
CodeReordering and SpeculationSupport for Dynamic Optimization Systems

Erik M. Nystrom,RonaldD. Barnes,Matthew C. Merten,Wen-meiW. Hwu
Centerfor ReliableandHigh-PerformanceComputing

Universityof Illinois
Urbana-Champaign,IL 61801�

nystrom,rdbarnes,merten,hwu� @crhc.uiuc.edu

Abstract

For dynamic optimization systems,successis limited
by two difficult problemsarising from instructionreorder-
ing. Following optimizationwithin andacrossbasicblock
boundaries,both the ordering of exceptionsand the ob-
servedprocessorregister contentsat each exceptionpoint
mustbeconsistentwith theoriginal code. Whilecompilers
traditionally utilize global data-flowanalysisto determine
which registers require preservation,this analysisis often
infeasiblein dynamicoptimizationsystemsdueto bothstrict
time/spaceconstraintsandincompletecodediscovery.

This paperpresentsan approach called PreciseSpecu-
lation that addressestheseproblems.Theproposedmech-
anismis a componentof our visionfor Run-timeOptimiza-
tion ARchitecture, or ROAR,to supportaggressivedynamic
optimizationof programs.It utilizesa hardwaremechanism
to automaticallyrecover the preciseregisterstateswhena
deferredexceptionis reported,utilizing the original unop-
timizedcodeto performall recovery. We observethat Pre-
ciseSpeculationenablesa dynamicoptimizationsystemto
achieve a large performancegain over aggressivelyopti-
mizedbasecode, while preservingpreciseexceptions.For
an 8-issueEPIC processor, thedynamicoptimizerachieves
between3.6% and 57% speedupover a full-strengthopti-
mizingcompilerthatemploysprofile-guidedoptimization.

1 Intr oduction

Effectivecodeoptimizationandschedulingrequiresreg-
ister livenessinformation at all control-flow instructions.
Instructions cannot be safely hoisted above conditional
branchesif their destinationregistersare live along the
taken pathfrom the branchUnfortunately, the costof per-
formingdata-flow analysisto determinelivenessatrun-time
is oftengreatandcanbe exacerbatedby the useexception
handlingmechanismsto supporttrappingandrecovery of
unexpectedorerrorconditions.Someprogramsrequirepre-

ciseexceptions, whereboththeorderingof exceptionsand
the processorandmemorystateat the time of the excep-
tion must be preserved. The additionalcontrol flow arcs
thatmustbeconsideredfor thepreservationof theseprecise
exceptionsrenderrun-timedata-flow analysisprohibitively
expensive.

In order to alleviate someof the restrictivenessof sup-
porting preciseexceptionsover the whole program,com-
pilers often place restrictionson what an exceptionhan-
dler canexpectaboutthe region it protects. For example,
the compilermay limit reorderingof PEIsto within a sin-
gle protectionregion. This assumptionrequiresthe pro-
grammerto specifyseparateprotectionregionsaroundall
order-dependentpotentially exceptinginstructions(PEIs),
but alsoallows for moreaggressive optimizationof larger
regions.If a run-timeoptimizeris not freeto makesuchas-
sumptions,it is forcedto maintainpreciseexceptions.Opti-
mizerswhich reorderinstructionsmusttake precautionsto
preserveorderingandcontext atall PEIs.Thiscanseverely
limit theaggressivenessof theoptimizationsperformedbe-
causealargenumberof instructionsin thedynamicinstruc-
tion streamcanexcept, including loads,stores,andfloat-
pointarithmetic.

Considerthe codesequencein Figure 1a. A compiler
with a view of an entire function may be able to perform
data-flow analysisto determinethe livenessof registers
alongbranchingcontrolflow paths.For example,r7 is the
only registerlive out of branchI. Compilersmayalsoreg-
isterallocateacrossexceptionpathsallowing registersto be
live into exceptionhandlers,suchasr4 out of excepting
loadC. Becauseof spaceandtimeconstraints,post-linkop-
timizersgenerallycannotperformdetaileddata-flow analy-
sisandthereforecannotdeterminewhich registersarelive
out suchpaths. Figure1b depictsthe live-outsetsfor the
sameregion of codewhendata-flow analysisis only per-
formedon thetrace.Becauseit is notknown whetherr5 is
live-outalongtheexceptionarcfrom loadD, theredefinition
of r5 in addE cannotbe moved above load D. Likewise,
addE cannotbemovedbelow branchG becauseit maybe

Trace Code Assumed Live−OutOriginal Live−OutOriginal Code

(b)(a)

A: branch
B: r4 =
C: load r2 =
D: load r3 =
E: r5 = r3 + 1

r4,r2,r3,r5,r6,r7

F: r6 = r2 + 4
G: branch

I: branch

None

r4,r2

r7

r4,r6

r4

H: r7 = r4 + r5

A: branch
B: r4 =
C: load r2 =
D: load r3 =
E: r5 = r3 + 1
F: r6 = r2 + 4
G: branch

I: branch

r4,r2,orig(r3,r5,r6,r7)

H: r7 = r4 + r5

orig(r4,r2,r3,r5,r6,r7)

r4,orig(r2,r3,r5,r6,r7)

r4,r2,r3,r5,r6,orig(r7)

Figure 1. Live-out variab les with respect to branc hes and potentiall y excepting instructions.

live-outalongthebranch’s takenpath.Essentially, addE is
pinnedbetweenloadD andbranchG.

This paperpresentsa new modelfor speculation,called
PreciseSpeculation, that automaticallyusesshadow reg-
istersto speculatively perform operations,while allowing
quick restorationof precisestateat the point of any taken
branchor exception. Since precisearchitecturalstateis
maintainedat every non-speculative branchand PEI, this
model improvesuponmechanismswhereentiretracesare
speculated.Ratherthan losing all performedwork upon
exit from the trace,the proposedmethodpreservesall of
thenon-speculativecomputationthathasbeenperformed.

The relationshipof PreciseSpeculationwith previous
methodsof speculationis describedin Section2,andacom-
pleteexplanationof this new methodis givenin Section3.
Schedulingresultsenabledby theproposedmethodarepre-
sentedfor multiple benchmarksin Section5.

2 RelatedWork

A numberof speculationtechniqueshavebeenproposed
to ensurecorrect exception handling and instruction re-
ordering.Hardwareout-of-ordermechanismsmaintainthe
appearanceof sequentialexecutionby internally buffering
speculative changesto architecturalstateat an instruction,
or even whole trace,granularity. In addition,a numberof
compilertechniqueshavealsobeenproposedthatallow the
compilerto aggressively reorderinstructionsby utilizing ar-
chitecturalfeaturesto temporarilydeferexceptions.While
someaccuratelypreserve preciseexceptions,othersmay
not preserve exceptionorderingor may drop someexcep-
tions completely. Clearly, the compiler hasan advantage
over a dynamicoptimizer becauseits optimizationphase
canperformanalysis,generatecode,andallocateregisters
for boththeapplicationandtheexceptionhandlers.

2.1 HardwareSpeculationMechanisms

Someout-of-orderexecutionprocessorspreserveprecise
exceptionsby deferringthecommitsof speculative instruc-
tions. Memory and register modificationsare buffered in

their programorderinto a retirementstructurecalleda re-
order buffer [21]. Instructionsin thebuffer arenot allowed
to affect stateuntil all older instructionshave completed
andcommitted. Checkpoint-repairmechanisms[12] have
alsobeenproposedto periodicallypreservestate.At check-
points,copiesof the registerfile aremade,while between
checkpoints,listsof changesto memoryarerecorded.Upon
anexception,theregisterfile copiesareusedto restorethe
previousregisterstatewhile thelistsof memorychangesare
usedto undoeachmemorychange.Thesizeof thereorder
buffer and differencelists limits the amountand distance
of reorderingthat cantake placewhenusingthesemecha-
nisms.

