
Data Layout Transformation Exploiting Memory-Level
Parallelism in Structured Grid Many-Core Applications

I-Jui Sung John A. Stratton Wen-Mei W. Hwu
Center for Reliable and High-Performance Computing

University of Illinois at Urbana-Champaign
{sung10, stratton, w-hwu}@illinois.edu

ABSTRACT
We present automatic data layout transformation as an ef-
fective compiler performance optimization for memory-bound
structured grid applications. Structured grid applications
include stencil codes and other code structures using a dense,
regular grid as the primary data structure. Fluid dynamics
and heat distribution, which both solve partial differential
equations on a discretized representation of space, are rep-
resentative of many important structured grid applications.

Using the information available through variable-length
array syntax, standardized in C99 and other modern lan-
guages, we have enabled automatic data layout transforma-
tions for structured grid codes with dynamically allocated
arrays. We also present how a tool can guide these transfor-
mations to statically choose a good layout given a model of
the memory system, using a modern GPU as an example. A
transformed layout that distributes concurrent memory re-
quests among parallel memory system components provides
substantial speedup for structured grid applications by im-
proving their achieved memory-level parallelism. Even with
the overhead of more complex address calculations, we ob-
serve up to 560% performance increases over the language-
defined layout, and a 7% performance gain in the worst case,
in which the language-defined layout and access pattern is
already well-vectorizable by the underlying hardware.

Categories and Subject Descriptors
E.1 [Data Structures]: Arrays; C.1.2 [Processor Archi-
tecture]: Multiple Data Stream Architectures; E.2 [Data
Storage Representations]: Contiguous representations;
D.3.4 [Processors]: Compilers

General Terms
Performance, Measure, Design

Keywords
GPU, Parallel programming, Data layout transformation

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
PACT’10, September 11–15, 2010, Vienna, Austria.
Copyright 2010 ACM 978-1-4503-0178-7/10/09 ...$10.00.

1. INTRODUCTION
Structured grid applications[2] are a class of applications

that calculate grid cell values on a regular (structured in gen-
eral) 2D, 3D or higher dimensional grid. Each output point
is computed as a function of itself and its nearest neighbors,
potentially with patterns more general than a fixed stencil.
Examples of structured grid applications include fluid dy-
namics and heat distribution that iteratively solve partial
differential equations (PDEs) on dense multidimensional ar-
rays. When parallelizing such applications, the most com-
mon approach is spatial partitioning of the grid cell compu-
tations into fixed-size portions, usually in the shape of planes
or cuboids, assigning portions to workers e.g. threads, MPI
ranks, or through OpenMP parallel for loops.

However, the underlying memory hierarchy may not in-
teract in the most efficient way with a given decomposition
of the problem; due to the constantly increasing disparity
between DRAM and processor speeds [18], modern mas-
sively parallel systems employ wider DRAM bursts and a
high degree of memory interleaving to create sufficient off-
chip memory bandwidth to supply operands to the numerous
processing elements.

Unlike CPU-based systems in which a DRAM burst usu-
ally corresponds to a cache line fill, massively parallel sys-
tems such as GPUs form a DRAM burst from vectorized
memory accesses. This can either be done by hardware from
concurrent threads in the same wavefront (also known as
memory coalescing in CUDA terms) or by the programmer
(such as the short-vector loads in CUDA and OpenCL). In
both cases, it is important to have concurrent accesses bear-
ing desired memory address bit patterns in terms of mem-
ory access vectorization. Intuitively this can be addressed
by loop transformations to achieve unit-strided access in the
inner loop. However, for arrays of structures, it is necessary
to employ data layout transformations such as dimension
permutation developed by previous efforts to achieve vec-
torization [11] or for reducing coherence overhead [12].

A less explored direction is the parallelism among memory
controllers, and interleaved DRAM banks, which is playing
an increasingly important role in system performance. In
massively parallel systems, the interconnect which connects
DRAM channels and processors decodes address bit fields
to decide corresponding channel and memory bank numbers
from a memory request [3]. Given that a fixed subset of the
address bits are used to spread accesses across parallel mem-
ory channels and banks, achieving high bandwidth requires
that concurrently serviced accesses have varying values in
those address bit fields. To exploit this level of memory-

513

Figure 1: Data Layout Transforms for Structured
Grid Codes

level parallelism (MLP) in structured grid applications, pre-
cise control must be exercised over how multidimensional
index expressions map each index field to address bit fields.
It is not generally possible without data layout transforma-
tion or hardware approaches [15] to achieve a shuffling of
the address bit fields such that concurrent memory requests
can be both routed to different memory channels and banks
are well-vectorized.

Unfortunately, the full details of the memory hierarchy
are often too obscure or complex for a typical application
programmer to adapt their programs to use them. Even for
exceptional cases where the programmer does know how to
transform the data layout to fit the memory system, per-
forming the transformation manually is tedious, results in
less readable code, and must be repeated every time a new
platform is targeted.

Currently, programming languages such as C and FOR-
TRAN rigidly define the layout of multidimensional arrays,
allowing usages relying on the default layout such as address-
ing logically adjacent elements through hard-coded pointer
arithmetic. Therefore, programmers opting to use auto-
matic transformations on arrays must be subject to more
stringent interfaces that insulate the source code from changes
in the layout. However, implementing arrays of transformable
layout using a new language data type or C++-style classes
both complicate the language and may contain undesirable
overheads for accessing the most performance-critical data
structure of the application. To make data layout trans-
formation feasible in the context of a language derived from
C++, we rely on the two assumptions. First the declaration,
allocation, and access of multidimensional arrays should fol-
low C99-style variable length array (VLA) syntax, and sec-
ond the programmer must adhere to the FORTRAN-style
subscripted array accesss, as any assumptions on the rela-
tion between addresses across multiple array elements may
not hold after layout transformation.

Figure 1 depicts our procedure of data layout transforma-
tion, using a modern GPU as an example memory system.
The input is a kernel in which arrays are declared and ac-
cessed in a restricted form of variable-length arrays, clearly
denoting the size of each array dimension, with array access

restricted to FORTRAN-like form. Knowledge of the execu-
tion model is then used to determine the relationships and
ranges of array indices likely to be concurrently requested by
the kernel. For each array of interest, an optimization prob-
lem is formulated and solved based on the estimated num-
ber of concurrent instances of each array index with distinct
values, with the solution determining the desired layout. A
code generation pass emits transformed code with array ac-
cess expressions converted to flattened array accesses using
transformed layouts.

