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ABSTRACT 

With advances in VLSI technology, microprocessor designers 

can provide more microarchitectural parallelism to increase perfor- 

mance. We have identified four major forms of such parallelism: mul- 

tiple microoperations issued per cycle, multiple result distribution 

buses, multiple execution units, and pipelined execution units. The 

experiments reported in this paper address two important issues: the 

effects of these forms and the appropriate balance among them. A cen- 

frul microarchitecture is identified as the comparison basis. We 

separately vary each form of the microarchitectural parallelism in the 

central to measure their individual effects on performance. Tn addi- 

tion, we vary two forms of the microarchitectural parallelism in the 
cenfrul to derive an appropriate balance between them. To make fair 

comparisons, our compiler generates different code sequences optim- 

ized for different microarchitectural configurations. For each given set 

of technology constraints, these experiments can be used to derive a 

cost-effective microarchitecture to execute each given set of workload 

programs at high speed. 

1. Introduction 

The demand for high speed microprocessors continues to 

increase. Applications include high performance workstations, appli- 
cation specific processors, and implementations of mini and mainframe 

computers. The design constraints of these microprocessors are. how- 

ever, different enough from those of the conventional technologies to 

force the researchers to pursue new design approaches to achieve high 

performance. One of the most promising approaches to designing high 

speed microprocessors is to use a sophisticated compiler to exploit the 

parallelism both in the programs and in the microarchitecture. The 

compiler and the parallel microarchitecture work closely together to 

achieve high performance without incurring excessive hardware cost. 

On the microarchitecture side, concurrency can be provided in 

the form of parallel data paths and pipelining. These two forms 

together support fetching, issuing, executing, and distributing results 

for multiple microoperations per cycle. The experiments reported in 
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this paper are based on a class of microarchitectures with pipelining 

and parallel data paths. All these microarchitectures rely on the com- 

piler to directly generate microprograms; there is no intermediate level 

of instruction set architecture. 

On the compiler side, source level transformations are first per- 

formed to increase the program parallelism visible to the code genera- 

tor. Register allocation cooperates with the code scheduling to 

enhance the effectiveness of the latter [I]. By working closely with 

code scheduling, register allocation can use just enough registers to 

support the desired parallel execution. 

In this paper, we report several experiments on using a versa- 

tile optimizing compiler to evaluate the benefit of four forms of 

microarchitectural parallelism: multiple microoperations issued per 

cycle, multiple result distribution buses, multiple execution units, and 

pipelined execution units. We use the first 14 of the Livermore loops 

f2] and 10 of the linpack subroutines [3] as our preliminary bench- 

masks. The compiler generates optimized code for different microar- 

chitecture configurations. We show how the compiler can help to 

derive a balanced design for high performance. Ultimately, we would 

like to automatically generate a well balanced microarchitecture given 

a set of workloads written in C and a set of technology constraints. 

This paper is organized into four sections. Section 2 gives 

some background regarding our research. Section 3 reports and 

analyzes our experimental results. Section 4 offers some concluding 

remarks. 

2. Background 

In this section, we provide some background information 

regarding the optimization code generation techniques, the parallel 

microarchitectures, the benchmarks, and some previous works. 

2.1. The Optimization and Code Generation Techniques 

Several source level transformation techniques, including loop 

unrolling, Ioop folding, and code migration are applied to the bench- 

marks before code generation. Loop unrolling generates a loop header, 

for an inner loop, to ensure that the number of remaining iterations is a 

multiple of N (N>l), and then generates a N-unrolled version of the 

loop. The resultant loop body forms a large basic block. Code migra- 
tion moves the bottom portions of long data dependency links to the 
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destination basic blocks provided that the migrated portions do not 

affect the branch direction. Loop folding is a special case of code 

migration for inner loops. Code duplication and variable renaming are 

used to suppott code migration [ 1.41. 

The code generator receives an intermediate form which con- 

sists of directed control graphs: the nodes are basic blocks and the arcs 
represent control transfers. Each basic block contains a list of three 

address codes which operate on the variables and structures defined in 

the source high level language (C in this case). The three address 

codes are translated into the microoperations which operate on the gen- 

eral purpose registers and memory locations. The microoperations are 

scheduled into program slots according to the data dependencies and 

the resource conflicts. The code generator works on one procedure at a 

time*. The functionality of the code generator is performed in seven 

steps: sorting basic blocks, selecting register variables, mapping vari- 

ables into virtual registers, analyzing register lifetime, preliminary 

code reordering, mapping virtual registers into physical registers, and 

code scheduling [1,4,5,6]. We briefly describe these seven steps as fol- 

lows. 

