
Exploiting Parallel Microprocessor Microarchitectures with a
Compiler Code Generator

Wen-mei W. Hwu
Pohua P. Chang

Coordinated Science Laboratory
1101 W. Springfield Ave.

University of Illinois
Urbana, IL 61801

ABSTRACT

With advances in VLSI technology, microprocessor designers

can provide more microarchitectural parallelism to increase perfor-

mance. We have identified four major forms of such parallelism: mul-

tiple microoperations issued per cycle, multiple result distribution

buses, multiple execution units, and pipelined execution units. The

experiments reported in this paper address two important issues: the

effects of these forms and the appropriate balance among them. A cen-

frul microarchitecture is identified as the comparison basis. We

separately vary each form of the microarchitectural parallelism in the

central to measure their individual effects on performance. Tn addi-

tion, we vary two forms of the microarchitectural parallelism in the
cenfrul to derive an appropriate balance between them. To make fair

comparisons, our compiler generates different code sequences optim-

ized for different microarchitectural configurations. For each given set

of technology constraints, these experiments can be used to derive a

cost-effective microarchitecture to execute each given set of workload

programs at high speed.

1. Introduction

The demand for high speed microprocessors continues to

increase. Applications include high performance workstations, appli-
cation specific processors, and implementations of mini and mainframe

computers. The design constraints of these microprocessors are. how-

ever, different enough from those of the conventional technologies to

force the researchers to pursue new design approaches to achieve high

performance. One of the most promising approaches to designing high

speed microprocessors is to use a sophisticated compiler to exploit the

parallelism both in the programs and in the microarchitecture. The

compiler and the parallel microarchitecture work closely together to

achieve high performance without incurring excessive hardware cost.

On the microarchitecture side, concurrency can be provided in

the form of parallel data paths and pipelining. These two forms

together support fetching, issuing, executing, and distributing results

for multiple microoperations per cycle. The experiments reported in

Thin rrmuch has been p&y ruppmted by the Nabml Awmnutio d Space
Adminishaticm (NASA) unckr Cmtmct NASA NAG 1-613 in cooperation with the
lbmia Computer labcratory for Acmspnoc Syenn and Sofw.,r. (ICLASS). I
NASA-sup&cd Center for Exc.zlkra.

CH2545-2/88/0000/0045$01.00 0 1988 IEEE

this paper are based on a class of microarchitectures with pipelining

and parallel data paths. All these microarchitectures rely on the com-

piler to directly generate microprograms; there is no intermediate level

of instruction set architecture.

On the compiler side, source level transformations are first per-

formed to increase the program parallelism visible to the code genera-

tor. Register allocation cooperates with the code scheduling to

enhance the effectiveness of the latter [I]. By working closely with

code scheduling, register allocation can use just enough registers to

support the desired parallel execution.

In this paper, we report several experiments on using a versa-

tile optimizing compiler to evaluate the benefit of four forms of

microarchitectural parallelism: multiple microoperations issued per

cycle, multiple result distribution buses, multiple execution units, and

pipelined execution units. We use the first 14 of the Livermore loops

f2] and 10 of the linpack subroutines [3] as our preliminary bench-

masks. The compiler generates optimized code for different microar-

chitecture configurations. We show how the compiler can help to

derive a balanced design for high performance. Ultimately, we would

like to automatically generate a well balanced microarchitecture given

a set of workloads written in C and a set of technology constraints.

This paper is organized into four sections. Section 2 gives

some background regarding our research. Section 3 reports and

analyzes our experimental results. Section 4 offers some concluding

remarks.

2. Background

In this section, we provide some background information

regarding the optimization code generation techniques, the parallel

microarchitectures, the benchmarks, and some previous works.

2.1. The Optimization and Code Generation Techniques

Several source level transformation techniques, including loop

unrolling, Ioop folding, and code migration are applied to the bench-

marks before code generation. Loop unrolling generates a loop header,

for an inner loop, to ensure that the number of remaining iterations is a

multiple of N (N>l), and then generates a N-unrolled version of the

loop. The resultant loop body forms a large basic block. Code migra-
tion moves the bottom portions of long data dependency links to the

45

destination basic blocks provided that the migrated portions do not

affect the branch direction. Loop folding is a special case of code

migration for inner loops. Code duplication and variable renaming are

used to suppott code migration [1.41.

The code generator receives an intermediate form which con-

sists of directed control graphs: the nodes are basic blocks and the arcs
represent control transfers. Each basic block contains a list of three

address codes which operate on the variables and structures defined in

the source high level language (C in this case). The three address

codes are translated into the microoperations which operate on the gen-

eral purpose registers and memory locations. The microoperations are

scheduled into program slots according to the data dependencies and

the resource conflicts. The code generator works on one procedure at a

time*. The functionality of the code generator is performed in seven

steps: sorting basic blocks, selecting register variables, mapping vari-

ables into virtual registers, analyzing register lifetime, preliminary

code reordering, mapping virtual registers into physical registers, and

code scheduling [1,4,5,6]. We briefly describe these seven steps as fol-

lows.

