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ABSTRACT 

Our recent work in microarchitecture has identified 
a new model of execution, restricted data flow, in 
which data flow techniques are used to coordinate 
out-of-order execution of sequential instruction 
streams. We believe that  the restricted data flow 
model has great potential for implementing very 
high performance computing engines. This paper 
defines a minimal functionality variant  of our 
model, which we are calling HPSm. The instruction 
set, data path, timing and control of HPSm are all 
described. A simulator for HPSm has been written, 
and some of the Berkeley RISC benchmarks have 
been executed on the simulator. We report the 
measurements obtained from these benchmarks, 
along with the measurements obtained for the 
Berkeley RISC II. The results are encouraging. 

1. In t roduc t ion  

Irregular parallelism in a program exists both 
locally and globally. Our mechanism exploits local paral- 
lelism, but disregards global parallelism. We are search- 
ing for a proper tradeoff between the size of hardware 
involved and the amount of parallelism exploited. Limit- 
ing the scope of exploitation is one way to keep the 
required hardware small in size and fast in speed. The 
task of exploiting global parallelism is left to the higher 
levels, i.e., algorithm and software. We refer to [1] for 
much of the theoretical basis of our research. 

1.1. Res t r ic ted  Data  Flow. 

Our model of the microengine (i.e., a restriction on 
classical fine granulari ty data flow [2,3]) applies data 
flow techniques to only a local section of the program at 
any time of execution. The microengine keeps a subset 
of the program, which we call the "active window", in the 
form of data dependency graph. Operations defined by 
the instructions within the active window are executed 
when their operands are ready. As execution goes on, 
new instructions join the active window and old instruc- 

t-ions retire from the window. As the active window 
scans through the dynamic instruction stream, HPS exe- 
cutes the entire program. 

We believe that  a high performance computing 
engine should exhibit the following characteristics. 
First,  there must be a high degree of concurrency avail- 
able in hardware design, such as multiple paths to 
memory, multiple processing elements, and some form of 
pipelining. Second, concurrency provided in hardware 
design must be well utilized. There must be few stalls, 
both in the flow of information (i.e., the paths to memory, 
the paths to registers, etc.) and in the processing of infor- 
mation (i.e., the function units). 

In our view, the restricted data flow model, with its 
out-of-order execution capability, best enables the above 
two requirements, as follows: The center of our model is 
the set of node tables, where operations await their 
operands. Instruction memory, with the help of branch 
prediction, feeds the microengine at a constant rate with 
few stalls. Data memory and I/O supply extract data at  
constant rates with few stalls. Function units are kept 
busy by operations that  can fire. Somewhere in this sys- 
tem, there has to be "slack." The slack is in the opera- 
tions waiting in the node tables. Since operations can 
execute out-of-order, an operation does not block the oth- 
ers when its input data is not available. Decoding 
inserts operations to the node tables and execution 
removes them. The node tables tend to grow in the pres- 
ence of data dependencies, and shrink as these dependen- 
cies become fewer. We use the node table to buffer the 
effect of data dependencies and thus to smoothly utilize 
the concurrency provided in hardware design. 

1.2. Outl ine of  this r epor t  

This paper is organized into six sections. Section 2 
describes the generic HPS (High Performance Substrate) 
[4,5,6] model of execution. Section 3 defines the architec- 
ture of HPSm, a minimal functionality variant  of the 
HPS model. Section 4 specifies its implementation. Sec- 
tion 5 reports the results of executing some of the RISC 
benchmarks on an HPSm simulator, and compares and 
analyzes these measurements in the context of the 
Berkeley RISC H. Section 6 offers a few concluding 
remarks. 
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2. The HPS Model of Execution.  

2.1. Overview. 

Instructions are fetched, with the help of branch 
prediction, from a sequential control flow program. Each 
instruction defines several operations which may be ALU 
operations and memory accesses, etc. The output of the 
decoder is a data dependency graph connecting all opera- 
tions defined by one instruction. 

A very important part  of HPS is the notion of the 
active window. Unlike the classical data flow machines, 
HPS does not keep the entire program in the the form of 
data dependency graph. We define the active window as 
the set of ISP instructions whose operations are currently 
being worked on in the data-driven microengine. 

New instructions join the active window after being 
fetched and decoded. Old instructions retire from the 
window after all the corresponding activities are done. 
Active window scans the dynamic instruction stream by 
pulling in new instructions at the front and shelving off 
old ones at  the rear. As the active window scans through 
the dynamic instruction stream, HPS executes the entire 
program. Parallel ism within the active window is fully 
exploited by the data-driven microengine. 

The merger takes the data dependency graph from 
the decoder and merges it into the data dependency 
graph for the active window. The links between opera- 
tions in the incoming graph and the operations in the 
active window are established with a generalized 
Tomasulo algorithm [7], Each node of the incoming data 
dependency graph is shipped to one of the node tables 
where it remains until  being ready for execution. 