The rest of this paper explains our methodology and re-
sults in detail. Section 2 provides an overview of iterative
PDE solvers. Section 3 discusses related work in data lay-
out transformations. Section 4 formulates the offset calcu-
lation of array-accessing statements, and defines the data
layout transformations we consider using this formulation.
Section 4.1 discusses how we obtained a memory address
interleaving scheme of the DRAM controller through micro-
benchmarking, and derive an optimized layout from the pro-
gram and execution model. Section 6 presents our experi-
ment results, followed by some concluding remarks in Sec-
tion 7.

2. COMMON ACCESS PATTERNS OF PDE
SOLVERS ON STRUCTURED GRIDS

Although there are many numerical methods that deal
with PDEs, there are only a few data access patterns among
the most prevalent methods solving these problems on struc-
tured grids. The structured grid often comes from discretiz-
ing physical space with Finite Difference Methods [20] or
Finite Volume Methods [7], while solutions based on Finite
Element Methods [20] often result in irregular meshes.

Many numerical methods solve PDEs through discretiza-
tion and linearization. The linearized PDE is then solved as
a large, sparse linear system [9]. For large problems, direct-
solution methods are often not viable: practical approaches
are almost exclusively iterative-convergence methods.

Iterative techniques like Jacobi method and Gauss-Seidel
(including those with Successive Overrelaxation) are often
used as important building blocks for more advanced solvers
like multigrid [6]. Both techniques are instances of stencil
codes, whose stencils can be expressed as a weighted sum of
the cell and nearest neighbors in the grid. The major differ-
ence in terms of access patterns is that Gauss-Seidel methods
typically apply cell updates in an alternating checkerboard
style. Adjacent elements are never updated at the same
sweep; two separate, serialized sweeps over the red and black
cells performs one whole iteration update.

The lattice-Boltzmann method (LBM) [25], a particle-
based method that was mainly used in computational fluid
dynamics problems, was recently extended as a general PDE
solver [32]. The LBM is also an iterative method applied to
structured grids. The cell update rules for the LBM are
divided into two stages that update multiple grid cell prop-
erties (i.e. distribution functions of particles close to differ-
ent edges or surfaces of the grid cell.) The intra-cell stage
(called collide) and inter-cell stage (called stream) combined
perform one iteration’s update [24]. The stream stage ac-
cesses the nearest neighbors of the current cell, while the
collide stage’s inputs are entirely local to the current cell.
Since within an update iteration across cells there is no data
reuse, techniques that aim at reducing memory accesses such

514

as shared memory tiling for the GPU is less useful. Hence
LBM is considered memory bandwidth bound [27].

3. RELATED WORK
Since stencil codes and LBM applications are often mem-

ory bandwidth-bound, many approaches have focused on en-
hancing the memory system performance for these applica-
tions. However, most of them focus on increasing the cached
reuse of data loaded from memory. For traditional cache-
based memory hierarchies, most methods do so by trans-
forming the traversal order of array elements by loop tiling
at cache line size [26, 28].

Stencil codes are a subset of structured grid applications
that have been studied extensively, and optimized for local-
ity on many platforms, including the GPU platform we use
in this paper [5]. Because there is no traditional cache or
direct control over the relative execution order of threads,
most GPU-specific transformations for stencil codes aim to
enhance reuse of shared data across neighboring cells using
a pipeline-like approach, e.g. Datta et al. [5].

All of the methods mentioned in this section thus far im-
prove how efficiently data is used or reused in the on-chip
cache of the system. However, these approaches are not al-
ways applicable or sufficient. For example, LBM within one
timestep does not contain any data reuse [24], and some
stencil codes with heavy reuse may still be performance
bound by off-chip bandwidth even after reuse is exploited.
Applications in such situations could potentially still gain
significant performance improvement by using MLP-oriented
optimizations.

Data layout transformations [17] have primarily been used
for improving cache locality and localizing memory accesses
in nonuniform memory architectures and clusters. Ander-
son et al. [1] employed similar data layout transformations
for shared-memory multiprocessor system to make the data
accessed by the same processor contiguous in the address
space. Lu et al.’s recent work [16] applies data layout trans-
formation for cache locality in NUCA (non-uniform cache
architecture) chip multiprocessors to keep memory access lo-
calized in processor-local L2 cache which have non-uniform
access cost, which results in similar formulation of earlier
works for clusters [13]. This work presents data layout trans-
formations to aid hardware memory vectorization and to re-
duce DRAM bank conflicts, with the target architecture be-
ing many-cores connecting to on-chip multi-channel memory
controllers through on-chip interconnect with uniform access
cost from each core to each memory channel, e.g. a GPU.

In terms of the underlying DRAM memory model, most of
the work described above only considered the latency of hit-
ting or missing in the data cache, or the latency of local ver-
sus remote memory access for clusters and NUCA. However,
for a massively parallel system, balancing DRAM traffic
across controllers can be important. Datta et al. [5] take into
consideration the affinity of DRAM controller and processor
cores in NUMA architectures using an affinity-aware mem-
ory allocator. To our knowledge, there is no software-based
approach to balancing workloads for the multi-channel, in-
terleaved DRAM controllers employed in modern parallel
architectures, although according to our micro-benchmarks,
7X performance loss could occur in extreme cases.

For GPUs, we know of no previous work applying data
layout transformation to structured-grid code other than
gaining unit-strided accesses [27, 11], which helps vector-

izing memory accesses into DRAM bursts (i.e. coalescing).
Our automated data layout transformations further exploit
concurrency in multi-channel and interleaved DRAM bank
organization. For managing off-chip memory bandwidth,
Baskaran et al. [4] proposed an approach based on loop tiling
using the polyhedral model framework, effectively assigning
thread indices so that access patterns can be better coa-
lesced. However, their approach considered the data layout
as part of constraints and hence not able to further increase
memory access efficiency on strided accesses commonly seen
in LBM and red-black Gauss-Seidel methods codes.