Step 1: 

Step 2: 

Step 3: 

Step 4: 

Sorting basic blocks. We sort the basic blocks according to 

their estimated execution frequencies. At present, our code 

generator examines the loop structure to estimate the execu- 

tion frequency of each basic block. We are implementing an 

interface to a profile program so that the programmer can 

optionally use the profiling results to increase the accuracy of 

the estimation. 

Selecting register variables. We select the register variables 

according to their estimated dynamic access frequencies. At 

present, the register variables will stay in the register through 

the lifetime of the procedure. The dynamic access frequen- 

cies of variables am estimated by examining their access fre- 

quencies in each basic block and the estimated execution fre- 

quency of each basic block. 

Mapping variables into virtual registers. We map the vari- 
ables into the infinitely many virtual registers. If a static 

variable or a parameter is selected as a register variable, we 

add Ioud and store microoperations to the procedure entrance 

and/or exit to transfer the variable between the corresponding 

memory location and the corresponding virtual register. If a 

variable is not selected as a register variable, we add load 

and srore microoperations within basic blocks to transfer 

variables between the corresponding memory location and 

the corresponding virtual register. 

For each basic block, we determine the in, OUI, use, and 

define sets of virtual registers [l]. The in set consists of the 

virtual registers whose contents are valid when control is 

transferred into the basic block. Ttte auf set consists of the 

virtual registers whose contents are valid when control is 

transferred out of the basic block. The me set consists of the 

virtual registers used before they are defined the basic block. 
The define set consists of the vritual registers serving as des- 

tination operands in the basic block. These sets together give 

us the register lifetime and flow information among basic 

blocks. 

Steps 5 through 7 am performed to one basic block at a time, from the 

basic block with the highest expected execution frequency to the one 

with the lowest. With this ordering, we can force the delay and spil- 

Iing into less important basic blocks without facing the convergence 

problem. Code migration is only done from more important basic 

blocks to less important ones. 

Step 5: 

Step 6: 

Step 7: 

Preliminary code reordering. Within each basic block, we 

reorder the three address codes according to the data depen- 

dencies. Mapping virtual registers to physical registers can 

introduce extra dependencies by recycling physical registers 

and inserting spill codes (see below). Without preliminary 

code reordering, the extra dependencies may prevent the 

proper code movement in the final scheduling. We charac- 

terize the effectiveness of this step in section 3.1. 

We map the infinite virtual registers into the finite physical 

registers using the global and local register lifetime informa- 

tion. Physical registers are recycled, introducing extra regis- 

ter dependencies. Spill codes may be inserted, introducing 

extra memory and register dependencies. 

We schedule the microoperations into the microinstructions 

of the target machine according to 1) the resource constraints 

and 2) the data dependencies, both from inside the basic 

block and from the more important basic blocks. 
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Figure 1. The cenfral microarchitecture 

2.2. The Parallel Microarchitectures 

The microarchitectures we are designing provide parallelism 

through pipelining and parallel data paths [7, 8. 91. Them is no 

hardware interlocking or hardware data dependency resolution 

mechanism. The code scheduling phase of the code generator must 

handle alI the data dependencies and resource conflicts. An example of 

this class of microarchitectures is the MIPS microprocessor [lo]. We 

would like to determine a cost effective approach to improve perfor- 

mance by adding more parallelism into the microarchitecture. 
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The microarchitecture design parameters we have examined am 

(1) the number of microoperations issued per cycle, (2) the number of 

result distribution buses, (3) the execution unit pipeline structure, and 

(4) the number of execution units. Arbitrarily varying the design 

parameters creates too many design points in this 4-dimensional design 

space. Therefore, we first identify a cent& microarchitecture which 

can be efficiently implemented with the state-of-the-art fabrication 

technology; then we explore the neighborhood of the central by 

slightly varying the design parameters. 

The central microarchitecture (see Figure 1) has (1) two 

microoperations issued per cycle, (2) two result distribution buses on 

both the CPU and the FPU, (3) one cache access port, one Roating- 
point adder, and one floating-point multiplier with pipeline latencies 2, 

4, and 6 cycles, respectively. The microarchitecture is equipped with 

32 floating point registers, and 32 general purpose registers. 

loop 1 

loop 2 

loop 3 

loop 4 

loop 5 

loop 6 

loop I 

loop 8 

loop 9 

loop 10 

loop 11 

loop 12 

loop 13 

loop 14 

linpack 1 

linpack 2 

linpack 3 
linpack 4 

linpack 5 

linpack 6 

linpack 7 

linpack 8 

linpack 9 

hydro excerpt 

inner product 

inner product (no unrolling) 

banded linear equations 

t&diagonal elimination, lower 

tri-diagonal elimination, upper 

equation of state excerpt 

p.d.e. integration 

integrate predictors 

difference predictors 

first sum 

first difference 

2-d particle pusher 

l-d particle pusher 

index of the max. element 

sum of the absolute values 

scale and add 

COPY 
inner product 

Euclidean norm 

apply plane rotation 

construct plane rotation 

scale 

linpack 10 interchange 

Table 1. The prelimiiaty benchmark set. 

