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Abstract

An ILP (Instruction-Level Parallelism) compiler uses

aggressive optimizations to reduce a program's running

time. These optimizations have been shown to be e�ective

when pro�le information is available. Unfortunately, users

are not always willing or able to pro�le their programs. A

method of overcoming this issue is for an ILP compiler to

statically infer the information normally obtained from pro-

�ling. This paper investigates one aspect of this inference:

the static prediction of conditional-branch direction. The

goals of this work are to utilize the source-level information

available in a compiler when performing static branch pre-

diction, to identify static-branch-prediction cases in which

there is a high con�dence that a branch will go in one direc-

tion at run time, to gain an intuitive understanding into the

reasons why the static-branch-prediction heuristics are ef-

fective, and ultimately to improve the accuracy of the static

branch prediction. The e�ectiveness of the static-branch-

prediction heuristics developed in this paper is demonstrated

on a set of programs from SPEC CINT92, SPEC CINT95,

and the IMPACT compiler.

1 Introduction

An ILP (Instruction-Level Parallelism) compiler uses ag-

gressive optimizations to reduce a program's running time.

These optimizations have been shown to be e�ective when

pro�le information is available [7, 10, 12, 5, 3]. Unfortu-

nately, there are several drawbacks to pro�ling. First, pro-

�ling can be time consuming. This makes it unacceptable
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for many users. Second, pro�ling may not be feasible in

some environments, such as real-time applications. Third,

pro�ling accuracy relies on the behavior of the program re-

maining relatively constant for all possible inputs. If the

program's behavior varies, poor performance after compi-

lation may occur for some inputs. Finally, pro�ling must

ensure that all important sections of code are executed.

Otherwise, the compiler may not optimize the unexercised

code sections well, if at all.

In this paper, the problem of compiling when no pro�l-

ing is performed | the �rst and second pro�ling drawbacks

| is dealt with by predicting the direction of conditional

branches through the use of static analysis. This is termed

program-based branch prediction because the predictions

are based solely on the program's structure. If the com-

piler can do a good job of statically predicting conditional-

branch directions, the e�ective application of many aggres-

sive ILP optimizations is possible even when pro�ling is not

performed. A description on how a compiler can deal with

the third and fourth pro�ling drawbacks from the previous

paragraph is presented in [8].

This paper addresses the following items for static

branch prediction in a compiler. First, a compiler has

source-level information available to it, and the static-

branch-prediction heuristics should use this information. A

large amount of previous work has performed static branch

prediction on program traces [1, 4], but they have not had

access to information from the source code. Source-level

information is used extensively in this paper's loop header

and pointer heuristics. Second, a compiler can bene�t from

knowledge about highly-con�dent predictions that allow

strong assertions about branch directions at run time to

be made. The application of control speculation is an ex-

ample of a compiler optimization that can bene�t from this

information. The more con�dence the compiler has that a

branch will always go in a certain direction, the more ag-

gressive the compiler can be when speculating instructions

over that branch. Third, it is important to understand

why the static-branch-prediction heuristics work well. This

knowledge provides con�dence that the heuristics will per-

form well for other benchmarks and can be used to disable



certain heuristics if the intuition is not valid. For example,

it is desirable to know that a heuristic that is valid for C

programs may not perform well for another programming

language. All of these items allow the state of the art in

static branch prediction to be improved.

The remainder of this paper is organized as follows. The

next section presents the previous work that has been done

in static branch prediction. Section 3 describes this pa-

per's static-branch-prediction heuristics. Section 4 presents

the results showing the e�ectiveness of the static-branch-

prediction heuristics. Concluding remarks are given in Sec-

tion 5.

2 Previous work

Early static branch prediction techniques were aimed

at providing branch predictions for use by the hard-

ware. These techniques employed several di�erent yet sim-

ple heuristics that included assuming all branches were

taken, assuming backward branches were taken and forward

branches were not taken, and assuming certain branch op-

codes were taken while other opcodes were not taken [14,

11]. Bandypadhyay et al., in a C compiler for the CRISP

microprocessor, assumed branches in loop expressions were

resolved so that the program stays in loops, and used a ta-

ble lookup based on the branch opcode and operand types

to determine the direction for non-loop branches [2]. They

claimed that they could produce good results, but provided

few details.