Transmeta’s Crusoe processors[6], Trace Proces-
sors[19], andIBM’ s Binary-TranslationOptimizedArchi-
tecture(BOA) [10] employ methodsby which entiretraces
are speculated,committing the resultsof the tracesonly
upontheir successfulcompletion. Any speculationfailure
within a traceforcesrecovery backto thebeginningof the
trace,andre-executionin theoriginal code.This technique
requiresthat all registerwrites occur to a shadow register
file thatonly commitsits valuesinto thearchitecturalregis-
terfile uponsuccessfulcompletionof thetrace.Likewise,a
gatedstorebuffer [23] preventsstoresfrom beingcommit-
tedto memoryuntil theendof thetrace.

The FrameCache[17] usesessentiallythe sametrace
speculationtechniqueastheCrusoeprocessors,but reduces
the numberof tracesideexits by converting unlikely side
exits into asserts[18]. An assertis an instructionthat trig-
gersatracespeculationfailurewhenits computedcondition
is false.Whenanunlikely sideexit is taken(assertfailure),
thespeculativestateis thrown away andexecutionresumes
at the beginning in unoptimizedcode. Use of assertsin-
creasesthesizeof anatomicallyexecutingunit from a ba-
sic block to an entiretrace,wherebyreducingthe load on
the branchpredictorand increasingthe scopeof dynamic
optimization.However, whenanassertlatein thetracetrig-
gers,all of theresultsof thespeculatedtracemustbethrown
awayandexecutionrestarted.Not eventhesuccessfullyex-
ecutedportionscanberetained.

2.2 Compiler-Controlled Speculation Mecha-
nisms

Early Very Long InstructionWord (VLIW) architecture
work revealedthat preservingpreciseexceptionsseverely
limited theaggressivenessof optimizationthatcouldbeap-
plied at compile time. Multiflow Computer’s TRACE ar-
chitecture[7] utilized non-exceptingforms of certain in-
structions,oftencalledsilent instructions,to allow for code
movementabovebranchesandotherexceptinginstructions.
When theseinstructionswould except, a garbagevalue
would bewritten into the resultregister. This phony result
wouldsometimescausefutureinvalid computationsandex-
ceptions,but clearlytheseexceptionswould not beprecise.
This form of compiler-controlledspeculationis sometimes
referredto as general speculation[4]. In suchcompiler-
controlled speculative mechanisms,live register analysis
canbe performedto locatearchitecturalregistersthat can
hold thespeculativevalues.

Boosting is another compiler-controlled mechanisms
that is ableto speculatearbitraryinstructions[22]. In this
model,eachspeculatedinstructionis taggedwith theproper
executionpath to its home block. If the home block is
reachedalong the specifiedpath, the speculative results
commit, otherwisethey are cleared. This mechanismre-
quiresbits in the instructionopcodeto representdirections
of a conditionalbranchalong the properpath to its home
block. If a boostedinstructioncausesanexceptionthepro-
gram counter(PC) is written into the instruction’s result
register, andthe exceptionis delayeduntil the speculation
is resolved. The PC value is propagatedthrough the re-
mainingboostedinstructionsinto their result registers. If
the pathstoredin the original instructionmatchesthe ac-
tual executedpathand the incomingoperandis taggedas
excepting,a speculatedexceptionhasoccurred.In orderto
beprecise,theprogramcounteris usedto find theoffending
instruction,andall subsequent,boostedinstructionsarere-
executednon-speculatively. This ensuresthat recoverable
exceptions,suchaspagefaults,arecorrectlyhandled.This
systemrequiresboth a shadow registerfile and a shadow
storebuffer to hold theboostedresults.

Sentinelscheduling is a compiler techniquedesigned
to allow boostingof instructionsabove a guardingbranch
while accuratelydetectingandreportingall exceptions[15].
Instructionsthatareboostedabove a brancharemarkedas
speculative.Whenaspeculatedinstructioncausesanexcep-
tion, thedestinationregisteris markedashaving excepted,
butnoexceptionis reported.Theprogramcounterof theex-
ceptinginstructionis insteadstoredin theregister, which is
propagatedthroughsubsequentspeculative instructions,as
with Boosting.Speculatedinstructionsarerequiredto have
a check or non-speculative consumerinstruction in their
original locationto detectandreportthe exception. When
a non-speculatedor checkinstructionreadsan input regis-

ter markedasexcepting,theexceptionis reportedwith the
programcounterthatis locatedin thesourceregister. How-
ever, whenmultiple input registersaremarkedwith except-
ing results,the exceptionpropagatedis arbitrary, thusnot
preservingpreciseexceptionordering. The sentinelmodel
alsorequirestheuseof extrarecoverycodeto correctspecu-
lation failuresdueto recoverablefaults.No extra hardware
is requiredto supportthis modelother than the excepting
bits on the registers,and the supportfor propagatingthe
programcounterthroughspeculative instructions. Inline
recovery [1] utilizes sentinelschedulingbut allows for re-
executionof codebetweenthe speculatedinstructionand
thecheckto serveastherecoverycode.

The Boostingand Sentinelspeculationmodelsare not
idealfor run-timeoptimization.Boostingrequiresextraop-
codebits to representthe valid path, a featurethat is not
presentin most architectures. Sentinelspeculationdoes
not preservepreciseexceptionsandwould requirerigorous
data-flow capabilitiesfor finding free registersin which to
storespeculatedvalues.Finally, bothmodelsrequirerecov-
ery code,inline or explicit, to re-executetheinstructionsin
orderto servicerecoverablefaults.In post-linkreoptimiza-
tion systems,recoverycodemaybedifficult or inconvenient
to generate.Since,thesesystemshaveaccessto theoriginal
codewhich is in pre-optimizationprogramorder, theorigi-
nal codecanbeuseddirectly for recovery.

The DAISY dynamictranslationsystem[20] utilizes a
speculationmechanismsimilar to sentinelspeculation.In
this system,extra registersareavailable to the translation
systemthatarenot utilized by thenativeapplication.Spec-
ulative resultscan be written into theseregisterswithout
affecting committedprogramstate. Then, the valuescan
be copiedfrom the extra registersto architectedregisters
inside the instruction’s homeblock. Like sentinelspecu-
lation, an exceptinginstructionwrites its programcounter
value into the result register and the value is then propa-
gatedthroughotherspeculatedinstructions. Whenan ex-
ceptionis reportedthroughanon-speculativeinstruction,an
exceptionto theDAISY systemis triggered,which initiates
theprocessof finding theoffendinginstructionin theorig-
inal code. Finding this instructionis necessarybecauseits
programcountervaluemustbe reportedto the application
exceptionhandlerto ensurepreciseexceptionhandling.

Translationsof originalcodeto DAISY architecturecode
occurson a page-by-pagebasis,which providesa unique
methodfor finding theoriginal instruction.Thesystemlo-
catesthetranslatedinstructionsfor pageentrypointsin the
original architecturethrougha directmappingto a location
in thetranslatedcode.Therefore,correspondencebetween
the original and translatedentry points can be achieved
througha simple calculation. When an exceptionoccurs
in the translatedcode,a backward path to an entry point
through the translatedcode is found and recorded. This

pathis thenusedto tracethroughthe original codeto find
the offending pre-translationinstruction. While this sys-
tem correctly reportsthe programcounterof the except-
ing instruction,DAISY requiressignificantoverheadto lo-
catethe paths. Furthermore,DAISY mustalsobe able to
re-shuffle significantportionsof translatedpages. When
a pageis translated,the known entry pointsareplacedat
theirmappedlocationswithin thepage,while otherinstruc-
tions are placedwhereconvenient. However, as new en-
try points are found through subsequentexecution, their
mappedlocationsmay be occupiedwith otherinstructions
whichmustbemovedin orderto correctlytranslatethenew
entrypoints.