Various works[10, 21, 22, 29] have proposed hardware
optimizations for DRAM controllers working toward uni-
form access latency and fairness, some parallelism aware [21,
22]. All of them focus on scheduling DRAM requests under
fixed workloads, not considering how the workloads them-
selves could potentially adapt to the memory system. Also,
such approaches only balance among memory banks under
the same controller, while several controllers are are often
present in modern systems.

4. DATA LAYOUT TRANSFORMATIONS
FOR STRUCTURED GRID C CODE

For structured grid codes, transforming the bit patterns of
effective addresses of concurrent grid access expressions for
the underlying memory hierarchy can be achieved by trans-
forming linearization functions calculating grid elements’ off-
sets from index expressions for each dimension and the size
of each dimension. This effectively transforms the data lay-
out.

We first present a formalization of arrays, layouts, and lay-
out transformations that define the required information as
well as semantics. To conduct data layout transformation,
we collect the necessary information through variable-length
array syntax, a recently standardized feature of the C lan-
guage, that enables FORTRAN-style index expressions for
arrays of all kinds, including those whose size is not statically
known. The extra information contained in these declara-
tions and accesses are essential to performing robust data
layout transformation.

4.1 Grids and Flattening Functions

Definition 1. An n-dimensional array G is character-
ized by an index space that is a convex, rectangular subspace
of N

n and type T.

An array element is identified by a vector of integers called
an index vector. Without loss of generality, for the index
vector �I of an array element, Ii ∈ [0, Dimi) where Dimi ∈
N, Dimi > 0 is the i-th element of the dimension vector of
G. T is the type of all elements in G.

Definition 2. An injective function FF: N
n → N is a

flattening function for an n-dimensional array G, if this
function is defined for all valid array element index vectors.

A flattening function defines a linearization of coordinates
of elements in G. When that integer is interpreted as the
offset for addressing an element from the beginning of the
memory space reserved for the array, then this flattening
function defines the memory layout of the array. We require
FF to be injective: it should map every valid index vector

515

Figure 2: An Example of Layout Transformation

to a unique value. An FF f explicitly forbids many-to-one
mapping, and thus f−1 is defined and f−1(f(�I)) = �I for a

valid index vector �I. With these restrictions, a flattening
function uniquely defines a memory layout and vice-versa;
we use these terms interchangeably in the remaining text.

To permute the address bit pattern derived by an FF,
we can transform the Row-Major Layout (RML) flattening
function by adapting the two primitive transformations pro-
posed by Anderson et al [1] that are analogous to well-known
loop transformations:

Strip-mining: Split dimension i into T -sized tiles, 0 ≤ T <
Di. This transformation creates a new index vector �I ′

and a new dimension vector �D′, which are inputs to
the transformed FF. �I ′ and �D′ are created by dividing
Ii into Ih, Il and Di into Dh, Dl, where Ih = �Ii/T �,
Il = Ii mod T and Dh = �Di/T �, Dl = T . Intuitively
the strip-mining splits the dimension into two adjacent
dimensions. When the original dimension size is not
a multiple of block size, padding is introduced at the
last block.

Permutation: Permute the index vector and correspond-
ing dimension vector.

Figure 2 shows a layout tiling example that transforms
an access to array A[Dj][Di] from A[j][i], i.e. RMLA, to
A[jlog 2(Di):4][i][j3:0]. First the dimension j is split into jH

and jL without actually changing the order of elements in
memory, only padding the grid to some multiple of 24 × Di

elements. Then the dimensions i and jL are swapped, which
also changes the order of elements in memory.

5. DIRECTING DATA LAYOUT
TRANSFORMATION

Intuitively, the space of all possible layouts that can be
derived by arbitrary application of the data layout trans-
formation primitives on a multi-dimensional data structure
could be very large; however by leveraging properties from
both the SPMD programming model which is commonly
seen on massively parallel systems and the class of applica-
tion we are targeting, we demonstrate a generalizable data
layout methodology for this application/target pair, based
on an analytical model of the memory hierarchy and static
analysis of the program. Finally, a data flow analysis is de-
signed to help deduce data layouts for subscripted pointer
accesses in the program.

5.1 Benchmarking and Modeling Memory
System Characteristics

For massively parallel architectures such as the GPU, the
number of concurrent memory requests from all the proces-
sors can be large, especially for code with large datasets.

In such systems, the interconnect and DRAM controllers
spread these concurrent requests into different memory chan-
nels and banks mostly by hashing address bits; moreover,
on some systems such as the NVIDIA G80 and GT200 se-
ries GPUs, memory requests are vectorized (or coalesced,
in CUDA terms) based on the least significant bits of their
addresses if these requests are from a subset of threads that
are executed in SIMD fashion (i.e. CUDA warps) by the
underlying hardware.

To better understand how the memory interleaving works,
it is necessary to benchmark the underlying memory hierar-
chy to model the achieved memory bandwidth as a function
of the distribution of memory addresses of concurrent re-
quests. As an example, we derive the analytical model for
an NVIDIA GeForce 280 GTX, and use the computational
model of that GPU to analyze the expected program exe-
cution and the concurrent requests likely to be generated.
Other devices and programming models could be evaluated
independently with a similar approach. Previous work [31]
has benchmarked the GPU to obtain memory latency versus
stride in a single-thread setting. However, since the class of
applications we are targeting is mostly bandwidth-limited,
we must determine how the effective bandwidth varies given
access patterns across all concurrent requests. First, each
memory controller will have some pattern of generating DRAM
burst transactions based on requests. The memory con-
troller could be only capable of combining requests from
one core, or could potentially combine requests from differ-
ent cores into one transaction. In our example, the GPU
memory controller implements the former, with the CUDA
programming manual [23] defining the global memory coa-
lescing rule, which specifies how transactions are generated
as a function of the simultaneous requests from the vector
lanes of one SM.

Next, we must define our model on which bits in memory
address steer interleaving among memory channels, DRAM
banks, or other parallel distribution structures built into the
architecture to increases the number of concurrently satis-
fiable requests. We can determine these steering bits by
observing the behavior of a microbenchmark generating con-
current requests of a fixed stride pattern and observing the
resulting achieved bandwidth. The microbenchmark is sim-

516

ilar to pointer-chasing in lmbench[19]: each thread repeats
the statement x = A[x] for a large number of iterations,
with the array A initialized with A[i] = i and each thread
initialized with x = blockIdx.x * Stride . There is only
one thread per thread block to ensure that each request re-
sults in one memory transaction.