When all operands for an operation are ready, the 
scheduling logic transmits the operation to the appropri- 
ate function unit. The function unit  (an ALU, memory, or 
I]O device) executes the operation and distributes the 
result, if any, to those locations where it is needed for 
subsequent processing: the node tables (for enabling sub- 
sequent operations), the merger (for resolving subsequent 
dependencies) and the Instruction Unit (for bringing new 
instructions into the active window). When all the 
operations defined by a particular instruction have been 
executed, the instruction is said to be done. An instruc- 
tion is retired from the active window when it  is done 
and all the instructions before it have been retired. 
All side-effects to memory are made permanent at retire 
time. This is essential for the precise handling of excep- 
tions [8]. 

2.2. Data  Dependenc ie s  and  the i r  Resolution.  

Fundamental  to the correct, fast, out-of-order execu- 
tion of operations in HPS is the handling of data depen- 
dencies and, as we will see, the absence of blocking in 
those cases where blocking is unnecessary. Since our 
locally concurrent implementation model has to conform 
to the target architecture, the local concurrency exploited 
must not cause incorrect execution results. 

An operation B depends on another operation A if B 
has to be executed after A in order to produce the correct 
result. There are three ways in which an operation can 
depend on another operation through register usage: 
flow, anti, and output dependencies [9]. 

A flow (read-after-write) dependency occurs when A 
is going to write to the register from which B is going to 
read. In this case, A supplies information essential to 
the execution of B. An anti (write-after-read) depen- 
dency occurs when A is going to read from the register to 
which B is going to write. An output (write-after-write) 
dependency occurs when A and B are going to write to 
the same register. 

In the last two cases, the execution of A does not 
supply any information necessary for the execution of B. 
The only reason B depends on A is that  a register has 
been allocated to two different temporary variables due 
to a shortage of registers. In fact, if we had an unlimited 
number of registers, different temporary variables would 
never be allocated to the same register. In that  case, 
anti  and output dependencies would never occur. So, a 
proper renaming mechanism and extra buffer registers 
would remove anti  and output dependencies. Then, the 
only type of register dependency that  could delay opera- 
tion execution would be a data dependency. In other 
words, a operation could be executed as soon as its input 
operands are generated. This is exactly the description of 
a data-driven execution model. 

Data dependencies due to main memory usages also 
fall into the three categories described above. However, 
the data dependencies through main memory are more 
difficult to detect (and thus more difficult to resolve) 
because the memory location to be accessed is not in gen- 
eral known at  instruction issue time, The address may 
be from a register whose up-to-date value has not be gen- 
erated yet. Because we can not detect all memory depen- 
dencies at  instruction issue time, some memory accesses 
may have to be withheld until potential dependencies are 
cleared. For example, one may want to withhold all 
memory reads following a memory write until the 
address of that  memory write is known. This scheme, of 
course, effectively introduces delays to memory reads 
that  do not actually depend on the memory write. 

2.3. Exception and Branch Prediction Miss 

Handling branch prediction miss and exceptions is 
also fundamental to the correct, fast out-of-order execu- 
tion of operations. However, the two types of repairs do 
impose different requirement of speed. Branch prediction 
miss, which occur frequently, requires efficient repair 
mechanism. For example, if the average number of 
instructions between branches is five, and if the the 
branch prediction provides a hit  ratio of 90%, we have, 
on the average, only sixty instructions between branch 
prediction miss occurrences. Only conditional branch 
instructions can cause such repair. In order to perform 
such repair, we need only to save the machine state each 
time a conditional branch instruction enters the machine. 
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Exceptions occur far less often than branch predic. 
tion miss does. The average number of instructions 
between exceptions is usually on the order of five 
thousand or more. Thus repair from exceptions impose 
less speed requirement. Almost all instructions can 
potentially cause exceptions. In order to repair from 
exceptions, we need to save the machine state when 
every instruction enters the machine. 

We do provide different repair mechanism for these 
two different types of repairs. Different speed/space 
tradeoffs are made in the two repair mechanism. Please 
see section 4.4 for more information. 

3. Arch i tec ture  of HPSm. 

HPSm is a minimal functionality variant  of the HPS 
model targeted for single chip VLSI implementation. In 
the architecture aspect, we limit the number of opera- 
tions defined by each instruction to be small. The 
number of operations defined in each instruction is two 
in the preliminary design and simulation. We may 
extend this number to be three or four after examining 
substantial applications. 

We describe in this section the data types, registers, 
instruction set, and procedure calling convention of 
HPSm. 