Repairmechanismtechniqueshave beenproposedfor
performing optimization while preservingpreciseexcep-
tionsin dynamictranslators[14] [9]. In thesemethods,just
enoughprocessorstateis maintainedto allow repair code
to be generatedwhenan unexpectedevent,suchasan ex-
ception,occurs.This repaircodeis executedto restorepre-
cisestatebeforecontrol transfersto any exceptionhandler.
However, dueto the overheadof the generationof this re-
pair code,suchunexpectedeventsmustbevery infrequent
to preventa negative impacton performance.

2.3 Other Dynamic Optimization Systems

The Dynamodynamicoptimizationsystemis designed
to transparentlyoptimizea native applicationasit executes
ontheprocessor[2]. Thissystemdoesnotcurrentlyemploy
aspeculationmechanism,but ratherturnsoff any optimiza-
tion that might violate preciseexceptionswhen they are
required. In Dynamo,instructionsare initially interpreted
while theinstructionsareprofiled.Fragments, or traces,are
formedalongthe frequentlyexecutedpathsandthenopti-
mized.Sinceeachfragmentis constructedasacollectionof
basicblocks,thestart,end,andall sideexitsof thefragment
haveconsistentarchitecturalstatewith theircounterpartsin
theoriginalprogram.Furthermore,in orderto preservepre-
ciseexceptions,architecturalstatefor all PEIsmustalsobe
consistentwith their original counterparts.Becausemany
typesof optimizationsperformedon thefragmentsmayre-
move instructionsor move themwith respectto PEIs,they
canonly beperformedwhentheuserindicatesthatprecise
exceptionsareunnecessaryfor theapplication.Futurework
in Dynamoincludesthe useof optimizedcodedebugging
techniquesduring fragmentconstructionin an attemptto
allow for thereconstructionof theprecisecontext from any
point within theoptimizedfragments[24]. Traceoptimiza-
tionswithin Dynamowould likely benefitfrom a hardware
mechanismthat assistedin preservation of preciseexcep-
tions.

In a similar way, hardwaremechanisms[16] have been
proposedto performtransparentprofiling andtraceforma-
tion in a memory-basedcodecache. Without performing

data-flow analysishardwaresystemscannotutilize sentinel
speculationto allow reschedulingof instructions.Thus,in
orderto maintainpreciseexceptions,noinstructionreorder-
ing canbeperformed.For morepowerful optimizationsto
beperformed,a moreflexible speculationmodelis needed.

3 PreciseSpeculation

For greaterrun-timeoptimizereffectiveness,it is desir-
ableto aggressively optimizeacrossPEIsthatareunlikely
to except,while maintainingamechanismfor restoringpre-
ciseexceptionstatewhenan exceptionactuallyoccurs. In
mostapplications,exceptionsaretruly exceptionalevents.
While theseapplicationscontaina large numberof PEIs,
many applicationsnever actually except. Other applica-
tions may useexceptionhandlingasa convenientmethod
for executingcontrolflow changes,andsoa numberof po-
tentially exceptinginstructionsmay exceptsomewhat fre-
quently. Whenoptimizingcodein thepresenceof PEIsit is
desirableto optimizeacrossthePEIsthatareunlikely to ex-
ceptattheexpenseof recoverytimefrom theexception.For
PEIsthataremorelikely to exceptit is insteadprofitableto
preservequick recovery.

3.1 SentinelSpeculation- Accuratebut Impr ecise
Exception Reporting

As describedin Section2, SentinelSpeculationallows
potentiallyexceptinginstructionsandtheirdependentsto be
movedaboveconditionalbranchesandpredicatedefinesin
thecodeschedulewhile reportingonly theappropriate,non-
spuriousexceptions.Considertheoriginalcodeasshown in
Figure2a. In orderto hidesomeof the latency of load in-
structionsC andD, theschedulermovesthemearlier, in this
case,above branchA, makingC andD speculative instruc-
tions. Figure2b depictsthe resultof the codemovement.
LoadsC andD have beenconvertedinto speculatedloads,
asdenotedby theS flagprior to theopcode.In theSentinel
Speculationmodel,theseinstructionsdonotreporttheirex-
ceptionimmediately, but ratherrecordtheexceptioncondi-
tion in their result registers. Generally, a non-speculative
checkinstructionis placedin theoriginal locationof thein-
structionsto signal the actualexception. In order to limit
thecodesizeexpansion,implicit checkscanbeused.With
implicit checks,a non-speculative consumptionof a regis-
ter markedasexceptingwill signalthe exception. For ex-
ample,addoperationsE andF utilize the loadresultsnon-
speculatively, andwill signaltheexceptions.

Sinceany exceptioncausedby C andD will bereported
only whentheir resultsareusedby E andF, an exception
will bereportedif andonly if onewouldhavebeenreported
in the original program. Despitethis fact, the new code
in Figure 2b violatestwo preciseexceptionrequirements.
First,shouldbothloadsexcept,it will reportD beforeC be-

(d)

D : <s> load r3 =

(c)

C : <s> load r2 =

(b)

A : branch

(a)

I: branch
H: r7 = r4 + r5
G: branch
F: r6 = r2 + 4
E: r5 = r3 + 1
D: load r3 =
C: load r2 =
B: r4 =
A: branch

I: branch
H: r7 = r4 + r5
G: branch

B : r4 = E: r5 = r3 + 1

I : branch

B: r4 =
A: branch
D: <s> load r3 =
C: <s> load r2 =

F: r6 = r2 + 4

I : branch
H : r7 = r4 + r5
G : branch
F : r6 = r2 + 4
E : r5 = r3 + 1
D’: check r3
C’: check r2
B : r4 =
A : branch
D : <s> load r3 =
C : <s> load r2 =

H : r7 = r4 + r5
F : r6 = r2 + 4
E : r5 = r3 + 1

G : <s> branch

Figure 2. Code motion using Sentinel speculation and Precise speculation.

causethe orderingof the usesdoesnot matchthat of the
original loads.We will referto this astheorderingrequire-
mentof preciseexceptionreporting.Explicit checkscould
beinserted,asshown in Figure2c,to preservethedetection
orderof exceptionsat thecostof expandedcodesize. Ob-
viously, a schemethatpreservestheorderof exceptionre-
portingwithout explicit checksis desirable.Our proposed
new modelis onesuchscheme.

Second,in Figure2b, shouldonly C except,the excep-
tion will not be known until the first useof r2 at F, by
which timeE will havechangedthevalueof r5. However,
in theoriginalcode,theregisterwrite of r5 shouldnothave
occurredbeforeC’s exceptionis reported.This canpoten-
tially causea problemwith anexceptionhandlerif theold
contentsof r5 is neededduring exceptionhandling. We
will referto this requirementasthe livenessrequirementof
preciseexceptionhandling. This termreflectsthe fact that
someregisterscanbeusedbeforebeingredefinedin anex-
ceptionhandler.

In orderto accuratelyconformto this requirementwith-
out specialhardwaresupport,theoptimizermustconstruct
a completecontrolflow graphincludingtheexceptionhan-
dler codeandperformglobal live registeranalysis,a form
of globaldataflow analysis.Unfortunately, mostproposed
post-linkoptimizationmechanismseitherdonothaveguar-
anteedaccessto the entire control flow graphdue to in-
completeinstructiondiscovery or cannotafford to perform
globaldataflow analysisdueto limited time/spacebudgets
for their operation.As a result,very little reorderingcould
safely take placeacrossPEIs andbranches,inhibiting al-
mostall profitablecodemotion.