2.3. The Benchmarks 

We have the first 14 of the Livermore Loops and 10 of the lin- 

pack subroutines in our initial benchmark set. These benchmarks exhi- 

bit a wide range of data dependency patterns and resource usages. For 

example, loops 5 and 6 are sequential; whereas loops 2 and 7 are paral- 

lel. As another example, loop 4 has a low ratio of floating-point arith- 

metic operations to memory accesses; whereas loop 7 has a high ratio 

of floating-point arithmetic operations to memory accesses. 

The benchmark performance of the cenrru1 microarchitecture 

serves as the comparison basis for the other benchmark results 

presented in this paper. We use the executable codes generated for the 

central to estimate the performance. Table 2 shows the benchmark 
performance of the cenfruI microarchitecture with a 40ns cycle time. 

Even though the peak performance of the machine is 

benchmark central -I 
lloop 1 

lloop 2 

lloop 3 

lloop 4 

lloop 5 

uoop 6 
lloop 7 

hoop 8 

lloop 9 

lloop 10 

lloop 11 

lloop 12 

lloop 13 

kloop 14 

linpack 1 

linpack 2 

linpack 3 

linpack 4 

linpck 5 

linpack 6 

linpack 7 

linpack 8 

linpack 9 

linpack 10 

19.98144.05 

8.93J32.14 

7.14128.57 

5.OOf22.50 

4.41f20.59 

4.4li20.72 

12.04143.52 

13.6414508 

12.14/47.14 

5.23146.51 

3.57LZ8.57 

7.90148.69 

4.44136.69 

5.60117.91 

2.94nO.59 

16.00/41.00 

8.70148.91 

NA/50.00 

10.00/40.00 

3.95!13.10 

13.64J46.59 

4.88LI6.57 

6.45145.16 

NAJ50.00 

average 8.23136.03 

Table 2. The estimated performance of the 

cenfral microarchitecture. 

25MFLOPS/50MIPS. the average benchmark performance is about 

8.23MFLOPX36.03MIPSt. Note that linpack routines 4 and 10 do 

not contain any floating point operations and they are excluded from 
the MFLOPS measure. 

As for the MFLOPS measure, the difference between the peak 

and the average performance is due to two major factors. First, the 

extra processing (address calculation, memory access, loop control, 

etc.) which prevents the machine from executing one floating point 

arithmetic microoperation per cycle. For example, address calculations 

in Livermore loop 10 dominate the computation. Although the 

MFLOP count is low, the cenfrul microarchitecture executes Liver- 

more loop 10 at almost peak performance. Second, the data dependen- 

cies prevent the compiler from issuing one floating point arithmetic 
microoperation per cycle. For example, Livcnnore loops 5 and 6 are 

sequential due to the data flow dependencies between array elements. 

In this case, the compiler simply can not make good use of the parallel- 

ism in the microarchitecture. As for the MIPS measure, the difference 

between the peak and the average performance is mainly due to data 

dependencies. 
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2.4. Previous Works metic units. 

The VLIW (very long instruction word) projects have con- 

ducted experiments using a compiler to exploit a highly parallel 

microarchitecture [ll, 12. 131 crossing many chip and/or board boun- 

daries. We focus on microarchitectures with one CPU chip and one 

FPU chip. There are three important implications from this difference: 
(1) we can reduce chip-crossing delays to achieve very short cycle time 

and small communication overhead between function units; (2) the 

cost of our microarchitecture is much lower than that of the VLIW 

microarchitectures; and (3) we do not have to unroll the loops many 

times before we can make good use of the microarchitectural parallel- 

ism. Due to practical technology constraints, the benefit of parallelism 

can be nullified by long clock cycle time, data transfer overhead, code 

explosion, and register spilling. Instead of putting the emphasis just on 

parallelism, we pay equal attention to the technology constraints. 

For each microarchitecture shown in the subsequent sections, 

the compiler generates optimized code sequences for that microarchi- 

tecture. The compiler takes a microarchitecture specification as input 

and generates code particularly scheduled for the specified microarchi- 

tecture. Therefore, the compiler generates optimized codes for a class 

of microarchitectures rather than just for one, as in the Bulldog Com- 

piler [12]. Therefore, we can have a fair comparison among microar- 

chitectures which differ in the degree of supported parallelism. 

Most of the microcode compaction works have suffered from 

the peculiarities of their target machines, e.g. microoperation selection 

and variable pipelines [14]. Our work is based on simple and regular 

microarchitectures so that we can focus on more important aspects 

such as register assignment and code scheduling, global analysis, and 

optimization. A clean implementation is possible due to the regular 

stmcture of the underlying microarchitecture. 

