations can be scheduled in these basic

blocks or the identical operations in B and C can be meriged

into A. This simple example illustrates the phase ordering

problem between the code motion and scheduling phases in

global scheduling. It is difficult to determine when to stop

code motion and schedule the operations in order to generate

the best schedule.

In some code motion cases, it is necessary to create a ba-

sic block into which an operation may be copied. Consider

the control flow graph in Figure 3(a). It is not possible to

simply apply rule 2 to copy an operation from B into D and

E. Because E has multiple predecessors, the operation from

B cannot be placed in basic block E. Instead, a basic block

(Dl) must be created for the copy of the operation. Fig-

ure 3(b) shows an augmented control flow graph with all of

the possible basic blocks (Dl, D2, and D3) that could be

created as a result of applying the code motion rules [10][ 1l].

By applying the code motion rules to operations from ev-

ery basic block in the control flow graph, the range of possi–

ble destination blocks can be determined for each operation.

The table in Figure 3(c) presents the range assuming no

speculative or predicated code motion. For example, con-

sider an operation b in basic block B. Since we do not con-

sider speculative execution, b cannot be moved to A. By

f)
A

BC

DE

F

J

(a) (b)

Bounds
Op;oa:.m Range .,,,, ~efore

bran ch of nlerg, at

A all

B B, D, M A E, F

c C, D2, 03 A E, J

D D B F

E Dl, D2, E B, C F

F B, 0, Di, D2, E, F E, C J

J all

(c)

Figure 3: Bounds on code motion for example control flow

graph. (a) Example control flow graph. (b) Augmented

control flow graph. (c) Code motion bounds and ranges

assuming no speculative or predicated execution.

applying rule 2, b can be copied into D and D1. However,

since we assume no predicated execution, b cannot be copied

from D to F or from D1 to E. Thus, the range of allowable

basic blocks for operation b is B, D, and D1. From this

range, we can see that b is bounded from above by the con-

ditional branch in A and bounded from below by the merges

at E and F.

During local scheduling, only the precedence relations be-

tween operations are considered. Thus, if the bounds on

code motion can be represented as precedence relations, the

task of global scheduling can be simplified to local schedul-

ing. The upper bound on code motion defines the bound

for upward code motion and corresponds to control deperz-

dence [1]. An operation x that is bounded by a conditional

branch operation y is said to be control depersdenton U. From

the scheduler’s viewpoint, z cannot be scheduled until after

y has been scheduled. Given the following definition of post-

dominance, control dependence can be defined [1][5].

Definition 2: A node X is postdominated by a node Yin G

if every directed path from X to an EXIT node (not including

X) contains Y.

Definition 3: All the operations in node Y are control de-

pendent upon the conditional branch operation in node X if

and only if (1) there exists a directed path P from X to Y

such that every node Z in P (excluding X and Y) is post-

dominated by Y and (2) Y does not postdominate X.

The lower bound on code motion defines the bound for

downward code motion. There is no existing precedence re-

lation that can be used to define the lower bound on code

motion. One problem in defining such a precedence relation

is that precedence relations are between two operations, and

there is no explicit merge operation. However, we can define

an imphczt merge operation to be an implied operation which

proceeds the first explicit operation in every merge node.

Now, the lower bound’ on code motion can be represented

by a control antt-dependence relation. From a scheduler’s

viewpoint, a merge operation ~ cannot be scheduled until

every operation x upon which it is control anti-dependent

has been scheduled. Using the following definition for dom-

inance [12], control anti-dependence can be defined.

Definition 4: A node X dominates a node Yin G if every

directed path from START to Y contains X.
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example control flow graph.

Control anti-dependence.

(b)

relations for operations in the

(a) Control dependence. (b)

Definition 5: The implied merge operation in node Y is

control anti-dependent upon all the operations in node Xif

and only if (1) there exists a directed path Pfrom Xto Y

such that every node Z in P (excluding Y) is dominated by

X and (2) X does not dominate Y.

The matrices in Figure 4 show the non-redundant control

dependence and control anti-dependences for the example

control flow graph in Figure 3(b).

