
HPSm, a High Performance Restricted Data Flow
Architecture Having Minimal Functionality

Wen-reel Hwu and Yale N. Part

Computer Science Division,

University of California, Berkeley

Berkeley, CA 94720

ABSTRACT

Our recent work in microarchitecture has identified
a new model of execution, restricted data flow, in
which data flow techniques are used to coordinate
out-of-order execution of sequential instruction
streams. We believe that the restricted data flow
model has great potential for implementing very
high performance computing engines. This paper
defines a minimal functionality variant of our
model, which we are calling HPSm. The instruction
set, data path, timing and control of HPSm are all
described. A simulator for HPSm has been written,
and some of the Berkeley RISC benchmarks have
been executed on the simulator. We report the
measurements obtained from these benchmarks,
along with the measurements obtained for the
Berkeley RISC II. The results are encouraging.

1. In t roduc t ion

Irregular parallelism in a program exists both
locally and globally. Our mechanism exploits local paral-
lelism, but disregards global parallelism. We are search-
ing for a proper tradeoff between the size of hardware
involved and the amount of parallelism exploited. Limit-
ing the scope of exploitation is one way to keep the
required hardware small in size and fast in speed. The
task of exploiting global parallelism is left to the higher
levels, i.e., algorithm and software. We refer to [1] for
much of the theoretical basis of our research.

1.1. Res t r ic ted Data Flow.

Our model of the microengine (i.e., a restriction on
classical fine granulari ty data flow [2,3]) applies data
flow techniques to only a local section of the program at
any time of execution. The microengine keeps a subset
of the program, which we call the "active window", in the
form of data dependency graph. Operations defined by
the instructions within the active window are executed
when their operands are ready. As execution goes on,
new instructions join the active window and old instruc-

t-ions retire from the window. As the active window
scans through the dynamic instruction stream, HPS exe-
cutes the entire program.

We believe that a high performance computing
engine should exhibit the following characteristics.
First, there must be a high degree of concurrency avail-
able in hardware design, such as multiple paths to
memory, multiple processing elements, and some form of
pipelining. Second, concurrency provided in hardware
design must be well utilized. There must be few stalls,
both in the flow of information (i.e., the paths to memory,
the paths to registers, etc.) and in the processing of infor-
mation (i.e., the function units).

In our view, the restricted data flow model, with its
out-of-order execution capability, best enables the above
two requirements, as follows: The center of our model is
the set of node tables, where operations await their
operands. Instruction memory, with the help of branch
prediction, feeds the microengine at a constant rate with
few stalls. Data memory and I/O supply extract data at
constant rates with few stalls. Function units are kept
busy by operations that can fire. Somewhere in this sys-
tem, there has to be "slack." The slack is in the opera-
tions waiting in the node tables. Since operations can
execute out-of-order, an operation does not block the oth-
ers when its input data is not available. Decoding
inserts operations to the node tables and execution
removes them. The node tables tend to grow in the pres-
ence of data dependencies, and shrink as these dependen-
cies become fewer. We use the node table to buffer the
effect of data dependencies and thus to smoothly utilize
the concurrency provided in hardware design.

1.2. Outl ine of this r epor t

This paper is organized into six sections. Section 2
describes the generic HPS (High Performance Substrate)
[4,5,6] model of execution. Section 3 defines the architec-
ture of HPSm, a minimal functionality variant of the
HPS model. Section 4 specifies its implementation. Sec-
tion 5 reports the results of executing some of the RISC
benchmarks on an HPSm simulator, and compares and
analyzes these measurements in the context of the
Berkeley RISC H. Section 6 offers a few concluding
remarks.

0884-7495/86/0000/0297S01.00 © 1986 IEEE
297

2. The HPS Model of Execution.

2.1. Overview.

Instructions are fetched, with the help of branch
prediction, from a sequential control flow program. Each
instruction defines several operations which may be ALU
operations and memory accesses, etc. The output of the
decoder is a data dependency graph connecting all opera-
tions defined by one instruction.

A very important part of HPS is the notion of the
active window. Unlike the classical data flow machines,
HPS does not keep the entire program in the the form of
data dependency graph. We define the active window as
the set of ISP instructions whose operations are currently
being worked on in the data-driven microengine.

New instructions join the active window after being
fetched and decoded. Old instructions retire from the
window after all the corresponding activities are done.
Active window scans the dynamic instruction stream by
pulling in new instructions at the front and shelving off
old ones at the rear. As the active window scans through
the dynamic instruction stream, HPS executes the entire
program. Parallel ism within the active window is fully
exploited by the data-driven microengine.

The merger takes the data dependency graph from
the decoder and merges it into the data dependency
graph for the active window. The links between opera-
tions in the incoming graph and the operations in the
active window are established with a generalized
Tomasulo algorithm [7], Each node of the incoming data
dependency graph is shipped to one of the node tables
where it remains until being ready for execution.