The MIPS project at the Stanford University uses a compiler to 

exploit a pipelined microprocessor without hardware interlocks [5, lo]. 

‘Ihe MIPS code reordering and register assignments are done in 

separate passes. In our research, code scheduling and register alloca- 

tion are performed together so that just enough registers are used to 

exploit all the useful program parallelism. According to the results in 

Section 3.1, this is crucial for exploiting parallel microoperation issu- 

ing and execution unit pipelining. 

The Architect’s Workbench project at the Stanford University 

evaluates architectural design decisions for different applications [ 151. 

The project, however, has not yet established microarchitecture models 
such as pipelining and parallel data paths to evaluate the performance 

directly. All the measurements available from the project are indirect 

parameters such as memory traffic ratio and cache hit/miss ratios. 

Instead of trying to evaluate the merit of various architectures, we use 

only one type of architecture so that we can focus on microarchitecture 

design decisions. Within this domain, we have established microarchi- 

tecture models to evaluate microarchitecture design decisions. 

3. Experiments and Analysis 

We have conducted experiments on our compiler’s effective- 
ness at utilizing additional features in the microarchitecture. In partic- 

ular, we estimate the changes to the benchmark performance when we 

modify the cenfral microarchitecture. The main features we change 

are the microoperation issue bandwidth, the result distribution 

bandwidth, the pipeline structure of the execution units, and the 

number of data cache ports. 

Due to the large number of possible combinations, we can not 

report experiments on all possible changes to the cenfral microarchi- 

tecture. Most of the results reported here are derived by changing one 

of the features while keeping the others fixed. To illustrate the impor- 
tance of balancing these features, we also report the joint effect of 

changing both the number of microoperations issued at each cycle and 

the pipeline structure of the memory access and floating point arith- 

benchmark no prelim. 

lloop 1 0.59 

lloop 2 0.83 

lloop 3 0.99 

lloop 4 0.76 

lloop 5 0.95 

lloop 6 0.90 

lloop 7 0.55 

lloop 8 0.45 

lloop 9 0.40 

lloop 10 0.72 

lloop 11 0.88 

lloop 12 0.67 

lloop 13 0.68 

lloop 14 0.85 

linpack 1 1.00 

linpack 2 0.51 

linpack 3 0.67 

&pack 4 0.56 

linpack 5 0.57 

linpack 6 1 .oo 

linpack 7 0.46 

linpack 8 0.97 

linpack 9 0.69 

linpack 10 0.61 

average 0.72 

1 

Table 3. Relative benchmark performance 
without code reordering. 

3.1. Preliminary Code Reordering 

Before we report the effects of modifying the microarchitecture 

features, we would like to demonstrate the importance of performing 

preliminary code reordering. We have studied the effect of preliminary 

code reordering on the benchmark performance of the central microar- 

chitecture. Table 3 shows the relative benchmark performance without 

preliminary code scheduling as compared to that with preliminary code 

reordering. Without preliminary code reordering, the benchmarks exe- 

cute at 72% of the achieved speed. That is, by introducing preliminary 

code reordering, the central microarchitecture can potentially execute 

the benchmarks 39% faster. 

Two major factors contribute to the performance difference. 

First, register recycling (visible for all the benchmarks) and spilling 

(visible for Livermore loops 8 and 13) introduce extra register and/or 

memory dependencies when we map the virtual registers to the physi- 

cal registers. The extra dependencies can prevent the final code 

scheduler from effectively moving code around. Preliminary code 
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reordering reduces the desired distance of code movement during final 

code scheduling and therefore, reduces the impact of the extra depen- 

dencies. Second, preliminary code reordering reduces the lifetime of 

temporaries. After preliminary code reordering, the temporary values 

are produced as late as possible and consumed as early as possible. 

The probability of register spilling is reduced. 

If a benchmark uses only a small number of variables and tem- 

poraries, one could employ a less aggressive register recycling policy 

so that fewer extra dependencies will be introduced. We decided not to 

implement this optimization for two reasons. First, without multiple 

register sets* [16]. using fewer registers implies saving and restoring 

fewer registers before and after invoking the code. This can be a 

significant performance factor for large programs when global (and 

interprocedural) register allocation is implemented. 

Second, most of the benchmarks do use many variables and 

temporaries after we unroll and fold the loops. For example, Liver- 

more loop one uses 48 floating point variables and temporaries after 

we unroll and fold the inner loop, although the original version uses 

only 11. From the wide variety of the small benchmarks we have 

examined, parallclizcd programs require significantly more tem- 

poraries than the sequential version@. Since we expect the problem 

to be even worse for large programs, we decided to implement a tight 

register allocation policy to avoid unnecessary register spilling. 

