
PARALLEL IMPLEMENTATION OF MULTI-DIMENSIONAL ENSEMBLE EMPIRICAL
MODE DECOMPOSITION

Li-Wen Chang†, Men-Tzung Lo*, Nasser Anssari†, Ke-Hsin Hsu*,

Norden E. Huang*, Wen-mei W. Hwu†

†University of Illinois at Urbana-Champaign,
Urbana, IL USA 61801

{lchang20, anssari1, w-hwu}@illinois.edu

*National Central University,
Chungli, Taiwan 32001

{mzlo, teethhsu, norden}@ncu.edu.tw

ABSTRACT

In this paper, we propose and evaluate two parallel
implementations of Multi-dimensional Ensemble Empirical
Mode Decomposition (MEEMD) for multi-core (CPU) and
many-core (GPU) architectures. Relative to a sequential C
implementation, our double precision GPU implementation,
using the CUDA programming model, achieves up to 48.6x
speedup on NVIDIA Tesla C2050. Our multi-core CPU
implementation, using the OpenMP programming model,
achieves up to 11.3x speedup on two octal-core Intel Xeon
x7550 CPUs.

Index Terms—Multi-dimensional Ensemble Empirical
Mode Decomposition, GPGPU, OpenMP, CUDA

1. INTRODUCTION

In 1990s, Huang’s group at NASA developed a new
adaptive time-frequency data analysis method, namely
Empirical Mode Decomposition (EMD)/Hilbert Spectral
Analysis [1]. In the past decade, it has been utilized in
more than 3000 published works and has been applied in
various research fields [2-5]. Based on one simple
assumption that any time series data can be decomposed to
a finite number of intrinsic modes of oscillations, EMD
identifies the intrinsic undulations at different time scales
and sifts the so-called intrinsic mode functions (IMFs) out.
Recently, the EMD’s recognized ability to suitably handle
nonstationary and nonlinear signals has inspired the
development of two-dimensional EMD [6-8] for the
application of space/spatial-frequency representation.
Nevertheless, there remains a significant issue yet to be
resolved for EMD. For signals with intermittent
oscillations, one intrinsic mode can comprise oscillations
with very different wavelengths at different temporal
locations (i.e. mode mixing), which can cause certain
complications in analysis and result in less reliable
conclusion. To overcome this issue, a noise-assisted EMD
algorithm - Ensemble Empirical Mode Decomposition

(EEMD) - has been proposed by Wu and Huang [9-10].
EEMD applies EMD to obtain an ensemble of
decompositions of data with added white noise, and uses
the means of the corresponding intrinsic mode functions
from different decompositions as the final result. Wu and
Huang also extend the concept to develop multi-
dimensional EEMD (MEEMD) [11]. The ensemble
approach has been well-accepted as a solution to the
problem of mode mixing. However, the improved capability
of MEEMD comes at dramatic increase in the computation
cost which has severely limited its application.

Recently, many compute-intensive applications were
shown to benefit from parallel execution on multi-core
(CPU) and many-core (GPU) processors. Several
programming models exist for this purpose, either targeting
CPUs (e.g. OpenMP [12]), GPUs (e.g. CUDA [13]), or both
(e.g. OpenCL [14]).

 Several implementations of EMD, EEMD and
MEEMD are available in different languages, such as R
[15], Matlab, Fortran, and C [11]. On one hand, most of
these implementations are sequential and thus limited in
their performance growth. On the other hand, only a
handful of parallel implementations are available in
literature. One example is a GPU-based single-precision
EMD implementation proposed by Waskito et al. [17] and
reported to achieve a 27.7x speedup on an NVidia Tesla
C1060 GPU over a sequential C implementation running
on a 2.53GHz Intel Core 2 Duo CPU. Another example is a
“GPGPU-aided” single-precision EEMD implementation
proposed by Chen et al. [16] with a 31.3x speedup on an
NVIDIA GTX 295 card (which contains two GPUs) over a
sequential C implementation running on a 3.0GHz Intel
Dual Core processor. While both implementations used an
overlapped piecewise spline interpolation to approximate
the original spline interpolation and get more parallelism,
artifacts may arise on the boundaries of each piecewise
spline interpolation.

In this paper, we propose two thread-level parallel
implementations of MEEMD for multi-core CPUs and
many-core GPUs. While using OpenMP and CUDA

1621978-1-4577-0539-7/11/$26.00 ©2011 IEEE ICASSP 2011

respectively, these implementations are not limited by the
underlying architecture or programming model. Our
OpenMP implementation was evaluated on Intel Nehalem
architecture (Xeon X7550). Our CUDA implementation
was evaluated on NVidia Fermi architecture (Tesla C2050)
which provides a significant improvement over previous
generations in the throughput of double-precision floating-
point needed in scientific analyses.