Step 1:

Step 2:

Step 3:

Step 4:

Sorting basic blocks. We sort the basic blocks according to

their estimated execution frequencies. At present, our code

generator examines the loop structure to estimate the execu-

tion frequency of each basic block. We are implementing an

interface to a profile program so that the programmer can

optionally use the profiling results to increase the accuracy of

the estimation.

Selecting register variables. We select the register variables

according to their estimated dynamic access frequencies. At

present, the register variables will stay in the register through

the lifetime of the procedure. The dynamic access frequen-

cies of variables am estimated by examining their access fre-

quencies in each basic block and the estimated execution fre-

quency of each basic block.

Mapping variables into virtual registers. We map the vari-
ables into the infinitely many virtual registers. If a static

variable or a parameter is selected as a register variable, we

add Ioud and store microoperations to the procedure entrance

and/or exit to transfer the variable between the corresponding

memory location and the corresponding virtual register. If a

variable is not selected as a register variable, we add load

and srore microoperations within basic blocks to transfer

variables between the corresponding memory location and

the corresponding virtual register.

For each basic block, we determine the in, OUI, use, and

define sets of virtual registers [l]. The in set consists of the

virtual registers whose contents are valid when control is

transferred into the basic block. Ttte auf set consists of the

virtual registers whose contents are valid when control is

transferred out of the basic block. The me set consists of the

virtual registers used before they are defined the basic block.
The define set consists of the vritual registers serving as des-

tination operands in the basic block. These sets together give

us the register lifetime and flow information among basic

blocks.

Steps 5 through 7 am performed to one basic block at a time, from the

basic block with the highest expected execution frequency to the one

with the lowest. With this ordering, we can force the delay and spil-

Iing into less important basic blocks without facing the convergence

problem. Code migration is only done from more important basic

blocks to less important ones.

Step 5:

Step 6:

Step 7:

Preliminary code reordering. Within each basic block, we

reorder the three address codes according to the data depen-

dencies. Mapping virtual registers to physical registers can

introduce extra dependencies by recycling physical registers

and inserting spill codes (see below). Without preliminary

code reordering, the extra dependencies may prevent the

proper code movement in the final scheduling. We charac-

terize the effectiveness of this step in section 3.1.

We map the infinite virtual registers into the finite physical

registers using the global and local register lifetime informa-

tion. Physical registers are recycled, introducing extra regis-

ter dependencies. Spill codes may be inserted, introducing

extra memory and register dependencies.

We schedule the microoperations into the microinstructions

of the target machine according to 1) the resource constraints

and 2) the data dependencies, both from inside the basic

block and from the more important basic blocks.

ly”T FALU

CPU --
register

file -

J A I 1
r I

Figure 1. The cenfral microarchitecture

2.2. The Parallel Microarchitectures

The microarchitectures we are designing provide parallelism

through pipelining and parallel data paths [7, 8. 91. Them is no

hardware interlocking or hardware data dependency resolution

mechanism. The code scheduling phase of the code generator must

handle alI the data dependencies and resource conflicts. An example of

this class of microarchitectures is the MIPS microprocessor [lo]. We

would like to determine a cost effective approach to improve perfor-

mance by adding more parallelism into the microarchitecture.

46

The microarchitecture design parameters we have examined am

(1) the number of microoperations issued per cycle, (2) the number of

result distribution buses, (3) the execution unit pipeline structure, and

(4) the number of execution units. Arbitrarily varying the design

parameters creates too many design points in this 4-dimensional design

space. Therefore, we first identify a cent& microarchitecture which

can be efficiently implemented with the state-of-the-art fabrication

technology; then we explore the neighborhood of the central by

slightly varying the design parameters.

The central microarchitecture (see Figure 1) has (1) two

microoperations issued per cycle, (2) two result distribution buses on

both the CPU and the FPU, (3) one cache access port, one Roating-
point adder, and one floating-point multiplier with pipeline latencies 2,

4, and 6 cycles, respectively. The microarchitecture is equipped with

32 floating point registers, and 32 general purpose registers.

loop 1

loop 2

loop 3

loop 4

loop 5

loop 6

loop I

loop 8

loop 9

loop 10

loop 11

loop 12

loop 13

loop 14

linpack 1

linpack 2

linpack 3
linpack 4

linpack 5

linpack 6

linpack 7

linpack 8

linpack 9

hydro excerpt

inner product

inner product (no unrolling)

banded linear equations

t&diagonal elimination, lower

tri-diagonal elimination, upper

equation of state excerpt

p.d.e. integration

integrate predictors

difference predictors

first sum

first difference

2-d particle pusher

l-d particle pusher

index of the max. element

sum of the absolute values

scale and add

COPY
inner product

Euclidean norm

apply plane rotation

construct plane rotation

scale

linpack 10 interchange

Table 1. The prelimiiaty benchmark set.

