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ABSTRACT 
 
In this paper, we propose and evaluate two parallel 
implementations of Multi-dimensional Ensemble Empirical 
Mode Decomposition (MEEMD) for multi-core (CPU) and 
many-core (GPU) architectures. Relative to a sequential C 
implementation, our double precision GPU implementation, 
using the CUDA programming model, achieves up to 48.6x 
speedup on NVIDIA Tesla C2050. Our multi-core CPU 
implementation, using the OpenMP programming model, 
achieves up to 11.3x speedup on two octal-core Intel Xeon 
x7550 CPUs. 
 

Index Terms—Multi-dimensional Ensemble Empirical 
Mode Decomposition, GPGPU, OpenMP, CUDA 
 

1. INTRODUCTION 
 
In 1990s, Huang’s group at NASA developed a new 
adaptive time-frequency data analysis method, namely 
Empirical Mode Decomposition (EMD)/Hilbert Spectral 
Analysis [1]. In the past decade, it has been utilized in 
more than 3000 published works and has been applied in 
various research fields [2-5]. Based on one simple 
assumption that any time series data can be decomposed to 
a finite number of intrinsic modes of oscillations, EMD 
identifies the intrinsic undulations at different time scales 
and sifts the so-called intrinsic mode functions (IMFs) out. 
Recently, the EMD’s recognized ability to suitably handle 
nonstationary and nonlinear signals has inspired the 
development of two-dimensional EMD [6-8] for the 
application of space/spatial-frequency representation. 
Nevertheless, there remains a significant issue yet to be 
resolved for EMD. For signals with intermittent 
oscillations, one intrinsic mode can comprise oscillations 
with very different wavelengths at different temporal 
locations (i.e. mode mixing), which can cause certain 
complications in analysis and result in less reliable 
conclusion. To overcome this issue, a noise-assisted EMD 
algorithm - Ensemble Empirical Mode Decomposition 

(EEMD) - has been proposed by Wu and Huang [9-10]. 
EEMD applies EMD to obtain an ensemble of 
decompositions of data with added white noise, and uses 
the means of the corresponding intrinsic mode functions 
from different decompositions as the final result. Wu and 
Huang also extend the concept to develop multi-
dimensional EEMD (MEEMD) [11]. The ensemble 
approach has been well-accepted as a solution to the 
problem of mode mixing. However, the improved capability 
of MEEMD comes at dramatic increase in the computation 
cost which has severely limited its application. 

Recently, many compute-intensive applications were 
shown to benefit from parallel execution on multi-core 
(CPU) and many-core (GPU) processors. Several 
programming models exist for this purpose, either targeting 
CPUs (e.g. OpenMP [12]), GPUs (e.g. CUDA [13]), or both 
(e.g. OpenCL [14]). 

 Several implementations of EMD, EEMD and 
MEEMD are available in different languages, such as R 
[15], Matlab, Fortran, and C [11]. On one hand, most of 
these implementations are sequential and thus limited in 
their performance growth. On the other hand, only a 
handful of parallel implementations are available in 
literature.  One example is a GPU-based single-precision 
EMD implementation proposed by Waskito et al. [17] and 
reported to achieve a 27.7x speedup on an NVidia Tesla 
C1060 GPU over a sequential C implementation running 
on a 2.53GHz Intel Core 2 Duo CPU. Another example is a 
“GPGPU-aided” single-precision EEMD implementation 
proposed by Chen et al. [16] with a 31.3x speedup on an 
NVIDIA GTX 295 card (which contains two GPUs) over a 
sequential C implementation running on a 3.0GHz Intel 
Dual Core processor. While both implementations used an 
overlapped piecewise spline interpolation to approximate 
the original spline interpolation and get more parallelism,  
artifacts may arise on the boundaries of each piecewise 
spline interpolation.  

In this paper, we propose two thread-level parallel 
implementations of MEEMD for multi-core CPUs and 
many-core GPUs. While using OpenMP and CUDA 
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respectively, these implementations are not limited by the 
underlying architecture or programming model. Our 
OpenMP implementation was evaluated on Intel Nehalem 
architecture (Xeon X7550). Our CUDA implementation 
was evaluated on NVidia Fermi architecture (Tesla C2050) 
which provides a significant improvement over previous 
generations in the throughput of double-precision floating-
point needed in scientific analyses.  