By examining the spikes of poor-performing bandwidth in
Figure 3, we can see a couple of principles of the underlying
system. First, each successive power-of-two stride essentially
generates a concurrent set of requests with a fixed bit pat-
tern in an increasingly large number of the lower address
bits. Continued performance degradation as the stride dou-
bles indicates that the bit that was variant in the previous
power of two but static in the current one was relevant to
the parallel distribution of requests. Figure 3 shows strides
of 512, 1024, 2048, 4096 and 8192 words achieve succes-
sively lower effective bandwidth. Although more detailed
microbenchmarks suggest that the interleaving is sophisti-
cated enough that many of the higher bits may contribute
to steering to some degree, the most critical bits are those at
or below bit position 13. Second: the worst observed band-
width occurs on strides with a multiple of 512 words (2K
bytes), indicating that the 11 lowest bits have the most di-
rect impact on achieved MLP. For instance, note that strides
of 8192+x*512 words are equally poor in performance as
8192 strides. Through further detailed micro-benchmarking,
we have confirmed that all bit positions in the range [13:6]
are essential to spreading accesses to different memory chan-
nels and banks. Therefore, for the purposes of data layout of
arrays of word-sized elements, we would consider the lower
twelve bits of a flattened index expression to be relevant
(equivalent to address bits [13:2]), and the bits in positions
[10:6] the most important to vary across burst requests and
indeed sufficient to distribute accesses across all memory sys-
tem elements. From the coalescing rules [23], bits [5:2] are
inferred to be offsets into a DRAM burst. Within a burst,
a good layout transformation must maximize the number of
useful words in that burst.

5.2 Data Transformation for Structured Grid
Codes on Two-level SPMD Programming
Model

In GPU architectures, each thread can only execute one
memory operation at time. Concurrent requests are there-
fore generated from different threads executing concurrently
on the parallel hardware. Intuitively, index expressions de-
pendent on thread and thread block identifiers should have
significant variation in the values of those index expressions,
and therefore variation in the bits representing the result-
ing address. To achieve the highest bandwidth, the intu-
itive goal of data layout transformation is to ensure that the
address bits highly dependent on thread and thread block
identifiers are the same as those bits used in the memory sys-
tem to distribute concurrent requests among parallel mem-
ory system elements, and that the transformed access ex-
pressions adhere to the coalescing rules for full utilization of
DRAM bursts.

Let us first consider following CUDA-like pseudo code
that is a simplified version of 2D lattice-Boltzmann method
(LBM):

Listing 1: Running Example

enum {N=0, E, W, S } ;

// Declare A0 and Anext as 2D var i a b l e−
// l eng th arrays o f 4−element s t ru c tu r e

g l o b a l void
example (int ny , int nx , f loat A0 [ny] [nx] [4] ,

f loat Anext [ny] [nx] [4])
{

int i = threadIdx . x+1, j = blockIdx . x+1;

// Access in FORTRAN− l i k e form

f loat x ve lo = A0[j] [i] [E] − A0 [j] [i] [W] ;
f loat y ve lo = A0[j] [i] [N] − A0 [j] [i] [S] ;

Anext [j] [i −1] [E] = x ve lo ;
Anext [j] [i +1] [W] = −x ve lo ;
Anext [j −1] [i] [N] = y ve lo ;
Anext [j +1] [i] [S] = −y ve lo ;

}

In this code we have a 2D array-of-structure layout. The
code performs operations on the input cell owned by the
thread, using the results to update specific fields of its neigh-
bors in the output. Note that the leftmost dimension of
every index expressions is some constant value plus block-

Idx.x, the second dimension is always some constant plus
threadIdx.x, and the last dimension is a fixed offset de-
noting a structure field. The array-of-structure layout is
good for CPU or cache-based architecture because of bet-
ter spatial locality among structure members, but for GPUs
this stops the memory vectorization hardware (or memory
coalescing hardware in CUDA terms) from fully utilizing
DRAM bursts when concurrent threads each request a cer-
tain field of their own cell. The coalescing rules effectively
state that the index of the lowest dimension must be de-
pendent on threadIdx for good coalescing. This issue is
easily relieved by permuting the data layout, perhaps by
exchanging the second and last dimensions, as the higher
dimensional indices are all functions of block index or val-
ues independent of block or thread indices, all higher-order
bits of addresses to be produced by adjacent threads in a
warp will lead to addresses that satisfy the coalescing rule.

However, a good layout in terms of maximal MLP should
also make concurrent memory accesses from different warps
having distinct bits at those steering bits. Intuitively we
should not only make vectorizable access pattern, but also
assign bits of thread and thread block identifiers most likely
to be distinct among active threads to those steering bits.
Identifying which bits will be distinct among concurrent ac-
cesses requires analysis dependent on the execution model
of the architecture. Furthermore, since program counters
are not strongly correlated across blocks, the index of the
lowest dimension will also likely vary across concurrent re-
quests, as that index is tied to the program counter. A good
data layout would take these busy bits from the index of each
dimension and map those bits into the steering bits of the
memory system. A more formal definition and automated
solution is presented in the remained of this section.

517

 0

 1

 2

 3

 4

 5

 6

 7

 8

 5
12

 1
02

4

 1
53

6

 2
04

8

 2
56

0

 3
07

2

 3
58

4

 4
09

6

 4
60

8

 5
12

0

 5
63

2

 6
14

4

 6
65

6

 7
16

8

 7
68

0

 8
19

2

 8
70

4

 9
21

6

 9
72

8

 1
02

40

 1
07

52

 1
12

64

 1
17

76

 1
22

88

 1
28

00

M
ill

io
n

D
R

A
M

 T
ra

ns
ac

tio
ns

 p
er

 s
ec

on
d

Stride (words)

Figure 3: Effective memory bandwidth v.s. strides in bytes between requests from from many single-threaded
blocks on GTX280. Bandwidth is shown in millions of transactions per second, and strides are in increments
of 64 bytes.

5.2.1 Characterizing Thread Indices in Two-level
SPMD Programming Models

In the two-level threading (thread/block) models that are
employed by OpenCL and CUDA for the GPU, some prop-
erties regarding of thread indices can be observed:

• The computational grids consist of fix-sized blocks of
threads issued as a whole to the processors (i.e. SM
in CUDA terms). Distinct blocks are executed asyn-
chronously across processors. For thread IDs, because
of the asynchronism any thread with legitimate thread
ID within a block can be the issuer of a memory re-
quest.