2.3. The Benchmarks

We have the first 14 of the Livermore Loops and 10 of the lin-

pack subroutines in our initial benchmark set. These benchmarks exhi-

bit a wide range of data dependency patterns and resource usages. For

example, loops 5 and 6 are sequential; whereas loops 2 and 7 are paral-

lel. As another example, loop 4 has a low ratio of floating-point arith-

metic operations to memory accesses; whereas loop 7 has a high ratio

of floating-point arithmetic operations to memory accesses.

The benchmark performance of the cenrru1 microarchitecture

serves as the comparison basis for the other benchmark results

presented in this paper. We use the executable codes generated for the

central to estimate the performance. Table 2 shows the benchmark
performance of the cenfruI microarchitecture with a 40ns cycle time.

Even though the peak performance of the machine is

benchmark central -I
lloop 1

lloop 2

lloop 3

lloop 4

lloop 5

uoop 6
lloop 7

hoop 8

lloop 9

lloop 10

lloop 11

lloop 12

lloop 13

kloop 14

linpack 1

linpack 2

linpack 3

linpack 4

linpck 5

linpack 6

linpack 7

linpack 8

linpack 9

linpack 10

19.98144.05

8.93J32.14

7.14128.57

5.OOf22.50

4.41f20.59

4.4li20.72

12.04143.52

13.6414508

12.14/47.14

5.23146.51

3.57LZ8.57

7.90148.69

4.44136.69

5.60117.91

2.94nO.59

16.00/41.00

8.70148.91

NA/50.00

10.00/40.00

3.95!13.10

13.64J46.59

4.88LI6.57

6.45145.16

NAJ50.00

average 8.23136.03

Table 2. The estimated performance of the

cenfral microarchitecture.

25MFLOPS/50MIPS. the average benchmark performance is about

8.23MFLOPX36.03MIPSt. Note that linpack routines 4 and 10 do

not contain any floating point operations and they are excluded from
the MFLOPS measure.

As for the MFLOPS measure, the difference between the peak

and the average performance is due to two major factors. First, the

extra processing (address calculation, memory access, loop control,

etc.) which prevents the machine from executing one floating point

arithmetic microoperation per cycle. For example, address calculations

in Livermore loop 10 dominate the computation. Although the

MFLOP count is low, the cenfrul microarchitecture executes Liver-

more loop 10 at almost peak performance. Second, the data dependen-

cies prevent the compiler from issuing one floating point arithmetic
microoperation per cycle. For example, Livcnnore loops 5 and 6 are

sequential due to the data flow dependencies between array elements.

In this case, the compiler simply can not make good use of the parallel-

ism in the microarchitecture. As for the MIPS measure, the difference

between the peak and the average performance is mainly due to data

dependencies.

47

2.4. Previous Works metic units.

The VLIW (very long instruction word) projects have con-

ducted experiments using a compiler to exploit a highly parallel

microarchitecture [ll, 12. 131 crossing many chip and/or board boun-

daries. We focus on microarchitectures with one CPU chip and one

FPU chip. There are three important implications from this difference:
(1) we can reduce chip-crossing delays to achieve very short cycle time

and small communication overhead between function units; (2) the

cost of our microarchitecture is much lower than that of the VLIW

microarchitectures; and (3) we do not have to unroll the loops many

times before we can make good use of the microarchitectural parallel-

ism. Due to practical technology constraints, the benefit of parallelism

can be nullified by long clock cycle time, data transfer overhead, code

explosion, and register spilling. Instead of putting the emphasis just on

parallelism, we pay equal attention to the technology constraints.

For each microarchitecture shown in the subsequent sections,

the compiler generates optimized code sequences for that microarchi-

tecture. The compiler takes a microarchitecture specification as input

and generates code particularly scheduled for the specified microarchi-

tecture. Therefore, the compiler generates optimized codes for a class

of microarchitectures rather than just for one, as in the Bulldog Com-

piler [12]. Therefore, we can have a fair comparison among microar-

chitectures which differ in the degree of supported parallelism.

Most of the microcode compaction works have suffered from

the peculiarities of their target machines, e.g. microoperation selection

and variable pipelines [14]. Our work is based on simple and regular

microarchitectures so that we can focus on more important aspects

such as register assignment and code scheduling, global analysis, and

optimization. A clean implementation is possible due to the regular

stmcture of the underlying microarchitecture.

The MIPS project at the Stanford University uses a compiler to

exploit a pipelined microprocessor without hardware interlocks [5, lo].

‘Ihe MIPS code reordering and register assignments are done in

separate passes. In our research, code scheduling and register alloca-

tion are performed together so that just enough registers are used to

exploit all the useful program parallelism. According to the results in

Section 3.1, this is crucial for exploiting parallel microoperation issu-

ing and execution unit pipelining.

The Architect’s Workbench project at the Stanford University

evaluates architectural design decisions for different applications [151.

The project, however, has not yet established microarchitecture models
such as pipelining and parallel data paths to evaluate the performance

directly. All the measurements available from the project are indirect

parameters such as memory traffic ratio and cache hit/miss ratios.

Instead of trying to evaluate the merit of various architectures, we use

only one type of architecture so that we can focus on microarchitecture

design decisions. Within this domain, we have established microarchi-

tecture models to evaluate microarchitecture design decisions.