3.1. HPSm Data  Types  and Registers .  

HPSm supports signed and unsigned memory data 
of sizes byte (8 bits), short (16 bits), and long (32 bits). 
These data types are supported by appropriate memory 
operations available in the HPSm instruction set. Proper 
sign or zero extension is applied when a byte or short 
data is read from memory. All memory data must be 
aligned to long word boundaries. If two memory data 
items part ial ly overlap, the execution result is unpredict- 
able. Within the data path, however, all HPSm opera- 
tions operate only on 32-bit values. 

There are sixteen registers in the architecture. 
Each register holds a 32-bit data value. Register 15 pro- 
vides the program counter of the current instruction 
when used as input operand. When register 15 is writ- 
ten, there is no immediate effect on the actual program 
counter. A subsequent SWAP instruction will swap the 
program counter with the content of register 15. Regis- 
ter 14 is stack pointer and register 13 is frame pointer. 
Register 12 is reserved for forwarding purposes. Please 
see the section on addressing modes for details of using 
register 12. 

3.2. HPSm Instruction Set. 

Each HPSm instruction is logically a data- 
dependency graph with two operations. The two opera- 
tions which comprise each instruction are of types 
ALU/Con (primary ALU or Control transfer), and 
Mem/S_ALU/Lit (Memory access, Secondary ALU, or 
Literal value) respectively (see figure 1). Operations 
within an instruction may or may not depend on each 
other. Dependencies between operations are expressed 

through register 12 which will be described below. 
Dependencies crossing instruction boundaries are 
expressed in terms of reading from and writing to regis- 
ters other than register 12. 

3.2.1. HPSm Instruction Format. 

The instruction size is fixed at 32-bits. If a control 
operation other than RETURN occupies the ALU/Con 
field, the Mem/S_ALU/Lit  field contains a 13-bit branch 
displacement in terms of number of instructions. Other- 
wise, the Mem/S_ALU/Lit  may contain a memory access 
operation, a two address format ALU operation, or a 13- 
bit l i teral value as an input  operand to the primary ALU 
operation. 

~m~U/Con Part 

31 27 21 17 13 

Mem/S_ALU/LIt Part 

12 8 4 0 

Figure 1. HPSm Instruction Format 

3.2.2. HPSm Addres s ing  Modes. 

There are three addressing modes for source 
operands of the HPSm operations: register, short literal, 
and long literal. All addressing mode information is 
specified in the opcede of each operation. That is, the 
opcode of an operation determines the interpretation of 
all its operand fields. 

An operand in the register mode is interpreted as a 
register number which selects one of 16 registers. When 
a source operand is register 12, the execution result  of 
the other operation in the same instruction will be 
directly forwarded as the operand value. In this case, 
the other operand may or may not write into other regis- 
ter 12. If it does, the result is only forwarded within the 
same instruction. If it  writes to some other register, the 
result is written to the specified register as well as for- 
warded within the same instruction. This is used by the 
compiler to express the dependencies within the an 
instruction. 

A short literal operand is sign extended to provide 
the input value. Short literal operands in ALU and 
Mem/S_ALU operations range from -32 to +31 and from 
-8 to +7 respectively. In long literal mode, the operand 
presented in the operand field of the operation is ignored. 
The sign extended result of the Mem/S__ALU/Lit field is 
used as the input  value which ranges from -4096 to 
+4095. 
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3.2.3. HPSm Inst ruct ion Opcodes. 

There are two groups of operations in each HPSm 
instruction: ALU/Con and Mem/S_ALU. Each type of 
operations has its own opcode. The ALU operations are 
three-address arithmetic/logic operations on 32-bit 
integers. TESTGT, TESTEQ, and TESTLT operations 
generate a 1 or 0 depending on whether or not the input 
operand is greater than, equal to, and less than zero. 
There is no floating point operation as yet in the HPSm 
data path. However, an interface to a floating point 
coprocessor is being designed. 

Con operations perform control transfer. BTRUE 
branches when the input register contains a 1. BFALSE 
works in the complementary way. BRANCH is uncondi- 
tional branch. CALL and RETURN are procedure cal- 
ling and returning instructions. SWAP can be used to 
implement jumps and calls to locations specified in a 
memory table. Control transfer has forward semantics, 
i.e., the instruction right after the control transfer 
instruction in the static code belongs to the path where 
the transfer is taken. 

Memory operations read from and write to memory 
locations. Secondary ALU operations are two-address 
arithmetic/logic operations on 32-bit integers. 

The I/O structure for HPSm is still undergoing 
change. The I/O operations will be multiplexed with the 
ALU/Con operations. I/O instructions will be performed 
sequentially to maintain the desired I/O behavior. This 
is different from memory operations, since memory reads 
can be executed out of order. 