A di�erent approach to static branch prediction was pro-

posed by Ball and Larus [1]. In addition to predicting that

loop branches were resolved so that the program stays in

loops, they developed new heuristics to handle non-loop

branches. Their major contribution was analyzing the code

contained in the two targets of a branch, taken and fall-

thru, in order to predict a branch direction. For example,

they determined that a subroutine call located in only one

branch target was usually avoided.

Several other papers have built upon the work of Ball

and Larus. Hank et al. used static branch prediction to

guide superblock formation [9]. Since static superblock for-

mation was their focus, they were actually more concerned

with the avoidance of hazards than predicting branch di-

rections. Wagner et al. used a subset of the Ball and

Larus heuristics, but applied them to an abstract-syntax

tree representation [15]. Calder et al. trained a neural net

to perform static branch prediction and used neural net in-

puts that were similar to those used in the Ball and Larus

heuristics [4]. Finally, Patterson extended static branch

prediction by propagating the possible values that operands

could have at any time [13]. This allowed accurate branch

prediction to occur for branches located in a for loop with

known loop bounds.

The static branch prediction work in this paper also

builds upon the work of Ball and Larus. This paper pro-

vides new intuitive understanding into the reasons why cer-

tain heuristics perform well. In addition, this work is geared

toward use in a compiler. Most of the previous work has

been performed on program traces, and it has not empha-

sized the use of static branch prediction in the compiler. Fi-

nally, this work improves the state of the art in static branch

prediction by improving several heuristics and proposing

other new heuristics.

3 Heuristics

This section describes the heuristics for static branch

prediction that are used in this paper. These heuristics

have been developed through analysis of branch behavior

for a set of programs from the UNIX utilities and SPEC

CINT92 benchmarks and understanding the original loca-

tion of branches in the source code.

The static-branch-prediction heuristics bene�t from

source-level and variable-type information. This informa-

tion includes knowledge of the location of a branch in the

source code (e.g., is a branch derived from a conditional ex-

pression in an if statement or loop?), and knowledge of the

branch operand types (e.g., is one of the branch operands a

pointer?). For the most part, this information was not used

in previous static-branch-prediction work. It was not avail-

able to many of the previous researchers because they were

performing static branch prediction on program traces, and

they did not have access to source-level information. The

work in this paper uses the IMPACT compiler infrastruc-

ture to perform static branch prediction.

The static-branch-prediction heuristics presented in this

paper are used to predict the branch direction of non-loop,

non-switch branches. Loop branches are predicted so that

loops continue to iterate. Conditional branches associated

with switch statements, switch branches, are predicted so

that each case is equally likely. More details on the pre-

diction of loop branches and switch branches can be found

in [8].

The following subsections describe the heuristics of this

paper. Each subsection starts with the de�nition of the

heuristic, and is followed by a discussion of the heuristic.

For each heuristic, a comparison to the similar Ball and

Larus heuristic is made.

3.1 Call

If the successor contains a subroutine call and does

not postdominate, predict that the successor is not

taken. If the subroutine call is associated with

I/O bu�ering, exiting, error processing, memory

allocation, or printing, a much higher con�dence

in the prediction is possible.

The Ball and Larus call heuristic predicts that a succes-

sor containing any subroutine call that does not postdomi-

nate is not taken [1]. The reason they gave for this heuris-

tic working well is that many conditional calls are used to

handle exceptional conditions. While this is often true, not

all subroutines executed conditionally are involved in error

processing.



A study was performed to understand which subrou-

tine calls are avoided after conditional branches and which

ones are actually taken after conditional branches. This

was done to determine if there are any subroutine types

that allow a branch prediction to be made on a conditional

branch that guards the subroutine's execution. There did

not appear to be any subroutine types that are useful when

determining whether a conditional branch will force the exe-

cution of a subroutine call. However, there were �ve subrou-

tine types that were avoided, and therefore allow a strong

prediction to be made on the conditional branch guarding

their execution. These subroutine types are as follows:

I/O Bu�ering { The subroutine calls of �lbuf, used with

the getchar macro, and 
sbuf, used with the putchar

macro, are avoided. These subroutines are only called

when the I/O bu�er is empty or full, and this is a rare

occurrence. These subroutine calls allow the branch

associated with the ? operator in their corresponding

macro to be predicted accurately.