3. Experiments and Analysis

We have conducted experiments on our compiler’s effective-
ness at utilizing additional features in the microarchitecture. In partic-

ular, we estimate the changes to the benchmark performance when we

modify the cenfral microarchitecture. The main features we change

are the microoperation issue bandwidth, the result distribution

bandwidth, the pipeline structure of the execution units, and the

number of data cache ports.

Due to the large number of possible combinations, we can not

report experiments on all possible changes to the cenfral microarchi-

tecture. Most of the results reported here are derived by changing one

of the features while keeping the others fixed. To illustrate the impor-
tance of balancing these features, we also report the joint effect of

changing both the number of microoperations issued at each cycle and

the pipeline structure of the memory access and floating point arith-

benchmark no prelim.

lloop 1 0.59

lloop 2 0.83

lloop 3 0.99

lloop 4 0.76

lloop 5 0.95

lloop 6 0.90

lloop 7 0.55

lloop 8 0.45

lloop 9 0.40

lloop 10 0.72

lloop 11 0.88

lloop 12 0.67

lloop 13 0.68

lloop 14 0.85

linpack 1 1.00

linpack 2 0.51

linpack 3 0.67

&pack 4 0.56

linpack 5 0.57

linpack 6 1 .oo

linpack 7 0.46

linpack 8 0.97

linpack 9 0.69

linpack 10 0.61

average 0.72

1

Table 3. Relative benchmark performance
without code reordering.

3.1. Preliminary Code Reordering

Before we report the effects of modifying the microarchitecture

features, we would like to demonstrate the importance of performing

preliminary code reordering. We have studied the effect of preliminary

code reordering on the benchmark performance of the central microar-

chitecture. Table 3 shows the relative benchmark performance without

preliminary code scheduling as compared to that with preliminary code

reordering. Without preliminary code reordering, the benchmarks exe-

cute at 72% of the achieved speed. That is, by introducing preliminary

code reordering, the central microarchitecture can potentially execute

the benchmarks 39% faster.

Two major factors contribute to the performance difference.

First, register recycling (visible for all the benchmarks) and spilling

(visible for Livermore loops 8 and 13) introduce extra register and/or

memory dependencies when we map the virtual registers to the physi-

cal registers. The extra dependencies can prevent the final code

scheduler from effectively moving code around. Preliminary code

48

reordering reduces the desired distance of code movement during final

code scheduling and therefore, reduces the impact of the extra depen-

dencies. Second, preliminary code reordering reduces the lifetime of

temporaries. After preliminary code reordering, the temporary values

are produced as late as possible and consumed as early as possible.

The probability of register spilling is reduced.

If a benchmark uses only a small number of variables and tem-

poraries, one could employ a less aggressive register recycling policy

so that fewer extra dependencies will be introduced. We decided not to

implement this optimization for two reasons. First, without multiple

register sets* [16]. using fewer registers implies saving and restoring

fewer registers before and after invoking the code. This can be a

significant performance factor for large programs when global (and

interprocedural) register allocation is implemented.

Second, most of the benchmarks do use many variables and

temporaries after we unroll and fold the loops. For example, Liver-

more loop one uses 48 floating point variables and temporaries after

we unroll and fold the inner loop, although the original version uses

only 11. From the wide variety of the small benchmarks we have

examined, parallclizcd programs require significantly more tem-

poraries than the sequential version@. Since we expect the problem

to be even worse for large programs, we decided to implement a tight

register allocation policy to avoid unnecessary register spilling.

Therefore, register recycling and spilling can introduce extra

register and/or memory dependencies even for benchmarks which are
small in their sequential form. Without preliminary code reordering,

these extra dependencies decrease the chance of moving critical

microoperations to their desired positions. Preliminaly code reorder-

ing reorders the code according to the original data dependencies

before introducing the extra dependencies. The critical microopera-

tions have already moved close to the desired positions and they tend
to stay in their neighborhood during final scheduling. Therefore, it is

unlikely that the extra dependencies prohibit the desired movement of

these critical microoperations.

With preliminary code reordering, the compiler can exploit

almost all the useful parallelism with a reasonable number of floating

point registers provided by the microarchitecture (32 in our ease).

From the experiments we have conducted so far, preliminary code

reordering has performed effectively to achieve a good compromise

between two conflicting goals: exploiting parallelism and minimizing

register spilling.