When all operands for an operation are ready, the
scheduling logic transmits the operation to the appropri-
ate function unit. The function unit (an ALU, memory, or
I]O device) executes the operation and distributes the
result, if any, to those locations where it is needed for
subsequent processing: the node tables (for enabling sub-
sequent operations), the merger (for resolving subsequent
dependencies) and the Instruction Unit (for bringing new
instructions into the active window). When all the
operations defined by a particular instruction have been
executed, the instruction is said to be done. An instruc-
tion is retired from the active window when it is done
and all the instructions before it have been retired.
All side-effects to memory are made permanent at retire
time. This is essential for the precise handling of excep-
tions [8].

2.2. Data Dependenc ie s and the i r Resolution.

Fundamental to the correct, fast, out-of-order execu-
tion of operations in HPS is the handling of data depen-
dencies and, as we will see, the absence of blocking in
those cases where blocking is unnecessary. Since our
locally concurrent implementation model has to conform
to the target architecture, the local concurrency exploited
must not cause incorrect execution results.

An operation B depends on another operation A if B
has to be executed after A in order to produce the correct
result. There are three ways in which an operation can
depend on another operation through register usage:
flow, anti, and output dependencies [9].

A flow (read-after-write) dependency occurs when A
is going to write to the register from which B is going to
read. In this case, A supplies information essential to
the execution of B. An anti (write-after-read) depen-
dency occurs when A is going to read from the register to
which B is going to write. An output (write-after-write)
dependency occurs when A and B are going to write to
the same register.

In the last two cases, the execution of A does not
supply any information necessary for the execution of B.
The only reason B depends on A is that a register has
been allocated to two different temporary variables due
to a shortage of registers. In fact, if we had an unlimited
number of registers, different temporary variables would
never be allocated to the same register. In that case,
anti and output dependencies would never occur. So, a
proper renaming mechanism and extra buffer registers
would remove anti and output dependencies. Then, the
only type of register dependency that could delay opera-
tion execution would be a data dependency. In other
words, a operation could be executed as soon as its input
operands are generated. This is exactly the description of
a data-driven execution model.

Data dependencies due to main memory usages also
fall into the three categories described above. However,
the data dependencies through main memory are more
difficult to detect (and thus more difficult to resolve)
because the memory location to be accessed is not in gen-
eral known at instruction issue time, The address may
be from a register whose up-to-date value has not be gen-
erated yet. Because we can not detect all memory depen-
dencies at instruction issue time, some memory accesses
may have to be withheld until potential dependencies are
cleared. For example, one may want to withhold all
memory reads following a memory write until the
address of that memory write is known. This scheme, of
course, effectively introduces delays to memory reads
that do not actually depend on the memory write.

2.3. Exception and Branch Prediction Miss

Handling branch prediction miss and exceptions is
also fundamental to the correct, fast out-of-order execu-
tion of operations. However, the two types of repairs do
impose different requirement of speed. Branch prediction
miss, which occur frequently, requires efficient repair
mechanism. For example, if the average number of
instructions between branches is five, and if the the
branch prediction provides a hit ratio of 90%, we have,
on the average, only sixty instructions between branch
prediction miss occurrences. Only conditional branch
instructions can cause such repair. In order to perform
such repair, we need only to save the machine state each
time a conditional branch instruction enters the machine.

298

Exceptions occur far less often than branch predic.
tion miss does. The average number of instructions
between exceptions is usually on the order of five
thousand or more. Thus repair from exceptions impose
less speed requirement. Almost all instructions can
potentially cause exceptions. In order to repair from
exceptions, we need to save the machine state when
every instruction enters the machine.

We do provide different repair mechanism for these
two different types of repairs. Different speed/space
tradeoffs are made in the two repair mechanism. Please
see section 4.4 for more information.

3. Arch i tec ture of HPSm.

HPSm is a minimal functionality variant of the HPS
model targeted for single chip VLSI implementation. In
the architecture aspect, we limit the number of opera-
tions defined by each instruction to be small. The
number of operations defined in each instruction is two
in the preliminary design and simulation. We may
extend this number to be three or four after examining
substantial applications.

We describe in this section the data types, registers,
instruction set, and procedure calling convention of
HPSm.

3.1. HPSm Data Types and Registers .

HPSm supports signed and unsigned memory data
of sizes byte (8 bits), short (16 bits), and long (32 bits).
These data types are supported by appropriate memory
operations available in the HPSm instruction set. Proper
sign or zero extension is applied when a byte or short
data is read from memory. All memory data must be
aligned to long word boundaries. If two memory data
items part ial ly overlap, the execution result is unpredict-
able. Within the data path, however, all HPSm opera-
tions operate only on 32-bit values.

There are sixteen registers in the architecture.
Each register holds a 32-bit data value. Register 15 pro-
vides the program counter of the current instruction
when used as input operand. When register 15 is writ-
ten, there is no immediate effect on the actual program
counter. A subsequent SWAP instruction will swap the
program counter with the content of register 15. Regis-
ter 14 is stack pointer and register 13 is frame pointer.
Register 12 is reserved for forwarding purposes. Please
see the section on addressing modes for details of using
register 12.