Therefore, register recycling and spilling can introduce extra 

register and/or memory dependencies even for benchmarks which are 
small in their sequential form. Without preliminary code reordering, 

these extra dependencies decrease the chance of moving critical 

microoperations to their desired positions. Preliminaly code reorder- 

ing reorders the code according to the original data dependencies 

before introducing the extra dependencies. The critical microopera- 

tions have already moved close to the desired positions and they tend 
to stay in their neighborhood during final scheduling. Therefore, it is 

unlikely that the extra dependencies prohibit the desired movement of 

these critical microoperations. 

With preliminary code reordering, the compiler can exploit 

almost all the useful parallelism with a reasonable number of floating 

point registers provided by the microarchitecture (32 in our ease). 

From the experiments we have conducted so far, preliminary code 

reordering has performed effectively to achieve a good compromise 

between two conflicting goals: exploiting parallelism and minimizing 

register spilling. 

3.2. Two Extreme Design Points. 

The basic column in Table 4 shows the relative benchmark per- 
formance (normalized to that of the cenfral) of the basic microarchitec- 

ture which differs from the cenlrul in two ways: (1) only one 

microoperation can be issues at each cycle, and (2) the floating point 

arithmetic units are not pipelined. The benchmark performance of the 

basic microarchitecture is about 59% of that of the cenfral. A useful 

interpretation is that the benchmark performance increases by 70% 

from the basic microarchitecture to the cenfral. Note that if we did not 

use preliminary code reordering (see Table 3), we would have gained 

‘We have decided not to implcnrnt multiple register scta bccausc of their pmr 
utilization of precious register nxounx.. Implcmcnting multipk register sss to suppon 

ncstcd procedure calls of rcasonablc depth wully implks that cash proadurc scss 

only L small frnction of the mgisters implcmcmcd in the undcdying hardwan. 
dlhz prablcm of creating large numlxx of kmporaricr in pamllelizd pograms has 
been mprtcd in Ill]. 

benchmark basic maximal 

Iloop 1 0.35 1.23 

Hoop 2 0.59 2.24 

lloop 3 0.69 1.01 

lloop 4 0.79 1.04 

lloop 5 0.96 1.00 

lloop 6 0.96 1.00 

lloop 7 0.40 1.41 

Hoop 8 0.35 1.65 

lloop 9 0.27 1.25 

lloop 10 0.61 1.02 

lloop 11 0.76 1.01 

lloop 12 0.51 1.46 

lloop 13 0.51 1.13 

lloop 14 0.84 1.00 

&pack 1 0.84 1.07 

linpack 2 0.37 1.25 

linpack 3 0.50 1.86 

linpack 4 0.50 1.20 

linpack 5 0.48 1.94 

linpack 6 1.00 1.05 

linpack 7 0.31 1.97 

linpack 8 0.59 1.10 

linpack 9 0.50 1.54 

linpack 10 0.50 1.35 

average 0.59 1.32 

J 

Table 4. The relative performance 

of two extreme designs. 

only a small ponion of the spcedup. 

The maximal column in Table 4 shows the relative perfor- 

mance of a microarchitecture without resource limitations. Such a 

microarchitecture performs strictly inversely propottional to the depth 

of the data dependency graph. The maximal microarchitecture per- 

forms about 32% better than the central t. 

3.3. The Microoperation Issue Bandwidth 

All the microarchitectures in this study have one pipelined data 

cache access port and one pipelined floating-point arithmetic unit. The 

only variation is in the number of integer ALU microoperations which 

can be issued per cycle. We do not vary the number of floating point 

arithmetic units and the number of memory ports; we explore only one 

dimension of the design space. 

The one column in Table 5 shows the relative performance of a 

microarchitecture in which one microopcration is issued per cycle and 

there is only one integer ALU. The one microarchitecture can be 

derived from the basic microarchitecture by linearly pipelining the 

cache access and the floating point arithmetic units. Notice that using 

the basic microarchitecture as the comparison basis, pipclining 

increases the performance by 17%. 

The advantage of pipclining in the one microarchitecture is 

somewhat disappointing. Only one microoperation can enter the 

machine every cycle. This narrow path forces all the execution units’to 
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benchmark one three 

lloop 1 0.57 1.05 

UOCQ 2 0.71 1.32 

lloop 3 0.85 1 .oo 

uoql 4 0.84 1.00 

uoop 5 0.96 1 .oo 

lloop 6 0.96 1.00 

lloop7 0.57 1.17 

lloop 8 0.57 1.14 

lloop 9 0.52 1.17 

lloop 10 0.61 1.00 

uoop 11 0.76 1.00 

lloop 12 0.51 1.34 

lloop 13 0.64 1 .oo 

uoop 14 0.98 1 .oo 

linpack 1 0.84 1.06 

linpack 2 0.61 1.09 

linpack 3 0.52 1.41 

linpack 4 0.50 1.20 

linpack 5 0.62 1.20 
linpack 6 1.00 1.05 

Unpack 7 0.54 1.28 

linpack 8 0.73 1.01 

linpack 9 0.56 1.19 

linpack 10 0.50 1.15 

average 0.69 1.12 1 
4 

Table 5. The relative performance for various 

microoperation issue bandwidth 

be idle most of the time. The microinstruction format becomes the 

major bottleneck limiting the concurrency exploited by the microarchi- 

tecture. 