The rest of the paper is organized as follows. Section 2 
introduces  the MEEMD algorithm. Section 3 describes the 
two parallel implementations, and Section 4 discusses their 
performance. Section 5 concludes and describes future 
work. 
 

2. PRELIMINARIES 
 
This section introduces the MEEMD algorithm starting 
with its building blocks: EEMD and EMD.  

Figure 1 illustrates the EMD method. For a 1D signal, 
the sifting procedure extracts the local extrema and traces 
the envelopes using cubic spline interpolation. The 
difference between the input and the mean of the envelopes 
is extracted as the output. Sifting procedures are cascaded 
to generate a stable residual signal. An IMF is obtained 
from the difference between the previous residual (the 
zeroth residual is defined as the source signal) and the 
current one. Figure 2 shows the EEMD method. An 
ensemble signal set is acquired by adding different 
independent white noises to a 1D signal and the EMD 
analysis is applied to each ensemble signal. The final 
results are the average of corresponding IMFs among the 
whole ensemble signal set. 
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Figure 1: EMD Method 

 
MEEMD can be explained as performing EEMD along 

the first dimension of a set of separate signals, then 
applying EEMD along the next dimension of the 

corresponding results from the previous EEMDs and so on. 
For easy understanding, the strategy of 2D MEEMD is 
illustrated as an example in Figure 3. After finishing 
EEMD executions along all dimensions, the results with the 
same scale are summed. In our 2D example of Figure 3, the 
final mode calculation would follow the following equation: 
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Figure 2: EEMD Method 
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Figure 3: 2D MEEMD Illustration 

 
3. PARALLEL IMPLEMENTATIONS 

 
In MEEMD, although ample parallelism potentially exists 
in the ensemble dimension and/or the non-operating 
dimensions, several challenges still face a high-
performance MEEMD implantation. First, dynamic data 
variations: in EEMD, white noises change the number of 
extrema and the sizes of the tri-diagonal linear systems, 
causing some irregularity and load imbalance, and thus 
slowing down the parallel execution. Second, strided 
memory accesses of high-dimensional data: high-
dimensional data are stored in non-contiguous memory 
locations. Accesses along high dimensions are thus strided 
and uncoalesced, wasting available memory bandwidth. 
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Third, limited resources to harness parallelism: while the 
independent EMDs and/or EEMDs comprising an MEEMD 
provide high parallelism, the computational capacities of 
multi-core and many-core processors may not be sufficient 
to fully exploit the inherent parallelism of MEEMD. 
Moreover, increased parallelism may increase memory 
requirements beyond the memory capacities of these 
processors. 

In this paper, we considered two parallel algorithm 
models: a thread-level model and a block-level model. 
Thread-level parallel algorithms use fine-grained threads in 
CUDA, or work items in OpenCL, to exploit massive 
amount of parallelism. Block-level parallel algorithms use 
collections of collaborative threads, referred to as thread 
blocks in CUDA and work group in OpenCL, to execute 
larger granularity tasks.  In MEEMD, when a high degree 
of parallelism is given by the ensemble dimension and/or 
the non-operating dimensions, the benefits of using a 
thread-level parallel algorithm are threefold. First, it can 
exploit a higher degree of parallelism than a block-level 
parallel algorithm. Second, it does not incur any 
communication or synchronization between the threads 
until the final results are merged since the execution of 
each EMD or EEMD is independent . Finally, its 
implementation is similar to the sequential one, which 
makes it more straightforward. 
 
3.1. OpenMP Implementation 
 
In the CPU OpenMP implementation, the EEMDs 
comprising MEEMD are assigned to independent threads 
for parallel execution, relying on the OpenMP runtime to 
resolve any load imbalance issues. Strided memory accesses 
of high-dimensional data are eliminated by transposing 
these data to lower dimensions, resulting in better 
utilization of cache lines. The partial results of each EEMD 
are made thread-private for correct functionality. The 
required memory depends on the number of OpenMP 
threads and is managed by OpenMP runtime. 
 