The rest of the paper is organized as follows. Section 2
introduces the MEEMD algorithm. Section 3 describes the
two parallel implementations, and Section 4 discusses their
performance. Section 5 concludes and describes future
work.

2. PRELIMINARIES

This section introduces the MEEMD algorithm starting
with its building blocks: EEMD and EMD.

Figure 1 illustrates the EMD method. For a 1D signal,
the sifting procedure extracts the local extrema and traces
the envelopes using cubic spline interpolation. The
difference between the input and the mean of the envelopes
is extracted as the output. Sifting procedures are cascaded
to generate a stable residual signal. An IMF is obtained
from the difference between the previous residual (the
zeroth residual is defined as the source signal) and the
current one. Figure 2 shows the EEMD method. An
ensemble signal set is acquired by adding different
independent white noises to a 1D signal and the EMD
analysis is applied to each ensemble signal. The final
results are the average of corresponding IMFs among the
whole ensemble signal set.

IMF Procedure

Sifting mM(t)SiftingSifting

Sifting Procedure

Extreme
Point

Detector

maxima

minima

Vector
Mean

-

Tri-diagonal Solver

Backward
Phase

Forward
Phase

Spline
Interpolation

Tri-diagonal Solver

Backward
Phase

Forward
Phase

Spline
Interpolation

Vector
Subs

+

Vector Subs+
-

IMF IMF IMFx(t) r1(t)

c1(t) c2(t) cN(t)

rN(t)

ri(t)

ci(t)

m1(t)

Figure 1: EMD Method

MEEMD can be explained as performing EEMD along

the first dimension of a set of separate signals, then
applying EEMD along the next dimension of the

corresponding results from the previous EEMDs and so on.
For easy understanding, the strategy of 2D MEEMD is
illustrated as an example in Figure 3. After finishing
EEMD executions along all dimensions, the results with the
same scale are summed. In our 2D example of Figure 3, the
final mode calculation would follow the following equation:

K

ik

K

il

i
l

k
ii yxhyxhyxC

1
),(),(),(

IMF+

IMF+

...

IMF+
... ...

)(ty

IMF

IMF

...

IMF

IMF

IMF

...

IMF

Vector Mean Vector MeanVector Mean

)(1
1 tc)(2

1 tc)(1 tc

)(1 tc

)(1
2 tc)(2

2 tc)(2 tc

)(2 tc

)(1 tck)(2 tck)(tck

)(tck

)(tx

)(1 ty

)(2 ty

)(1
1 tr

)(2
1 tr

)(1 tr

)(1 trk

)(2 trk

)(trk

)(1 tn

)(2 tn

)(tn

Figure 2: EEMD Method

EEMD
EEMD
EEMD
EEMD
EEMD

g1(1,~)
g1(2,~)

g1(M,~)

EEM
D

EEM
D

EEM
D

EEM
D

EEM
D

EEM
D

EEM
D

EEM
D

EEM
D

EEM
D

EEM
D

EEM
D

g2(1,~)
g2(2,~)

g2(M,~)

gK(1,~)
gK(2,~)

gK(M,~)

...

...

...

...

...

... ...

C1(i,j)

C2(i,j)

CK(i,j)

sum

sum

sum

h
11 (~,2)

h
11 (~,1)

h
11 (~,N

)

h
12 (~,2)

h
12 (~,1)

h
12 (~,N

)

h
1K (~,2)

h
1K (~,1)

h
1K (~,N

)

h
21 (~,2)

h
21 (~,1)

h
21 (~,N

)

h
K

1 (~,2)

h
K

1 (~,1)

h
K

1 (~,N
)

h
K

K (~,2)

h
K

K (~,1)

h
K

K (~,N
)

...

...

Figure 3: 2D MEEMD Illustration

3. PARALLEL IMPLEMENTATIONS

In MEEMD, although ample parallelism potentially exists
in the ensemble dimension and/or the non-operating
dimensions, several challenges still face a high-
performance MEEMD implantation. First, dynamic data
variations: in EEMD, white noises change the number of
extrema and the sizes of the tri-diagonal linear systems,
causing some irregularity and load imbalance, and thus
slowing down the parallel execution. Second, strided
memory accesses of high-dimensional data: high-
dimensional data are stored in non-contiguous memory
locations. Accesses along high dimensions are thus strided
and uncoalesced, wasting available memory bandwidth.

1622

Third, limited resources to harness parallelism: while the
independent EMDs and/or EEMDs comprising an MEEMD
provide high parallelism, the computational capacities of
multi-core and many-core processors may not be sufficient
to fully exploit the inherent parallelism of MEEMD.
Moreover, increased parallelism may increase memory
requirements beyond the memory capacities of these
processors.