Given the control dependence and control anti-

dependences, we need to define an IR that preserves these de-

pendence. Since our goal is to apply local scheduling tech-

niques, an operation is the basic unit of the IR. A predicate,

which represents an operation’s condition for execution, can

be assigned to each operation. Every operation in the acyclic

control flow subgraph becomes a predicated operation. To

preserve control dependence, conditional branches become

operations that define the predicates. These operations are

referred to as predicate define operations. To preserve control

anti-dependences, implied merge operations become opera-

tions that merge predicates, referred to as predicate merge

operations.

It is sufficient to represent the control dependence and

control anti-dependences using one set of predicates per

predicate define operation and one set of predicates per pred-

icate merge operation. However, in order to regenerate the

control flow graph, the RIC algorithm must be able to de-

termine which predicates where defined along the two paths

of the conditional branch. Thus, two sets of predicates are

needed for the predicate define operations, one for predicates

defined along the true path and one for predicates defined

along the false path of the conditional branch. Likewise,

there are two types of predicates paths entering a merge

node, those that have jump operations and those that do

not. The predicate merge operation has two sets of pred-

icates, those corresponding to paths being merged that re-

quire a jump, and those that do not. Table 1 shows the syn-

tax of the predicate IR. Note that since the implicit merge

operation is not an actual operation in the original control

flow graph, the predicate merge operation is not predicated.

Before discussing the If-Conversion transformation, we re-

turn to the idea of augmenting the control flow graph with

OPERATION SYNTAX

predicated operation <p>op

predicate define < p > pd [cond] {false} {true}

predicate merge pm {no.jump} {jump}

Table 1: Predicate Intermediate Representation.

empty basic blocks. As discussed above, during code mo-

tion, basic blocks may need to be generated to hold copies

of moved operations. Since local scheduling is applied to

the predicate IR, RIC eventually generates the scheduled

control flow graph and the effects of code motion will be

present. To avoid inserting operations during RIC, the con-

trol flow graph is augmented with dummy blocks before If-

Conversion. Given an edge X + Y, if X has multiple suc-

cessors and Y has multiple predecessors, a dummy node is

inserted on X -+ Y. If Y is not on the fall-through path of

X, insert a jump operation in the dummy node. Algorithm

DUM in Appendix A is used to insert dummy nodes.

3 If-Conversion

The If-Conversion algorithm presented in this paper is based

on the RK algorithm [13]. The basic RK algorithm presented

in [13] decomposes the control dependence using two func-

tions R and K. The function R(X) assign a predicate to basic

block X such that any basic block that is control equiva-

lent [9] to X is assigned the same predicate. The function

K(p) specifies the condition under which a predicate p is de-

fined. We have added two functions, St,Ue (X) and Sfal,e (X),

to merge all the predicates defined under the true and false

conditions of conditional branch of X, The S algorithm is

presented in Appendix A.

Figure 5 shows the predicated example control flow graph

and corresponding R, K, StrUc, and Sfal,. functions. Note

that basic blocks A and J are control equivalent and thus,

have the same predicate pO. Since A and J always exe-

cute, K(pO) is the empty set since no conditions define their

execution.

In this paper we assume that when a node has two succes-

sors, the left edge corresponds to the false condition and the

right edge corresponds to the true condition of the branch.

Consider the conditional branch in basic block A. From the

control dependence matrix in Figure 4(a), we know that ba-

sic blocks B, C, and F are control dependent on the branch

in A. Using the R function, the predicates of basic block B,
C, and F are pl, p2, and p5, respectively. The K func-
tion is {~} for pl, {A, ~} for p5, and {A} for p2. Thus,

Sf~l,~(A) is {P1,P5} and St,~. (A) is {p2}.
Another way of viewing control anti-dependences, is to say

that an operation is reverse control dependent on a branch.
Definition 6: All the operations in node X are reverse con-

trol dependent upon the implied merge operation in node Y

if and only if (1) there exists a directed path P from X to Y

such that every node Z in P (excluding Y) is dominated by

X and (2) X does not dominate Y.