Exiting { Any subroutine that forces the termination of

program execution is avoided. The conditional exit of

a program is usually only done when an exception has

occurred. In addition, when an exit occurs, the pro-

gram stops executing. Therefore, the compiler should

assume that the program will continue running because

this is the only case where the compiler can greatly im-

prove the program's performance.

Error Processing { Error processing is a rare event, so

any subroutine associated with error processing is

avoided.

Memory Allocation { Many times the conditional exe-

cution of subroutines that allocate memory is avoided.

While the application of the call heuristic in this case

works well, the con�dence the compiler can have in the

heuristic being correct is less than in the previous three

cases.

Printing { Printing that can be executed conditionally,

even when it is not associated with stderr, is avoided.

As in the case with the conditional execution of mem-

ory allocation, the con�dence the compiler can have in

the call heuristic being correct in this case is less than

for the �rst three subroutine types described.

The enhancement made to the call heuristic is to un-

derstand which subroutine call types are forcing the appli-

cation of the call heuristic. If the subroutine call is one

of the �ve subroutine types described above, a strong as-

sertion about the predicted branch direction can be made.

The determination of subroutine call types is accomplished

by running a preprocessor on the source code to determine

which functions force the unconditional execution of a sub-

routine call found in one of the �ve subroutine types. Only

subroutines found in one of the lists are used in the stronger

prediction of conditional branches.

The preprocessor starts o� with a list of seed functions

for each of the �ve subroutine types. If a function in the

Table 1. Seed functions used to determine the spe-
cial subroutines that are used with the call heuris-
tic.

Subroutine Type Subroutine Names

I/O Bu�ering �lbuf


sbuf

Exiting exit

abort

Error Processing yyerror

error

perror

fprintf (to stderr)

vfprintf (to stderr)

Memory Allocation malloc

calloc

realloc

Printing printf

vprintf

fprintf

vfprintf

�ush

benchmark allows a subroutine located in one of the lists to

be executed unconditionally, that function is added to the

same list. The preprocessor runs iteratively until all the

subroutines that force an unconditional execution of one of

the functions in each list have been identi�ed. The seed

functions are shown in Table 1.

Unfortunately, the preprocessor's requirement that a

subroutine execute unconditionally does not capture all the

useful cases. This can occur when all the seed functions in

user-de�ned error-processing functions are guarded (e.g.,

printing to stderr only occurs if a 
ag is set). This pre-

vents user-de�ned error-processing routines from becoming

new members of the error-processing function list. This

case is prevalent in the benchmark li. In li, almost 20%

of the non-loop, non-switch branches seen during the pro-

gram's execution would be covered by the call heuristic's

error-processing subroutine type if this issue was overcome.

This classi�cation is desirable because the compiler can be

very aggressive with its optimizations when a classi�cation

is determined. An area of future work is to detect these sit-

uations, and allow more functions to be recognized as one

of the �ve special subroutine types.

3.2 Loop header

When a branch is derived from a conditional loop

expression, predict that the successor is taken

when it is a loop header or a loop preheader that

does not postdominate the branch.

The Ball and Larus loop header heuristic is the same as

the loop header heuristic used in this paper, except that it

is applied to all branches guarding the execution of a loop.



if (j) f
i = init;

if (init < loop bound)

do f
do something;

i++;

g while (i < loop bound);

g
(a)

if (j) f
i = C1;

if (C1 < loop bound)

do f
do something;

i++;

g while (i < loop bound);

g
(b)

if (j) f
i = C1;

do f
do something;

i++;

g while (i < C2);

g
(c)

Figure 1. Different situations covered by Ball and
Larus loop header heuristic: (a) variable initializa-
tion, (b) constant initialization and variable loop
bound, (c) constant initialization and constant loop
bound.

There is no check to ensure that a branch is derived from a

conditional loop expression.

In order to understand this distinction, a loop trans-

formation performed by many compilers must be analyzed.

Many compilers transform while and for loops by replicat-

ing the conditional loop expression in a newly created if

statement, using the if statement to guard the loop's exe-

cution, and transforming the original while or for loop into

a do-while loop. The advantage of this approach is that

an unconditional branch can be removed from the loop.

The Ball and Larus loop header heuristic gets applied

to either a branch that originally preceded the loop or a

branch in an if statement that is derived from the original

conditional loop expression. The di�erent cases covered by

the Ball and Larus loop header heuristic are shown in Fig-

ure 1. This �gure has three di�erent cases that are mutually

exclusive, and cover all the cases caught by the original Ball

and Larus loop header heuristic. The branches that have

the Ball and Larus loop header heuristic applied to them

are in bold in the �gure.