When we allow two microoperations to be issued in each 

microinstruction as well as pipeline the execution units (the central 

microarchitecture), the performance increased by 70% (from 59% to 

100%). For the benchmarks shown in this paper, pipelining tlte execu- 
tion units without increasing the microoperation issuing bandwidth is 

not a cost-effective approach to improve performance. 

The three c&mm in Table 5 shows the relative performance of 

a microarchitecture allowing three microoperations in each microin- 

struction. The three microarchitecture can be derived from the central 

by adding one integer ALU field to each microinstruction. We keep 

the number of floating point arithmetic or memory access microopera- 

tions unchanged so that we only make changes in one of the four 

dimensions at a time. For example, the machine can issue one floating 

point arithmetic, one memory access, and one integer ALU 

microoperation every cycle. 

The benchmark performance of the three microarchitecture is 

about 12% higher than the cenfrul microarchitecture. By examining 
the schedule for individual benchmarks, we have found two major fac- 

tors which limit the performance improvement. First, memory access 

and floating point arithmetic units become the bottleneck. Second, the 

optimization techniques implemented in the code generator have 

difficulty in finding parallel microoperations to be scheduled into the 

extra ALU field. 

To support a large number of microoperations in each microin- 

struction, enough register access ports must be available for the 

microoperations to fetch their input operands and to store their execu- 

tion results. A large number of register access ports will either require 

more chip area and access time (due to increased word-lines/bit-lines 

or multiple copies) or increase the number of clock phases (due to 

sequencing the accesses). Therefore, the increased number of 

microoperations in each microinstruction must be justified by a 

significant decrease in the schedule’s length. 

Using the present code generator, it is difficult to justify an 

increase from two to three microoperations in each microinstruction. 

Even with better code generators, we need to increase the number of 

memory access ports and floating point arithmetic units to make good 

use of the increased microoperation issue bandwidth. 

benchmark single unlimited 

lloop 1 0.65 1.00 

lloop 2 0.78 1.00 

lloop 3 0.97 1.00 

lloop 4 0.96 1.00 

lloop 5 1.00 1.00 

lloop 6 1.00 1.00 

lloop 7 0.61 1.00 

lloop 8 0.59 1.01 

lloop 9 0.54 1.03 

lloop 10 0.71 1.00 

lloop 11 0.86 1.00 

lloop 12 0.60 1.00 

lloop 13 0.67 1.07 

lloop 14 0.97 1.00 

linpack 1 1.00 1.00 

linpack 2 0.55 1.00 

linpack 3 0.57 1.00 

linpack 4 0.61 1.00 

linpack 5 0.58 1.00 

linpack 6 LOU 1.00 

linpack 7 0.61 1.07 

linpack 8 0.87 1.00 

linpack 9 0.65 1.00 

linpack 10 0.61 1.00 

average 0.75 1.01 

Table 6. The relative performance for 

result distribution bandwidth. 

3.4. The Result Distribution Bandwidth 

The single column in Table 6 shows the relative performance 

of a microarchitecture obtained by reducing the result distribution 

bandwidth of the central to one result per cycle. This is similar to the 

Common Data Bus in the floating point unit of the IBM 360/91 [17]. 

By adding one bus to both the CPU and the FPU chips, we improve the 

benchmark performance by 33% (from 75% to 100%). 

The unlimited column in Table 6 shows the relative perfor- 

mance of a microarchitecture obtained by giving the central unlimited 

result distribution bandwidth. The benchmark performance showed 

almost no improvement. Note, however, that if we added more 

memory ports, floating point arithmetic units, and higher microopera- 
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tion issue bandwidth, the increased result distribution bandwidth microarchitecture over the basic microarchitecture is due to the 

would increase performance more significantly. For the execution increased microoperation issue rate. A possible way to interpret the 

resources in the cenfral microarchitecture. providing two result distri- result is that pipelining contributes to 30% of the benchmark perfor- 

bution buses each chip seems to be a balanced design mance in the cenfruf microarchitecture. 