Reverse control dependence can be calculated by modi-

fying the algorithm for calculating control dependence pre-
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Figure 5: Solutions of R, K, S, and M for example control

flow graph.

sented in [13]. The algorithm RCD in Appendix A calcu-

lates the reverse control dependence of each node in the

directed graph. RCD(X)calculates theset of implied merge

operations which every operation in node X is reverse con-

trol dependent upon. The algorithm M in Appendix A uses

RCD(X) to determine which predicates are being mergecl at

each predicate merge operation. Once it has been deter-

mined which predicates to merge, the predicates are divided

into the no.jump and jump sets for each predicate merge

operation. Given a merge node t in RCD(X) and the predi-

cate, p, of X, p is placed in the jump set of the the predicate

merge operation of t if (1) t is an immediate successor of X,

and (2) t is not on the fall-through path of X. Otherwise, p is

placed in the no.jump set of the predicate merge operation

of t.

Figure 5 shows the merge functions MJu~P and Mn._j.rnP of

the implicit predicate merge operations at nodes E, l?, iind
J. Consider the implicit predicate merge operation at node

F. From the control anti-dependence matrix in Figure 4(b),

we know that operations in basic blocks B, D, and E are

control anti-dependent on the implied merge operation of F.

Node E is an immediate predecessor of F and is assumed

to have a jump operation (e.g., F is not on the fall-through

path) and thus its predicate is in the jump predicate (set.

Thus, M1u~P (F’) is {P4} and Mn..jumP(F’) is {P1,P3}.

After If-Conversion, each operation is predicated, condi-

tional branch operations are replaced by predicate define op-

erations, implied merge operations are replaced by predicate

merge operations, an d jump operations are deleted. Fig-

ure 6(a) shows the hyperblock of the example control fl~ow

graph after If-Conversion. Note that the R function defines

the predicate of each operation; the St,U. and Sfal,, func-

tions define the true and false sets of the predicate deiine

operations; and the M.._j.mP and Mj.mp functions deiine

the no_jump and jump sets of the predicate merge opera-

tions. To illustrate the scheduling and regeneration ccjm-

plexities, Figure 6(a) shows predicated operations for each

basic block such that the lower case operations are from the

corresponding upper case basic block. The condition of the

predicate define operation is specified as the basic block iden-

tifier. Also, the predicate merge operations indicate from

which basic block they originate. Not e that since dummy

nodes, Dl, Dz, and D3 do not have any operations before

<po> Op_al

<po> 0p_a2

<po> op-a3

<PO> 0p_a4

<PO> pd [A] (pl ,p5xP2)

<pi > op-bl

<PI> op_b2

<pi > op_b3

<pi > pd [B] {P3HP4,@)

<p2> Op_cl

<p2> 0p_c2

<p2> oP_c3

<P2> pd [C] (P4,P5,p7xp8)
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<p3> op_d2
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.p4> cp_e2

<P4> 0p_e3

pm_F (PI ,P3HP4)

<p5> Op_fi

<p5> 0p_f2

<p5> 0P_f3

pm_J (P2,P5XP8)
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<PO> qLj3
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(a)
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113: <P4> 0p_e2
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116, <P3> op_d3

117: <p5> Qp_f2

118: <P4> 0p_e3

119. pm_F (PI ,P3)414)

120: <pb oP_a3

121: <pb 0P_13

122, <P5> oP_f3 / ~_J (P2,P5HP8)

[23 <P&. OP.a4

[24 <pb 0PJ4

(b)

Figure 6: (a) Hyperblock of example control flow graph. (b)

Hyperblock after scheduling.

scheduling, there are no predicated operations correspond-

ing to these blocks. However, their predicates are placed in

the appropriate predicate define and predicate merge oper-

ations.

4 Scheduling Issues

By using the set of isomorphic control transformations, local

(basic block) scheduling techniques can be used to perform

global scheduling. The control dependence and control anti-

dependences are used to preserve the control flow properties

during scheduling. Control dependence prevents operations

from being scheduled before the corresponding predicate de-

fine. In terms of the control flow graph, control dependence

prevent the operations from being moved above a conditional

branch. Control dependence may be removed if the proces-

sor has hardware support for speculative execution. In this

case, the predicate of an operation can be promoted to the

predicate of the predicate define operation and thus, the

operation can be scheduled before the predicate define [3].

Control anti-dependence ensures that the predicate merge

operation is scheduled before any operations that are con-

trol anti-dependent upon it. Effectively, this prevents any

operations from being scheduled after a merge point in the

control flow graph. Control anti-dependences may be re-

moved if the processor has hardware support for predicated
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execution [14][2].