3.2. HPSm Instruction Set.

Each HPSm instruction is logically a data-
dependency graph with two operations. The two opera-
tions which comprise each instruction are of types
ALU/Con (primary ALU or Control transfer), and
Mem/S_ALU/Lit (Memory access, Secondary ALU, or
Literal value) respectively (see figure 1). Operations
within an instruction may or may not depend on each
other. Dependencies between operations are expressed

through register 12 which will be described below.
Dependencies crossing instruction boundaries are
expressed in terms of reading from and writing to regis-
ters other than register 12.

3.2.1. HPSm Instruction Format.

The instruction size is fixed at 32-bits. If a control
operation other than RETURN occupies the ALU/Con
field, the Mem/S_ALU/Lit field contains a 13-bit branch
displacement in terms of number of instructions. Other-
wise, the Mem/S_ALU/Lit may contain a memory access
operation, a two address format ALU operation, or a 13-
bit l i teral value as an input operand to the primary ALU
operation.

~m~U/Con Part

31 27 21 17 13

Mem/S_ALU/LIt Part

12 8 4 0

Figure 1. HPSm Instruction Format

3.2.2. HPSm Addres s ing Modes.

There are three addressing modes for source
operands of the HPSm operations: register, short literal,
and long literal. All addressing mode information is
specified in the opcede of each operation. That is, the
opcode of an operation determines the interpretation of
all its operand fields.

An operand in the register mode is interpreted as a
register number which selects one of 16 registers. When
a source operand is register 12, the execution result of
the other operation in the same instruction will be
directly forwarded as the operand value. In this case,
the other operand may or may not write into other regis-
ter 12. If it does, the result is only forwarded within the
same instruction. If it writes to some other register, the
result is written to the specified register as well as for-
warded within the same instruction. This is used by the
compiler to express the dependencies within the an
instruction.

A short literal operand is sign extended to provide
the input value. Short literal operands in ALU and
Mem/S_ALU operations range from -32 to +31 and from
-8 to +7 respectively. In long literal mode, the operand
presented in the operand field of the operation is ignored.
The sign extended result of the Mem/S__ALU/Lit field is
used as the input value which ranges from -4096 to
+4095.

299

3.2.3. HPSm Inst ruct ion Opcodes.

There are two groups of operations in each HPSm
instruction: ALU/Con and Mem/S_ALU. Each type of
operations has its own opcode. The ALU operations are
three-address arithmetic/logic operations on 32-bit
integers. TESTGT, TESTEQ, and TESTLT operations
generate a 1 or 0 depending on whether or not the input
operand is greater than, equal to, and less than zero.
There is no floating point operation as yet in the HPSm
data path. However, an interface to a floating point
coprocessor is being designed.

Con operations perform control transfer. BTRUE
branches when the input register contains a 1. BFALSE
works in the complementary way. BRANCH is uncondi-
tional branch. CALL and RETURN are procedure cal-
ling and returning instructions. SWAP can be used to
implement jumps and calls to locations specified in a
memory table. Control transfer has forward semantics,
i.e., the instruction right after the control transfer
instruction in the static code belongs to the path where
the transfer is taken.

Memory operations read from and write to memory
locations. Secondary ALU operations are two-address
arithmetic/logic operations on 32-bit integers.

The I/O structure for HPSm is still undergoing
change. The I/O operations will be multiplexed with the
ALU/Con operations. I/O instructions will be performed
sequentially to maintain the desired I/O behavior. This
is different from memory operations, since memory reads
can be executed out of order.

3.3. Procedure Calling Convention.

We divided the register file into three sections: spe-
cial, safe and unsafe. The special registers are register
15 (potential program counter), register 14 (stack
pointer), and register 13 (frame pointer). These are
always saved during a procedure call. The safe region
consists of registers 8 through 11 and they are specified
to remain the same after the return. The called pro-
cedure is responsible for saving and restoring the safe
registers it modifies, by means of explicit memory opera-
tions.

Registers 0 through 7 comprise the unsafe region.
The returned value is in register 0. The calling pro-
cedure passes parameters via registers 0 through 7. Pro-
cedures can also use these registers as local or temporary
variables. If the calling procedure needs any information
in these registers after the procedure returns, the calling
procedure itself is responsible for saving and restoring
the registers.

The rationale behind adopting this calling conven-
tion is threefold. First, the parameters are passed
through registers instead of through memory. This cuts
down the memory traffic and increases the parallelism
because we can handle register dependencies more
efficiently than we can handle memory dependencies.
Second, the compiler has the opportunity to reduce the
amount of the register saving-restoring of unsafe regis-

ters. In tail recursion, for example, where unsafe regis-
ters are not used after the procedure returns, the called
procedure can use the unsafe registers for free. Third,
we do not have to deal with a register window mechan-
ism [10], where large register file can increase the cycle
time.