3.3. Procedure Calling Convention. 

We divided the register file into three sections: spe- 
cial, safe and unsafe. The special registers are register 
15 (potential program counter), register 14 (stack 
pointer), and register 13 (frame pointer). These are 
always saved during a procedure call. The safe region 
consists of registers 8 through 11 and they are specified 
to remain the same after the return. The called pro- 
cedure is responsible for saving and restoring the safe 
registers it modifies, by means of explicit memory opera- 
tions. 

Registers 0 through 7 comprise the unsafe region. 
The returned value is in register 0. The calling pro- 
cedure passes parameters via registers 0 through 7. Pro- 
cedures can also use these registers as local or temporary 
variables. If the calling procedure needs any information 
in these registers after the procedure returns, the calling 
procedure itself is responsible for saving and restoring 
the registers. 

The rationale behind adopting this calling conven- 
tion is threefold. First, the parameters are passed 
through registers instead of through memory. This cuts 
down the memory traffic and increases the parallelism 
because we can handle register dependencies more 
efficiently than we can handle memory dependencies. 
Second, the compiler has the opportunity to reduce the 
amount of the register saving-restoring of unsafe regis- 

ters. In tail recursion, for example, where unsafe regis- 
ters are not used after the procedure returns, the called 
procedure can use the unsafe registers for free. Third, 
we do not have to deal with a register window mechan- 
ism [10], where large register file can increase the cycle 
time. 

IBO   FLT el 

I 

Merging Logic 

'ory-~--~ Distribution Bus 

Figure 2. HPSm Data Path 

4. Implementation of HPSm. 

HPSm is also a minimal functionality variant of the 
HPS model in implementation. The restrictions on func- 
tionality here are (1) number pending branch prediction 
is limited to one, (2) memory dependency is resolved by a 
conservative algorithm, (3) only two ALU's and one data 
memory port are provided. The implementation of 
HPSm is divided into three major parts: the Instruction 
unit, the main data path, and the memory system (see 
figure 2). The instruction unit  is responsible for supply- 
ing instructions to the data path. The main data path 
schedules and executes operations in instructions and 
retire the finished instructions. The memory system does 
the cache and virtual memory management. 

The entire HPSm engine can be viewed as a ten 
stage pipeline where four stages can be skipped (see 
figure 3). A trivial HPS instruction spends at least six 
cycles in the microengine. The pipeline view of the 
HPSm is somewhat misleading because within the 
stages, the execution of operations are controlled by data 
flow firing rules. 

4.1. Instruction Unit Organization. 

The instruction unit  implements an instruction 
buffer and a fetch algorithm. The instruction buffer 
caches HPSm instructions in decoded form. The size of 
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I node cache access '1 

E decod/ ~ I 

I I 
t~le insertion I L node --) r_ 

\ i 
node table f i r i n g  I 

~ f u n c t i o n  u n i t  e ec 

F .... 1 
I AIT firing ,I 

,_ ] ._. ..... 

Figure 3. Pipelined View of HPSm 

the instruction buffer is 1K entries in current design. 
When instruction buffer hit, the instruction unit can 
deliver one instruction each cycle, which is equivalent to 
delivering two operations each cycle. 

On a instruction buffer miss, the instructions are 
fetched from cache memory and decoded both for execu- 
tion and for refilling the instruction buffer. Figure 4 
shows the decoding logic for ALU operations. The pro- 
cess is pipelined between consecutive instructions. In a 
instruction buffer miss sequence without cache memory 
miss, the instruction unit  can deliver one instruction 
every two cycles. 

The forward branch mechanism (described in section 
3.2.3) is adopted to assist the pipeline design described 
above. HPSm performs one level of branch prediction. 
The instruction unit  always predicts the conditional 
branch to be taken. There can be one pending branch 
prediction in the microengine. When the instruction unit  
encounters a second conditional branch before the first 
one is confirmed, the instruction unit  stalls. This 
restriction on the number of pending branch predictions 
is due to the requirement of efficient repairing from 
branch prediction miss (we have to save only one set of 
machine state for this type of repair). 

[ ALU ISPI L°pc°delndex I~ 

I ALUFU 
I c o n t r o l  
I 

ALU/Con decodlng R(AM i' 1 
ALU FU opcode I model ] mode2 I mode 

J II 

II ALU ISP I ALU ISP l°~'~aI~ "'llc'r'nd~ , o p  . . . .  d ' ,  

;--EW'~ J 5 -~ ~' ~ ~ -V-5-- 
I ...... ' 1  ...... ""°"°° L 

ALU node before merging 

Figure 4. ALU Operation Decoding 

4.2. Dependency Graph  Handling.  

Every HPSm instruction is decoded into a data 
dependency graph. The entire HPSm microengine main- 
rains a data dependency graph connecting all active 
operations. The merger of HPSm takes the decoder out- 
put and uses a modified Tomasulo algorithm [7] to merge 
it into the active dependency graph. Physically, this is 
done by translating the source operands in the decoder 
output into operands of node table entry using the regis- 
ter alias table and the tag assignment logic as shown in 
figure 5(a). The merging process also changes the regis- 
tor alias table contents to reflect the fact that some 
operations write to registers, as shown in figure 5(b). 