Figure 1(a) shows the case where the for loop initial-

ization is variable. In this case, the derived if state-

ment, \if (init < loop_bound)," cannot be optimized

away. Figure 1(b) is similar to case (a) because the derived

if statement, \if (C1 < loop_bound)," is not optimized

away. The di�erence is that the for loop initialization is a

constant. Case (b) is distinguished from case (a) because

case (b) can have a stronger assertion made about the loop

header branch. Since the initialization is constant, the loop

is more likely to be executed at least once.

Figure 1(c) is di�erent from the previous two cases be-

cause the derived if statement can be optimized away. In

this case, another if statement, \if (j)," located before

the original loop in the source code, has the Ball and Larus

loop header heuristic applied to it. However, this branch

does not have to be related to the loop at all, and it may

not be biased so that the loop is entered.

In this paper, only cases (a) and (b) have the loop header

heuristic applied to them. In addition, cases (a) and (b) are

distinguished because case (b) has a better chance of being

correct. This is useful when determining how aggressive

a compiler optimization can be with code located near a

branch where the loop header heuristic is applied.

3.3 Pointer

If a branch compares a pointer to NULL or com-

pares two pointers, predict that the pointers are

not equal as long as these pointers are not part of

an array.

The Ball and Larus pointer heuristic is the same as the

pointer heuristic used in this paper, except that a pointer

operand that is part of an array does not get the pointer

heuristic applied to its branch in this paper. This exception

is made because an element in an array of pointers has

a higher likelihood of being NULL than a pointer that is

not part of an array. This is de�nitely true if the array of

pointers is sparsely populated and if the array contains only

a few non-NULL members.

An advantage that the pointer heuristic used in this

paper has over most previous branch prediction work is

that source-level information is available when applying

the heuristic. Ball and Larus, along with Calder et al.,

used binary instrumentation to gather statistics and applied

the branch prediction heuristics to these program traces.

Because of this, they did not have access to source-code

information to know which branch operands were point-

ers. Therefore, they looked for code patterns to determine

whether branch operands were pointers, and these patterns

may have captured some spurious cases that were not as-

sociated with a pointer comparison. The source-level infor-

mation used in this paper allows the pointer heuristic to

perform better.

The pointer heuristic works because pointers do not usu-

ally equal NULL or one other. While this is de�nitely not

always the case, our results indicate it to be true more often

than it is false.



3.4 Return

Predict that the successor that contains a return

is not taken.

The Ball and Larus return heuristic is identical to the

return heuristic used in this paper. This heuristic seems

to work well because of the way that most programmers

use conditional return statements. Returns are often used

to exit a function early when an error or boundary case is

detected. In these cases, the return statement is not likely

to be taken.

3.5 Opcode

Predict that a comparison of an integer less than

zero, less than or equal to zero, or two 
oating

point values being equal fails. Predict that a com-

parison of an integer greater than zero or greater

than or equal to zero succeeds.

The Ball and Larus opcode heuristic is identical to the

opcode heuristic used in this paper. This heuristic seems to

work well because integers normally contain positive num-

bers. Many times this heuristic can be applied simultane-

ously with the loop header heuristic, return heuristic, and

call heuristic. The overlap with the loop header heuristic

occurs in counting loops that decrement. In this situation,

a loop header branch that does a comparison against zero

is usually present. The return heuristic and call heuristic

overlap occurs when negative numbers are used to denote

error conditions.

3.6 Character comparison

If a branch is an integer comparison against a char-

acter constant, predict that the comparison fails.

The character comparison heuristic is a new heuristic

de�ned in this paper that is based on the fact that ASCII

characters are usually not equal to one particular constant

character value. For example, in English text, the most

common character is a space, and it occurs less than half

of the time.

The heuristic is applied to branch if equals (BEQ) and

branch if not equals (BNE) branches that contain one

operand that is a character constant. Unfortunately, the

EDG front end used in IMPACT converts all character

constants to integer constants. This makes it impossible

to distinguish constant character comparisons and regular

constant integer or enumerated type comparisons. The in-

teger constants checked are {1 (EOF), 9 ('nt'), 10 ('nn'),
and 32 (' ') thru 126 ('~'). This implementation ends up

capturing some extraneous cases that are not involved with

characters, but that share constant values that overlap with

these common ASCII character values. The check against

{1 does well even when a program is not working with

ASCII characters because it is a common method of mark-

ing an error.

