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a b s t r a c t

Contemporary many-core processors such as the GeForce 8800 GTX enable application developers to
utilize various levels of parallelism to enhance the performance of their applications. However, iterative
optimization for such a system may lead to a local performance maximum, due to the complexity of the
system.We propose programoptimization carving, a technique that beginswith a complete optimization
space and prunes it down to a set of configurations that is likely to contain the global maximum. The
remaining configurations can then be evaluated to determine the one with the best performance. The
technique can reduce the number of configurations to be evaluated by as much as 98% and is successful
at finding a near-best configuration. For some applications, we show that this approach is significantly
superior to random sampling of the search space.

© 2008 Elsevier Inc. All rights reserved.
1. Introduction

Programming for highly-parallel systems has historically been
the domain of relatively few experts, with performance tuning
done primarily by hand. Because of the relative scarcity of highly
parallel applications and the expense of highly parallel systems,
there was limited opportunity for exhaustive performance exper-
imentation. Today, however, single-chip, massively parallel sys-
tems such as the NVIDIA GeForce 8 Series GPUs are inexpensive
and readily available. Unfortunately, the level of effort and exper-
tise required to maximize application performance on these kinds
of systems is still quite high. Optimization is further complicated
by the sharing of resources at a fine granularity, presenting many
choices to application developers of which level(s) of parallelism
to utilize. Finally, it is often the case that successive generations
of massively-parallel architectures require a complete reapplica-
tion of the optimization process to achieve near-maximum perfor-
mance for the new system.

Optimizing an application for maximum performance on
the GeForce 8 Series is not a trivial task. At first glance, it
appears to be a multi-variable optimization problem of applying

I This work is based on an earlier work: Program optimization space
pruning for a multithreaded GPU, in CGO’08: Proceedings of the sixth
IEEE/ACM symposium on code generation and optimization, (c) ACM, 2008.
http://doi.acm.org/10.1145/1356058.1356084.
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a set of optimization techniques, such as tiling and loop
unrolling, to the code. However, the underlying hardware and
threading model contain inflexible usage restrictions that affect
performance in a non-linear fashion and make the optimization
space discontinuous. In addition, the system is complex, with
unpredictable behavior resulting from the interaction of various
components, particularly the runtime system. A developer also
cannot accurately predict the effects of optimizations because
the behavior of certain hardware features has not been publicly
released. Consequently, the final performance of an optimization
configuration is not always readily apparent.

The desire for optimization is significant since the relative
performance between configurations can be quite large. For an
MRI reconstruction kernel with an optimization space size of 175
configurations, the difference in performance between a hand-
optimized implementation and the optimal configuration was 17%
and the difference in performance between the worst and optimal
configurations was 235%. A full exploration of the optimization
space would guarantee finding the configuration with maximum
performance, but is generally not feasible because the intent is to
run large, compute-intensive applications on these systems.

Rather than attempting to find the best configuration via
traditional, phase-ordered compilation, we instead propose an
approach that begins with a large optimization space and then
prunes it. We term this approach program optimization carving. We
first develop metrics that capture first-order performance effects
as a static analysis. We then prune away parts of the optimization
space. In contrast to a full exploration of the optimization space,
this methodology eliminates the need to test as much as 98%
of the optimization search space. The technique was able to
find a configuration with at least 99% of the performance of the
maximum within the entire space for several kernels.
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Table 1
Properties of GeForce 8800 memories

Memory Location Size Latency Read-
only

Description

Global Off-chip 768 MB total 200–300
cycles

No Large DRAM. All data reside here at the beginning of kernel execution. Directly addressable
from a kernel using pointers. Backing store for constant and texture memories. Used more
efficiently when multiple threads simultaneously access contiguous elements of memory,
enabling the hardware to coalesce memory accesses to the same DRAM page.

Shared On-chip 16 kB per SM 'register
latency

No Local scratchpad that can be shared among threads in a thread block. Organized into 16 banks.