Input Oper and 

[mode,specifier,  I long literal ii 

I t . g  b a , e  1 ]  ___ 
-I I- counter I [ ~l RAT 1 

value ta¢ I I value 
ready I | |ready ready tag value ~eady I 

(-~-) 1 1 

-~ SLIT REGISTER(C) REGISTER LI 

~I i|7 .. [read~ I tag value .I 
ALU Node Table Input Operand 

Output Oper and assigned 
I I 

specl fief (0) ,L ,J 
RAT 

Figure 5. ALU Operation Merging 
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If operands of an operation are ready and the 
appropriate function unit is available, the operation is 
directly transmitted for execution. Otherwise it is 
inserted to the node table. 

Each register alias table entry consists of two back- 
to-back parts: current and backup. Whenever the previ- 
ous instruction invokes a branch prediction, the current 
part of each entry is saved in the backup part in one 
cycle. The backup part is maintained (distributed, see 
section 4.5) so that it keeps a version of the register alias 
table where none of the instructions ever entered the 
machine after the branch went into effect. When a 
branch prediction repair is signaled, the register alias 
table can be restored to its correct state in one cycle. 

4~. Node Scheduling. 

When both (we use only two-input operations in 
HPSm) operands are ready, an operation is firable. The 
scheduling logic of ALU node table fires the oldest firable 
operation in each node table. 

Memory operation scheduling is one of the critical 
issues in HPSm. The difficulty comes from the fact that 
memory dependency can not be resolved at instruction 
merging time due to unknown addresses. The current 
algorithm used is as follows: 

(1) Fire the oldest firable memory write. If there is no 
firable memory write, try (2). 

(2) Fire the oldest firable memory read if there is no 
younger waiting memory write in the node table. 

It can be shown that this is not the optimal firing algo- 
rithm in terms of firing as many operations as the depen- 
dencies allow. However, it is one which we can easily 
implement with reasonable performance. 

The active instruction table is a special node table 
used to detect when an HPSm instruction completes exe- 
cution. An instruction completes execution when the 
results of all its operations have been distributed. The 
active instruction table entries monitor the distribution 
buses. There is one (ready bit, tag) pair for each opera- 
tion in the corresponding HPSm instruction. The distri- 
bution logic sets the ready bit and gates in the distri- 
buted exception flags when the stored tag match the dis- 
tributed tag. When both ready bits for operations are 
set, the active instruction table entry becomes firable. In 
other words, the corresponding HPSm instruction 
becomes retirable. The active instruction table entries 
are fired strictly in order to enforce the sequential 
semantics crossing HPSm instruction boundaries. 

4.4. Node Execution. 

All ALU operations execute in one cycle. Addition, 
subtraction, and, or, shifting, exclusive_or, and condition 
testing are provided in ALU. 

The Memory function unit executes a memory write 
by performing the virtual address translation to detect 
potential exceptions and inserting it into the memory 
write buffer. Reads are executed by checking the 

memory write buffer and accessing the data cache 
memory. If there is a hit in the memory write buffer, the 
mad result is forwarded from the memory write buffer. 
Otherwise the result comes from the memory system. 

Branch confirmation is performed for conditional 
branches. The opcode (BTRUE, BFALSE) and the con- 
dition operand data together determine whether or not 
the branch prediction was correct. If the branch predic- 
lion was correct (hit), then the HPSm microengine per- 
forms the following operations in the next cycle: (1) Reset 
the branch prediction pending flag so that the next condi- 
lional branch can enter the data path, (2) Set the ready 
bit in the corresponding active instruction table entry so 
that the instruction can retire as far as branch prediction 
is concerned. 

When a branch prediction turns out to be incorrect 
(miss), the HPSm microengine enters a repair cycle, as 
follows: (1) Redirect the instruction supply stream, (2) 
Invalidate all operations (node table entries) younger 
than the branch, (3) Reset the branch pending flag so 
that the next branch can enter the data path, (4) Restore 
the register alias .table from the backup part, (5) Invali- 
date the memory write buffer entries younger than the 
branch, and (6) Invalidate all active instruction table 
entries younger than the branch. The repair is currently 
designed to take a single cycle. A less demanding design 
could be used if we wish because we have at least two 
cycles before the redirected instruction stream enters the 
data path. 