IBO FLT el

I

Merging Logic

'ory-~--~ Distribution Bus

Figure 2. HPSm Data Path

4. Implementation of HPSm.

HPSm is also a minimal functionality variant of the
HPS model in implementation. The restrictions on func-
tionality here are (1) number pending branch prediction
is limited to one, (2) memory dependency is resolved by a
conservative algorithm, (3) only two ALU's and one data
memory port are provided. The implementation of
HPSm is divided into three major parts: the Instruction
unit, the main data path, and the memory system (see
figure 2). The instruction unit is responsible for supply-
ing instructions to the data path. The main data path
schedules and executes operations in instructions and
retire the finished instructions. The memory system does
the cache and virtual memory management.

The entire HPSm engine can be viewed as a ten
stage pipeline where four stages can be skipped (see
figure 3). A trivial HPS instruction spends at least six
cycles in the microengine. The pipeline view of the
HPSm is somewhat misleading because within the
stages, the execution of operations are controlled by data
flow firing rules.

4.1. Instruction Unit Organization.

The instruction unit implements an instruction
buffer and a fetch algorithm. The instruction buffer
caches HPSm instructions in decoded form. The size of

300

I node cache access '1

E decod/ ~ I

I I
t~le insertion I L node --) r_

\ i
node table f i r i n g I

~ f u n c t i o n u n i t e ec

F 1
I AIT firing ,I

,_] ._.

Figure 3. Pipelined View of HPSm

the instruction buffer is 1K entries in current design.
When instruction buffer hit, the instruction unit can
deliver one instruction each cycle, which is equivalent to
delivering two operations each cycle.

On a instruction buffer miss, the instructions are
fetched from cache memory and decoded both for execu-
tion and for refilling the instruction buffer. Figure 4
shows the decoding logic for ALU operations. The pro-
cess is pipelined between consecutive instructions. In a
instruction buffer miss sequence without cache memory
miss, the instruction unit can deliver one instruction
every two cycles.

The forward branch mechanism (described in section
3.2.3) is adopted to assist the pipeline design described
above. HPSm performs one level of branch prediction.
The instruction unit always predicts the conditional
branch to be taken. There can be one pending branch
prediction in the microengine. When the instruction unit
encounters a second conditional branch before the first
one is confirmed, the instruction unit stalls. This
restriction on the number of pending branch predictions
is due to the requirement of efficient repairing from
branch prediction miss (we have to save only one set of
machine state for this type of repair).

[ALU ISPI L°pc°delndex I~

I ALUFU
I c o n t r o l
I

ALU/Con decodlng R(AM i' 1
ALU FU opcode I model] mode2 I mode

J II

II ALU ISP I ALU ISP l°~'~aI~ "'llc'r'nd~ , o p d ' ,

;--EW'~ J 5 -~ ~' ~ ~ -V-5--
I ' 1 ""°"°° L

ALU node before merging

Figure 4. ALU Operation Decoding

4.2. Dependency Graph Handling.

Every HPSm instruction is decoded into a data
dependency graph. The entire HPSm microengine main-
rains a data dependency graph connecting all active
operations. The merger of HPSm takes the decoder out-
put and uses a modified Tomasulo algorithm [7] to merge
it into the active dependency graph. Physically, this is
done by translating the source operands in the decoder
output into operands of node table entry using the regis-
ter alias table and the tag assignment logic as shown in
figure 5(a). The merging process also changes the regis-
tor alias table contents to reflect the fact that some
operations write to registers, as shown in figure 5(b).

Input Oper and

[mode,specifier, I long literal ii

I t . g b a , e 1] ___
-I I- counter I [~l RAT 1

value ta¢ I I value
ready I | |ready ready tag value ~eady I

(-~-) 1 1

-~ SLIT REGISTER(C) REGISTER LI

~I i|7 .. [read~ I tag value .I
ALU Node Table Input Operand

Output Oper and assigned
I I

specl fief (0) ,L ,J
RAT

Figure 5. ALU Operation Merging

301

If operands of an operation are ready and the
appropriate function unit is available, the operation is
directly transmitted for execution. Otherwise it is
inserted to the node table.

Each register alias table entry consists of two back-
to-back parts: current and backup. Whenever the previ-
ous instruction invokes a branch prediction, the current
part of each entry is saved in the backup part in one
cycle. The backup part is maintained (distributed, see
section 4.5) so that it keeps a version of the register alias
table where none of the instructions ever entered the
machine after the branch went into effect. When a
branch prediction repair is signaled, the register alias
table can be restored to its correct state in one cycle.

4~. Node Scheduling.

When both (we use only two-input operations in
HPSm) operands are ready, an operation is firable. The
scheduling logic of ALU node table fires the oldest firable
operation in each node table.

Memory operation scheduling is one of the critical
issues in HPSm. The difficulty comes from the fact that
memory dependency can not be resolved at instruction
merging time due to unknown addresses. The current
algorithm used is as follows:

(1) Fire the oldest firable memory write. If there is no
firable memory write, try (2).