3.7 Restricted opcode AND

If a comparison is made against one bit in a bit

�eld, predict that the bit is not set.

The restricted opcode AND heuristic is a new heuristic

de�ned in this paper that works by assuming that one par-

ticular bit in a bit �eld is normally not set. The intuition is

that many times when bit �elds are used, they are set in the

minority case. This heuristic is one of the weakest heuristics

used, but our results show that it works reasonably well.

The heuristic looks for a BEQ or BNE branch that contains

a constant zero as one of its operands. For the heuristic to

apply, the other operand must have resulted from a preced-

ing AND operation, and one operand of that AND must be

a constant, power-of-two value.

3.8 Other Ball and Larus heuristics

Two heuristics described by Ball and Larus are not used

in the branch prediction heuristics of this paper. These

heuristics are the guard and store heuristics. These heuris-

tics are not used because an analysis of the cases where

these heuristics applied did not reveal any intuition that

explained the success of the heuristics.

The Ball and Larus guard heuristic states that if one of

the branch's operands is used in a branch's target, assume

the target containing the operand is taken. This heuristic

assumes that a condition is being tested for, and the normal

case allows the operations using the operand to execute.

The most common situation for this occurs with a pointer

check against NULL. Only if the pointer is non-NULL, is a

load from the pointer allowed. However, this case is already

captured by the pointer heuristic. Since the most common

case for this heuristic ends up being a subset of the pointer

heuristic, this heuristic is not applied in this paper.

The Ball and Larus store heuristic states that if one of

the branch's targets contains a store, assume that the other

target is taken. No intuition has been provided on why this

heuristic works, and no potential intuitive reason for the

success was detected when examining the cases where this

heuristic performed well. Calder et al. found that this

heuristic was wrong more than it was correct for the C

programs evaluated in their paper [4].

4 Results

This section presents the results of static branch predic-

tion. The results include an in-depth analysis of the individ-

ual heuristics in order to provide insights into the decisions

made when de�ning the heuristics used in this paper. For

this work, both the heuristics used in this paper and the

heuristics described by Ball and Larus are implemented in

the IMPACT compiler [6].

The IMPACT intermediate-representation �les that are

used for prediction have gone through a traditional com-

pilation path. The C source code is read in by IMPACT,



translated into the intermediate representation, and opti-

mized using IMPACT's classical optimizations. After opti-

mization, the code is pro�led. The results of pro�ling do

not a�ect the actual static branch predictions, but pro�ling

does allow the success of the branch prediction to be easily

measured.

The branches in a program can be broken down into

three categories: loop branches, switch branches, and non-

loop, non-switch branches. Loop branches are loop back-

edge and loop exit branches that control the iteration of

loops. Switch branches are branches that are derived from

switch statements in the source code. The remaining

branches are non-loop, non-switch branches. The non-loop,

non-switch branches are evaluated in this analysis. These

branches are di�cult to predict, and they represent a large

portion of the branches that are dynamically executed.

The benchmarks used in this analysis consist of espresso

and sc from SPEC CINT92, all the benchmarks from SPEC

CINT95, and Pcode and Lhppa from the IMPACT com-

piler.1 Even though the results are presented for these

benchmarks, most of the analysis performed in developing

the static-branch-prediction heuristics was performed on a

di�erent set of benchmarks. These benchmarks included

nine Unix utilities (cccp, cmp, eqn, grep, lex, qsort, tbl, wc,

and yacc), the six benchmarks present in SPEC CINT92,

and alvinn and ear from SPEC CFP92. These benchmarks

represent the training set used to understand and evolve the

static branch prediction heuristics. There is some overlap in

the benchmarks used during training and the benchmarks

used for generating the results, but a majority of the bench-

marks used for the results were not present in the training

set. A training set was purposely used when developing

these heuristics in order to not develop a set of \tuned"

heuristics that perform well for the benchmarks that are

analyzed, but do not perform well for other programs.

Because of space constraints, the success of the heuris-

tics in predicting a branch direction is not evaluated. In-

stead, an in-depth analysis of the individual heuristics is

presented. An analysis of the e�ectiveness of the Ball

and Larus heuristics and this paper's heuristics to predict

branch directions is presented in [8].