When an active instruction table entry is fired into 
the retirement function unit, it performs the following 
operations: (1) If any exception flag is raised in the 
operation execution result, the entire microengine enters 
an exception handling sequence. This guarantees precise 
interrupts for memory management and debugging pur- 
poses. (2) If there is no exception, release the correspond- 
ing memory write buffer entry to the memory system. 
Since the memory write buffer release has a lower prior- 
ity than the memory function unit, the retirement func- 
tion may take more than one cycle waiting for the cache 
to become accessible. Note that we have performed vir- 
tual address translation when the memory write enters 
the memory write buffer. There will be no memory 
management exceptions when the write buffer entry is 
released. This simplifies the exception handling for 
access violations and page faults. 

4.5. Result Distribution. 

The results generated by the ALU and memory 
function units have to be distributed to their proper 
register alias table locations. There is a distribution bus 
for each function unit. All potential receivers of the FU 
result are connected to the distribution bus. If the distri- 
bution bus is valid and the distributed tag matches the 
tags stored in the register alias table entry, the ready bit 
is set and the distributed value is gated in when the dis- 
tributed tag matches the stored tag. Distribution to the 
register alias table is done both for the current part and 
the backup part. 
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Operands of node table entries also monitor the 
relevant distribution bus. The schematic is shown in 
figure 6. The amount of logic involved in distributing 
into each node table operand argues for a small window 
size and thus small node table. 

t a g '  ~ a l u e  t a c J ' v ' l l u e  -- t a ~  ~ ' a l u e  

. . . . . . . . . .  . . . . .  . . . . . .  ; - - ! -  

One for each node t a b l e  operand! 

Figure 6. Distribution Logic 

5. P e r f o r m a n c e  E v a l u a t i o n .  

We have developed a register  t ransfer  level simula- 
tor to evaluate the design decisions and the performance 
of HPSm. A project to construct a C compiler for HPS 
[11] is now being conducted. The benchmarking reported 
here was perf, ormed by taking the VAX code generated 
by the UNIX C compiler and hand t rans la t ing it  into 
HPSm cede. We first t ranslated the VAX" code into 
HPSm code in a s t raight  forward way. Then, we 
arranged the code to reduce stalls and repairs due to con- 
ditional branches. Measured performance from both 
approaches are reported. 

We also ran the same benchmarks on the RISC II 
simulator. The RISC codes from both optimizing and 
non-optimizing Berkeley RISC compilers were used. For 
each benchmark, we report the performance on the two 
simulated machines. 

Table 1 summarizes the benchmarks we have meas- 
ured so far. These benchmarks were chosen first for 
several reasons: 

(1) The static code size of these benchmarks are 
sufficiently small  that  hand translat ion is doable, 
while we are awai t ing completion of our C compiler. 

(2) The selected benchmarks are both procedure inten- 
sive and conditional branch intensive. These control 
transfers are par t icular ly  difficult for machines like 
HPSm which try to exploit parallel ism. 

*UNIX is a trademark of Bell Laboratories. 
÷VAX is a trademark of Digital Equipment Corporation. 

Table 1. Summary of measured RISC benchmarks 
Benchmark i Description 

i 
Towers(18) , Towers of Hanoi with 18 disks 
Acker(3,6) ~ Ackerman's Function with input (3,6) 
Qsort , Recursive version of quicksort 
BenchE String matching 

i 
BenchF , Setting, testing, and clearing bits in a bit vector 
BenchH . inserting into linked list 

(3) We wished to compare the performance of HPSm 
with another popular execution model, the Berkeley 
RISC II. According to reports on the Berkeley RISC 
H, it performed well on these benchmarks. Thus 
these benchmarks seem to be a good starting point 
for HPSm performance evaluation. 

Table 2 summarizes the time and cycle comparison 
of HPSm and RISC II on the measured benchmarks. 
Columns RISC A and RISC B reports the measurement  
with non-optimizing and optimizing Berkeley RISC com- 
pilers respectively. Columns HPSm Aand HPSm B 
reports the measurements  with naive translat ion and 
translation with code rear rangement  respectively. Code 
rearrangement  techniques used were reducing the length 
of dependency chain, combining consecutive conditional 
branches to enlarge basic block size, rea r ranging  branch- 
ing structure to favor the more possible path, and to 
unravel  t ight loops. Note that  we did not employ more 
conventional code optimizations techniques,  such as lift- 
ing operation out of loop, deleting redtmdant  operations, 
etc., to measurements  reported under HPSm B. Thus we 
potentially have opportunity to further reduce the execu- 
tion time. 

There are three major factors contr ibuting to the 
measured performance: clock cycle, concurrency, and size 
of dynamic program. 