The disadvantage of speculative and predicated execution

is that the processor will fetch the operation even when the

result of the operation is not used. The hyperblock forma-

tion can be used to ensure that operations are only moved

along the most frequently executed paths. The hyperblock

is formally defined as follows.

Definition 7: A hyper+lock is an If-Converted region formed

from an acyclic subgraph of the control flow graph which has

only one entry (START) block but may have multiple exit

(EXIT) blocks.

Using this definition, if some basic blocks are known to be

infrequently executed, they can be excluded from the hyper-

block. This allows the compiler to more effectively optimize

and schedule the operations from the more frequently exe-

cuted basic blocks that form the hyperblock. In order to

exclude basic blocks, a technique called tail duplication is

used to remove additional entry points into the hyperblock.

The details of selecting basic blocks to form hyperblocks are

provided in [3] [4].

Before scheduling, a hyperblock is a sequence of consec-

utive operations. After scheduling, a hyperblock is a se-

quence of consecutive instructions. For a RISC plocessor,

an instruction has one operation. For a VLIW processor, an

instruction has w operations, where w is the issue rate of

the processor. In the scheduled hyperblock, there may be

several operations scheduled on top of one another. Since

operations with mutually exclusive predicates will be placed

in different basic blocks in the scheduled control flow graph,

they can be scheduled to the same resource in the same cycle.

We use the Predicate Hierarchy Graph described in [3][4] to

determine if two predicates are mutually exclusive.

The predicate merge operation also has special scheduling

characteristics. A predicate merge is scheduled as a jump

operation under the jump set predicates and as a null op-

eration under the no-jump set predicates. Since there may

be multiple predicates in the jump set, multiple jump oper-

ations can be scheduled per predicate merge. However, all

predicates in the jump set are mutually exclusive and thus

their operations can be scheduled to the same resource in

the same cycle. A null operation does not require any re-

sources or cycles. To schedule a predicate merge operation

at a given time to a given resource, only the predicates in

the jump set must be mutually exclusive to the predicates

of other operations already scheduled to the resource.

Figure 6(b) shows the example hyperblock after schedul-

ing. The schedule assumes a single-issue processor with-

out interlocking. We present the most restrictive processor

model in order to illustrate how no-op operations are in-

serted if needed. Note that the control dependence (control

anti-dependences) between predicate define (merge) oper-

ations and their respective predicated operations are pre-

served. We assume that all other data dependence between

operations are preserved. Also note that the predicate merge

operation pmJ is scheduled in instruction 122. It can be

scheduled in instruction 122 since all operations that are

predicated on p2, p5, and p8 are scheduled at or earlier

than 122. Also, p8 and p5 are mutually exclusive and thus

both op_R3 and pm-.J can be scheduled in the same cycle.

Note, that although a predicate merge operation is scheduled

as a jump operation, it is not converted to a jump operation

until RIC. Similary, a predicate define operation is scheduled

as a conditional branch but is not converted to a conditional

branch operation until RIC.

Before applying If-Conversion, the control flow graph was

augmented with dummy nodes. During scheduling, it can

be determined whether a dummy node is needed or not. If

a dummy node is not needed, the scheduler should apply a

jump optimization to remove unnecessary jump operations

when predicate merge operations are scheduled. When a

predicate merge operation is scheduled, a jump is required if

any operations have been scheduled along the control path

between the predicate define, pd, operation that defines a

predicate p and the predicate merge operation, pm that

contains p in its jump set, This can be done be checking

all scheduled operations between pcl and the cycle in which

pm is being scheduled. If any operations have a predicate

that is not mutually exclusive with the predicate p, a jump IS

needed. For VLIW processors, a further condition is needed.

To remove a jump, pm must be scheduled in the same cycle

as pd. If a jump is not needed, jump optimization is per-

formed by deleting the predicate p from the jump set and

inserting it into the no-jump set of the predicate merge op-

eration

5 Reverse If-Conversion

After scheduling, the hyperblock represents the merged

schedule for all paths of the control flow graph. The task of

RIC is to generate the correct control flow paths and to place

operations into the appropriate basic blocks along each path.