Constant On-chip
cache

64 kB total 'register
latency

Yes 8 kB cache per SM, with data originally residing in global memory. The 64 kB limit is set by the
programming model. Often used for lookup tables. The cache is single-ported, so simultaneous
requests within an SM must be to the same address or delays will occur.

Texture On-chip
cache

Up to global > 100 cycles Yes 16 kB cache per two SMs, with data originally residing in global memory. Capitalizes on 2D
locality. Can perform hardware interpolation and have configurable returned-value behavior at
the edges of textures, both of which are useful in certain applications such as video encoders.

Local Off-chip Up to global Same as global No Space for register spilling, etc.
We begin by discussing the execution hardware, threading
model, and available tools in Section 2. This sets up the various
factors that affect performance. Section 3 discusses the most
effective optimizations for this architecture, and shows how
one needs to consider them to attain the best-performing
configuration. Section 4 discusses the program optimization
carving technique. Section 5 demonstrates the results achieved
with optimization carving, comparing them to random sampling,
and how different metrics affect the results. We discuss related
work in Section 6 before finishing with our conclusion.

2. Architecture

This work uses the GeForce 8800 GTX GPU1 as the hardware
target for its study. The GeForce 8800 has a large set of processor
cores that can directly address a global memory. This general
addressibility allows for a more general and flexible programming
model than previous generations of GPUs, and allows developers to
easily implement data-parallel kernels. In this section we discuss
NVIDIA’s Compute Unified Device Architecture (CUDA), with
emphasis on the features that significantly affect performance. A
more complete description can be found in [20,25]. It should be
noted that this architecture, althoughdescribed inmore detail than
previous GPU architectures, still has details that have not been
publicly revealed.

Before discussing the hardware, it is useful to describe the
programming and compilation process. The CUDA programming
tool kit compiles ANSI C extended with several keywords and
constructs. The GPU is treated as a coprocessor that executes
data-parallel kernel functions. The user supplies a single source
program encompassing both host (CPU) and kernel (GPU) code.
These are separated and compiled by NVIDIA’s compiler. The host
code transfers data to and from the GPU’s global memory via API
calls. It initiates the kernel code by performing a function call.

2.1. Microarchitecture

Fig. 1 depicts the microarchitecture of the GeForce 8800. The
GPUconsists of 16 streamingmultiprocessors (SMs), each containing
eight streaming processors (SPs), or processor cores, running at
1.35 GHz. Each SP has one 32-bit, single-precision floating-point,
multiply-add arithmetic unit that can also perform 32-bit integer
arithmetic. Additionally, each SM has two special function units
(SFUs) that executemore complex FP operations such as reciprocal
square root, sine, and cosinewith low latency. The arithmetic units

1 There are several versions of theGeForce 8800GPU. References toGeForce 8800
are implied to be the GTX model.
Fig. 1. Organization of the GeForce 8800.

and the SFUs are fully pipelined, yielding 388.8 GFLOPS (16 SM ∗

18 FLOP/SM ∗ 1.35 GHz) of peak theoretical performance for the
GPU.

The GeForce 8800 has 86.4 GB/s of bandwidth to its off-
chip, global memory. Nevertheless, with computational resources
supporting nearly 400 GFLOPS of performance and each FP
instruction operating on up to 12 bytes of source data, applications
can easily saturate that bandwidth. In the theoretical worst case,
an application running at peak throughput could require up to
2.25 TB/s (1.35 GHz * [128 multiply-add operations * 12 bytes +

32 SFU operations * 4 bytes]) of memory bandwidth, or 26 times
the available bandwidth. Therefore, as described in Table 1 and
depicted in Fig. 1, the GeForce 8800 has several on-chip memories
that can exploit data locality and enable data sharing to reduce
an application’s demands for off-chip memory bandwidth. For
example, each SM has a 16 kB shared memory that is useful for
data that is either written and reused or shared among threads. For
read-only data that is accessed simultaneously by many threads,
the constant and texture memories provide dramatic reduction
in memory latency and bandwidth consumption via caching.
Accesses to global memory should also be arranged as aligned,
contiguous, 16-word lines to achieve an effect called globalmemory
coalescing. Any other pattern can achieve only a small fraction of
the effective memory bandwidth of coalesced accesses.