3.2 Overview of ProposedModel

To enableaggressive reschedulingand other dynamic
optimizations, a new speculationmodel, called Precise
Speculation, is proposedto minimizetherestrictionsplaced
uponthe codereorderingactivities performedby the opti-
mizer. The codereorderingactivities coveredby the Pre-
cise Speculationmodel include standardcontrol and data
speculationacrossPEIs(thoughdataspeculationis left for

LD

LD

LD

LD

LD

LD

LD

LD

COM

COM

COM

Trace

A’

C’

B’

A

B

C

A

B

C
Handlers
Exception

X
X

Y
Y

Exception
Control Flow

Speculative
Code Motion

Corresponding
Register Commits

Optimized
Trace

Original

Figure 3. Precise Speculation concept.

afuturework), aswell asspeculativerelocationof PEIsand
brancheswhile completelypreservingpreciseexceptions.
This new speculationmodelis designedso that it couldbe
utilizedby hardware-onlyrun-timeoptimizers,aswell asby
software-onlysystemslikeDynamo[2] andsoftware-driven
hardwarecoprocessoroptimizers[5] wherecompletedata
flow information is usually either too costly or infeasible
to derive. Precisespeculationadheresto both theordering
and the livenessrequirementsfor maintainingpreciseex-
ceptions.

UnderthePreciseSpeculationmodel,PEIsandbranches
are for all practical purposesidentical. Both PEIs and
branchescan changecontrol flow to the point of a non-
sequentialinstruction(branchesto their branchtarget and
exceptionsto the exceptionhandler). The only difference
is thatPEIsaregenerallyassumedto branchmuchlessfre-
quently, thusareimplicitly predictedasnot-taken. Branch-
ing Instructions(BIs) will beusedin referenceto thesetof
all PEIsandbranches.

Figure 3 depictsa high-level exampleof how Precise

Spec. Spec. Non-Spec. Non-Spec.
svalid Read Write Read Write

0 R-Spec W-Spec R-Spec W-Both
svalid=1

R-Spec W-Spec R-Spec W-Both
1 svalid=0 svalid=0

non-spec=spec

Table 1. Actions for register file accesses.

Speculationworks. Considerthe original traceof instruc-
tions shown on the right sideof the figure,which consists
of a setof potentiallyexceptingloadsandseveralotherar-
bitrary instructions. In the example,the schedulermoves
instructionsA, B, andC up above loadX asshown by A’,
B’, andC’ in the optimizedtraceon the left side of the
figure.However, thesespeculativeinstructionsmustnotde-
stroy thecontentsof registersthatmaybeliveoutof branch
X. Theproposedmechanismprovidesaseparatespeculative
registerfile. Speculative instructionswrite their resultsinto
thespeculative registerfile. At thepropertime, thespecu-
lative resultsmustthenbecommittedinto their properdes-
tinationswithin thearchitecturalregisters.This is shown in
theoptimizedtraceasregistercommitinstructionsA,B, and
C. Non-speculativeinstructions,ontheotherhand,write di-
rectly into their architecturaldestinationregisters.

With precisespeculation,non-speculative BIs serve as
checksfor speculative instructions. For example, in Fig-
ure 3, non-speculative load X is the BI that servesas the
checkfor A’, B’, andC’. Whenaninstructionactingasan
implicit checkdetectsany speculationexceptions,thecon-
tentsof the speculative registerfile is discarded.This re-
movesthe effectsof all the speculative instructionswhose
resultshave not beencommitted.In Figure3, theresultof
A’, B’, andC’ will bediscardedwhenany of themcauses
anexceptionthatis detectedby X. This ensuresthatall live
registersareproperlyprotectedagainstany changesby the
speculativeinstructions.A transitionto originalcodeis then
forced. In Figure3, the transitionto original codecorre-
spondsto the transitionof theexecutionfrom X on the left
handsideto X on the right handside. Sincethe resultsof
A’,B’, andC’ areall excludedfromthearchitecturalregis-
terfile, theoriginalcodecancorrectlyexecutein theirorig-
inal order. Then,exceptionsarereproducedin their proper
order. It shouldbenotedthattheorderingof storesis never
changedandthatstoresareneverspeculated.

3.3 SpeculativeRegisterFile

PreciseSpeculationrequiresa specialregister file and
works in tandemwith a traceoptimizationsystemto allow
exception recovery. Conceptually, eachregister contains
a speculative half and non-speculative half as well as bit
(svalid) thatspecifieswhetheror not thespeculative half is
valid. Theeffectsof accessesto theregisterfile areshown
in Table1. Non-speculativewritesalwayswrite bothhalves

of the register and clear svalid. Speculative instructions
write only the speculative half and set svalid. All reads
from a register readfrom the speculative half. However,
non-speculative readsadditionallyclearthe svalid bit and,
if svalid is set, commit the outstandingspeculative value
by copying thespeculativehalf to thenon-speculativehalf.
Speculative readsleave the svalid bit unchanged.Explicit
commit instructionsare no-opscomposedof the sources
readyfor committing. The registerfile canbe restoredto
a non-speculativestateby copying thenon-speculativehalf
into the speculative half for eachregisterwith a setsvalid
bit.

Whenbuilding the optimizedtracefor the codecache,
someBIs maybespeculatedandsomemaybeleft unspec-
ulated. Speculative BIs exceptsilently, meaningthat they
flaganexceptionbutotherwisedonothing.Non-speculative
BIs exceptif eithertheinstructionitself causesanexception
or if a precedingspeculative BI silently excepted.Whena
non-speculative BI excepts,it restoresthe registerfile to a
non-speculative stateasspecifiedabove andtransferscon-
trol to a point just beforeits counterpartinstructionin orig-
inal code.Themappingbetweentheoptimizedandoriginal
codeis known atall non-speculativeBIs andis describedin
Section4. Oncebackin the original code,executioncon-
tinuesat a point prior to any of thespeculatedinstructions,
in effectexecutinginline recoverycode.If theexceptionin
theoptimizedcodeis recoverable,suchasa deferredpage
fault,it will beservicedin theoriginalcode.After returning
from the exceptionhandler, executioncontinuesnormally
andwill eventuallytransitionbackto optimizedcodeat an
entrypoint.

Basic blocks shouldbe viewed as regions betweenall
BIs insteadof just branches.PreciseSpeculationallows all
instructions(includingBIs themselves)to besafelyspecu-
latedupintoanotherbasicblock. Thespeculationof aBI al-
lows thecomputationalpartandexceptingpart to complete
earlyandallows thebasicblock aboveandbelow theBI to
bemergedinto one,largerblock. Thecommit for a BI can
safelyandimplicitly occuratthefirst non-speculativeuseof
the destination,or if noneexists,anywherein the new ba-
sic block usinganexplicit commit. In this manner, Precise
Speculationcanprovidegreaterfreedomin codemotionby
enlargingbasicblocks.

3.4 Branch Speculation

Thecodein Figure2b,while not sufficient to allow pre-
ciseexceptionhandlingfor sentinelspeculation,is perfectly
valid in precisespeculation.In the figure,A, C, andD are
all BIs. ShouldeitherC or D silently except,A will restore
the registerfile andbranchto just beforeits counterpartin
originalcode.AssumingbranchA in originalcodedoesnot
take(it couldhavebeenaguardingbranchto makesurethat
C andD donot loadfrom NULL), theloadswill thenbere-

executedandtheexceptionhandledasif theoptimizedcode
never existed. Previously, it wasnotedthat branchesand
PEIsareconsideredin anidenticalmanner. Thismeansthat
branchescanalsobespeculatedunderthismodel.Figure2d
shows an extensionof the examplein Figure 2b wherea
branch,along with the loadsC andD is speculated.The
speculatedbranchG silently exceptsif its branchcondition
is true. This meansthat if the branchshouldbe taken, the
next non-speculative BI, branchA, actsthe sameasif one
of thespeculatedloadshadexcepted.By speculatedbranch
G, thebasicblock hasbeenfurtherincreasedin size.