Whereas a basic block in the original control flow graph was

assigned one predicate, the basic blocks in the regenerated

control flow graph have a set of predicates associated with

them. The allowable predzcatc set specifies the predicates

of the operations that can possibly be placed in the corre-

sponding basic block. Intuitively, the allowable predicate set

is the mechanism that accounts for the code motion phase

of global scheduling.

The RIC algorithm is p~esented in Appendix A. The R,e-

verse If-Conversion algorithm processes the operations in the

hyperblock in a sequential manner. A leaf node set, L, is

maintained that consists of the basic block nodes in which

operations can be placed. Thus, at a given cycle, L con-

tains one node from every possible execution path. Initially,

L consists of the root node of the regenerated control flow

graph. Each node X in L has an allowable predicate set

P(X). When an operation op in the hyperblock is processed,

it is placed in every node X in L if P(op) c p(X). For a

VLIW processor, it is necessary to insert no-op operations

into empty slots. Since each operation slot may have mul-

tiple operations with mutually exclusive predicates, no-op

operations are not, inserted until after the entire instruction

has been processed.

Let P(pd) be the predicates defined by the predicate de-

fine operation pd. When a predicate define operation is

encountered, it is inserted into every node X in L where

F’(yd) E p(X). Each X is then deleted from L. For each

such X, two successor nodes S?Lcct and SILCCf correspond-

ing to the true and false path of prl are created and inserted
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Figure 7: Control flow graph of scheduled hyperblock a,fter

RIC.

into L. The allowable predicate sets of Sztcc~ and Succf are,

p(Succt) = p(X) U true.predicates of pd, and

p(Succf) = p(X) U false.predicates of pd.

When a predicate merge operation is encountered, the fol-

lowing is done for each node X in L. If a predicate p(X)

is in the jump or no.jump sets, the predicates specified in

the jump and no_jump sets are deleted from p(X) to cre-

ate p~e~ (X). If it was in the jump set, a jump operation is

inserted into X. L is searched for a node Y with the same al-

lowable set as p(X). If one is found, Y is the successor of X.

Otherwise, a successor is created for X with the allowable

set pneW(X).

Figure 7 shows the control flow graph generated from the

scheduled hyperblock in Figure 6(b). The target machine in

this example is a single-issue processor without interlockhg.

Thus, no-op operations are required and are represented by

a dash. The allowable predicate set is indicated on tolp of

each basic block.

6 Correctness of ICT approach

In this section we prove the correctness of the isomorphic

control transform approach. First, we show that DUM pre-

serves the control dependence of the original control flow

graph G.

Lemma 6.1 Given a directed graph, G, the augmented con-

trol flow graph created by DUM preserves the control depen-

dence and reverse control dependence of G.

Proofi Given a directed path P between node X and node Y

of G. First consider control dependence, where Y is control

dependent on X. Assume that DUM inserts a node Z in P.

Since Z only has one successor and Z is in P, every path from

Z to an EXIT node contains Y. Thus, Z is postdominated by

Y, and hence, Y remains control dependent on X. A similar

argument can be made for reverse control dependence. ❑

Lemma 6.2 Assuming no speculative or predicated execu-

tton, an operation m the regenerated control flow graph is

executed if and only if it would be executed in the original

control flow graph.

Proofi During If-Conversion, every operation is assigned

a condition for execution (predicate). The control depen-

dence and control anti-dependences are preserved using

predicate define and predicate merge operations respectively.

We assume that the scheduler does not violate these depen-

dence.

There are three cases in which an operation can execute

in the original control flow graph and not in the regenerated

control flow graph: 1) the operation is moved from above to

below a branch but only placed on one path of the branch,

2) the operation is moved from below to above a merge but

not along every path, and 3) the operation is deleted from

a path. Since the scheduler does not allow these cases, all

three cases can only occur if RIC places an operation on the

wrong path or fails to place an operation.

There are three cases in which an operation can execute

in the regenerated control flow graph but not in the original

control flow graph: 1) the operation is moved above a branch

it is control dependent upon, 2) the operation is moved below

a merge it is control anti-dependent upon, and 3) the oper-

at ion is executed along a mutually exclusive path. The first

two cases can only occur if RIC violates the dependence.