3.2. Two Extreme Design Points.

The basic column in Table 4 shows the relative benchmark per-
formance (normalized to that of the cenfral) of the basic microarchitec-

ture which differs from the cenlrul in two ways: (1) only one

microoperation can be issues at each cycle, and (2) the floating point

arithmetic units are not pipelined. The benchmark performance of the

basic microarchitecture is about 59% of that of the cenfral. A useful

interpretation is that the benchmark performance increases by 70%

from the basic microarchitecture to the cenfral. Note that if we did not

use preliminary code reordering (see Table 3), we would have gained

‘We have decided not to implcnrnt multiple register scta bccausc of their pmr
utilization of precious register nxounx.. Implcmcnting multipk register sss to suppon

ncstcd procedure calls of rcasonablc depth wully implks that cash proadurc scss

only L small frnction of the mgisters implcmcmcd in the undcdying hardwan.
dlhz prablcm of creating large numlxx of kmporaricr in pamllelizd pograms has
been mprtcd in Ill].

benchmark basic maximal

Iloop 1 0.35 1.23

Hoop 2 0.59 2.24

lloop 3 0.69 1.01

lloop 4 0.79 1.04

lloop 5 0.96 1.00

lloop 6 0.96 1.00

lloop 7 0.40 1.41

Hoop 8 0.35 1.65

lloop 9 0.27 1.25

lloop 10 0.61 1.02

lloop 11 0.76 1.01

lloop 12 0.51 1.46

lloop 13 0.51 1.13

lloop 14 0.84 1.00

&pack 1 0.84 1.07

linpack 2 0.37 1.25

linpack 3 0.50 1.86

linpack 4 0.50 1.20

linpack 5 0.48 1.94

linpack 6 1.00 1.05

linpack 7 0.31 1.97

linpack 8 0.59 1.10

linpack 9 0.50 1.54

linpack 10 0.50 1.35

average 0.59 1.32

J

Table 4. The relative performance

of two extreme designs.

only a small ponion of the spcedup.

The maximal column in Table 4 shows the relative perfor-

mance of a microarchitecture without resource limitations. Such a

microarchitecture performs strictly inversely propottional to the depth

of the data dependency graph. The maximal microarchitecture per-

forms about 32% better than the central t.

3.3. The Microoperation Issue Bandwidth

All the microarchitectures in this study have one pipelined data

cache access port and one pipelined floating-point arithmetic unit. The

only variation is in the number of integer ALU microoperations which

can be issued per cycle. We do not vary the number of floating point

arithmetic units and the number of memory ports; we explore only one

dimension of the design space.

The one column in Table 5 shows the relative performance of a

microarchitecture in which one microopcration is issued per cycle and

there is only one integer ALU. The one microarchitecture can be

derived from the basic microarchitecture by linearly pipelining the

cache access and the floating point arithmetic units. Notice that using

the basic microarchitecture as the comparison basis, pipclining

increases the performance by 17%.

The advantage of pipclining in the one microarchitecture is

somewhat disappointing. Only one microoperation can enter the

machine every cycle. This narrow path forces all the execution units’to

49

benchmark one three

lloop 1 0.57 1.05

UOCQ 2 0.71 1.32

lloop 3 0.85 1 .oo

uoql 4 0.84 1.00

uoop 5 0.96 1 .oo

lloop 6 0.96 1.00

lloop7 0.57 1.17

lloop 8 0.57 1.14

lloop 9 0.52 1.17

lloop 10 0.61 1.00

uoop 11 0.76 1.00

lloop 12 0.51 1.34

lloop 13 0.64 1 .oo

uoop 14 0.98 1 .oo

linpack 1 0.84 1.06

linpack 2 0.61 1.09

linpack 3 0.52 1.41

linpack 4 0.50 1.20

linpack 5 0.62 1.20
linpack 6 1.00 1.05

Unpack 7 0.54 1.28

linpack 8 0.73 1.01

linpack 9 0.56 1.19

linpack 10 0.50 1.15

average 0.69 1.12 1
4

Table 5. The relative performance for various

microoperation issue bandwidth

be idle most of the time. The microinstruction format becomes the

major bottleneck limiting the concurrency exploited by the microarchi-

tecture.

When we allow two microoperations to be issued in each

microinstruction as well as pipeline the execution units (the central

microarchitecture), the performance increased by 70% (from 59% to

100%). For the benchmarks shown in this paper, pipelining tlte execu-
tion units without increasing the microoperation issuing bandwidth is

not a cost-effective approach to improve performance.

The three c&mm in Table 5 shows the relative performance of

a microarchitecture allowing three microoperations in each microin-

struction. The three microarchitecture can be derived from the central

by adding one integer ALU field to each microinstruction. We keep

the number of floating point arithmetic or memory access microopera-

tions unchanged so that we only make changes in one of the four

dimensions at a time. For example, the machine can issue one floating

point arithmetic, one memory access, and one integer ALU

microoperation every cycle.

The benchmark performance of the three microarchitecture is

about 12% higher than the cenfrul microarchitecture. By examining
the schedule for individual benchmarks, we have found two major fac-

tors which limit the performance improvement. First, memory access

and floating point arithmetic units become the bottleneck. Second, the

optimization techniques implemented in the code generator have

difficulty in finding parallel microoperations to be scheduled into the

extra ALU field.

To support a large number of microoperations in each microin-

struction, enough register access ports must be available for the

microoperations to fetch their input operands and to store their execu-

tion results. A large number of register access ports will either require

more chip area and access time (due to increased word-lines/bit-lines

or multiple copies) or increase the number of clock phases (due to

sequencing the accesses). Therefore, the increased number of

microoperations in each microinstruction must be justified by a

significant decrease in the schedule’s length.