Threads executing on the GeForce 8800 are organized into a
three-level hierarchy. At the highest level, each kernel creates
a single grid that consists of many thread blocks. The maximum
number of threads per block is 512. Each thread block is assigned
to a single SM for the duration of its execution. Threads in the
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Table 2
Constraints of GeForce 8800 and CUDA

Resource or configuration parameter Limit

Threads per SM 768 threads
Thread blocks per SM 8 blocks
32-bit registers per SM 8192 registers
Shared memory per SM 16384 bytes
Threads per thread block 512 threads

same thread block can share data through the on-chip shared
memory and can perform barrier synchronization by invoking the
__syncthreads primitive. Threads are otherwise independent,
and synchronization across thread blocks can only be safely
accomplished by terminating the kernel. Finally, threads within a
block are organized into warps of 32 threads. Each warp executes
in SIMD (single-instruction, multiple-data) fashion, issuing in four
cycles on the eight SPs of an SM.

SMs can perform zero-overhead scheduling to interleave warps
on an instruction-by-instruction basis to hide the latency of global
memory accesses and long-latency arithmetic operations. When
one warp stalls, the SM can quickly switch to a ready warp in the
same thread block or a ready warp in some other thread block
assigned to the SM. The SM stalls only if there are no warps with
ready operands available.

2.2. Architectural Interactions

Accurately predicting the effects of one or more compiler
optimizations on the performance of a CUDA kernel is often quite
difficult, largely because of interactions among the architectural
constraints listed in Table 2. Many optimizations that improve
the performance of an individual thread tend to increase a
thread’s resource usage. However, as each thread’s resource usage
increases, the total number of threads that can occupy an SM
decreases. This decrease in thread count can occur in a dramatic
fashion because threads are assigned to an SM at the granularity
of thread blocks. In short, there is often a tradeoff between the
performance of individual threads and the thread-level parallelism
(TLP) among all threads.

For example, consider an application that uses 256 threads per
block, 10 registers per thread, and 4 kB of shared memory per
thread block. This application can schedule 3 thread blocks for a
total of 768 threads on each SM. However, an optimization that
increases each thread’s register usage from 10 to 11 (an increase
of only 10%) will decrease the number of blocks per SM from three
to two, which decreases the number of threads on an SM by 33%.
The GeForce 8800 can only assign two thread blocks (512 threads)
to an SM because a third block would increase register usage to
8448, above the 8192 available registers per SM. By contrast, an
optimization that increases each thread block’s shared memory
usage by 1 kB (an increase of 25%) does not decrease the number
of blocks per SM. Clearly, the optimization space is inherently non-
linear.

2.3. Software tool support

For CUDA compilation, NVIDIA provides a compiler wrapper
called nvcc that handles all parts of the compilation flow, including
linking host and kernel binaries. The compiler also supports several
options that programmers can use to debug kernels and to gain
intuition on their performance. Two flags are especially useful:
-ptx and -cubin. The amount of time it takes to run nvcc with
these flags is much shorter than actual compilation because only
the kernel code is processed.

Nvcc compiles kernel code to an assembly-like representation
termed PTX. This is normally placed in an object file for
consumption by the CUDA runtime, which processes this code,
performs further optimization such as scheduling, and generates
hardware-specific binaries for execution. The -ptx flag outputs
the PTX in a developer-readable format. Although PTX is not
the same code that is executed on the hardware, it often
gives insights into why performance degrades or improves after
an optimization is applied. In particular, information such as
instruction count, instruction mix, and a rough idea of scheduling
can be utilized reliably. For example, unrolling a loop with strided
memory accesses creates successive operations that operate at
different offsets from a base address. PTX shows the savings
in address calculations that results from this transformation.
Detailed instruction-level scheduling, however, is the domain of
the runtime.