The last case can only occur if RIC places an operation on

the wrong path.

RIC preserves the control dependence and control anti-

dependences in the following manner. During RIC, a predi-

cate define operation is converted into a conditional branch.

The predicates defined alpng one path of the branch are

inserted into the allowable predicate set of that patli. An

operation ,is inserted only along the path that has its pred-

icate in the allowable predicate set. Thus, an operation

will not be placed before a branch upon which it is con-

trol dependent or along the wrong path of the branch. The

predicate merge operation is scheduled after every opera-

tion upon which it is control anti-dependent. During RIC,

paths are not merged until a predicate merge operation is

encountered. Thus, an operation will not be placed after

a merge. Since RIC preserves the control dependence and

control anti-dependences, the predicate of an operation will

be in the allowable predicate set of a block when the op-

eration is processed. Thus, an operation cannot be deleted

during RIC. ❑

295



Lemma 6.3 Given a VLIW processor, the precise t~mzng

relationships of scheduled code in the predicated IR is pre-

served between any two operations tn the regenerated control

flow graph.

Proofi During RIC, instructions are processed according

to the schedule. Thus, instructions will be generated with

the proper number of cycles between them unless operations

are added or deleted. Only jump operations would need

to be added during RIC. Dummy node insertion and the

predicate merge operation ensure that no jump operations

need to be added during RIC. After all VLIW instructions

are processed, empty operation slots are filled with no-op

operations. Thus, no operations will be inserted or deleted

during RIC.n

Theorem 6.1 Assuming the schedule is correct, the ICT

approach generates a correct globally scheduled control flow

graph.

Proofi This theorem follows from Lemmas 6.1, 6.2, and 6.3.

7 Software Pipelining Application

One of the benefits of the ICT approach is that existing com-

piler techniques for processors with support for Predicated

Execution [14] can be used for processors without PE sup-

port. One such technique is Modulo Scheduling for software

pipelining developed by Rau et. al. [2][15]. By performing

If-Conversion before Modulo Scheduling, loops with condi-

tional branches can be scheduled in the same manner as

those without. However, without RIC, Modulo Scheduling

for processors without PE support have relied on techniques

such as Hierarchical Reduction, which apply prescheduling

to remove conditional branches [16]. Prescheduhng limits

the effectiveness of Modulo Scheduling [17] [18]. Further-

more, Hierarchical Reduction can only be applied to struc-

tured loop bodies whereas the ICTS can be applied to any

acyclic loop body. In this section we present the Enhanced

Modulo Scheduling technique (EMS) which uses the ICTS

to simplify scheduling. For further details about EMS, refer

to [17].

Figure 8 shows the hyperblock after software pipelining.

The target machine is a VLIW processor with two opera-

tion slots. Effectively, two iterations of the hyperblock (the

schedule from Figure 6(b)) have been overlapped. Note that

the operations within each instruction have been reordered

to illustrate how the iterations are overlapped. Modulo Vari-

able Expansion [16] and renaming have been applied to the

predicate variables. The kernel of the software pipeline is

unrolled once so that the predicate variable lifetimes of p5

and p8 do not overlap themselves. In the second copy of

the kernel, p5 is renamed to p9 and p8 is renamed to P1O.

Although no operations are predicated on p8, which corre-

sponds to D3 in Figure 5, it must be renamed to ensure that

the control paths are merged correctly. Note that op.j4 is

the loop back branch. Thus, it is deleted from alf but the

last stage in the kernel.

Figure 9 shows the corresponding control flow graph after

regeneration. The allowable predicate set is indicated for

each basic block. The dashes indicate no-op operations.
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Figure 8: Hyperblock of example control flow graph after

software pipelining. The hyperblock is divided to show the

four stages of the pipeline.

The modified RK If-Conversion algorithm and RIC have

been implemented in the IMPACT-I C compiler. The EMS

technique uses these transformations to convert the acyclic

loop body to and from the hyperblock which is modulo

scheduled. Modulo Scheduling with Hierarchical Reduction

has also been implemented. To analyze the benefits of the

ICT approach, EMS and Modulo Scheduling with Hierarchi-

cal Reduction were applied to 26 doall loops from the Perfect

benchmarks. All loops contain conditional constructs. The

target machine is a VLIW processor without interlocking.