An evaluation of the static-branch-prediction heuristics

that are enhanced in this paper is shown in Table 2. For

the three enhanced heuristics, the results of di�erent sub-

cases are shown. The results are based on the dynamic

behavior observed when the code is actually executed. A

branch gets counted every time that it is executed during a

program run. The results of each subcase are shown with

three numbers. The number on the left of each column

represents the percentage of non-loop, non-switch branches

executed dynamically that have the heuristic subcase ap-

plied to them. If a subcase is applied to less than 1% of

the non-loop, non-switch branches, the entire column entry

is blank. The two numbers on the right of each column

represent the e�ectiveness of the predictions. The number

1The IMPACT code comes from the version 3.0 beta release
dated June 10, 1997, which was made available to several uni-
versities outside of the University of Illinois.

to the left of the slash contains the miss rate for a perfect

predictor, which always predicts the most-frequently-taken

branch direction, and the number to the right of the slash

contains the miss rate based on the heuristic decisions. A

heuristic miss rate less than 50% indicates that the heuris-

tic predicted a majority of the branches correctly. A good

heuristic has a heuristic miss rate that approaches the per-

fect miss rate, which is the best possible miss rate.

The call heuristic is evaluated �rst. The three subcases

are mutually exclusive and represent all the cases in which

the call heuristic is applicable. The error column represents

the combined results of the I/O bu�ering, exiting, and error

processing subcases; the special column represents the cases

in which the memory allocation and printing subcases ap-

ply; and other represents all other call heuristic cases. The

cases present in the error and special columns are obtained

using the techniques described in Section 3.1, and they are

broken out so more con�dent predictions can be made. As

seen in the table, the error case is very biased and always

correctly predicted. The special case is also biased, but not

as much, and it is predicted correctly most of the time. The

other case is not as biased and is correctly predicted less

often than the two other subcases.

The benchmark li would bene�t from a more sophisti-

cated preprocessor, as is described at the end of Section 3.1,

that enables more error processing functions to be deter-

mined. If a better preprocessor was built, at least 18% of

the cases in the other column could be put into the error

column. The behavior of the heuristic for the branches that

would move is very biased | both the perfect and heuris-

tic miss rates would be 0. The behavior of the remaining

branches in the other column would be worsened | the

perfect miss rate would be 13 and the heuristic miss rate

would be 43.

The loop header heuristic has three subcases that are

mutually exclusive and represent all the cases in which

the Ball and Larus loop header heuristic apply. The V-

I column represents the variable-initialization subcase; the

C-I & V-LB column represents the constant-initialization,

variable-loop-bound subcase; and C-I & C-LB represents

the constant-initialization, constant-loop-bound subcase.

The de�nition of each of these subcases is found in Sec-

tion 3.2. The V-I and C-I & V-LB subcases are captured

by both the Ball and Larus and this paper's loop header

heuristic. The cases are distinguished in this paper because

the C-I & V-LB subcase is predicted correctly more often

than the V-I subcase. The C-I & C-LB subcase is cap-

tured by the Ball and Larus heuristics, but ignored by this

paper's heuristics. This subcase is excluded in this paper

because the branches associated with this subcase are mis-

predicted more often than they are predicted correctly. As

seen in the table, the C-I & C-LB subcase is mispredicted

a majority of the time in �ve out of eight benchmarks.

Finally, the pointer heuristic is evaluated. The two sub-

cases are mutually exclusive and represent all the cases in

which the Ball and Larus pointer heuristic apply. The non-

array column represents the cases in which the pointer is

not obtained from an array, and this accounts for all the



Table 2. Evaluation of the static-branch-prediction-heuristic enhancement cases.

Call Loop Headera Pointer
(Section 3.1) (Section 3.2) (Section 3.3)