The CUDA runtime that generates executable machine code
appears to reschedule code and allocate registers. This introduces
an uncontrollable element during program optimization and
makes the effects of optimizations on local resource usage less
predictable. The -cubin flag outputs the resource usage of GPU
kernel code, including the shared memory used per thread block
and registers used per thread. This is critical to understanding the
performance of the code because an SM runs the number of thread
blocks that fit given their local resource usage. A small change
in code can result in resource usage that changes the number of
thread blocks executing on an SM, which can significantly impact
performance. We use the information provided by -cubin to
calculate the number of thread blocks that can simultaneously
reside on each SM.

3. Optimizations

The basic strategy for achieving good kernel code performance
on theGeForce 8800 is to first ensure that executing threads are not
starved for data: globalmemory bandwidth should not be the limiting
factor on performance. After that, optimizations should balance high
utilization of execution resourceswith an efficient instruction stream.
High utilization, where warps are always available for execution,
is accomplished in three ways. First, one can have sequences of
independent instructions within a warp so that the same warp
can make forward progress. Second, a developer can place many
threads in a thread block to improve the likelihood that one warp
can execute while others are stalled on long-latency operations,
such as memory loads. Third, the hardware can assign up to
eight independent thread blocks to an SM. Under high-occupancy
conditions, a more efficient program using fewer instructions to
complete the same task increases the rate of useful computation
performed by the system.

Optimizations rarely improve an aspect of machine-level
behavior in an isolated manner. Many optimizations affect several
aspects, producing a give-and-take situation between different
categories. Moreover, many optimizations increase resource usage
and thus compete for a limited budget of registers, threads, and
shared memory. The most common way in which optimizations
interact and interfere on the GeForce 8800 is by their effects
on register usage. For example, an optimization that increases
the number of independent instructions after a long-latency
instruction generally uses additional registers. This causes register
usage of each thread and thread block to increase,which in turn can
cause the number of thread blocks assigned to each SM to decrease.

In this section we first discuss the major optimizations for
performance. Using a matrix multiplication kernel as an example,
we show how these optimizations can be applied to an application
to find the best configuration. Fig. 2 illustrates several of these
optimizations.
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(a) Base version. (b) Complete uroll.

(c) Prefetching. (d) 1 × 2 rectangular tiling.

Fig. 2. Matrix multiplication optimization examples code differences from base version are shown in bold.
3.1. Memory bandwidth optimization

The first class of optimizations deals with reducing pressure
onmemory bandwidth, particularly globalmemory. The principles
of efficiency and utilization matter little to performance if the
executing threads are starved for data. Listed here are some
techniques for reducing global memory accesses.

• Capitalize on the reuse of data via local, low-latency memories.
Use of the shared memory and the texture and constant
caches is explained in the previous section. This may require
restructuring of computation using transformations such as
loop interchange [3] to create an amenable access pattern.

• Improve data locality by coalescing global memory accesses to
fully utilize the width of the global memory bus. Non-coalesced
accesses are capable of utilizing only a fraction of the total
memory bandwidth. Optimizations include:
– Use shared memory as a buffer to load data in bulk, then access

them in whatever pattern the programmer finds convenient
from thatmemory. Even if bank conflicts occur during shared
memory accesses, overall performance may improve even
without data reuse. Note that memory tiling [31] naturally
achieves this effect. It is conceivable that loading data that
will not be used may be worth the effects of coalescing,
although no such case has been encountered in this study.
– Reorganize data and rewrite the application so that the data
the kernel accesses are located in aligned, contiguous regions of
memory. One example is to split an array of structures into
multiple arrays so that fields that formerly required non-
unit strided access are now adjacent in memory. Doing so
manually is generally considered poor software engineering
practice, but it may be possible for the compiler to perform
the transformation or for a smart memory system to
reorganize data at runtime. Work by Yamada et al. [32]
proposed a combined hardware and software technique to
address this issue. Truong et al. [29] recognized the positive
cache effects of similar optimizations on different instances
of dynamically-allocated objects.