• The total number of blocks in the computational grid
can be very large, outnumbering the number of pro-
cessors in the system, so the runtime issues a subset
of these blocks to the processors. In other words, at
any instant there is only a subset of X blocks being
executed so the number of distinct block ID usually is
only a fraction of total number of blocks in a computa-
tional grid. With some simplifying assumptions about
the regularity of block execution time, the index range
of currently executing blocks can be roughly modeled
as some oldest, still-executing block to some youngest
executing block with an index of X plus the index of
the oldest block minus one.

We can then characterize thread and block IDs in terms
of distinct least significant bits across concurrent instances
of them:

• The number of distinct least significant bits across con-
current block IDs is about log2 (maximum capacity for
active blocks in the system)

• The number of distinct least significant bits across con-
current thread IDs is about log2 (block size)

For CUDA, the maximum capacity for active blocks in
the system can be determined statically from the compiled
code’s resource usage and the device parameters [23].

For our running example, assume there are 32 active thread
blocks, each with 128 constituent threads, which means 5
LSBs of thread block index will be busy and 7 LSBs of
thread index will be busy. In this case one good layout
for array A0 could be created by strip-mine y and x di-
mension by 32 and 128 respectively and shift subdimen-
sions into steering bit position and the bit fields that is
used for memory coalescing. In terms of dimension vec-
tor and flattening function, the dimension vector of A0 is

�D : (�ny/25�, �nx/27�, 4, 25, 27) , where nx and ny are from

C99 VLA declaration of A0; the FF of A0 is FF (�I, �D) :
I2[:5]D3D2D1D0+I1[:7]D2D1D0+I0D1D0+I2[4:0]D0+I1[6:0],

where �I is the index vector of the array subscripts, e.g. for
A0[j][i][0], �I : (I2 = j, I1 = i, I0 = 0).

5.2.2 Automated Discovery of Ideal Data Layout
To automate the process of selecting and shifting bits to

best fit the memory system, we begin with a high-level al-
gorithmic description of the procedure:

1. Convert all grid-accessing expressions into affine forms
of thread and thread block indices and surrounding se-
quential loop indices. For structured grid codes that
use FORTRAN-like array subscripts, usually the array-
accessing expressions can be converted to this form.
In principle, if there are non-affine terms in the ex-

518

pression, we could still approximate it by introducing
auxiliary affine terms, as suggested by Girbal et al [8].

2. For a given grid, if all the expressions accessing the
grid share the same coefficient for all columns except
the constant column, then this grid is eligible for lay-
out transformation. We call the grid eligible, and de-
fine a matrix consisting of coefficients of affine form
of accessing expressions except the constant column
as the grid’s common access pattern. For structured
grid codes which accesses nearest neighbors, the ac-
cess pattern to the same grid usually have the same
coefficient except for the last column. E.g. [x+1][y]

and [x-1][y-1] is considered of the same common ac-

cess pattern

»
1 0
0 1

– „
x

y

«
.

3. For each eligible grids, derive the desired data layout
from its common access pattern.

(a) Decide number of busy bits of each referred thread
and block index from occupancy and thread block
configuration.

(b) For each dimension compute the collective busy
bits represented by the corresponding row in com-
mon access pattern. Since a row in common ac-
cess pattern represents some linear combination
of thread and block indices, the collective busy
bits are the union of these busy bits, while some
of them are possibly shifted by log2 of their coef-
ficients.

(c) Assign the least significant N bits of the fastest
changing dimension index to the bit position that
is used for memory coalescing, where N is the
number of address bits that determine memory
vectorization according to the hardware specifi-
cation.

(d) Greedily assign other collective busy bits of all
dimensions to the steering bits by using strip-
mining of power-of-two-sized tiles and permuting
these tiles to the desired bit position until steer-
ing bits are all occupied or there are no busy bits
left for any dimension.

(e) Assign all unassigned dimensions to higher dimen-
sions.

(f) Generate flattening functions and dimension vec-
tor according to above assignment and the C99
VLA declaration for the grid.

4. Perform the data-flow analysis to derive the flattening
function associated with each array accessing expres-
sions.

5. Output transformed the code with inline-expanded flat-
tening function at grid accessing expressions.

For our example, we can list some of the access func-
tions of A0 and Anext: (blockIdx.x+1, threadIdx.x+1,E),
(blockIdx.x+1, threadIdx.x+1,W), (blockIdx.x, threadIdx.x+
1, N), and (blockIdx.x + 2, threadIdx.x + 1, S). In affine
form of access function similar to the notation used by Gir-

bal et al, they would look like:

2
41 0 1
0 1 1
0 0 E

3
5

0
@ blockIdx.x
threadIdx.x

1

1
A,

2
41 0 1
0 1 1
0 0 W

3
5

0
@ blockIdx.x
threadIdx.x

1

1
A,

2
41 0 0
0 1 1
0 0 N

3
5

0
@ blockIdx.x
threadIdx.x

1

1
A, and

2
41 0 2
0 1 1
0 0 S

3
5

0
@ blockIdx.x
threadIdx.x

1

1
A, respectively. So accesses to both

Anext and A0 are eligible for transformation as the affine
form of their access functions only differ in the last column,
and these arrays are all eligible for data layout transforma-

tion, with their common access pattern being

2
41 0
0 1
0 0

3
5. The

common access pattern then clearly links the dimension with
individual thread and thread block indices, which are used
for deciding the actual layout based on their busy bits.

Continuing with our previous examples, we will assume
the number of active thread block is 32, and the number of
threads in the thread block is 128. This means that the 5
least significant bits of blockIdx.x are busy, and the all seven
meaningful bits of threadIdx.x are busy. The second dimen-
sion index, corresponding to threadIdx.x, takes the lowest
dimension place in the transformed layout for coalescing (4
least significant bits) and the first three steering bits. The
highest dimension is tiled split into two dimensions, with the
5 low bits accesses the new lower dimension and the remain-
ing bits accessing the higher dimension. The newly created
lower dimension is transposed to take the second lowest di-
mension of the new layout. The remaining dimensions are
left as they are, resulting in the layout shown before.