Theability to speculatebranchesis presentedto provide
insightinto thenatureof precisespeculation.However, this
featureis not takenadvantageof for theexperiments.

3.5 Combining Sentineland PreciseSpeculation

As discussedpreviously, PEIs(exceptfor stores)canbe
preciselyspeculatedaboveothernon-speculativePEIs.The
non-speculativePEIsserveastheexceptioncheckof all out-
standingprecisespeculative instructions,forcing a branch
backto original code.Back in original code,executionre-
sumesnon-speculatively in originalprogramorder. Thisex-
ecutionguaranteestheproperorderingandregistercontext
of exceptions.

While instructionsthat actuallyexceptcanbe included
andoptimizedwithin a trace,caremustbetaken in choos-
ing how far to speculateinstructionsthat normally do not
except.Whenaninstructionis precisespeculatedto anear-
lier locationwithin a trace,it may exceptmoreoften if it
is movedbeforea guardingbranch. This exceptionwould
forceanearlyexit from theoptimizedtraceat thenext non-
speculativePEI,whentheguardingbranchwouldhavenor-
mally protectedit. It is beneficial,however, to precisely
speculateinstructionsabovebranchesthatarehighly likely
to fall through.Becausethesebranchesarenot likely to exit
out of the trace,they arealsonot likely to bean important
guardinstructionfor thePEI.Thereforeprecisespeculation
above brancheswith a strong fall throughbias will limit
likelihoodof a prematureexit.

Much of the benefit from compiler-generatedsentinel
speculationis that loadscanbe moved up above guarding
branches.Sincethe loadsare silent, the exceptionis de-
ferreduntil a sentinelis reachedwhich triggerstherealex-
ception.In thesameway, a run-timeoptimizercouldmake
potentiallyexceptingoperationsbothsentinelandprecisely
speculative by insertinganexplicit sentinelfor the instruc-
tion. As long asthis sentinelis itself neverspeculated,spu-
riousreturnsto unoptimizedcodecanbeavoided.However,
sincethe goalof this work is to demonstratethe costsand
benefitsof our new modelof speculation,we did not allow
ouroptimizerto performadditionalsentinelspeculation.

Compiler-generated control-speculative instructions
must have an eventualsentinelto prevent the loss of an

exception. Sincethesesentinelspeculatedinstructionsare
silent, a dynamicoptimizer is free to preciselyspeculate
them,evenabovebrancheswith a goodchanceof taking.

3.6 Implementation Considerations

Althougheachregisterfile entry in the precisespecula-
tion model is conceptuallyorganizedasa two-portionen-
tity, mostof the complexity canbe confinedto the retire-
mentstageof theprocessorpipeline.In animplementation,
onecansimply have the speculative portionof the register
file entriesin thecoredatapath.Thustheregisterfile in the
coredatapathwill be referredto asthe speculative regis-
ter file, which is identicalin designto the registersusedin
traditionalarchitectures.An additionalarchitecturalregis-
ter file with an svalid bit for eachentry is provided in the
instructionretirementstageof theprocessorpipeline.

All instructions,speculative or non-speculative,write to
thespeculativeregisterfile. As non-speculativeinstructions
areretired,they alsowrite into thearchitecturalfile. On the
otherhand,speculativeinstructionsarenotallowedto write
into thearchitecturefile whenthey retire. They simply set
the �������
	�� bit of their destinationregisterentry. Thus,at
any point in time, thesvalid bits markall theentrieswhose
speculative andarchitecturalportionsdiffer. The valuein
the architecturefile is the potentiallylive valuebeingpro-
tectedfor preciseexception.

As a non-speculative instructionretires,it alsodeposits
its input register valuesinto the architecturalregistersif
thesevalues were producedby speculative instructions.
This effectively advancesthe contentsof the architecture
registerfile asthelegitimacy of thespeculative instructions
areconfirmedby their non-speculative dependentinstruc-
tions. The �������	�� bits can be usedto avoid unnecessary
copying of identicalvaluesfrom thespeculativeregisterfile
to thearchitecturalregisterfile. Additionally, bufferingcan
beusedto eliminatetheneedto increasethenumberof ports
to thearchitecturefile. Sincethespeculativeinstructionsare
notallowedto write to thearchitecturefile, thebufferedup-
dateswill eventuallyfind idle portsinto thefile.

Whenaspeculativeexceptionis signaledby a check,ei-
ther implicit or explicit, the speculative registerfile is re-
pairedwith the contentsof the architecturefile beforethe
executionis redirectedto theoriginal code.This erasesall
the speculative instructionresultsand preserve all poten-
tially live registers.

4 Mapping of Optimized to Original Code

In order to ensurepreciseexceptions,the original ad-
dressof the exceptinginstructionmust be reportedto its
handler. In many systems,the handlercomparesthe in-
structionaddressto the handler’s coveragerangeto deter-
mine if it coversthe particularexception. In our proposed

(b) Implicit speculation check via non−speculated PEI

H: r7 = r4 + r5
I: br r7>0 to 0x80

C: load r2 =
B: r4 =

D: load r3 =
E: r5 = r3 + 1
F: r6 = r2 + 4
G: br r6>0 0x38

0x38
0x3C
0x40
0x44
0x48
0x4C
0x50
0x54

...

Taken Branch Path
Recovery Path

D: <s> load r3 =
C: <s> load r2 =
X: check 0x10

I: br r7>0 to 0x80
H: r7 = r4 + r5

F: r6 = r2 + 4
E: r5 = r3 + 1
B: r4 =
A: br r4!=5 to 0x14

(a) Explicit speculation check instruction

G: br r6<=0 to 0x58

Z: jump 0x40 0x54
0x50
0x4C
0x48
0x44

0x3C
0x40

0x38

...

H: r7 = r4 + r5
I: br r7>0 to 0x80

C: load r2 =
B: r4 =

D: load r3 =
E: r5 = r3 + 1
F: r6 = r2 + 4
G: br r6>0 0x38

0x10 A: br r4==5 to 0x40

Original CodeExtracted and Optimized Code

Hot execution path used during trace formation: A B C D E F G H I

I: br r7>0 to 0x80
H: r7 = r4 + r5

F: r6 = r2 + 4
E: r5 = r3 + 1

D: <s> load r3 =
C: <s> load r2 =

B: r4 =
A: br r4!=5 to 0x14

G: br r6<=0 to 0x58

Z: jump 0x40

Extracted and Optimized Code Original Code

0x10 A: br r4==5 to 0x40

Figure 4. Explicit and implicit speculation
check instructions.

system,the original addressof the exceptinginstructionis
alsoneededto begin inline speculationrecoverybackin the
original code.

Figure4(a) depictsa region of codethat hasbeenopti-
mizedin a dynamicoptimizer. The right sideof the figure
depictstheoriginal coderegion,andtheleft depictstheop-
timizedcodewhereloadsC andD havebeenspeculatedand
reordered.Usingtheprecisespeculationmodel,anexplicit
checkinstructionX hasbeeninsertedto direct execution
backto theoriginal codealongthedashedline whenanex-
ceptionis detected.An explicit checkinstructioncontains
an addressto its correspondinglocationback in the origi-
nal code.Whenanexplicit checkis inserted,executioncan
immediatelytransitionto the original codewithout delay,
but incursthecostof addingextra instructionsinto thecode
stream.