Fig. 2(a) shows a matrix multiplication kernel that consists of
16 × 16 thread blocks and operates on 16 × 16 data tiles. A width
of 16 enables global memory coalescing, while the 16 × 16 thread
blocks efficiently reuse data. It is possible for applications to still
be performance-limited by global memory bandwidth even after
these optimizations have been performed. Such applications often
have little data reuse and have data organizations that cannot be
significantly modified or require major effort to be modified.

3.2. Dynamic instruction reduction

The second category is to reduce the dynamic instruction
count per thread, or increase the efficiency of the instruction
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stream. Because these are common techniques for improving the
performance of applications executing on traditional superscalar
processors, their effects are generally well understood. Some of
the most effective examples of these optimizations are listed
below, along with a short description of their intended effects and
common side effects.

• Common subexpression elimination (CSE). This optimization
removes repeated calculations of an expression, such as an
arithmetic operation or the load of a value, and instead uses
the saved value of a previous computation from a register. It
tends to use additional registers unless a sequence of redundant
expressions can be eliminated.

• Loop-invariant code motion (LICM). Related to common subex-
pression elimination, this optimization involves the movement
of an expressionwithin a loop to a point outside the loop. This is
possible when the sources of the expression do not change dur-
ing the loop’s execution and when the expression is calculated
on every path of the loop. It tends to uses additional registers.

• Loop unrolling.When a loop has a constant trip count, it is often
advantageous to ‘‘unroll’’ the loop by a factor that evenly divides
of the trip count, replacing it with a loop that iterates fewer
times but performs several times more work per iteration. This
has several benefits:
– Fewer loop iteration instructions are executed.
– Instructions can be combined. For example, a loop may

increment a pointer and then load from the location. When
the loop is unrolled, instead of two increment operations, the
second load incorporates an offset and a single increment
operation is performed. The unrolled matrix multiplication
kernel in Fig. 2(b) shows an example of this optimization.

Complete unrolling of the loop can be very profitable for loops
with small bodies since the majority of operations may be loop
counter and branch instructions. It also frees up the register that
was used as the loop counter. Loop unrolling must be balanced
against additional pressure on instruction cache capacity, so in
general only the innermost loops of a kernel will be the ones
unrolled. It may also trigger other optimizations that change
register usage.

3.3. Increasing thread-level parallelism

The goal of the third category of optimization is to improve ex-
ecution resource utilization by providing enough threads/warps to
hide the stalling effects of long latency and blocking operations.
Examples of long latency operations are loads from global or tex-
ture memories. Blocking operations include barrier synchroniza-
tion, which stops a warp until all warps in the same block have
reached the barrier.

A common optimization in this category is to decrease the
thread block size and increase the number of thread blocks. This
change can increase the number of thread blocks assigned to each
SM and provide more independent warps from other blocks when
one block is stalled. However, increasing the number of thread
blocks can require changing the granularity of computation. In
cases where memory tiling is utilized, it may have the effect
of reducing data sharing and increasing pressure on memory
bandwidth.

3.4. Increasing intra-thread parallelism

The fourth category of optimization, intra-thread parallelism,
ensures the availability of independent instructions within a
thread. These optimizations have a multiplicative effect with
thread-level parallelism, so small changes can have major effects
on performance. Intra-thread parallelism breaks down into two
subcategories.
• Instruction-level Parallelism (ILP). ILP-increasing code transfor-
mations have been extensively studied and applied to many
architectures, particularly EPIC/VLIW architectures. John Sias’
Ph.D. dissertation [26] discusses many of these in detail. One
interesting case is loop unrolling, which is also an efficiency-
increasing optimization. An example is shown in Fig. 2(b),
where the loads from shared memory for the different tiles can
execute in any order.

This subcategory is primarily the jurisdiction of the instruc-
tion scheduler of the CUDA runtime. It appears to reschedule
operations to hide intra-thread stalls, but sometimes does this
to the detriment of inter-thread parallelism. As with optimiza-
tions to reduce instruction count, scheduling to reduce intra-
thread stalls may increase register usage and potentially reduce
the number of thread blocks on each SM.