5.3 Propagate Layout Information as
Extended Types with Pointers

After each solver iteration, iterative PDE solver imple-
mentations in C or C-like languages usually swap pointers to
the input and output grid before starting next iteration, i.e.
the output of current iteration become the input of the next
iteration. Hence correct propagation of layout and dimen-
sion information through pointer assignments is essential for
these solver implementations.

In other words, after deciding the layout of a specific grid,
we need to analyze the source code to figure out the set of
grid access expressions, in the form of subscripted pointer
dereferences, that need to be updated to use the transformed
flattening function instead. We address this issue by treating
layout as extended types and solve the data-flow equation
to analyze the layout for array accessing expressions.

Types in programming languages specify the information
necessary for code to interpret and operate on the data in-
stances of that type. The layout of an array is an implicit
part of an array’s type, typically defined by the language. To
transform the layout of a particular array, excluding other
arrays, we must essentially change that array’s type, and
propagate that change in type information through the pro-
gram to ensure that all parts of the program accessing that
array do so correctly. This propagation could be performed
at runtime by extending the array type in the compiler to
augment the grid with an function pointer to the flattening
function, set when the array is allocated. However, current
GPU programming models do not allow indirect calls; we
elect to perform the propagation of the type change insti-
gated by the compiler in the compiler itself.

Therefore, we present algorithms for propagating the im-
plicit layout type information statically through a program,

519

Table 1: Transfer Functions
Operation Type Transfer function f(μ) in the form of f(μ) = ν with ν(w) =

μ(w)∀(w
= p1) and ν(p1) = ..., where w ∈ P ; μ, ν ∈ Ψ

No definition involving any pointer variables ν(p1) = μ(p1) (Identity function)

p1 = p2; p1 and p2 are pointers ν(p1) = μ(p2).

p1 = p2 + t; p1 and p2 are pointers and t is of
integer type

ν(p1) = ⊥ if μ(p1)
= UT else UT

Declaring a pointer p ν(p1) = UT

Declaring a pointer p to an n-dimensional grid G

with a dimension vector DV
ν(p1) = (n, DV,RML)

Apply layout transformation lt to the data struc-
tured pointed by p1

ν(p1) = lt(μ(p1)) where lt is a layout transformation.

Table 2: Meet Function ∧
l1 UT ⊥

l2 if l1 == l2 then
l1 else ⊥

⊥ ⊥

UT ⊥ UT ⊥
⊥ ⊥ ⊥ ⊥

identifying the pointer references that access the objects
with extended types. The proposed usage scenario is that
the user specifies through annotation which grid should the
compiler perform automatic layout transformation, without
specifying actual layout, and the compiler decides actual
layout that works best on the given grid for the given ar-
chitecture, and propagates this layout information through
this analysis.

Our approach involves a source-to-source compiler that
transforms the flattening function of expressions accessing
grids annotated with dimension vectors, effectively deriv-
ing layout-transformed arrays, and finally emits CUDA C
code that can be further compiled by the NVCC compiler
with inline-expanded flattening functions on dynamically-
allocated one-dimensional arrays.

We formulate this analysis as a monotonic dataflow anal-
ysis; in this framework a data-flow analysis is represented as
a meet-semilattice and a set of transfer functions. For this
problem, the semilattice is (Ψ, ∧), where each element in
the semilattice is a function: Ψ : P → L∪{UT ,⊥}. P is the
set of pointer variables in the program, UT stands for un-
transformed and ⊥ means incompatible respectively. L is a
set containing the definitions of new data layouts each fully
defined by a dimension n ∈ N, a dimension vector N

n and
a flattening function N

n → N). When this function maps a
pointer to a new layout, it is asserting that every data struc-
ture the pointer may refer to shares the specified layout.
An untransformed pointer indicates that the data structure
pointed by this pointer uses RML as its flattening function;
an incompatible pointer however indicates that this pointer
may point to at least two data structures with incompatible
flattening functions. Two flattening functions FF 1 and FF 2

are compatible (expressed as FF 1 == FF 2) if and only if

for all legitimate dimension vector �D and index vector �I ,

FF 1(�D, �I) = FF 2(�D, �I). That is, the FF for a float array
can be compatible with the RML for a long array as long as
their element sizes are the same. This allows transforming
the layout of some structured-grid code, in which non-float
typed elements are accessed through type-casted grid base
pointer.

The set of transfer functions f : Ψ → Ψ are created from
the type of operations in the flow graph, as shown in Ta-
ble 1; the meet operation of two functions m, n ∈ Ψ is
defined in Table 2. In the table, the binary relationship
== for two tuples {l1 = (n1, D1 ∈ Nexpr

n1 , FF1), l2 =
(n2, D2 ∈ Nexpr

n2 , FF2)} ∈ L exists if and only if n1 = n2

and D1 = D2 and FF 1 == FF 2 . In a word, each state-
ment, according to its operation type, may change the lay-
out bound to a pointer through assignment. Transformed
and untransformed layouts, as well as dimension vectors of
grids, are thus propagated.

The meet function ∧ deals with the join of control flow.
Since most programming models for the GPU do not allow
indirect function calls in general, for each grid access expres-
sion only one flattening function is allowed to bind with that
expression. The meet function basically aborts data layout
transformation for a particular grid if there are more than
one flatten functions that need to bind with any expression
that accesses the grid and these functions are incompatible
(i.e. the binary relation == does not hold for these func-
tions). This restriction can surely be slightly relaxed by
using versioning, but this is left for future work.

6. EXPERIMENTAL RESULTS
Table 3 shows relative speedups of different memory lay-

outs. LBM is a CUDA implementation of SPEC CPU2006[30]
470.LBM, which implements lattice-Boltzmann method[24];
CFD is a kernel that performs either a red or black sweep
using Gauss-Seidel method; This kernel is from CU-FLOW,
a 3D Navier-Stokes equation solver. Heat [5] implements a
3D heat equation solver using the Jacobi scheme.

The last two benchmarks represent the two major point
methods for solving PDEs using the finite difference method.
LBM is an alternative CFD approach using a particle-based
method instead of discretizing the PDE.