benchmark (3.3) neither n-cache n-float 

lloop 1 1.11 0.35 

lloop 2 1.16 0.58 

lloop 3 1.68 0.69 
lloop 4 1.37 0.93 

hoop 5 1.53 0.99 

hoop 6 1.51 0.99 

lloop 7 1.12 0.45 

lloop 8 1.04 0.38 

lloop 9 1.03 0.39 

lloop 10 1.02 0.95 

lloop 11 1.16 0.97 

hoop 12 1.00 0.72 

hoop 13 1.15 0.89 

hoop 14 1.24 0.89 

linpack 1 1.13 1.00 

linpack 2 1.04 0.41 

linpack 3 1.00 0.58 

linpack 4 1.00 0.79 

linpack 5 1.11 0.52 

linpack 6 1.26 1.00 

linpack 7 1.07 0.33 

linpack 8 1.12 0.61 

linpack 9 1.11 0.59 

linpack 10 1.00 0.82 

0.91 0.35 

0.87 0.59 

0.96 0.71 
1 .oo 0.93 

1 .oo 0.99 

1 .oo 0.99 

0.86 0.46 

0.82 0.38 

0.95 0.41 

0.95 1.00 

0.97 1.00 

0.89 0.74 

0.92 0.90 

0.96 0.92 

1 .oo 1.00 

0.89 0.42 

0.87 0.57 

0.79 1.00 

0.81 0.52 

1 .oo 1.00 

0.87 0.33 

0.74 0.79 

0.99 0.59 

1 .oo 0.82 

average 1.17 0.70 0.92 0.73 

Table 7. The relative performance for various 

function unit pipeline structures. 

3.5. The Function Unit Pipeline Structure 

The (3.3) column in Table 7 shows the relative benchmark per- 

formance of a microarchitecture in which the floating point addition 

and the floating point multiplication both take 3 cycles. Otherwise, the 

(3,3) microarchitecture is the same as the cenfral. The benchmarks 

which benefit the most from the reduced pipeline latency are the more 

sequential ones. Because the parallel benchmarks have enough 

independent microoperations to hide the pipeline latency, they are 
much less sensitive to the change of that latency. 

A floating point adder wilh a pipeline latency of 4 cycles and a 
multiplier with a pipeline latency of 6 cycles require reasonable area on 

the FPU chip. With a potential 17% performance improvement, we are 

investigating the feasibility of implementing floating Point adders and 

multipliers with a latency of 3 cycles. In addition. wilh identical 

latency, the adder and the multiplier can share the same result bus 

without conflict resolution logic. This simplifies the design of one of 

the result bus on the PPU chip. The design of the other FPU result 
bus, dedicated to the memory access port, is simple to begin with. 

The neither column in Table 7 shows the relative performance 

of a microarchitecture derived from the central microarchitecture by 
removing pipelining from both the floating-point arithmetic unit and 

the cache access pott. All the speedup achieved by the neither 

The n-cnche column in Table 7 shows the relative Performance 

of a microarchitecture derived from the cenfrnl by removing pipelining 

from the cache access port. The n-floaf column in Table 7 shows the 

relative performance of a microarchitecture derived from the central by 

removing pipelining from the floating-point arithmetic unit. Note that 

for the benchmarks presented here, pipelining the floating point arith- 

metic unit is significantly more important than pipelining the data 

cache access. 

3.6. The Number of Data Cache Access Ports 

We have investigated the impact of adding one more data 

cache port to the cenlral microarchitecture. The average benchmark 

performance increased by only 1%. By examining the schedules in 

more detail, we found that data memory bandwidth is not the limiting 

factor of Performance of the cenrrul microarchimcture. A dedicated 

memory port provides a good balance between the execution 

bandwidth and the data memory bandwidth. We will have to increase 

the Program parallelism visible to the compiler and increase the 
microoperation issuing bandwidth before we can observe significant 

benefit due to the additional data cache port. 

benhnark (l,F) f1.T) (2.F) (3,F) (3,T) 

lloop 1 0.35 0.58 0.35 0.35 1.10 

lloop 2 0.59 0.71 0.58 0.59 1.32 

lloop 3 0.69 0.85 0.69 0.69 1.00 

lloop 4 0.79 0.84 0.93 0.93 1.00 

lloop 5 0.96 0.96 0.99 0.99 1.00 

lloop 6 0.96 0.96 0.99 0.99 1.00 

lloop 7 0.40 0.57 0.45 0.46 1.17 

lloop 8 0.35 0.57 0.38 0.38 1.13 

lloop 9 0.27 0.52 0.39 0.42 1.17 

lloop 10 0.61 0.61 0.95 0.95 1.00 

lloop 11 0.76 0.76 0.97 0.97 1.00 

lloop 12 0.51 0.51 0.72 0.75 1.34 

lloop 13 0.51 0.64 0.89 0.88 1.00 

lloop 14 0.84 0.98 0.89 0.89 1.00 

linpack 1 0.84 0.85 1.00 1.06 1.06 

linpack 2 0.37 0.61 0.4 1 0.42 1.09 

linpack 3 0.50 0.52 0.58 0.59 1.41 

linpack 4 0.50 0.50 0.79 0.80 1.20 

liupack 5 0.48 0.62 0.52 0.52 1.21 

linpack 6 1.00 1.00 1.00 1.05 1.05 
linpack 7 0.3 1 0.54 0.33 0.33 1.28 

linpack 8 0.59 0.73 0.61 0.60 1.01 

limpack 9 0.50 0.56 0.59 0.60 1.19 

linpack 10 0.50 0.50 0.82 0.79 1.15 

average 0.59 0.69 0.70 0.71 1.12 

Table 8. The relative Performance of combinations of 

pipelining and microoperation issue bandwidth. 