• Memory Latency Hiding. A special case of ILP, memory opera-
tions can be scheduled to overlap and amortize latencies, reduc-
ing the likelihood that execution resources will stall on global
memory accesses. The GeForce 8800 supports a large number
of in-flight memory accesses, making overlapping of memory
access latencies a key aspect of performance on that architec-
ture. This category breaks down into memory-level parallelism
(MLP) [8] and prefetching.
– Memory-level parallelism refers to the ordering of memory

operations to ensure that many loads are in flight before a
stalling use is encountered. For example, in Fig. 2(a), loads of
elements of arrays A and B can be scheduled before the store
to As in order to amortize the exposed latencies of the loads.
This schedule also causes more work to be available from the
same thread block during the stall, since each warp has two
load operations prior to a consuming store. This optimization
is generally the domain of nvcc and is difficult for a developer
to control manually.

– The developer can explicitly insert prefetching code to
initiate long-latency global loads as early as possible and hide
its latency with other instructions. An example is shown in
Fig. 2(c). Prefetching generally requires additional register
usage in code regions where register usage is already high,
sometimes causing fewer thread blocks to reside on each SM.

3.5. Work redistribution

The fifth category involves redistribution ofwork across threads
and thread blocks. These optimizations can change both efficiency
and utilization and have some effect onmemory bandwidth usage.
Because of their nature, optimizations in this category can have
unpredictable results due to changes in register usage.

Tiling and the choice of tile size is one optimization that also
falls into this category. Although tiling is primarily done to improve
memory bandwidth usage, the size of the tile also has efficiency
and utilization implications. Assuming that each thread computes
a single element of the output data set, the use of large memory
tiles has higher efficiency than smaller tiles, but has reduced
scheduling flexibility (utilization) since a larger percentage of
threads must stall at barrier synchronizations.

Another example is rectangular tiling in Fig. 2(d): instead of
each thread computing one result, they compute multiple results.
This allows register tiling [7], where values can be reused in
a register within a single thread, eliminating loads. The cost is
reduced thread-level parallelism. Another benefit is the reduction
in the total number of control flow operations: more work is done
per block and the total number of blocks is reduced. There is often a
small increase in ILP, but the increase in register usage often causes
fewer thread blocks to be executed per SM.

Another optimization that is occasionally useful is to distribute
work across multiple invocations of a kernel. This is sometimes
necessary to use the constant cache, due to its size limitation.
It may also help improve cache behavior. The additional kernel
invocation overhead can be negligible.
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3.6. Resource balancing

The last category is best termed resource balancing. The
purpose of these optimizations is to make changes in resource
usage to alleviate pressure on oversubscribed resources and shift to
underutilized ones to produce better overall performance. Unless
the whole system is taken into account, the optimization may
be counterintuitive. Because of the high amount of execution
resources, most optimizations involve decreasing instruction
efficiency to optimize another aspect of execution and improve
utilization.

One optimization in this category is the shifting of data
from capacity-constrained, low-latency memories to larger, high-
latencymemories to allowmore threads to run simultaneously. For
example, proactive, explicit register spilling may be done by the
application developer to allow more thread blocks to be assigned
to each SM. The resulting configuration may achieve much higher
performance, despite the reduced instruction efficiency, because
the additional thread blocks improve overall resource utilization.
Similarly, a kernel with small input and output data sets but large
working sets may find it advantageous to spill data to global
memory to avoid congesting registers or shared memory.

4. Optimization carving

When developing a program with significant performance re-
quirements, a developer begins with a mental model of the target
platform and creates the application with this in mind. One usu-
ally starts with the first-order concern for performance, which his-
torically has been the application algorithm and its corresponding
instruction count. After finding a seemingly reasonable base con-
figuration, the application is tested and then iteratively optimized
until an acceptable configuration is found.

This iterative approach is often adopted by compilers that
generate high-performance code for traditional uniprocessors and
multiprocessors: algorithms cannot be changed, so the efficiency
of the instruction stream is the first-order performance concern.
A plethora of instruction removal, redundancy elimination, and
strength reduction optimizations have been developed to address
this concern.