Tbale 2.a Performance Comparison (Time) 
Benchmark , RISCA , RISCB ~ HPSmA , HPSmB 
Towers(18) , 3,729ms , 2,171ms , 1,075ms , 852ms 
Acker(3,6) ~ 3,164ms i 2,484ms , 230ms , 207ms 
Quicksort ~ 867ms ~ 764ms i 175ms J 175ms 
BenchE 492us 337us 198us l l6us  [ 

BenchF 178us  , 106us ~ 50us  ~ 50us  

BenchH 188us  148us 67us  56us  

Table 2.b Performance Comparison (Cycle) 
Benchmark , RISC A , RISC B 
Towers(18) , 11.30M , 6.59M 
Acker(3,6) , 9.39M , 7.12M 
Quicksort i 2.63M t 2.31M 
BenchE 1.50K 1.02K 

i 
BenchF , 0.54K 0.32K 
BenchH 0.57K I 0.45K 

HPSm A 
10.75M 

2.30M 
1.75M 
1.98K 
0.50K 
0.67K 

HPSm B ' 
8.52M ' 

2.07M 
1.75M i 
1.16K I 

0.50K 
0.56K I 
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Cycle Time. Our estimated cycle time is 100ns 
assuming HPSm is going to be implemented in the same 
technology as RISC II whose cycle time was 330ns. The 
clock cycle of HPSm is kept small through pipelining the 
microengine and using small register file. Each HPSm 
instruction travels through at least 6 logical stages 
shown in figure 3. At each stage, we have one of the fol- 
lowing happening at each stage: (1) one Tegister access 
plus some simple gating, (2) one ALU operation (3) one 
cache memory access. 

In RISC II, operations executed in one cycle are (1) 
reading from register file and then executing an ALU 
operation, (2) forwarding the result to the next instruc- 
tion and writing back to register, (3) one cache memory 
access. 

The very large register file in the RISC If, due to the 
overlapped window mechanism, also contributes to its 
longer cycle time. Of course, HPSm has to be equipped 
with faster cache memory than is RISC II in order to 
achieve projected cycle time. 

Concurrency.  HPSm exploits parallelism by (1) 
shipping more than one operation into machine in each 
cycle and (2) pipelining the microengine. In each cycle, 
we ship one of the following units into the machine. 

• Two ALU operations, both can read from and write 
to register file. 

• One ALU operation and one memory access, both 
can read from and write to register file. 

• One ALU operation and one 13-bit literal constant. 

• One control transfer operation with a 13-bit displace- 
ment. 

Because we consistently handle dependencies both 
between operations within the same instructions and 
between operations across instructions, filling two opera- 
tions into one instruction is not as difficult for us as for 
MIPS[12]. As we go on measuring substantial work-load 
benchmarks, we may expand each instruction to three or 
four operations. Such expansion had very little effect on 
the RISC benchmarks we have measured on due to very 
few operations available between control transfers. 

In order to achieve enough parallelism to keep the 
stages busy, we perform branch prediction and data 
driven control. Also, to reduce the penalty for procedure 
returns, we separated program counter stack from the 
call frame stack. 

The BP hit columns in table 3 give the branch pred- 
iction hit ratio, which is not very high for most of the 
benchmarks. The M/R columns in the same table gives 
the ratio of number instructions merged into the machine 
against number of instructions retired from the machine. 
The ratio is greater than one because some instructions 
were merged into HPSm due to incorrect branch predic- 
tion. 

Since our branch repair mechanism is particularly 
efficient, we did not suffer badly from these branch pred- 
iction misses. If the branch prediction hit ratio had been 
higher, our performance gains would have been even 
more dramatic. This remains an ongoing research pro- 
ject for HPS. 

In I__S columns, we provide measurement of two 
major stalls in instruction unit. The first number in such 
column is the percentage of time instruction unit  stalled 
due to pending branch prediction. HPSm allows only one 
level of branch prediction. If another conditional branch 
arrives before the pending one is confirmed, the instruc- 
tion unit stalls. If a program has tight loops, stalling of 
this kind becomes a performance problem. The code 
rearrangement in measurements under HPSm B tries to 
combine conditional branches (to enlarge basic block size) 
and to unravel the tight loops (to acquire the condition 
ahead of time). With these two techniques, we reduce 
the stalls at the cost of executing more instructions and 
probably lower branch prediction hit ratio. 

The second number in I_S columns is the percentage 
of time the instruction unit stalls due to instruction 
buffer miss. In benchF and benchH, each vath of the 
this case, instruction buffer miss becomes a major perfor- 
mance problem. 

Number of Operations Executed. Table 4 sum- 
marizes the operations executed by the two simulators on 
the benchmarks. The number of HPSm operations exe- 
cuted was roughly comparable to the number of normal 
RISC II instructions executed. 