In this paper, we considered two parallel algorithm
models: a thread-level model and a block-level model.
Thread-level parallel algorithms use fine-grained threads in
CUDA, or work items in OpenCL, to exploit massive
amount of parallelism. Block-level parallel algorithms use
collections of collaborative threads, referred to as thread
blocks in CUDA and work group in OpenCL, to execute
larger granularity tasks. In MEEMD, when a high degree
of parallelism is given by the ensemble dimension and/or
the non-operating dimensions, the benefits of using a
thread-level parallel algorithm are threefold. First, it can
exploit a higher degree of parallelism than a block-level
parallel algorithm. Second, it does not incur any
communication or synchronization between the threads
until the final results are merged since the execution of
each EMD or EEMD is independent . Finally, its
implementation is similar to the sequential one, which
makes it more straightforward.

3.1. OpenMP Implementation

In the CPU OpenMP implementation, the EEMDs
comprising MEEMD are assigned to independent threads
for parallel execution, relying on the OpenMP runtime to
resolve any load imbalance issues. Strided memory accesses
of high-dimensional data are eliminated by transposing
these data to lower dimensions, resulting in better
utilization of cache lines. The partial results of each EEMD
are made thread-private for correct functionality. The
required memory depends on the number of OpenMP
threads and is managed by OpenMP runtime.

3.2. CUDA Implementation

In the GPU CUDA implementation, each EMD, as opposed
to EEMD in the OpenMP implementation, is mapped to a
thread. This allows the implementation to exploit a finer
granularity of parallelism. The memory layout, especially of
high-dimensional data, is rearranged to meet memory
coalescing requirements and fit into the 128-byte cache
lines. To this end, a corner-turning technique is applied
using the low-latency on-chip memory. The data is first
loaded along the lowest dimension and then consumed
along a higher dimension. This step is performed when the
Gaussian noise is added to form the ensemble data, and the
total overhead is only less than 1% of the total execution

time. In the new memory layout, the ensemble dimension is
added to the lowest dimension to reduce possible branch
divergence. The impact of the unavoidable branch
divergence from data irregularity, caused by the noise, is
minimized via a regularization technique using the on-chip
memory. Moreover, the cache memory is utilized to
amortize unavoidable uncoalesced memory accesses.

GPUs have a limited number of registers available to
each thread, and register overuse can significantly degrade
the performance. Hence, in our implementation, a GPU
kernel is split into two or more kernels to minimize register
pressure. The available physical memory on GPUs presents
a hard limit to the problem size and parallelism degree. Our
implementation inquires the available memory size on a
GPU to calculate the degree of parallelism that can be
supported. Based on this calculation, the non-operating
dimensions can subdivided to several smaller independent
MEEMDs which can be performed sequentially or
scheduled to other processors.

4. RESULTS AND DISCUSSION

In our experiments, three implementations of MEEMD
were compared: 1) a serial C implementation, 2) our
CUDA implementation, and 3) our OpenMP
implementation. CUDA experiments were executed on a
desktop machine with an Intel Xeon E5520 processor and
one NVIDIA Fermi Tesla C2050 GPU, with NVCC v3.1
used to compile the application. OpenMP experiments were
executed on a four octal-core 2.0 GHz Intel Xeon X7550
system (totaling 32 cores, only 16 of which were used) with
64GB of memory. Intel ICC v11.0 and VTune v9.1 were
used to compile and profile the application. Using an
ensemble number of 1024 and a decomposition number of
5, three input data sets were used with sizes of 41×41,
333×111, and 666×444 samples.

The execution times and speedups are listed in Table 1.
Our double-precision CUDA implementation achieves up to
a 48.6x speedup on one GPU over the sequential C
implementation. The data transfer times between the host
memory and the device memory were 1.9ms, 5.8ms, and
25ms for the three input data sets respectively. Therefore,
they are negligible compared to the total computation time.
Contrastingly, our OpenMP implementation achieves up to
an 11.3x speedup in double precision. Figure 4 shows the
scaling behavior of the OpenMP implementation over 16
cores. Having a high arithmetic intensity, the application
scales almost linearly over eight cores but then levels-off
because of memory bandwidth limitations and Non-
Uniform Memory Access (NUMA) effects on the machine.

Figure 5 shows the profiling of the different phases of
the three implementations. For OpenMP, the profile is
same as the one for serial C, because each OpenMP thread
is essentially executing a copy of the serial code. For

1623

CUDA, the percentage of the cubic spline interpolation
decreased from 58.9% to 47.33% of the total running time
because it benefits from massively parallel execution and
higher memory bandwidth on GPUs. The percentage of
extrema detection increased from 9.96% to 19.93% because
its inherent irregular memory access pattern is inefficient
on GPUs.