For each of the benchmarks, we first manually convert
them into layout-neutral form and apply our automated lay-
out transformation methodology on the main grids on which

520

Table 3: Benchmarks and Speedup

Benchmark Layout Speedup Consumed Bandwidth Global Memory Reads per
DRAM Transaction

LBM Array of Structures 1.0 17.56 GB/s 1.01
Structures of Array 5.11 89.87 GB/s 6.60
Transformed (auto) 6.60 115.99 GB/s 7.89
Transformed (manual) 6.60 115.99 GB/s 7.89

CFD Row Major Layout 1.0 56.63 GB/s 2.61
Transformed (auto) 1.25 70.93 GB/s 3.14
Transformed (manual) 1.30 73.75 GB/s 3.14

Heat Row Major Layout 1.0 74.31GB/s 3.79
Transformed (auto) 1.07 79.37 GB/s 3.79
Transformed (manual) 1.08 80.17 GB/s 3.79

each benchmark operates. Because our compiler infrastruc-
ture does not yet support variable-length array syntax, we
use annotations to communicate that information to the
compiler. After automatic transformation, manual search
is applied to nearby regions of the space of potential layout
transformations near the solution found by our automated
methodology, choosing the best. Table 3 shows the com-
parison of the automated and manual layouts against the
baseline layout of each benchmark.

The effectiveness of data layout transformation on improv-
ing memory coalescing is measured in the column “Global
Memory Reads per DRAM Transaction” 1 in Table 3. Larger
number means that the memory coalescing hardware were
able to vectorize more accesses from the same CUDA warp
into a single DRAM transaction. Poor coalescing leads to
lower number of effective global memory loads per measured
coalesced DRAM transaction. The baseline LBM applica-
tion shows the lowest global memory load coalesced per
DRAM transaction, whereas the optimized LBM implemen-
tations ultimately show the best out of the benchmarks. It
is impossible to force all accesses to be aligned, as many
stencil codes will generate indices of i, i+1, and i-1, which
cannot all be aligned in any layout. For our system, un-
aligned accesses essentially use twice the bandwidth neces-
sary, as two bursts are triggered for only one burst-size of
unaligned data. Of our benchmarks, the best transformed
LBM code has the lowest percentage of unaligned accesses,
with 29 aligned and only 10 unaligned accesses per thread.
From CFD, transformed layouts lead to higher global mem-
ory read per DRAM transaction.

In Heat and CFD, we can see that even with the mem-
ory coalescing level staying constant, bandwidth usage is
increasing with effective tiling for memory interleaving hard-
ware. For instance, the performance of Heat is improved by
7% with layout transformation, even though coalescing was
not improved.

Significant speedups are observed from all benchmarks,
ranging from 6.6X (LBM) to 1.07X (Heat) with automat-
ically derived layout. The performance different between
layout-optimized and baseline layout is tied to how far the
best transformed layout diverges from the baseline. For in-

1This is the number of memory accesses per grid cell in the
source code, times the number of grid elements divided by
number of SMs in the system (30 for GTX280), and then
divided by gld_coherent reported by the CUDA Profiler

stance, the transformed LBM layouts more closely resemble
a (tiled) structure of array form than array of structure form:
much of the performance is gained from improved burst-
level parallelism due to improved memory coalescing, and
swapping the structure field index into a higher bit position.
We earn 30% additional performance gained from tiling by
making busy bits stay in steering bit positions as well as im-
proved memory coalescing. On the other extreme, the Heat
benchmark’s best transformed layout is very close to RML,
with only a very small degree of tiling in x and y intro-
duced. The performance therefore only increases slightly, as
the original layout was quite good for that particular mem-
ory system.

Also, our experiment shows that even with extra overhead
computing memory addresses, the transformed applications
still gained performance by improving the efficiency of the
memory hierarchy. This highlights both the bandwidth-
boundedness of the applications themselves, and the validity
of trading extra address calculation instructions for better
achievable bandwidth in such bandwidth-bound situations.

7. CONCLUSION AND FUTURE WORK
We have presented a formulation and language extension

that enables data layout transformation for structured grid
codes in CUDA. We also benchmarked the GTX280 GPU to
reveal its DRAM banking and interleaving scheme. Based on
the micro-benchmark results, we developed a layout trans-
formation methodology that can significantly speed up var-
ious structured-grid codes by distributing concurrent mem-
ory requests evenly to DRAM channels and banks.

Our methodology does not preclude opportunities of ap-
plying other transformations that aims at improving reuse.
Future work investigating holistic data layout transforma-
tions addressing temporal locality, spatial locality, and MLP
will be paramount to achieving the highest levels of per-
formance for important, bandwidth-bound structured grid
applications.

Acknowledgments
This work was funded by the Universal Parallel Comput-
ing Research Center at the University of Illinois at Urbana-
Champaign. The Center is sponsored by Intel Corporation
and Microsoft Corporation.

This work utilized the AC cluster [14] operated by the

521

Innovative Systems Laboratory (ISL) at the National Center
for Supercomputing Applications (NCSA) at the University
of Illinois. The cluster was funded by NSF SCI 05-25308
and CNS 05-51665 grants along with generous donations of
hardware from NVIDIA, Nallatech, and AMD.

We would like to thank Chris Rodrigues, Nady Obeid, and
anonymous reviewers for their comments.

8. REFERENCES
[1] J. M. Anderson, S. P. Amarasinghe, and M. S. Lam. Data

and computation transformations for multiprocessors.
SIGPLAN Not., 30(8):166–178, 1995.

[2] K. Asanovic, R. Bodik, B. C. Catanzaro, J. J. Gebis,
P. Husbands, K. Keutzer, D. A. Patterson, W. L. Plishker,
J. Shalf, S. W. Williams, and K. A. Yelick. The landscape
of parallel computing research: A view from berkeley.
Technical Report UCB/EECS-2006-183, EECS
Department, University of California, Berkeley, Dec 2006.

[3] A. Bakhoda, G. L. Yuan, W. W. L. Fung, H. Wong, and
T. M. Aamodt. Analyzing cuda workloads using a detailed
gpu simulator. In ISPASS, pages 163–174. IEEE, 2009.

[4] M. M. Baskaran, U. Bondhugula, S. Krishnamoorthy,
J. Ramanujam, A. Rountev, and P. Sadayappan. A
compiler framework for optimization of affine loop nests for
gpgpus. In ICS ’08: Proceedings of the 22nd annual
international conference on Supercomputing, pages
225–234, New York, NY, USA, 2008. ACM.