Benchmark Errorb Specialc Other V-I C-I & V-LB C-I & C-LB Non-Array Array

espresso 2 5/44 5 1/2 10 0/0 5 10/84 3 2/3
sc 1 5/9 19 12/21 8 1/9 5 32/56 12 31/47
go 15 20/46 9 11/15 1 16/23 6 29/34

m88ksim 12 10/36 1 4/21 2 9/11 4 5/12
gcc 2 0/0 19 13/40 9 10/48 3 8/14 2 22/67 10 11/38 3 18/57

compress 25 25/44 4 11/77

li 44 8/27 21 0/10 10 30/59 32 3/17
ijpeg 14 7/14 8 24/68 1 0/0 2 3/85
perl 2 0/0 3 0/0 24 3/14 2 32/65 2 0/0 17 0/46

vortex 40 0/20 1 1/12 2 0/0
Pcode 7 0/0 5 7/20 20 5/28 7 16/31 22 21/48
Lhppa 23 0/0 10 3/8 31 15/36 7 6/17 4 5/6 32 7/18 12 24/58

aC-I = constant initialization, V-I = variable initialization, C-LB = constant loop bound, V-LB = variable loop
bound

bIncludes instances of call heuristic associated with I/O bu�ering, exiting, and error processing.
cIncludes instances of call heuristic associated with memory allocation and printing.

applications of this paper's pointer heuristic. The array

column represents the cases in which a pointer is obtained

from an array. More details on the pointer heuristic are

present in Section 3.3. As seen in the table, the non-array

pointer subcase is predicted correctly a majority of the time

in eight out of nine benchmarks. The array pointer subcase

does not perform as well as the non-array pointer subcase.

It is mispredicted a majority of the time in two out of four

benchmarks.

An evaluation of the heuristics unique to one set of

the heuristics | either the Ball and Larus or this paper's

heuristic sets | is shown in Table 3. The numbers in each

column have the same meanings as the numbers found in

Table 2.

The character comparison and restricted opcode AND

heuristics are present in only in this paper's heuristics.

They are described in Sections 3.6 and 3.7. The charac-

ter comparison heuristic is predicted correctly most of the

time in all of the benchmarks. The restricted opcode AND

heuristic is predicted correctly in six out of seven bench-

marks.

The guard and store heuristics are present in only the

Ball and Larus heuristics. These heuristics are described in

Section 3.8. The guard heuristic is broken down into two

subcases: pointer (when the pointer heuristic also applies)

and other (when the pointer heuristic does not apply). The

pointer heuristic already captures the cases present in the

pointer column. The other column subcase does not per-

form as well as the pointer subcase. The other subcase

is mispredicted in 6 out of the 12 benchmarks. The store

heuristic does not perform well. It is predicted correctly

in 7 out of 12 benchmarks, but it has an average heuristic

miss rate of close to 50%.

5 Conclusions and Future Work

This paper has investigated static branch prediction

from the compiler's perspective. This work used source-

level information to help with the static-branch-prediction

decisions and allowed subcases to be determined that give

the compiler a high con�dence that a branch will go a cer-

tain direction at run time. These subcases enable a com-

piler to be aggressive with its optimizations. In addition,

this work provided insights into the reasons for the e�ec-

tiveness of the static-branch-prediction heuristics. Finally,

this work created two new heuristics, character comparison

and restricted opcode AND, and enhanced several others.

A major area of future work involves the integration of

the static-branch-prediction decisions into the compiler's

heuristics. This information should be useful when pro�ling

is not performed. How this information is used and how

the high-con�dence subcases can be exploited needs to be

investigated. The use of this information should allow the

compiler to generate code that is more e�cient than would

otherwise be possible.

Another area of future work is to improve the prepro-

cessor that determines which functions should be included

in each of the subroutine types of the call heuristic. The

current implementation only allows the unconditional exe-

cution of functions already contained in a category to add

the caller function to the same category. The improvement

of this preprocessor is important because the subroutine

categories allow the compiler to have a high con�dence in

the branch's run-time behavior.

6 Acknowledgments

The authors would like to thank Brian Deitrich's dis-

sertation committee (Wen-mei Hwu, Scott Mahlke, Bill

Sanders, and Ben Wah) and Carole Dulong from Intel



Table 3. Evaluation of heuristics included in only one heuristic set.
Character Restricted Guard
Comparison Opcode AND (Section 3.8) Store

Benchmark (Section 3.6) (Section 3.7) Pointer Other (Section 3.8)

espresso 14 0/0 39 18/31 21 10/20 21 21/31
sc 7 5/32 9 25/34 20 25/53 11 4/59
go 2 25/43 33 22/31 31 20/45

m88ksim 3 3/4 2 16/30 19 8/26 11 10/45
gcc 25 11/34 4 14/28 32 11/37 20 10/43

compress 42 15/20 36 6/70

li 11 37/45 20 0/2 4 28/58 34 14/50
ijpeg 28 11/64 11 3/46
perl 15 4/26 5 0/0 29 9/68 29 11/70

vortex 9 0/100 28 1/74 40 0/30
Pcode 13 8/10 13 2/8 30 12/34 23 7/36
Lhppa 4 2/16 2 14/39 10 2/11 23 16/52 20 5/54

whose input during Brian's PhD work was invaluable. The

authors would also like to thank the members of the IM-

PACT compiler team and the anonymous referees whose

comments and suggestions helped to improve the quality of

this paper. This research has been supported by the Na-

tional Science Foundation (under grant CCR96-29948), In-

tel, Advanced Micro Devices, Hewlett-Packard, and NCR.