Figure4(b)depictsthesameregionof codethis timeus-
ing animplicit, precisespeculationcheck.In this mode,all
potentiallyexceptingandbranchinginstructionsalsoserve
aschecks.However, theseinstructionsdonotcontaininfor-
mationasto their locationin original code.Anothermech-

anismmustbeutilized to obtaintheaddress.
A numberof solutionshave beenproposedto locatethe

original address.As previously described,DAISY walks
backwardin theoptimizedcodetrackingthepathtoanentry
point wheretheoriginal locationis known. Othermethods
have includedinsertingmarkersinto the codestreamprior
to eachPEI with the correspondingoriginal address.This
techniqueis essentiallyequivalent to insertingan explicit
checkprior to eachPEI. Finally, a tablelocatedoutsideof
theoptimizedinstructionstreamcouldholdthecorrespond-
ing addressesfor eachPEI.

Our solutionis ahybridschemethatallows theinsertion
of checksasaddressmarkerswhenexplicit checkingis de-
siredor whenan exceptionis likely while relying upona
tablefor thebulk of themarkers.Thiswaywegaintheflex-
ibility of adirecttransferto originalcodewhile minimizing
theincreasein codesize.

Specifically, a tableof originalprogramaddressesis cre-
atedfor eachoptimizedtrace,whereeachnon-speculative
PEI or branchin the codeutilizes an entry. Instructions
that cannotexcept do not serve as checksand therefore
do not needentriesin the table. Likewise, speculatedin-
structionscannotbranchanddo not needentries,while any
explicit checkinstructionsalreadycontainthe original ad-
dressanddo not needentries.Thechallengeto any table-
basedmethodis finding the correct location in the table.
In our method,we linearly allocateentriesfor the poten-
tially branchinginstructionsin the traceandusea counter
to maintainthecorrectoffset into thetable.Oneadditional
considerationis thememorylocationof thetable.Sincethe
tableis unlikely to befrequentlyaccessed,it shouldbeposi-
tionedsuchthatit doesnot interferewith normalinstruction
cachingoperations.

At the startof a trace,theoffsetmustbesetto the start
of the trace’s table. To perform this initialization, a spe-
cial instructionis insertedat thebeginningof eachtrace,as
shown asinitializer Y in Figure 5. During execu-
tion of thetrace,thecounteris incrementedfor eachPEIor
branchthat is encountered.Whenanexceptionis detected
at a branchinginstruction,the counterwill containthe ap-
propriateindex into the table. The processordiscardsany
speculative valuesandtransferscontrol to the target in the
tablepointedto by theoffset.

Sincebranchescannormallychangecontrol flow, there
mustbeaprecedencebetweenits responsibilityasanexcep-
tion checkanda conditionalbranch.Semantically, branch
instructionscomputetheir conditionsprior to checkingfor
exceptions.Shouldbothabranchconditionevaluateto true
and an exceptionalso be flagged,the branchwill simply
follow its target. This is valid because,effectively, codeis
only movedupward.Therearetwo casesthatillustratethis
point. In the first case,the branchforcesan exit from the
tracebackto original code. In thesecondcase,thebranch

0

1

2

0x54
0x50
0x4C
0x48
0x44
0x40
0x3C
0x38

...

H: r7 = r4 + r5
I: br r7>0 to 0x80

C: load r2 =
B: r4 =

D: load r3 =
E: r5 = r3 + 1
F: r6 = r2 + 4
G: br r6>0 0x38

C: <s> load r2 =
X: check 0x10

Extracted and Optimized Code

Hot execution path used during trace formation: A B C D E F G H I

A: br r4==5 to 0x40

Original Code

0x10Y: initialize to table

1

−
−
−

−

−

T
ab

le
 E

nt
ry

 N
um

be
r

I: br r7>0 to 0x80
H: r7 = r4 + r5

F: r6 = r2 + 4
E: r5 = r3 + 1

A: br r4!=5 to 0x14
B: r4 =
D: load r3 =

Z: jump to 0x40
−
−

−

0

G: br r6<=0 to 0x582

−

Figure 5. Hybrid appr oach to obtaining the original program address.

transferscontrol to anothertrace,or possiblyto within the
currenttraceservingastheloopbackbranch.In bothcases,
thespeculative instructionthat flaggedthe exceptioncame
from the branch’s fall-throughtarget and would not have
beenreachedif executingin originalorder. Thismeansthat
theflaggedexceptioncanbesafelyignored.

Computingthe conditionof a branchandfollowing its
exit targetfirst ratherthancheckingfor anexceptionpermits
two things. First, a taken branchnever hasto accessthe
tableto getto theoriginalcodebecausethetargetis encoded
in the instruction. Second,the tableoffset for the branch
cancontainthe fall throughtargetof the branchinsteadof
the addressof the branchitself, as shown in branch A
in Figure 5. This preventsthe branchfrom having to re-
executeshouldit seeanexceptionflagged.

However, PEIsmustexecutefirst, andcheckfor an ex-
ceptionsecond.Upon detectingan exceptioncausedby a
precedingspeculative instructionor causedby the PEI it-
self, executioncontrol must transferto the original code
just prior to executionof the PEI. For example,shoulda
non-speculative load in the optimizedcodeexcept,load
D in Figure5, theexceptionmustbesuppressedin thetrace
andre-executionof theinstructionmustbeperformedin the
originalcode.Thisensuresthattheprogramcounterhasthe
correctvalueat theexceptionandensuresthatall specula-
tivestatehasbeendiscarded.

5 Experimental Analysis

To evaluatethe potentialbenefitfrom PreciseSpecula-
tion for run-time optimization,programhot spots[16] of
several SPECbenchmarkswere examined. Thesebench-
markswere compiledusing the IMPACT compiler [3] to
generateaggressively-optimizedsuperblockcode[11] for
the IMPACT EPIC architecture[1]. Theseprogramswere
emulatedandthe Hot SpotDetectorandTraceGeneration
Unit weresimulatedto extractsetsof tracesmakinguppro-
gramhot spots[16].

Benchmarks Num. Inst from Hot Spot Static PEIs
Insts. Selected Trace Ops and

Traces Sets Brs

099.go 329M 42M 7 13685 5066
124.m88ksim 80M 56M 3 3578 1395
129.compress 29M 12M 5 3787 1286
130.li 122M 63M 9 4701 2191
132.ijpeg 1.20B 704M 68 45093 17156
134.perlJmble 2B 1.37B 8 5035 2672
134.perlScrbl 2B 842M 4 5618 2923
181.mcf 509M 441M 9 4716 1714
183.equake 2B 1.26B 9 2940 852
197.parser 184M 78M 32 9414 4127

Table 2. Benc hmark summar y.

The benchmarksusedfor the experimentsare listed in
Table2. Hot spotsweredetectedusingthemethodin [16].
Each hot spot consistsof a set of traces,and we chose
to only re-scheduleand optimize hot spotscontainingat
leastonetracethatexecutesmorethan40,000instructions
throughthecourseof theprogram.Thenumberof instruc-
tionsemulatedis shown for eachbenchmarkaswell asthe
total dynamicnumberof instructionsspentwithin the se-
lectedhot spots.

With the exceptionof onerun of perl, tracesweregen-
eratedwith the sameinput usedby the static compiler to
generateits profile information. This makes the compar-
ison more challengingfor the runtime optimizer. Results
presentedfor thebenchmarkparserconsistonly of thedic-
tionary readportionof its run while perl andequake were
limited to 2 Billion instructions.