[5] K. Datta, M. Murphy, V. Volkov, S. Williams, J. Carter,
L. Oliker, D. Patterson, J. Shalf, and K. Yelick. Stencil
computation optimization and auto-tuning on
state-of-the-art multicore architectures. In SC08:
Proceedings of the 2008 conference on Supercomputing,
pages 1–12, Piscataway, NJ, USA, 2008.

[6] J. W. Demmel. Applied numerical linear algebra. Society
for Industrial and Applied Mathematics, Philadelphia, PA,
USA, 1997.

[7] J. H. Ferziger and M. Peric. Computational Methods for
Fluid Dynamics. Springer, Berlin, 1999.

[8] S. Girbal, N. Vasilache, C. Bastoul, A. Cohen, D. Parello,
M. Sigler, and O. Temam. Semi-automatic composition of
loop transformations for deep parallelism and memory
hierarchies. Int. J. Parallel Program., 34(3):261–317, 2006.

[9] C. D. Gundolf, C. C. Douglas, G. Haase, J. Hu,
M. Kowarschik, and C. Weiss. Portable memory hierarchy
techniques for PDE solvers, part II. SIAM News, 33:8–9,
2000.

[10] E. Ipek, O. Mutlu, J. F. Mart́ınez, and R. Caruana.
Self-optimizing memory controllers: A reinforcement
learning approach. Computer Architecture News,
36(3):39–50, 2008.

[11] B. Jang, P. Mistry, D. Schaa, R. Dominguez, and D. Kaeli.
Data transformations enabling loop vectorization on
multithreaded data parallel architectures. In PPoPP ’10:
Proceedings of the 15th ACM SIGPLAN symposium on
Principles and practice of parallel programming, pages
353–354, New York, NY, USA, 2010. ACM.

[12] Y.-L. Ju and H. G. Dietz. Reduction of cache coherence
overhead by compiler data layout and loop transformation.
In Proceedings of the Fourth International Workshop on
Languages and Compilers for Parallel Computing, pages
344–358, London, UK, 1992. Springer-Verlag.

[13] K. Kennedy and U. Kremer. Automatic data layout for high
performance fortran. In Supercomputing ’95: Proceedings of
the 1995 ACM/IEEE conference on Supercomputing
(CDROM), page 76, New York, NY, USA, 1995. ACM.

[14] V. Kindratenko, J. Enos, and G. Shi. Gpu clusters for
high-performance computing. In Proceedings of the
Workshop on Parallel Programming on Accelerator
Clusters, Jan 2009.

[15] Y.-S. Kwon, B.-T. Koo, and N.-W. Eum. Partial
conflict-relieving programmable address shuffler for parallel

memories in multi-core processor. In ASP-DAC ’09:
Proceedings of the 2009 Asia and South Pacific Design
Automation Conference, pages 329–334, Piscataway, NJ,
USA, 2009. IEEE Press.

[16] Q. Lu, C. Alias, U. Bondhugula, T. Henretty,
S. Krishnamoorthy, J. Ramanujam, A. Rountev,
P. Sadayappan, Y. Chen, H. Lin, and T.-f. Ngai. Data
layout transformation for enhancing data locality on nuca
chip multiprocessors. In Proceedings of the 18th
International Conference on Parallel Architectures and
Compilation Techniques, pages 348–357, 2009.

[17] M. E. Mace. Memory Storage Patterns in Parallel
Processing. Kluwer Academic Publishers, 1987.

[18] N. R. Mahapatra and B. Venkatrao. The processor-memory
bottleneck: problems and solutions. Crossroads, 5(3es):2,
Apr 1999.

[19] L. McVoy and C. Staelin. lmbench: portable tools for
performance analysis. In Proceedings of the 1996 USENIX
Annual Technical Conference, pages 23–23, 1996.

[20] K. W. Morton and D. F. Mayers. Numerical Solution of
Partial Differential Equations: An Introduction.
Cambridge University Press, New York, NY, USA, 2005.

[21] T. Moscibroda and O. Mutlu. Distributed order scheduling
and its application to multi-core DRAM controllers. In
Proceedings of the 27th Symposium on Principles of
Distributed Computing, pages 365–374, 2008.

[22] O. Mutlu and T. Moscibroda. Parallelism-aware batch
scheduling: Enhancing both performance and fairness of
shared DRAM systems. Computer Architecture News,
36(3):63–74, 2008.

[23] nVIDIA. nvidia cuda programming guide 2.0, 2008.
[24] T. Pohl, M. Kowarschik, J. Wilke, K. Iglberger, and

U. Rüde. Optimization and profiling of the cache
performance of parallel lattice boltzmann codes. Parallel
Processing Letter, 13(4):549–560, 2003.

[25] Y. H. Qian, D. D’Humieres, and P. Lallemand. Lattice
BGK models for Navier-Stokes equation. Europhysics
Letters, 17(6):479–484, 1992.

[26] G. Rivera and C.-W. Tseng. Tiling optimizations for 3D
scientific computations. In SC00: Proceedings of the 2000
conference on Supercomputing, page 32, 2000.

[27] S. Ryoo, C. I. Rodrigues, S. S. Baghsorkhi, S. S. Stone,
D. B. Kirk, and W.-m. W. Hwu. Optimization principles
and application performance evaluation of a multithreaded
gpu using cuda. In Proceedings of the 13th Symposium on
Principles and Practice of Parallel Programming, pages
73–82, 2008.

[28] S. Sellappa and S. Chatterjee. Cache-Efficient Multigrid
Algorithms. International Journal of High Performance
Computing Applications, 18(1):115–133, 2004.

[29] J. Shao and B. T. Davis. A burst scheduling access
reordering mechanism. In Proceedings of the 13th
International Symposium on High Performance Computer
Architecture, pages 285–294, 2007.

[30] C. D. Spradling. Spec cpu2006 benchmark tools. Computer
Architecture News, 35(1):130–134, 2007.

[31] V. Volkov and J. W. Demmel. Benchmarking gpus to tune
dense linear algebra. In SC08: Proceedings of the 2008
conference on Supercomputing, pages 1–11, 2008.

[32] Y. Zhao. Lattice Boltzmann based PDE solver on the GPU.
Visual Computing, 24(5):323–333, 2008.

522