However, the iterative optimization approach has major issues
when applied to GPU compilation. The broad issueswere discussed
in Section 1 and some specifics are discussed here:
1. It is well understood by the compiler community that particular

orderings of optimizations can trap optimization processing
into an application’s local performance maximum. This has
not received as much attention as it might have on a single
superscalar or EPIC/VLIW processor, because the performance
difference between two configurations might be on the order
of several percent. On platforms such as the GeForce 8800,
a performance difference of more than double is possible.
Furthermore, optimizations for the system have complex
effects, and a poor decision by an application developer or
compiler can trap the application in a local performance
maximum. This makes it imperative to perform a broad search
of the space when increased performance is valuable.

2. GPUs have a wealth of execution resources, but these are sepa-
rated both by physical space and by architecture capabilities ca-
pabilities, such as the lack of direct global-to-scratchpad mem-
ory transfers on the GeForce 8800. The cost of communication
is significant, which is well-understood by parallel program op-
timization experts. However, the degree of tradeoffs is differ-
ent: for example, there is a much more vague tradeoff between
whether a processing unit should recompute a value locally or
obtain that value from another processing unit, due to shorter
communication latencies between processing units. Determin-
ing the best tradeoffs will be difficult for most developers.
3. The GPU innovation cycle is very short and new features
are incorporated into products every several months. Some
of these reside on hardware and remain disabled until their
correctness can be validated. However, it takes time and effort
for developers and compiler writers to utilize new features;
they will not be well understood for a significant amount
of time. Also, to preserve competitive advantage, limited
information may be available about these features. During
application development for the Geforce 8800, we were able
to find little information on global memory coalescing, cache
attributes, or SFU performance. Iterative compilation is likely to
make the wrong assumptions about how to use these features
and create suboptimal application configurations.

Instead of selecting a single starting configuration and itera-
tively optimizing it, we propose the use of a process we term opti-
mization carving, described here.

4.1. Description of the technique

Conceptually, optimization carving begins with a large opti-
mization space for an application. By examining metrics of appli-
cation configurations for the system, it repeatedly removes con-
figurations in the space that are unlikely to get good performance.
Each carving prunes the optimization space, eventually leaving a
few potentially high-performance configurations that can then be
evaluated via hardware execution to determine the best one.

There are several reasons why optimization carving is practical
for the GeForce 8800:

• The kernel codes studied here have a small number of
independent configuration axes, resulting in a relatively small
search space.

• The effects of code transformations, particularly in combina-
tion, are unpredictable because of the application developer’s
lack of control over the runtime’s instruction scheduling and
register allocation. Thus, iterative optimization is unlikely to
find a configuration with close to the best performance.

• On single-chip, many-core architectures, configurations that
are trapped in local performance maxima may be significantly
removed from the optimal in both performance and transfor-
mations, as shown in previous work [23]. A partial search of the
optimization space may provide substantial performance gains
over iterative optimization.

Optimization carving is done in order of performance impact.
First-order issues are addressed first, then second-order, and so
on. We identify these issues in the following subsections. Carving
must be done correctly to find a near-optimal configuration, but
it is generally easier to understand the first- and second-order
performance concerns of an architecture than the exact effects of
optimizations. We begin with a complete optimization space and
full knowledge of resource usage for this reason. How to perform
more speculative optimization carving is left for future work.

There are two kinds of carving, threshold carving and tradeoff
carving. Each has different selection criteria and is discussed below,
along with how it manifests on the GeForce 8800.

4.1.1. Threshold carving
Threshold carving is performed when some performance

aspect must be satisfied or mitigated in order to achieve good
performance. The example on the GeForce 8800 is off-chip
memory bandwidth: performance is not positively impacted by
classical, efficiency-increasing optimizations when the hardware
is continuously stalled on off-chip memory accesses.

Selection for threshold carving involves pruning all configura-
tions that do not surpass either a relative or absolute threshold.
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In the matrix multiplication example, the developer or compiler
performing the carving could require that all loads must be coa-
lescible, or that the estimated bandwidth requirement of the appli-
cation be below a certain limit. This is an example of an absolute
threshold. A relative threshold might be established for an appli-
cation where memory bandwidth is always a bottleneck, in which
case only the configurations with themost efficient memory usage
are evaluated.