Using the present code generator, it is difficult to justify an

increase from two to three microoperations in each microinstruction.

Even with better code generators, we need to increase the number of

memory access ports and floating point arithmetic units to make good

use of the increased microoperation issue bandwidth.

benchmark single unlimited

lloop 1 0.65 1.00

lloop 2 0.78 1.00

lloop 3 0.97 1.00

lloop 4 0.96 1.00

lloop 5 1.00 1.00

lloop 6 1.00 1.00

lloop 7 0.61 1.00

lloop 8 0.59 1.01

lloop 9 0.54 1.03

lloop 10 0.71 1.00

lloop 11 0.86 1.00

lloop 12 0.60 1.00

lloop 13 0.67 1.07

lloop 14 0.97 1.00

linpack 1 1.00 1.00

linpack 2 0.55 1.00

linpack 3 0.57 1.00

linpack 4 0.61 1.00

linpack 5 0.58 1.00

linpack 6 LOU 1.00

linpack 7 0.61 1.07

linpack 8 0.87 1.00

linpack 9 0.65 1.00

linpack 10 0.61 1.00

average 0.75 1.01

Table 6. The relative performance for

result distribution bandwidth.

3.4. The Result Distribution Bandwidth

The single column in Table 6 shows the relative performance

of a microarchitecture obtained by reducing the result distribution

bandwidth of the central to one result per cycle. This is similar to the

Common Data Bus in the floating point unit of the IBM 360/91 [17].

By adding one bus to both the CPU and the FPU chips, we improve the

benchmark performance by 33% (from 75% to 100%).

The unlimited column in Table 6 shows the relative perfor-

mance of a microarchitecture obtained by giving the central unlimited

result distribution bandwidth. The benchmark performance showed

almost no improvement. Note, however, that if we added more

memory ports, floating point arithmetic units, and higher microopera-

50

tion issue bandwidth, the increased result distribution bandwidth microarchitecture over the basic microarchitecture is due to the

would increase performance more significantly. For the execution increased microoperation issue rate. A possible way to interpret the

resources in the cenfral microarchitecture. providing two result distri- result is that pipelining contributes to 30% of the benchmark perfor-

bution buses each chip seems to be a balanced design mance in the cenfruf microarchitecture.

benchmark (3.3) neither n-cache n-float

lloop 1 1.11 0.35

lloop 2 1.16 0.58

lloop 3 1.68 0.69
lloop 4 1.37 0.93

hoop 5 1.53 0.99

hoop 6 1.51 0.99

lloop 7 1.12 0.45

lloop 8 1.04 0.38

lloop 9 1.03 0.39

lloop 10 1.02 0.95

lloop 11 1.16 0.97

hoop 12 1.00 0.72

hoop 13 1.15 0.89

hoop 14 1.24 0.89

linpack 1 1.13 1.00

linpack 2 1.04 0.41

linpack 3 1.00 0.58

linpack 4 1.00 0.79

linpack 5 1.11 0.52

linpack 6 1.26 1.00

linpack 7 1.07 0.33

linpack 8 1.12 0.61

linpack 9 1.11 0.59

linpack 10 1.00 0.82

0.91 0.35

0.87 0.59

0.96 0.71
1 .oo 0.93

1 .oo 0.99

1 .oo 0.99

0.86 0.46

0.82 0.38

0.95 0.41

0.95 1.00

0.97 1.00

0.89 0.74

0.92 0.90

0.96 0.92

1 .oo 1.00

0.89 0.42

0.87 0.57

0.79 1.00

0.81 0.52

1 .oo 1.00

0.87 0.33

0.74 0.79

0.99 0.59

1 .oo 0.82

average 1.17 0.70 0.92 0.73

Table 7. The relative performance for various

function unit pipeline structures.

3.5. The Function Unit Pipeline Structure

The (3.3) column in Table 7 shows the relative benchmark per-

formance of a microarchitecture in which the floating point addition

and the floating point multiplication both take 3 cycles. Otherwise, the

(3,3) microarchitecture is the same as the cenfral. The benchmarks

which benefit the most from the reduced pipeline latency are the more

sequential ones. Because the parallel benchmarks have enough

independent microoperations to hide the pipeline latency, they are
much less sensitive to the change of that latency.

A floating point adder wilh a pipeline latency of 4 cycles and a
multiplier with a pipeline latency of 6 cycles require reasonable area on

the FPU chip. With a potential 17% performance improvement, we are

investigating the feasibility of implementing floating Point adders and

multipliers with a latency of 3 cycles. In addition. wilh identical

latency, the adder and the multiplier can share the same result bus

without conflict resolution logic. This simplifies the design of one of

the result bus on the PPU chip. The design of the other FPU result
bus, dedicated to the memory access port, is simple to begin with.