References

[1] T. Ball and J. R. Larus. Branch prediction for free. In
Proceedings of the ACM SIGPLAN 1993 Conference
on Programming Language Design and Implementa-
tion, pages 300{313, June 1993.

[2] S. Bandyopadhyay, V. S. Begwani, and R. B. Murray.
Compiling for the crisp microprocessor. In Proceed-
ings of the IEEE Spring Compcon 87, pages 96{100,
February 1987.

[3] R. A. Bringmann. Compiler-Controlled Speculation.
PhD thesis, Department of Computer Science, Univer-
sity of Illinois, Urbana, IL, 1995.

[4] B. Calder, D. Grunwald, D. Lindsay, J. Martin,
M. Mozer, and B. Zorn. Corpus-based static branch
prediction. In Proceedings of the ACM SIGPLAN 1995
Conference on Programming Language Design and Im-
plementation, pages 79{92, June 1995.

[5] P. P. Chang, S. A. Mahlke, W. Y. Chen, and
W. W. Hwu. Pro�le-guided automatic inline expan-
sion for C programs. Software Practice and Experience,
22(5):349{370, May 1992.

[6] P. P. Chang, S. A. Mahlke, W. Y. Chen, N. J. Warter,
and W. W. Hwu. IMPACT: An architectural frame-
work for multiple-instruction-issue processors. In Pro-
ceedings of the 18th International Symposium on Com-
puter Architecture, pages 266{275, May 1991.

[7] P. P. Chang, S. A. Mahlke, and W. W. Hwu. Using
pro�le information to assist classic code optimizations.
Software Practice and Experience, 21(12):1301{1321,
December 1991.

[8] B. L. Deitrich. Static Program Analysis to Enhance
Pro�le Independence in Instruction-Level Parallelism
Compilation. PhD thesis, Department of Electrical and
Computer Engineering, University of Illinois, Urbana,
IL, 1998.

[9] R. E. Hank, S. A. Mahlke, R. A. Bringmann, J. C.
Gyllenhaal, and W. W. Hwu. Superblock formation
using static program analysis. In Proceedings of the
26th Annual International Symposium on Microarchi-
tecture, pages 247{255, December 1993.

[10] W. W. Hwu, S. A. Mahlke, W. Y. Chen, P. P. Chang,
N. J. Warter, R. A. Bringmann, R. G. Ouellette, R. E.
Hank, T. Kiyohara, G. E. Haab, J. G. Holm, and D. M.
Lavery. The Superblock: An e�ective technique for
VLIW and superscalar compilation. The Journal of
Supercomputing, 7(1):229{248, January 1993.

[11] J. Lee and A. J. Smith. Branch prediction strate-
gies and branch target bu�er design. IEEE Computer,
pages 6{22, January 1984.

[12] S. A. Mahlke, D. C. Lin, W. Y. Chen, R. E. Hank, and
R. A. Bringmann. E�ective compiler support for pred-
icated execution using the hyperblock. In Proceedings
of the 25th International Symposium on Microarchitec-
ture, pages 45{54, December 1992.

[13] J. R. C. Patterson. Accurate static branch predic-
tion by value range propagation. In Proceedings of
the ACM SIGPLAN 1995 Conference on Programming
Language Design and Implementation, pages 67{78,
June 1995.

[14] J. E. Smith. A study of branch prediction strategies.
In Proceedings of the 8th International Symposium on
Computer Architecture, pages 135{148, May 1981.

[15] T. A. Wagner, V. Maverick, S. L. Graham, and M. A.
Harrison. Accurate static estimators for program opti-
mization. In Proceedings of the ACM SIGPLAN 1994
Conference on Programming Language Design and Im-
plementation, pages 85{96, June 1994.