Eachbenchmarkwasfirst compiledto an internal rep-
resentation,inlined, aggressively optimized, and sched-
uledfor aneight issueIMPACT EPICprocessorwith three
branch,threememory, threefloat-point,andfive arithmetic
units. Staticcompilationwasguidedby trainingprofile in-
formation. Separatefrom the benchmarks,a subsetof the
standardC library wasalsocompiled,with the aid of pro-
file information for generalusageof the library and with

inlining within the library itself. Insteadof completingthe
compilationprocessto a binary, thebenchmarksandtheC
library wereleft in IMPACT’s IR (intermediaterepresenta-
tion). ThecompiledIR wasthenemulated,hot spotswere
detected,andtraceswereformed.Oncedetected,thetraces
themselveswereemulated.At theendof theemulation,se-
lectedtracesalongwith their actualpost-detectionprofiles
werestoredfor subsequentexperimentalphases.

Performanceresultsfor the tracesfor eachbenchmark
arepresentedandanalyzedfor thefollowing four models:

1. Original: No changesmadeto theoriginalcodesched-
ule. This modelservesasa baselinefor performance
evaluation.

2. Scheduled: Reschedulingappliedwhichpreservespre-
cise exceptionsand limits early traceexits. As de-
scribedin Section3, any reorderingof non-speculative
instructionswith respectto non-speculative PEIs re-
quiresthat the moved instructionbe preciselyspecu-
lated. For our experiments,all commitsare explicit
and thereforeaddedfor every speculatedinstruction.
Notethat thespeculationsemanticsrequirerestricting
eachcommitto thehomeblock of thePEI it commits.
Finally, to limit early traceexits, speculationdoesnot
proceedabove unbiasedbrancheswhich, for our ex-
periments,is any tracebranchwhosetaken threshold
is morethan20%.

3. Bestscheduled: Exceptionsandearlytraceexitsareas-
sumednot to occur. Theresultis a lossof bothprecise
exceptionsandcorrectbehavior ontakenbranches.Ig-
noring the potentialfor an early traceexit cancause
thecorruptionof valueslive-outof a traceexit andthe
schedulesproducedare likely invalid. However, this
is not a significantproblemsincetheseresultsare to
serve only asa performanceupperbound.By remov-
ing thesetwo restrictions,no speculationoverheadis
requiredto re-orderPEIsor instructionsandPEIs,no
commitsareadded,andinstructionscanbespeculated
highersincetraceexit weightsarenot considered.

4. Optimized: Simple, exception-safeoptimizationsare
performed,followed by the sameschedulingprocess
usedfor thescheduledmodel. Optimizationsarelim-
ited to local copy and constantpropagation,redun-
dancy elimination and instruction rescheduling,all
previouslyproposedfor tracecaches[8] [13].

Figure 6 shows the speedupresultsfor the Scheduled,
Optimized,andBestScheduledcases.TheOriginal is used
as a baseline. Speedupon the tracesrange from 3.6%
for ijpeg to about 57% for perl (Jumble). The average
speedupfor rescheduledcodeboundto all of theconstraints
of theScheduledmodelis about22%. Thespeedupresults

from a varietyof factors.During the tracegenerationpro-
cess,tracesareformedacrossfunctionsbothinternalto the
benchmarkand throughthe includedC library functions.
This tracepartial inlining greatlyimprovesschedulingop-
tions. This is especiallytrue with regard to the C library
functionsbecausea profile for the function for thespecific
benchmarkdid not exist at staticcompilationtime. Addi-
tionally, the inlining is partial (i.e. it containsonly the ac-
tively traversedportionof thefunction)allowing codeto be
inlined acrossfunctionsnot statically inlined due to code
size limitations. Sincepermanentstateis not changedby
preciselyspeculatedinstructionsuntil their matchingcom-
mit is encountered,ourmodeleffectively allowsthe“viola-
tion” of registersliveoutof abranch.An instructioncanbe
speculatedabove a PEI knowing that, shouldthe PEI exit
thetrace,machinestatewill remainconsistent.

The combinationof partial inlining, separatelibrary
code,andthenaturalspecializationduringthedynamicop-
timization processcancausean individual traceprofile to
deviate from the aggregateprofile usedduring staticcom-
pilation. This is especiallytruewhenthebenchmarkinput
differsfrom theoneusedfor theprofile for staticcompila-
tion, asis the casefor perl (Jumble)in Figure6. Perlwas
staticallyoptimizedusingan averageprofile of the scrab-
ble andprimesinputs. The resultslabeledperl jm arefor
a run using a different input namedjumble while the re-
sultslabeledperl scrarethosefor a runusingscrabble.For
all threecasesscheduled,Optimized,and BestScheduled,
reschedulingshows a largerspeedupwhenthedifferentin-
put(jumble)wasused.Thisprovidesevidencethatachange
in input canyield greaterpotentialfor re-optimization.

Another importantpoint to extract from Figure6 is the
performancegap betweenthe BestScheduledand Sched-
uledcases.Part of thereasonfor thegapis that thesched-
uler hasmorefreedomto performupwardcodemotionbe-
causeit doesnot limit operationsfrom passinganunbiased
branch. Additional freedomcomesfrom the fact that pre-
cisespeculationrequiresthespeculationof aPEImustcross
at leastone other PEI or it cannotbe moved without the
addition of an explicit check. To avoid insertingof such
checks,in the Scheduledcasewe requirethat flow depen-
dencesmust allow for an operationto move at least into
anotherbasicblock for it to be moved at all. Speculation
itself aggravatesthis becausethebasicblock sizesgrow as
morespeculationis performedincreasingthedistanceover
which aPEIwill have to berelocated.

The other reasonfor the performancedifferenceis the
consumptionof resourcesby theexplicit commitsaddedfor
everypreciselyspeculative instruction.Thiseffect is some-
what exaggeratedsince,in order to estimatea worst-case
cost of the commits,we usedonly single source,explicit
commits. Explicit commits tend to clump togethersince
they cannotmove outsideof the basicblock in which they

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

099.go 124.m88ksim 129.compress 130.li 132.ijpeg 134.perl_jm 134.perl_scr 181.mcf 183.equake 197.parser Average

S
pe

ed
up

Spec Opti Best

Figure 6. Speedup of traces under various scheduling constraints.

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

099.go 124.m88ksim 129.compress 130.li 132.ijpeg 134.perl_jm 134.perl_scr 181.mcf 183.equake 197.parser Average

F
ra

ct
io

na
l I

nc
re

as
e

in
 O

ps

Commits Reduced Commits Table Offsets

Figure 7. Fractional increase in code siz e due to commits and table offset instructions.

are placed. The fraction of ops that are commits for the
scheduledmodelcanbe seenin Figure7. Anywherefrom
3% to 16%of all statictraceinstructionsarecommits.The
Reducedcolumnis thenumberof commitswhentakingad-
vantageof implicit commitsandtwo sourceexplicit com-
mits. This reducestheincreaseto between1% and8%.

The Table Offsetsbar shows a count of the numberof
opsthat mustbe addedto keepthe offset into original PC
tableconsistent.Onemustoccurarethebeginningof each
traceandonefor a join at any loop-backbranchinternalto
a trace.

6 Conclusion

ThePreciseSpeculationmechanismallowsdynamicop-
timization systemsto perform aggressive codereordering
andspeculationwhile ensuringthatexceptionsaretakenin
their properorder. It furthermaintainsa low-costrecovery
mechanismto presentpreciseregisterstatewhenadeferred
speculativeexceptionis finally reported.Thesamerecovery
mechanismalsoeliminatesthe needfor costly global live
registeranalysisduring global codemotion. Theseprob-

lemshavetraditionallylimited theeffectivenessanduseful-
nessof dynamicoptimizationsystems.PreciseSpeculation
solvestheseproblemswith a modestamountof hardware
overheadthat is mostlyconfinedto the retirementstageof
theprocessorpipeline.