The neither column in Table 7 shows the relative performance

of a microarchitecture derived from the central microarchitecture by
removing pipelining from both the floating-point arithmetic unit and

the cache access pott. All the speedup achieved by the neither

The n-cnche column in Table 7 shows the relative Performance

of a microarchitecture derived from the cenfrnl by removing pipelining

from the cache access port. The n-floaf column in Table 7 shows the

relative performance of a microarchitecture derived from the central by

removing pipelining from the floating-point arithmetic unit. Note that

for the benchmarks presented here, pipelining the floating point arith-

metic unit is significantly more important than pipelining the data

cache access.

3.6. The Number of Data Cache Access Ports

We have investigated the impact of adding one more data

cache port to the cenlral microarchitecture. The average benchmark

performance increased by only 1%. By examining the schedules in

more detail, we found that data memory bandwidth is not the limiting

factor of Performance of the cenrrul microarchimcture. A dedicated

memory port provides a good balance between the execution

bandwidth and the data memory bandwidth. We will have to increase

the Program parallelism visible to the compiler and increase the
microoperation issuing bandwidth before we can observe significant

benefit due to the additional data cache port.

benhnark (l,F) f1.T) (2.F) (3,F) (3,T)

lloop 1 0.35 0.58 0.35 0.35 1.10

lloop 2 0.59 0.71 0.58 0.59 1.32

lloop 3 0.69 0.85 0.69 0.69 1.00

lloop 4 0.79 0.84 0.93 0.93 1.00

lloop 5 0.96 0.96 0.99 0.99 1.00

lloop 6 0.96 0.96 0.99 0.99 1.00

lloop 7 0.40 0.57 0.45 0.46 1.17

lloop 8 0.35 0.57 0.38 0.38 1.13

lloop 9 0.27 0.52 0.39 0.42 1.17

lloop 10 0.61 0.61 0.95 0.95 1.00

lloop 11 0.76 0.76 0.97 0.97 1.00

lloop 12 0.51 0.51 0.72 0.75 1.34

lloop 13 0.51 0.64 0.89 0.88 1.00

lloop 14 0.84 0.98 0.89 0.89 1.00

linpack 1 0.84 0.85 1.00 1.06 1.06

linpack 2 0.37 0.61 0.4 1 0.42 1.09

linpack 3 0.50 0.52 0.58 0.59 1.41

linpack 4 0.50 0.50 0.79 0.80 1.20

liupack 5 0.48 0.62 0.52 0.52 1.21

linpack 6 1.00 1.00 1.00 1.05 1.05
linpack 7 0.3 1 0.54 0.33 0.33 1.28

linpack 8 0.59 0.73 0.61 0.60 1.01

limpack 9 0.50 0.56 0.59 0.60 1.19

linpack 10 0.50 0.50 0.82 0.79 1.15

average 0.59 0.69 0.70 0.71 1.12

Table 8. The relative Performance of combinations of

pipelining and microoperation issue bandwidth.

3.7. Pipelining and Microoperation Issue Bandwidth

Many interesting experiments can be conducted to identify the

balanced design points for different performance goals. There are,

however, exponentially many experiments to cover all possible design

points. Due to limited space, we show only one of these experiments

which illustrate the joint effect of varying more than one design param-

eters at the same time. This experiment illustrates how the execution

unit pipelining and microoperation issuing bandwidth should be bal-

anced to increase the benchmark performance.

Each column in Table 8 is marked by a number (1,2, or 3) and

a flag (T or F). The number specifies the number of microoperations

issued per cycle. The Rag specifies whether the arithmetic units are

pipelined. The other design features are the same as the central. We

can identify the following correspondence:

(1) Microarchitecture (1J;) is the basic;

(2) Microarchitecture (I,T,l is the one;

(3) Microarchitecture (2,T) is the ceniralf;

(4) Microarchitecture (3.7’) is the three.

The (2.Fj and (3,Fj microarchitectures have not been introduced in the

previous sections.

The numbers shown in Table 8 strongly suggest that execution

unit pipelining and microoperation issue bandwidth must be improved

together to effectively improve benchmark performance. Improving

the the microoperation issue bandwidth from one to three microopera-

tions per cycle alone enhanced the benchmark performance by only

20%. Pipelining the execution units alone enhances the benchmark

performance by only 17%. When we improve both, from basic (1,Fj

to central (2.T). we improve the benchmark performance by 70%.

at the Stanford University has been integrating a versatile optimizing

compiler with instruction set level simulation tools to evaluate design

decisions at the instruction set level.

The performance numbers reported from the Bulldog compiler

project [12] suggest that unrolling the loop eight to sixteen times

(rather than two times in our case) followed by applying the trace
scheduling technique can potentially extract a much higher degree of

parallelism than reported in this paper. We are conducting experiments

to evaluate the Bulldog approach considering the effects of code explo-

sion (reduced instruction buffer/cache performance), register usage

explosion (register spilling and/or data movement between register

banks), and cycle time penalty (multiboard implementation due to

technology constrains).

We are collecting, compiling, and analyzing a large number of

benchmarks such as the UND(t system code, CAD tools, the UNIX

mathematical libraries, the statistical packages, and the signal process-

,ing packages. Numerous experiments must be performed before strong

statements can be made regarding the code generator’s ability to

exploit parallel microarchitectures. We are also conducting more

experiments on the joint effect of more design parameters.