3.2. CUDA Implementation 
 
In the GPU CUDA implementation, each EMD, as opposed 
to EEMD in the OpenMP implementation, is mapped to a 
thread. This allows the implementation to exploit a finer 
granularity of parallelism. The memory layout, especially of 
high-dimensional data, is rearranged to meet memory 
coalescing requirements and fit into the 128-byte cache 
lines. To this end, a corner-turning technique is applied 
using the low-latency on-chip memory. The data is first 
loaded along the lowest dimension and then consumed 
along a higher dimension. This step is performed when the 
Gaussian noise is added to form the ensemble data, and the 
total overhead is only less than 1% of the total execution 

time. In the new memory layout, the ensemble dimension is 
added to the lowest dimension to reduce possible branch 
divergence. The impact of the unavoidable branch 
divergence from data irregularity, caused by the noise, is 
minimized via a regularization technique using the on-chip 
memory. Moreover, the cache memory is utilized to 
amortize unavoidable uncoalesced memory accesses.  

GPUs have a limited number of registers available to 
each thread, and register overuse can significantly degrade 
the performance. Hence, in our implementation, a GPU 
kernel is split into two or more kernels to minimize register 
pressure.  The available physical memory on GPUs presents 
a hard limit to the problem size and parallelism degree. Our 
implementation inquires the available memory size on a 
GPU to calculate the degree of parallelism that can be 
supported. Based on this calculation, the non-operating 
dimensions can subdivided to several smaller independent 
MEEMDs which can be performed sequentially or 
scheduled to other processors. 

 
4. RESULTS AND DISCUSSION 

 
In our experiments, three implementations of MEEMD 
were compared: 1) a serial C implementation, 2) our 
CUDA implementation, and 3) our OpenMP 
implementation. CUDA experiments were executed on a 
desktop machine with an Intel Xeon E5520 processor and 
one NVIDIA Fermi Tesla C2050 GPU, with NVCC v3.1 
used to compile the application. OpenMP experiments were 
executed on a four octal-core 2.0 GHz Intel Xeon X7550 
system (totaling 32 cores, only 16 of which were used) with 
64GB of memory. Intel ICC v11.0 and VTune v9.1 were 
used to compile and profile the application. Using an 
ensemble number of 1024 and a decomposition number of 
5, three input data sets were used with sizes of 41×41, 
333×111, and 666×444 samples. 

The execution times and speedups are listed in Table 1. 
Our double-precision CUDA implementation achieves up to 
a 48.6x speedup on one GPU over the sequential C 
implementation. The data transfer times between the host 
memory and the device memory were 1.9ms, 5.8ms, and 
25ms for the three input data sets respectively. Therefore, 
they are negligible compared to the total computation time. 
Contrastingly, our OpenMP implementation achieves up to 
an 11.3x speedup in double precision. Figure 4 shows the 
scaling behavior of the OpenMP implementation over 16 
cores. Having a high arithmetic intensity, the application 
scales almost linearly over eight cores but then levels-off 
because of memory bandwidth limitations and Non-
Uniform Memory Access (NUMA) effects on the machine. 

Figure 5 shows the profiling of the different phases of 
the three implementations. For OpenMP, the profile is 
same as the one for serial C, because each OpenMP thread 
is essentially executing a copy of the serial code. For 
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CUDA, the percentage of the cubic spline interpolation 
decreased from 58.9% to 47.33% of the total running time 
because it benefits from massively parallel execution and 
higher memory bandwidth on GPUs. The percentage of 
extrema detection increased from 9.96% to 19.93% because 
its inherent irregular memory access pattern is inefficient 
on GPUs. 
 

Table 1: Execution Time (sec) and Speedup 
Size Serial CUDA  OpenMP  

(16 cores) 
41×41 16.24 0.37 (43.9x) 2.13 (7.6x) 

333×111 363.56 7.48 (48.6x) 32.13 (11.3x) 
666×444 2929.65 62.14 (47.1x) 291.10 (10.1x) 

 

 
Figure 4: Scalability of Multi-core System 

 

 
Figure 5: Profiling of MEEMD 

 
5. CONCLUSION 

 
In this paper, two thread-level parallel MEEMD 
implementations were described and shown to achieve 
significant speedups and good scalability on these 
processors compared to a sequential CPU implementation. 
For the current generation of multi-core CPUs and many-
core GPUs, we showed that the analysis time of substantial 
data sets is reduced to minutes and even seconds. 
Experimental data show that the CUDA implementation 
will allow continued execution time reduction with future 
generation of GPUs through increased parallelism. 
However, several bottlenecks will need to be removed for 
future multi-core CPUs for similar scaling to work for the 
OpenMP implementation.    In the future, we plan to build 
a library containing EMD, EEMD and MEEMD for CPUs, 
GPUs, and heterogeneous computing platforms. 
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