(2) Fire the oldest firable memory read if there is no
younger waiting memory write in the node table.

It can be shown that this is not the optimal firing algo-
rithm in terms of firing as many operations as the depen-
dencies allow. However, it is one which we can easily
implement with reasonable performance.

The active instruction table is a special node table
used to detect when an HPSm instruction completes exe-
cution. An instruction completes execution when the
results of all its operations have been distributed. The
active instruction table entries monitor the distribution
buses. There is one (ready bit, tag) pair for each opera-
tion in the corresponding HPSm instruction. The distri-
bution logic sets the ready bit and gates in the distri-
buted exception flags when the stored tag match the dis-
tributed tag. When both ready bits for operations are
set, the active instruction table entry becomes firable. In
other words, the corresponding HPSm instruction
becomes retirable. The active instruction table entries
are fired strictly in order to enforce the sequential
semantics crossing HPSm instruction boundaries.

4.4. Node Execution.

All ALU operations execute in one cycle. Addition,
subtraction, and, or, shifting, exclusive_or, and condition
testing are provided in ALU.

The Memory function unit executes a memory write
by performing the virtual address translation to detect
potential exceptions and inserting it into the memory
write buffer. Reads are executed by checking the

memory write buffer and accessing the data cache
memory. If there is a hit in the memory write buffer, the
mad result is forwarded from the memory write buffer.
Otherwise the result comes from the memory system.

Branch confirmation is performed for conditional
branches. The opcode (BTRUE, BFALSE) and the con-
dition operand data together determine whether or not
the branch prediction was correct. If the branch predic-
lion was correct (hit), then the HPSm microengine per-
forms the following operations in the next cycle: (1) Reset
the branch prediction pending flag so that the next condi-
lional branch can enter the data path, (2) Set the ready
bit in the corresponding active instruction table entry so
that the instruction can retire as far as branch prediction
is concerned.

When a branch prediction turns out to be incorrect
(miss), the HPSm microengine enters a repair cycle, as
follows: (1) Redirect the instruction supply stream, (2)
Invalidate all operations (node table entries) younger
than the branch, (3) Reset the branch pending flag so
that the next branch can enter the data path, (4) Restore
the register alias .table from the backup part, (5) Invali-
date the memory write buffer entries younger than the
branch, and (6) Invalidate all active instruction table
entries younger than the branch. The repair is currently
designed to take a single cycle. A less demanding design
could be used if we wish because we have at least two
cycles before the redirected instruction stream enters the
data path.

When an active instruction table entry is fired into
the retirement function unit, it performs the following
operations: (1) If any exception flag is raised in the
operation execution result, the entire microengine enters
an exception handling sequence. This guarantees precise
interrupts for memory management and debugging pur-
poses. (2) If there is no exception, release the correspond-
ing memory write buffer entry to the memory system.
Since the memory write buffer release has a lower prior-
ity than the memory function unit, the retirement func-
tion may take more than one cycle waiting for the cache
to become accessible. Note that we have performed vir-
tual address translation when the memory write enters
the memory write buffer. There will be no memory
management exceptions when the write buffer entry is
released. This simplifies the exception handling for
access violations and page faults.

4.5. Result Distribution.

The results generated by the ALU and memory
function units have to be distributed to their proper
register alias table locations. There is a distribution bus
for each function unit. All potential receivers of the FU
result are connected to the distribution bus. If the distri-
bution bus is valid and the distributed tag matches the
tags stored in the register alias table entry, the ready bit
is set and the distributed value is gated in when the dis-
tributed tag matches the stored tag. Distribution to the
register alias table is done both for the current part and
the backup part.

302

Operands of node table entries also monitor the
relevant distribution bus. The schematic is shown in
figure 6. The amount of logic involved in distributing
into each node table operand argues for a small window
size and thus small node table.

t a g ' ~ a l u e t a c J ' v ' l l u e -- t a ~ ~ ' a l u e

. ; - - ! -

One for each node t a b l e operand!

Figure 6. Distribution Logic

5. P e r f o r m a n c e E v a l u a t i o n .

We have developed a register t ransfer level simula-
tor to evaluate the design decisions and the performance
of HPSm. A project to construct a C compiler for HPS
[11] is now being conducted. The benchmarking reported
here was perf, ormed by taking the VAX code generated
by the UNIX C compiler and hand t rans la t ing it into
HPSm cede. We first t ranslated the VAX" code into
HPSm code in a s t raight forward way. Then, we
arranged the code to reduce stalls and repairs due to con-
ditional branches. Measured performance from both
approaches are reported.

We also ran the same benchmarks on the RISC II
simulator. The RISC codes from both optimizing and
non-optimizing Berkeley RISC compilers were used. For
each benchmark, we report the performance on the two
simulated machines.