* With the advancing fabrication technology, microarchitectures

supporting a high degree of parallelism have become a cost effective

way to achieve high performance. More experiments will have to be

performed before we can address all the issues regarding the integra-

tion of the compiler with the microarchitecture to achieve well bal-
anced high performance designs. The results we have reported in this

paper show that such an integration can be effectively done and can

eventually contribute to the automatic generation of application

specific high speed processors.

4. Concluding Remarks

By generating optimized microcode for a class of parallel

microarchitectures, we have been able to evaluate the effect of each

additional degree of parallelism in the microarchitecture. The class of

microarchitectures are so simple and regular that we can concentrate on

the parallelism aspect. Experiments have been performed on the

impact of microinstruction issue bandwidth, the execution unit pipeline

structure. the data cache access bandwidth, and the execution result

distribution bandwidth. The joint effect of the microinstruction issue

bandwidth and the execution unit pipeline structure has been used to

illustrate how these design parameters should be balanced to achieve

high performance.

We are designing and implementing a parallel microarchitec-

ture consisting of a CPU chip. a FPU chip, a chip containing the data

store of the cache, and a bus interface chip. It is closely modeled by

the central microarchitecture, although the floating point arithmetic

pipeline latency is still an issue. At this early design stage, the versa-

tile compiler has been a very effective tool for evaluating design deci-

sions.

Ultimately, we would like to automatically generate a well bal-

anced microarchitecture given a set of workloads written in C and a set

of technological constraints. Variations of this approach has received

increasing attention. For example, the Architect’s Workbench project

Acknowledgements

The authors would like to acknowledge Nancy Warter, Sharon

Simonson, Sadun Anik. and the other members of the Computer Sys-

tem Group for their invaluable comments and suggestions.

References

[l] A.V. Aho, R. Scthi, and J.D. Ullman, Compilers: Principles, Tech-

niques, and Tools, Addison-Wesley Publishing Company,
1986.

[2] F.H. McMahon, LLN.L. FORTRAN KERNELS: MFLOPS.

Lawrence Livermore National Laboratories, 1984.

[3] J.J. Dongarra and et.al. LINPACK Users’ Guide, the Society for

Industrial and Applied Mathematics, Philadelphia, 1979.

[4] D.J. Kuck, er of., “Dependency Graphs and Compiler Gptimiza-

tions”, Proceedings of 8th POPL, Jan. 1981.

[5] J.L. Hennessy and T. Gross, “Postpass Code Optimization of Pipe-

line Constraints,” ACM Tram. on Programming Languages

and Systems, Vol. 5, No. 3, July 1983, pp. 422-448.

[6] W.W. Hwu and P.P. Chang, “Code Generation Techniques for

Exploiting Single Chip Parallel Microarchitectures,” Computer

Systems Group Report, University of Illinois, in preparation.

[7] W.W. Hwu and Y.N. Pan, “HPSm2: a Refuted Single-chip

Microengine,” Proceedings ofrhe 21” Annual Hawaii Intema-

52

tional Conference on System Sciences, 1988.

[S] W.W. Hwu and Y.N. Patt, “Exploiting Horizontal and Vertical

Concurrency via the HPSm Microprocessor,” Proceedings of

the 201h International Microprogramming Workshop,

Colorado, December, 1987.

[9] W.W. Hwu. HPSm: Exploiting Concurrency to Achieve High Per-

formance in a Single-chip Microarchitecture, Ph.D. Disserta-

tion, Computer Science Division, University of California,

Berkeley, December, 1987.

[lo] J.L. Hennessy, et al.. “The MIPS Machine,” COMPCON, IEEE,

Spring 1982.

[ll] A. Nicolau and J.A. Fisher, “Measuring the Parallelism Available

for Very Long Instruction Word Architectures.” IEEE Transac-

tions on Computers, vol. c-33, no232

[12] Ellis, J.R.,Bulldog: A Compilerfor VIXWArchitectures, The MIT

Press, 1986.

[13] J.A. Fisher, “Trace Scheduling: A Technique for Global Micro-

code Compaction,” IEEE Transactions on Computers, vol. c-

30, no. 7. July 1981. pp. 478-490.

[14] M. Tokoro, E. Tamura, and T. Takizuka, “Optimization *of

Microprograms,” IEEE Transactions on Computers, vol. c-30,

no. 7. July 1981. pp. 491-504.

1151 C.L. Mitchell and M. Flynn, “A Workbench for Computer Archi-

tects”, IEEE Design & Test of Computers, February 1988.

1161 R.J. Eickemeyer and J.H. Patel, “Performance Evaluation of Mul-

tiple Register Sets,” The 14’)’ Annual Internationa/ Symposium

on Computer Architecture Conference Proceedings, Pitts-

burgh, Pennsylvania, June 2-5, 1987. .’

[17] Tomasulo, R. M., “An Efficient Algorithm for Exploiting Multiple

Arithmetic Units,” IBM Journal of Research and Development,

vol. 11, January 1967, pp 25-33.

53