3.7. Pipelining and Microoperation Issue Bandwidth 

Many interesting experiments can be conducted to identify the 

balanced design points for different performance goals. There are, 

however, exponentially many experiments to cover all possible design 

points. Due to limited space, we show only one of these experiments 

which illustrate the joint effect of varying more than one design param- 

eters at the same time. This experiment illustrates how the execution 

unit pipelining and microoperation issuing bandwidth should be bal- 

anced to increase the benchmark performance. 

Each column in Table 8 is marked by a number (1,2, or 3) and 

a flag (T or F). The number specifies the number of microoperations 

issued per cycle. The Rag specifies whether the arithmetic units are 

pipelined. The other design features are the same as the central. We 

can identify the following correspondence: 

(1) Microarchitecture (1J;) is the basic; 

(2) Microarchitecture (I,T,l is the one; 

(3) Microarchitecture (2,T) is the ceniralf; 

(4) Microarchitecture (3.7’) is the three. 

The (2.Fj and (3,Fj microarchitectures have not been introduced in the 

previous sections. 

The numbers shown in Table 8 strongly suggest that execution 

unit pipelining and microoperation issue bandwidth must be improved 

together to effectively improve benchmark performance. Improving 

the the microoperation issue bandwidth from one to three microopera- 

tions per cycle alone enhanced the benchmark performance by only 

20%. Pipelining the execution units alone enhances the benchmark 

performance by only 17%. When we improve both, from basic (1,Fj 

to central (2.T). we improve the benchmark performance by 70%. 

at the Stanford University has been integrating a versatile optimizing 

compiler with instruction set level simulation tools to evaluate design 

decisions at the instruction set level. 

The performance numbers reported from the Bulldog compiler 

project [12] suggest that unrolling the loop eight to sixteen times 

(rather than two times in our case) followed by applying the trace 
scheduling technique can potentially extract a much higher degree of 

parallelism than reported in this paper. We are conducting experiments 

to evaluate the Bulldog approach considering the effects of code explo- 

sion (reduced instruction buffer/cache performance), register usage 

explosion (register spilling and/or data movement between register 

banks), and cycle time penalty (multiboard implementation due to 

technology constrains). 

We are collecting, compiling, and analyzing a large number of 

benchmarks such as the UND(t system code, CAD tools, the UNIX 

mathematical libraries, the statistical packages, and the signal process- 

,ing packages. Numerous experiments must be performed before strong 

statements can be made regarding the code generator’s ability to 

exploit parallel microarchitectures. We are also conducting more 

experiments on the joint effect of more design parameters. 

* With the advancing fabrication technology, microarchitectures 

supporting a high degree of parallelism have become a cost effective 

way to achieve high performance. More experiments will have to be 

performed before we can address all the issues regarding the integra- 

tion of the compiler with the microarchitecture to achieve well bal- 
anced high performance designs. The results we have reported in this 

paper show that such an integration can be effectively done and can 

eventually contribute to the automatic generation of application 

specific high speed processors. 

4. Concluding Remarks 

By generating optimized microcode for a class of parallel 

microarchitectures, we have been able to evaluate the effect of each 

additional degree of parallelism in the microarchitecture. The class of 

microarchitectures are so simple and regular that we can concentrate on 

the parallelism aspect. Experiments have been performed on the 

impact of microinstruction issue bandwidth, the execution unit pipeline 

structure. the data cache access bandwidth, and the execution result 

distribution bandwidth. The joint effect of the microinstruction issue 

bandwidth and the execution unit pipeline structure has been used to 

illustrate how these design parameters should be balanced to achieve 

high performance. 

We are designing and implementing a parallel microarchitec- 

ture consisting of a CPU chip. a FPU chip, a chip containing the data 

store of the cache, and a bus interface chip. It is closely modeled by 

the central microarchitecture, although the floating point arithmetic 

pipeline latency is still an issue. At this early design stage, the versa- 

tile compiler has been a very effective tool for evaluating design deci- 

sions. 

Ultimately, we would like to automatically generate a well bal- 

anced microarchitecture given a set of workloads written in C and a set 

of technological constraints. Variations of this approach has received 

increasing attention. For example, the Architect’s Workbench project 
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