Table 1 summarizes the benchmarks we have meas-
ured so far. These benchmarks were chosen first for
several reasons:

(1) The static code size of these benchmarks are
sufficiently small that hand translat ion is doable,
while we are awai t ing completion of our C compiler.

(2) The selected benchmarks are both procedure inten-
sive and conditional branch intensive. These control
transfers are par t icular ly difficult for machines like
HPSm which try to exploit parallel ism.

*UNIX is a trademark of Bell Laboratories.
÷VAX is a trademark of Digital Equipment Corporation.

Table 1. Summary of measured RISC benchmarks
Benchmark i Description

i
Towers(18) , Towers of Hanoi with 18 disks
Acker(3,6) ~ Ackerman's Function with input (3,6)
Qsort , Recursive version of quicksort
BenchE String matching

i
BenchF , Setting, testing, and clearing bits in a bit vector
BenchH . inserting into linked list

(3) We wished to compare the performance of HPSm
with another popular execution model, the Berkeley
RISC II. According to reports on the Berkeley RISC
H, it performed well on these benchmarks. Thus
these benchmarks seem to be a good starting point
for HPSm performance evaluation.

Table 2 summarizes the time and cycle comparison
of HPSm and RISC II on the measured benchmarks.
Columns RISC A and RISC B reports the measurement
with non-optimizing and optimizing Berkeley RISC com-
pilers respectively. Columns HPSm Aand HPSm B
reports the measurements with naive translat ion and
translation with code rear rangement respectively. Code
rearrangement techniques used were reducing the length
of dependency chain, combining consecutive conditional
branches to enlarge basic block size, rea r ranging branch-
ing structure to favor the more possible path, and to
unravel t ight loops. Note that we did not employ more
conventional code optimizations techniques, such as lift-
ing operation out of loop, deleting redtmdant operations,
etc., to measurements reported under HPSm B. Thus we
potentially have opportunity to further reduce the execu-
tion time.

There are three major factors contr ibuting to the
measured performance: clock cycle, concurrency, and size
of dynamic program.

Tbale 2.a Performance Comparison (Time)
Benchmark , RISCA , RISCB ~ HPSmA , HPSmB
Towers(18) , 3,729ms , 2,171ms , 1,075ms , 852ms
Acker(3,6) ~ 3,164ms i 2,484ms , 230ms , 207ms
Quicksort ~ 867ms ~ 764ms i 175ms J 175ms
BenchE 492us 337us 198us l l6us [

BenchF 178us , 106us ~ 50us ~ 50us

BenchH 188us 148us 67us 56us

Table 2.b Performance Comparison (Cycle)
Benchmark , RISC A , RISC B
Towers(18) , 11.30M , 6.59M
Acker(3,6) , 9.39M , 7.12M
Quicksort i 2.63M t 2.31M
BenchE 1.50K 1.02K

i
BenchF , 0.54K 0.32K
BenchH 0.57K I 0.45K

HPSm A
10.75M

2.30M
1.75M
1.98K
0.50K
0.67K

HPSm B '
8.52M '

2.07M
1.75M i
1.16K I

0.50K
0.56K I

303

Cycle Time. Our estimated cycle time is 100ns
assuming HPSm is going to be implemented in the same
technology as RISC II whose cycle time was 330ns. The
clock cycle of HPSm is kept small through pipelining the
microengine and using small register file. Each HPSm
instruction travels through at least 6 logical stages
shown in figure 3. At each stage, we have one of the fol-
lowing happening at each stage: (1) one Tegister access
plus some simple gating, (2) one ALU operation (3) one
cache memory access.

In RISC II, operations executed in one cycle are (1)
reading from register file and then executing an ALU
operation, (2) forwarding the result to the next instruc-
tion and writing back to register, (3) one cache memory
access.

The very large register file in the RISC If, due to the
overlapped window mechanism, also contributes to its
longer cycle time. Of course, HPSm has to be equipped
with faster cache memory than is RISC II in order to
achieve projected cycle time.

Concurrency. HPSm exploits parallelism by (1)
shipping more than one operation into machine in each
cycle and (2) pipelining the microengine. In each cycle,
we ship one of the following units into the machine.

• Two ALU operations, both can read from and write
to register file.

• One ALU operation and one memory access, both
can read from and write to register file.

• One ALU operation and one 13-bit literal constant.

• One control transfer operation with a 13-bit displace-
ment.

Because we consistently handle dependencies both
between operations within the same instructions and
between operations across instructions, filling two opera-
tions into one instruction is not as difficult for us as for
MIPS[12]. As we go on measuring substantial work-load
benchmarks, we may expand each instruction to three or
four operations. Such expansion had very little effect on
the RISC benchmarks we have measured on due to very
few operations available between control transfers.

In order to achieve enough parallelism to keep the
stages busy, we perform branch prediction and data
driven control. Also, to reduce the penalty for procedure
returns, we separated program counter stack from the
call frame stack.