In non-recursive but procedure-intensive bench- 
marks, HPSm tends to execute more ALU and memory 
operations to save and restore registers. This penalty is 
reduced by the safe-unsafe register saving convention of 
HPSm as described in section 3.3. When procedure cal- 
ling reuse the same parameter, HPSm can save register 
moves to prepare the parameter. This effect is especially 
pronounced in the rocursive benchmarks. However, 

Table 3. Major Causes of Performance Degradation in HPSm 
Bench 

Towers 
Acker 
Qsort 
BenchE 
BenchF 
BenchH 

BPhi tA , BPhi tB 
50% , 50% 
67% 66% 

] 

54% 54% 
i 

98% 96% 
I 

40% 40% 
67% 69% 

IVl/RA ! M/RB i I_SA LSB 
81/60 , 83/60 , 10%- 0% 2%- 0% 

17/16 20/15 4%- 0% ' 3%- 0% 
] i i 

89/63 103/78 44%- 0% 38%, 0% 
i - i i 

70/69 81 / 78  59%- 4% 21%o- 8% 
I I [ 

27/21 2 7 / 2 1  3%-41% 3%-41% 
37/27 29 /24  13%-29% 6%-40% 
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Table 4.a Operation Count: Towers(18) 
ALU MEM CON NOP LIT 

HPSm A 5 .77M 3 .15M 1.31M 1.05M 0.79M 
Ht~m B 5 .77M 3 .15M 1.31M 1.05M 0.79M 
RISC A 7 .50M *0.28M 1.83M 1.31M 4.46M 
RISC B 3 .93M *0.28M 1.31M 0.79M 1.84M 

* 0.28M register window undertow/overflow operations. 

Table 4.b Operation Count: Acker(3,6) 
ALU MEM CON NOP 

HPSm A 1 .12M 0.52M 0.52M 0.60M 
HPSm B 1 .20M 0.52M 0.52M 0.34M 
RISC A 2 .79M "2.69M 0.83M 0.60M 
RISC B 1 .46M "2.69M 0.60M 0.09M 

LIT 
0.34M 
0.34M 
1.72M 
0.95M 

* 2.69M register window undertow/overflow operations. 

Table 4.d Operation Count: BenchE 
ALU MEM CON NOP LIT 

,HPSmA 584 224 219 134 221 
~I-IPSm B 918 322 113 100 115 
RISC A 513 218 225 224 583 
RISC B 366 218 222 12 572 

Table 4.e Operation Count: BenchF 

ALU MEM CON NOP 

HPSm A 259 108 24 12 
HPSm B 259 108 24 12 
RISC A 383 32 54 45 
RISC B 332 31 33 0 

LIT 
21 
21 

263 
211 

Table 4.c Operation Count: Qsort 
ALU MEM CON NOP LIT 

HPSm A 0 .71M 0 .19M 0.08M 0.21M 0.07M 
HPSm B 0 .99M 0 .23M 0.08M 0.19M 0.07M 
RISC A 1 .66M *0.18M 0.47M 0.17M 1.04M 
RISC B 1 .48M *0.18M 0.46M 0.05M 1.02M 

* 0.03M register window undertow/overflow operations. 

register moves in RISC II, due to windowing, are 
required for preparing parameters even they stay in the 
same logical position. 

Overall, HPSm execute more memory accesses. 
However, the write-back data cache with valid bit for 
each long (32-bit) data in HPSm saved most of the data 
cache memory miss penalty. Window overflow/undertow 
hurt RISC II performance substantially in Acker(3,6) 
where deeply nesting pattern of procedure calling pre- 
vailed. Each window overflow/undertow instruction 
takes at least two cycles (one for instruction fetch, one 
for execution). This degraded RISC II performance by 
123% on Acker(3,6). 

6. Concluding Remarks. 
In this paper we have defined HPSm, a minimal ver- 

sion of HPS. HPS is our new restricted data flow 
microarchitecture, which we believe has significant 
potential for implementing high performance computing 
machines. We have specified the instruction set, data 
path, and timing for HPSm. We have reported the prel- 
iminary measurements obtained by executing several 
RISC benchmarks on our HPSm simulator, and we have 
compared our results with those obtained for the Berke- 
ley RISC II. We intentionally restricted the functionality 
available to HPSm to what could reasonably fit in a sin- 
gle 1.5 micron NMOS VLSI chip. In all cases, our model 
of execution far outperformed the RISC II. 

The above results auger well for the HPS restricted 
data flow model of execution. We hasten to add, how- 
ever, that our results are very preliminary. They were 

Table 4.f Operation Count: BenchH 
ALU MEM CON NOP LIT 

HPSm A 241 104 66 18 103 
HPSm B 252 112 35 13 72 
RISC A 244 99 68 63 297 
RISC B 179 93 58 25 260 

performed on a simulation model, not real hardware. 
They report on toy benchmarks, not substantive applica- 
tions. Still the results are very promising, and 
encourage us to continue our research in restricted data 
flow microarchitecture. 
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