The processor allows any combination of non-branch opera-

tions per cycle, but only one branch per cycle.

Due to space limitations, we summarize the results. EMS

performs 18%, 17%, and lg~o better than Modulo Schedul-

ing with Hierarchical Reduction for issue rates 2, 4, and

8, respectively. The code expansion for EMS is sz~o, 60~0,

and 105% larger than for Modulo Scheduling with Hierar-

chical Reduction for issue rates 2, 4, and 8, respectively.

Since EMS has a tighter schedule, the conditional constructs

overlap more, causing larger code expansion. These results

show that the ICT approach can be used to significantly in-

crease the performance of Modulo Scheduling when there is

no special hardware support for PE. However, the effect of

code expansion on performance still needs to be analyzed.

A more in-depth analysis of these two techniques including

a comparison with Modulo Scheduling with P E is presented

in [17].
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Figure 9: Control flow graph of software pipelined hyper-

block after RIC.

8 Discussion

The ICT approach presented in this paper extends the con-

cept of a predicate IR to processors without support for

Predicated Execution (PE) [2][14]. Thus, in addition to

applying If-Conversion [1][2][13], an inverse isomorphic con-

trol transformation, RIC, is applied to regenerate the control

flow graph structure.

The ICT approach is also very similar to the the Pro-

gram Dependence Graph (PDG) approach [5]. In addition

to representing the data dependence, the PDG explicitly

represents control dependence. Whereas the predicate IR

assigns predicates to operations, the PDG assigns predicates

to regions, each of which contains operations with the same

execution condition. Thus, global scheduling techniques for

the PDG require explicit code motion and thus need to de-

termine the proper phase ordering between code motion and

local scheduling in order to achieve the best schedule [8][9].

While the ICTS remove the phase ordering problem faced

by other global acyclic scheduling techniques, we do not

claim that it is possible to find the best schedule for an

acyclic subgraph. Rather, we simply state that the com-

piler can schedule a much larger scope of operations and not

have to worry about code motion. In addition to the code

motion rules mentioned in Section 2, the code motion com-

plexity incurred by moving branch operations above other

branch operations [11] is eliminated. The ICT approach al-

lows branches and merges to be scheduled in the same man-

ner as other operations.

There are some drawbacks to the scheduling approach pre-

sented in the paper. First, an operation in the original flow

graph is never replicated during scheduling. Thus, an op-

eration is not scheduled until all control dependence are

resolved. This may cause an operation to be scheduled later

than necessary on one or more of the control paths. Further-

more, it is difficult to associate data flow analysis, such as

live-in sets, with the operations within a hyperblock. Thus,

it is currently not possible to move an operation from above

to below a branch and schedule it on only one path of the

branch. This is allowed when the result of the operation

is in the live-in set of only one successor of the branch.

These drawbacks are not necessarily drawbacks of the ICT

approach to scheduling, but they do exist in the scheduling

scheme presented in this paper.

Similar problems exist for cyclic scheduling. During mod-

U1O scheduling, since all paths are scheduled at once, the

initiation interval is the same for all control paths through

the loop [15][16][18]. While some global scheduling-based

software pipelining techniques do not require a fixed initi-

ation interval [19], we are not aware of any methods that

support processors with limited resources and non-uniform

Iatencies.

In this paper we have assumed that no operations are in-

serted during RIC and thus the predicate merge operations

are used to specify when jump operations should be sched-

uled. Currently, the merge points are described in terms of

the original control flow graph. In some sense, this is an

arbitrary decisionl . Consider the case where three control

paths enter the merge node of a control flow graph. After

scheduling, two paths may be able to be merged earlier than

the third. However, since we do not merge any paths until

all control anti-dependences are resolved, an early merge will

not occur in our technique. It is possible to split the merge

operations into individual predicate kill operations, where

each predicate kill is scheduled as a jump operation. Since

predicate merges, an d hence predicate kills, are not pred-

icated, there is no ordering imposed on the merge points

and it is possible to merge identical control paths in any

arbitrary fashion. The cost of this solution is that a larger

number of jump operations will be scheduled than required.

If they are not used, they are nullified with no-op opera-

tions. Thus, there is a tradeoff between performance and

code expansion.