The BP hit columns in table 3 give the branch pred-
iction hit ratio, which is not very high for most of the
benchmarks. The M/R columns in the same table gives
the ratio of number instructions merged into the machine
against number of instructions retired from the machine.
The ratio is greater than one because some instructions
were merged into HPSm due to incorrect branch predic-
tion.

Since our branch repair mechanism is particularly
efficient, we did not suffer badly from these branch pred-
iction misses. If the branch prediction hit ratio had been
higher, our performance gains would have been even
more dramatic. This remains an ongoing research pro-
ject for HPS.

In I__S columns, we provide measurement of two
major stalls in instruction unit. The first number in such
column is the percentage of time instruction unit stalled
due to pending branch prediction. HPSm allows only one
level of branch prediction. If another conditional branch
arrives before the pending one is confirmed, the instruc-
tion unit stalls. If a program has tight loops, stalling of
this kind becomes a performance problem. The code
rearrangement in measurements under HPSm B tries to
combine conditional branches (to enlarge basic block size)
and to unravel the tight loops (to acquire the condition
ahead of time). With these two techniques, we reduce
the stalls at the cost of executing more instructions and
probably lower branch prediction hit ratio.

The second number in I_S columns is the percentage
of time the instruction unit stalls due to instruction
buffer miss. In benchF and benchH, each vath of the
this case, instruction buffer miss becomes a major perfor-
mance problem.

Number of Operations Executed. Table 4 sum-
marizes the operations executed by the two simulators on
the benchmarks. The number of HPSm operations exe-
cuted was roughly comparable to the number of normal
RISC II instructions executed.

In non-recursive but procedure-intensive bench-
marks, HPSm tends to execute more ALU and memory
operations to save and restore registers. This penalty is
reduced by the safe-unsafe register saving convention of
HPSm as described in section 3.3. When procedure cal-
ling reuse the same parameter, HPSm can save register
moves to prepare the parameter. This effect is especially
pronounced in the rocursive benchmarks. However,

Table 3. Major Causes of Performance Degradation in HPSm
Bench

Towers
Acker
Qsort
BenchE
BenchF
BenchH

BPhi tA , BPhi tB
50% , 50%
67% 66%

]

54% 54%
i

98% 96%
I

40% 40%
67% 69%

IVl/RA ! M/RB i I_SA LSB
81/60 , 83/60 , 10%- 0% 2%- 0%

17/16 20/15 4%- 0% ' 3%- 0%
] i i

89/63 103/78 44%- 0% 38%, 0%
i - i i

70/69 81 / 78 59%- 4% 21%o- 8%
I I [

27/21 2 7 / 2 1 3%-41% 3%-41%
37/27 29 /24 13%-29% 6%-40%

304

Table 4.a Operation Count: Towers(18)
ALU MEM CON NOP LIT

HPSm A 5 .77M 3 .15M 1.31M 1.05M 0.79M
Ht~m B 5 .77M 3 .15M 1.31M 1.05M 0.79M
RISC A 7 .50M *0.28M 1.83M 1.31M 4.46M
RISC B 3 .93M *0.28M 1.31M 0.79M 1.84M

* 0.28M register window undertow/overflow operations.

Table 4.b Operation Count: Acker(3,6)
ALU MEM CON NOP

HPSm A 1 .12M 0.52M 0.52M 0.60M
HPSm B 1 .20M 0.52M 0.52M 0.34M
RISC A 2 .79M "2.69M 0.83M 0.60M
RISC B 1 .46M "2.69M 0.60M 0.09M

LIT
0.34M
0.34M
1.72M
0.95M

* 2.69M register window undertow/overflow operations.

Table 4.d Operation Count: BenchE
ALU MEM CON NOP LIT

,HPSmA 584 224 219 134 221
~I-IPSm B 918 322 113 100 115
RISC A 513 218 225 224 583
RISC B 366 218 222 12 572

Table 4.e Operation Count: BenchF

ALU MEM CON NOP

HPSm A 259 108 24 12
HPSm B 259 108 24 12
RISC A 383 32 54 45
RISC B 332 31 33 0

LIT
21
21

263
211

Table 4.c Operation Count: Qsort
ALU MEM CON NOP LIT

HPSm A 0 .71M 0 .19M 0.08M 0.21M 0.07M
HPSm B 0 .99M 0 .23M 0.08M 0.19M 0.07M
RISC A 1 .66M *0.18M 0.47M 0.17M 1.04M
RISC B 1 .48M *0.18M 0.46M 0.05M 1.02M

* 0.03M register window undertow/overflow operations.

register moves in RISC II, due to windowing, are
required for preparing parameters even they stay in the
same logical position.

Overall, HPSm execute more memory accesses.
However, the write-back data cache with valid bit for
each long (32-bit) data in HPSm saved most of the data
cache memory miss penalty. Window overflow/undertow
hurt RISC II performance substantially in Acker(3,6)
where deeply nesting pattern of procedure calling pre-
vailed. Each window overflow/undertow instruction
takes at least two cycles (one for instruction fetch, one
for execution). This degraded RISC II performance by
123% on Acker(3,6).