Table 1: Execution Time (sec) and Speedup
Size Serial CUDA OpenMP

(16 cores)
41×41 16.24 0.37 (43.9x) 2.13 (7.6x)

333×111 363.56 7.48 (48.6x) 32.13 (11.3x)
666×444 2929.65 62.14 (47.1x) 291.10 (10.1x)

Figure 4: Scalability of Multi-core System

Figure 5: Profiling of MEEMD

5. CONCLUSION

In this paper, two thread-level parallel MEEMD
implementations were described and shown to achieve
significant speedups and good scalability on these
processors compared to a sequential CPU implementation.
For the current generation of multi-core CPUs and many-
core GPUs, we showed that the analysis time of substantial
data sets is reduced to minutes and even seconds.
Experimental data show that the CUDA implementation
will allow continued execution time reduction with future
generation of GPUs through increased parallelism.
However, several bottlenecks will need to be removed for
future multi-core CPUs for similar scaling to work for the
OpenMP implementation. In the future, we plan to build
a library containing EMD, EEMD and MEEMD for CPUs,
GPUs, and heterogeneous computing platforms.

6. REFERENCES

[1] N.E. Huang, Z. Shen, et al., "The Empirical Mode
Decomposition and the Hilbert Spectrum for Nonlinear and Non-
Stationary Time Series Analysis," Proceedings: Mathematical,
Physical and Engineering Sciences, vol. 454, pp. 903-995, 1998.
[2] K.T. Coughlin and K.K. Tung, "11-Year solar cycle in the
stratosphere extracted by the empirical mode decomposition
method," Advances in Space Research, vol. 34, pp. 323-329,
2004.
[3] K. Hu, M.T. Lo, et al., "Nonlinear pressure-flow relationship
is able to detect asymmetry of brain blood circulation associated
with midline shift," Journal of Neurotrauma, vol. 26, p. 227,
2009.
[4] N.E. Huang, C.C. Chern, et al., "A New Spectral
Representation of Earthquake Data: Hilbert Spectral Analysis of
Station TCU129, Chi-Chi, Taiwan, 21 September 1999," Bulletin
of The Seismological Society of America, vol. 91, pp. 1310-1338,
Oct. 2001.
[5] J.N. Yang, Y. Lei, et al., "Hilbert-Huang Based Approach for
Structural Damage Detection," Journal of Engineering
Mechanics, vol. 130, pp. 85-95, 2004.
[6] C. Damerval, S. Meignen, et al., "A fast algorithm for
bidimensional EMD," Signal Processing Letters, IEEE, vol. 12,
pp. 701-704, 2005.
[7] A. Linderhed, "Variable sampling of the empirical mode
decomposition of two-dimensional signals," International Journal
of Wavelets, Multiresolution and Information Processing, vol. 3,
p. 435, 2005.
[8] J. Nunes, O. Niang, et al., "Bidimensional Empirical Mode
Decomposition Modified for Texture Analysis," in Image
Analysis. vol. 2749, J. Bigun and T. Gustavsson, Eds., ed:
Springer Berlin / Heidelberg, 2003, pp. 295-296.
[9] Z. Wu and N.E. Huang, "Ensemble Emprical Mode
Decomposition: A Noise-Assisted Data Analysis Method,"
Advances in Adaptive Data Analysis, vol. 1, pp. 1-41, 2009.
[10] Z. Wu and N.E. Huang, "A study of the characteristics of
white noise using the empirical mode decomposition method,"
Proceedings of the Royal Society of London. Series A:
Mathematical, Physical and Engineering Sciences, vol. 460, pp.
1597-1611, Jun. 2004.
[11] Z. Wu, N.E. Huang, et al., "The Multi-Dimensional
Ensemble Emprical Mode Decomposition Method," Advances in
Adaptive Data Analysis, vol. 1, pp. 339-372, 2009.
[12] OpenMP: http://openmp.org
[13] NVIDIA CUDA compute unified device architecture,
programming guide, Version 3.1, 2010.
[14] OpenCL: http://www.khronos.org/opencl/
[15] D. Kim and H.-S. Oh, "EMD: A Package for Empirical Mode
Decomposition and Hilbert Spectrum," The R Journal, vol. 1, pp.
40-46, 2009.
[16] D. Chen, D. Li, et al., "GPGPU-Aided Ensemble Empirical
Mode Decomposition for EEG Analysis during Anaesthesia,"
Information Technology in Biomedicine, IEEE Transactions on,
2010, in press.
[17] P. Waskito, S. Miwa, et al., "Parallelizing Hilbert-Huang
Transform on GPU," the The 2nd Workshop on Ultra Performance
and Dependable Acceleration Systems, Nov. 2010, in press.

1624