We observethatsupportedby PreciseSpeculation,a dy-
namicoptimizationsystemcanachievealargeperformance
gain over an aggressively optimizedbasecodewhile pre-
servingpreciseexceptions. For an 8-issueEPIC proces-
sor, thedynamicoptimizerachievesbetween3.6%and57%
speedupover a full-strengthoptimizing compiler that em-
ploys profile-guidedoptimization.All theobservedperfor-
mancebenefitsof the dynamicoptimizerarederived from
largeandaccuratelyformedoptimizationwindows formed
for eachphaseof the programexecution. Without Precise
Speculation,very little speedup would be possiblesince
optimizationandcodereorderingwouldbeconfinedwithin
instructionsequencesbetweenbranchesandpotentiallyex-
ceptinginstructions.In aggressively optimizedcode,there
is virtually noopportunityfor performanceimprovementin
theselimited instructionsequences.

Futurework involvesdetailedstudiesof dynamicopti-
mizationandschedulingtechniquesthattakefull advantage
of PreciseSpeculation,detailedcharacterizationof each
typeof performanceopportunity, andextendingthe model
to supportdynamicoptimizationof operatingsystemcode.

References

[1] D. I. August,D. A. Connors,S.A. Mahlke,J.W. Sias,K. M.
Crozier, B. Cheng,P. R. Eaton,Q. B. Olaniran,andW. W.
Hwu. Integratedpredicatedand speculative execution in
theIMPACT EPICarchitecture.In Proceedingsof the25th
InternationalSymposiumon ComputerArchitecture, pages
227–237,June1998.

[2] V. Bala,E. Duesterwald,andS.Banerjia.Dynamo:A trans-
parentdynamicoptimizationsystem.In Proceedingsof the
ACM SIGPLAN’00 ConferenceonProgrammingLanguage
DesignandImplementation, pages1–12,June2000.

[3] P. P. Chang,S. A. Mahlke, W. Y. Chen,N. J. Warter, and
W. W. Hwu. IMPACT: An architecturalframework for
multiple-instruction-issueprocessors.In Proceedingsof the
18th International Symposiumon ComputerArchitecture,
pages266–275,May 1991.

[4] P. P. Chang,N. Warter, S.A. Mahlke,W. Y. Chen,andW. W.
Hwu. Threearchitecturalmodelsfor compiler-controlled
speculative execution. IEEE Transactionson Computers,
44(4):481–494,April 1995.

[5] Y. Chou and J. P. Shen. Instruction path coprocessors.
In Proceedings27nd Annual International Symposiumon
ComputerArchitecture, pages270–281,June2000.

[6] R. F. Cmelik, D. R. Ditzel, E. J. Kelly, C. B. Hunter, D. A.
Laird, M. J. Wing, andG. B. Zyner. Combininghardware
andsoftwaretoprovideanimprovedmicroprocessor. United
StatesPatentNo. 6,031,992.TransmetaCorporation,Febru-
ary 2000.

[7] R.P. Colwell, R.P. Nix, J.J.O’Donnell,D. B. Papworth,and
P. K. Rodman.A VLIW architecturefor a tracescheduling
compiler. In Proceedingsof the 2nd InternationalConfer-
enceon Architectural Supportfor ProgrammingLanguages
andOperating Systems, pages180–192,April 1987.

[8] D. H. Friendly, S. J. Patel, andY. N. Patt. Puttingthe fill
unit to work: Dynamicoptimizationsfor tracecachemicro-
processors.In Proceedings31th AnnualIEEE/ACM Inter-
national Symposiumon Microarchitecture, pages173–181,
December1998.

[9] M. GschwindandE. Altman. Optimizationandpreciseex-
ceptionsin dynamiccompilation.In Proceedingsof the2000
Workshopon Binary Translation, pages66–74.ACM Com-
puterArchitectureNews,March2001.

[10] M. Gschwind,E. Altman, S.Sathaye,P. Ledak,andD. Ap-
penzeller. Dynamicandtransparentbinarytranslation.IEEE
Computer, pages54–59,March2000.

[11] W. W. Hwu, S. A. Mahlke, W. Y. Chen,P. P. Chang,N. J.
Warter, R. A. Bringmann, R. G. Ouellette, R. E. Hank,
T. Kiyohara, G. E. Haab, J. G. Holm, and D. M. Lav-
ery. Thesuperblock:An effective techniquefor VLIW and
superscalarcompilation. The Journal of Supercomputing,
7(1):229–248,January1993.

[12] W. W. Hwu andY. N. Patt. Checkpointrepairfor high per-
formanceout-of-orderexecutionmachines.In Proceedings
of the14thInternationalSymposiumonComputerArchitec-
ture, pages18–26,June1987.

[13] Q. JacobsonandJ. E. Smith. Instructionpre-processingin
traceprocessors. In Proceedingsof the 5th International
Symposiumon High-PerformanceComputerArchitecture,
pages125–129,January1999.

[14] B. Le. An out-of-orderexecutiontechniquefor runtimebi-
nary translators. In Proceedingsof the 8th International
Conferenceon Architecture Supportfor ProgrammingLan-
guages and Operating Systems, pages151–158,October
1998.

[15] S. A. Mahlke, W. Y. Chen,R. A. Bringmann,R. E. Hank,
W. W. Hwu, B. R. Rau, and M. S. Schlansker. Sentinel
scheduling:A modelfor compiler-controlledspeculativeex-
ecution. ACM Transactionson ComputerSystems, 11(4),
November1993.

[16] M. C. Merten,A. R. Trick, R. D. Barnes,E. M. Nystrom,
C. N. George,J.C. Gyllenhaal,andW. W. Hwu. An archi-
tecturalframework for runtimeoptimization. to appearin
IEEETransactionsonComputersSpecialIssueonDynamic
Optimization, 2001.

[17] S. J. Patel andS. S. Lumetta. rePLay: A hardwareframe-
work for dynamicprogramoptimization. TechnicalReport
CRHC-99-16,Center for Reliable and High-Performance
Computing,University of Illinois, Urbana,IL, December
1999.

[18] S. J. Patel,T. Tung,S. Bose,andM. Crum. Increasingthe
sizeof atomicinstructionblocksby usingcontrolflow asser-
tions.In Proceedings33rd AnnualIEEE/ACM International
Symposiumon Microarchitecture, pages303–316,Decem-
ber2000.

[19] E. Rotenberg, Y. S.Q. Jacobson,andJ.E. Smith.Tracepro-
cessors.In Proceedingsof the30thInternationalSymposium
onMicroarchitecture, pages138–148,December1997.

[20] G. M. SilbermanandK. Ebcioglu. An architecturalframe-
work for supportingheterogeneousinstruction-setarchitec-
tures.IEEEComputer, 26(6):39–56,June1993.

[21] J. E. SmithandA. R. Pleszkun.Implementationof precise
interruptsin pipelinedprocessors.In Proceedingsof the12th
AnnualInternationalSymposiumonComputerArchitecture,
pages36–44,June1985.

[22] M. D. Smith, M. S. Lam, andM. A. Horowitz. Boosting
beyondstaticschedulingin a superscalarprocessor. In Pro-
ceedingsof the17thInternationalSymposiumon Computer
Architecture, pages344–354,May 1990.

[23] M. J. Wing andG. P. D’Souza. Gatedstore buffer for an
advancedmicroprocessor. UnitedStatesPatent
No. 6,011,908.TransmetaCorporation,January2000.

[24] L.-C. Wu, R. Mirani, H. Patil, B. Olsen,andW. W. Hwu.
A new framework for debuggingglobally optimizedcode.
In Proceedingsof the ACM SIGPLAN’99 Conferenceon
ProgrammingLanguage DesignandImplementation, pages
181–191,May 1999.