6. Concluding Remarks.
In this paper we have defined HPSm, a minimal ver-

sion of HPS. HPS is our new restricted data flow
microarchitecture, which we believe has significant
potential for implementing high performance computing
machines. We have specified the instruction set, data
path, and timing for HPSm. We have reported the prel-
iminary measurements obtained by executing several
RISC benchmarks on our HPSm simulator, and we have
compared our results with those obtained for the Berke-
ley RISC II. We intentionally restricted the functionality
available to HPSm to what could reasonably fit in a sin-
gle 1.5 micron NMOS VLSI chip. In all cases, our model
of execution far outperformed the RISC II.

The above results auger well for the HPS restricted
data flow model of execution. We hasten to add, how-
ever, that our results are very preliminary. They were

Table 4.f Operation Count: BenchH
ALU MEM CON NOP LIT

HPSm A 241 104 66 18 103
HPSm B 252 112 35 13 72
RISC A 244 99 68 63 297
RISC B 179 93 58 25 260

performed on a simulation model, not real hardware.
They report on toy benchmarks, not substantive applica-
tions. Still the results are very promising, and
encourage us to continue our research in restricted data
flow microarchitecture.

Acknowledgements.

The authors wish to acknowledge first the Digital
Equipment Corporation for there generous support of our
research. Linda Wright, formerly Head of Digital's
Eastern Research Lab in Hudson Massachusetts, pro-
vided an environment during the summer of 1984 where
our ideas could flourish; Bill Kania, formerly with
Digital's Laboratory Data Products Group, was instru-
mental in DEC's providing major capital equipment
grants that have greatly supported our ability to do
research; Digitars External Research Grants Program,
also provided major capital equipment; and Fernando
Colon Osorio, head of Advanced Development with
Digital's High Performance Systems/Clusters Group, pro-
vided funding of part of this work and first-rate technical
interaction with his group on the tough problems. We
also acknowledge that part of this work was sponsored by
Defense Advance Research Projects Agency (DoD), Arpa
Order No. 4871, monitored by Naval Electronic Systems
Command under Contract No. N00039-84-C-0089.
Finally, we wish to acknowledge our colleagues in the
Aquarius Research Group at Berkeley, A1 Despain,
presiding, for the stimulating interaction which charac-
terizes our daily activity at Berkeley.

305

References.

[I] Keller, R. M., "Look Ahead Processors," Computing
Surveys, vol. 7, no. 4, Dec. 1975.

[2] Arvind and Gostelow, K. P., "A New Interpreter for
Dataflow and Its Implications for Computer Archi-
tecture," Department of Information and Computer
Science, University of California, Irvine, Tech.
Report 72, October 1975.

[3] Dennis, J. B., and Misunas, D. P., "A Preliminary
Architecture for a Basic Data Flow Processor,"
Proceedings of the Second International Symposium
on Computer Architecture, 1975, pp 126-132.

[4] Patt, Y.N., Hwu, W., and Shebanow, M.C., "HPS, A
New Microarchitecture: Rationale and Introduction"

Proceedings of the 18th International
Microprogramming Workshop, Asilomar, CA,
December, 1985.

[5] Part, Y.N., Melvin, S.W., Hwu, W., and Shebanow,
M.C., "Critical Issues Regarding HPS, a High Per-
formance Microarchitecture," Proceedings of the
18th International Microprogramming Workshop,
Asilomar, CA, December, 1985.

[6] liwu, W., Melvin, S., Shebanow, M.C., Chen, C., Wei,
J., and Patt, N.Y., "An lIPS Implementation of
VAX; Initial Design and Analysis," Proceedings of
the 19th Annual Hawaii International Conference
on System Sciences, 1986.

[7] Tomasulo, R. M., "An Efficient Algorithm for
Exploiting Multiple Arithmetic Units," IBM
Journal of Research and Development, vol. 11, 1967,
pp 25 - 33. Principles and Examples, McGraw-Hill,
1982.

[8] Anderson, D. W., Sparacio, F. J., Tomasulo, R. M.,
"The IBM System/360 Model 91: Machine Philoso-
phy and Instruction-Handling," IBM Journal of
Research and Development, Vol. 11, No. 1, 1967, pp.
8-24.

[9] Kuck, D.J., et al, "Dependency Graphs and Compiler
Optimizations," Proceedings of 8th POPL, January
1981.

[10] Patterson, D.A. and Sequin, C.H., "A VLSI RISC,"
Computer, 15, 9, September, 1982, 8-21.

[11] Shebanow, M.C., Patt, N.Y., Hwu, W., and Melvin,
S., "A C Compiler for HPS I, a Highly Parallel Exe-
cution Engine," Proceedings of the 19th Annual
Hawaii International Conference on System Sci-
ences, 1986.

[12] Hennessy, J.L., "VLSI Processor Architecture," IEEE
Transaction on Computers, C-33(12), December
1984, pp1221-1246.

306