Alternatively, if operations can be inserted during RIC,

then it is possible to merge control paths when they become

the same by detecting when a predicate is no longer used in

the scheduled hyperblock. In this case, a predicate merge

operation is not needed.

1Basic block layout can be performed as a preprocessor step
to make this less arbitrary.
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9 Conclusion

In this paper we have presented a predicate IR that pre-

serves control dependence and control anti-dependences. A

set of isomorphic control transformations (ICTS) are used to

convert an acyclic control flow graph to and from the pred-

icate IR. If-Conversion, modified to support control anti-

dependences, is used to transform acyclic control flow sub-

graphs into predicated hyperblocks. A Reverse If-Conversion

technique was presented which transforms scheduled hyper-

blocks into scheduled acyclic control flow subgraphs. Using

this set of transforms, the task of global scheduling is re-

duced to local scheduling. In this paper we have shown that

the ICTS can be used to significantly improve the perfor-

mance of Modulo Scheduling for processors without Pred-

icated Execution support. We are currently investigating

using the ICT methodology for other hyperblock optimiza-

tion and scheduling techniques.
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Appendix A

Algorithm DUM: Given arootedgraph G, (N, E, START),
insert dummy nodes where necessary.

Let VX~N
numsucc(X) = the number of successors of X

num_pred(X) = the number of predecessors of X

for[X,Y] c E

if (numsucc(X) > 1) and (num+red(Y) > 1)
insert dummy node on edge [X,Y]

if(Yis not the fall-through path of X)
insert jump operation in dummy node

Algorithm S: Given (l)arooted graph G,(N, E, START),(2)
an ordered set of predicates, P, determined by R(n) V n (i N,
and (3) the mapping V p E P, compute S. For any nocle X

that contains aconditionalbranch operation, St,.~(X) (Si.lsc(x))
specifies the set of predicates defined along the true (false) path

of x.

‘for X c K(p)
if conditions TRUE

strue(x) = Strue(x) u p

else
Sfal.e (x) =Sfak(x)up

Algorithm RCD: Givena rooted graph G, (N, E, START),

compute thereverse control dependence. Assume that dominators
of G have been calculated.

Let VX~N

dom(X) = {Y g N: Y dominates X}

idom(X ) = the immediate dominator of X

for [X,Y] G E such that X @ dom(Y)
LUB = idom(Y)
t=x

while (t # LUB)
RCD(t) = RCD(t) U Y
t = idom(t)

Algorithm M: Given a rooted graph G, (N, E, START) and

RCD of G, compute M. Ml specifies the A Of predicates to b.
merged whose corresponding blocks require an explicit jump to
be inserted. Mnl specifies those that do not.

Let VX~N
P(X) = predicate that X is control dependent upon

Algorithm RIC: Given hyperblock H, regenerate a correct con-

trol flow graph. For VLIW processors, insert mo-op fills each

empty operation slot in an instruction with a no-op operation.

Let VX~H
P(X) = predicate that X is control dependent upon

create root node

L = {root}
p(root) = {PO}
for op E H in scheduled order

for X6L

if op is predicate define operation

if P(op) 6 P(X)
insert conditional branch operation in X

create successor nodes Succt and Succf

p(Succt) = P(X) U true(op)
p(Succf) = P(X) U false(op)
L = (L – X) U Succt U Succf

if op is predicate merge
for p 6 (jump(op) U no.jump(op))

Pnew(x) = P(x) – nO-jumP(OP) – judop)

if p E P(X)

if p E jump(op)
insert jump operation in X

for YeL
if pneW(X) ~ P(Y)

if p c jump(op)

Succt = Y
else

Succf = Y
L=L– X

if successor not found

if p c jump(op)
create successor node Succt

p(succt) = pnew(x)
L = (L – X) U Succt

1e se

create successor node Succf
/J(succf) = pn.w(x)

L = (L – X) U Succf

if op is predicated operation
if P(op) G P(X)

insert 0p in X

if target processor is VLIW and last op of instruction
insert -no-op

for X~N
for ;f~ R#C@D(X)

if (t fall-through path of X) or
(t not immediate successor of X)

M.](t) = M.,(t) up(X)
else

Ml(t) = Mj(t) U F’(X)
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