Global memory bandwidth usage on the GeForce 8800 is
estimated by examining the percentage of memory accesses in
the instruction stream and determining the average number of
bytes being transferred per cycle in the absence of stalls. The
global memory coalescing effect can be included by observing
whether memory accesses in kernel code are to contiguous
locations within a warp and are aligned (offset by a multiple of
16 from the beginning of the structure). For this work we prune
configurations that do not perform global memory coalescing
when configurations that enable coalescing exist.

4.1.2. Tradeoff carving
Tradeoff carving has a different nature from threshold carving:

in some cases, it is not clear that one should maximize or
minimize a particular performance aspect of an application on the
architecture. One example is instruction stream efficiency: some
redundant computation may improve performance by allowing
more threads to execute in parallel or reducing communication
between threads. The purpose of tradeoff carving is to balance two
or more aspects of an application because the optimal balance is
unclear.

Selection for tradeoff carving involves metrics for two or more
aspects of an application. The configurations that are retained are
those that lie on a Pareto-optimal curve: no point on the curve
is inferior in every dimension to any other point in the space.
Any configuration that is inferior in every dimension to any other
configuration is pruned.

When the performance of the GeForce 8800 is not limited by
memory bandwidth capacity, it is determined by two factors:
instruction stream efficiency and execution resource utilization.
In many cases one can be traded off for the other with potential
improvement in performance. An example of this tradeof is the use
of shared memory to capitalize on data reuse: instead of loading
a value multiple times from global memory, a thread can store
the value in shared memory (an extra instruction) after the first
load and subsequently load the value from there. Even though
an extra instruction must be executed to store a datum to the
sharedmemory, the thread does not stall on global memory access
for subsequent loads and, therefore, can make faster progress.
On the other hand, if threads use too much shared memory,
this configuration may cause fewer threads to be simultaneously
executed per SM and thus reduce performance.

The concepts of efficiency and utilization are very general and
can be applied to any computer architecture. For applications
executing on the GeForce 8800, it is possible to calculate metrics
that work reasonably well in practice. The versions developed for
this work are explained below.

Efficiency =
1

Instr ∗ Threads
. (1)

Eq. (1) estimates the instruction efficiency of the kernel to
be run on the GPU by counting the total number of instructions
that will be executed. Instr is an estimate of the number of
dynamic instructions that will be executed per thread on the GPU,
derived from the PTX code generated by nvcc. For this work,
the average iteration counts of the major loops in the kernel are
annotated to obtain this data. Some instructions count as multiple
instructions; 32-bit integer multiplication is the primary example,
taking multiple processor cycles to execute on the GeForce 8800.
Threads is the number of threads that will run on the GPU for a
given problem size, known to the developerwhenwriting the code.
This is made explicit in the invocation of the kernel function and
does not have to be an absolute value as long as the relative values
of different configurations are correct.

In the absence of a memory bandwidth bottleneck and
assuming nearly full SP utilization, we expect that efficiency will
correlate directly to the performance of different configurations.
Because it counts the total number of instructions executed, the
metricmeasures the instructions that are redundant across threads
and this penalizes configurations that have more redundancy,
such as ones with finer-grained threads. This effect should be an
accurate reflection of performance when the SPs are fully utilized.

Utilization =
Instr

Regions

[
WTB − 1

2
+ (BSM − 1)(WTB)

]
. (2)

Eq. (2) estimates the utilization of the compute resources on the
GPU. The purpose of this metric is to indicate the schedulability
of warps in the system. This is done by primarily looking at TLP
and determining how often a warp is expected to wait and the
amount of available work from independent warps. The fraction
Instr

Regions represents the average number of non-blocking instructions
a single warp is expected to execute before encountering an
instruction that causes it to stall. As before, Instr is the per-thread
number of dynamic instructions that will be executed on the GPU.
Regions is the number of dynamic instruction intervals delimited
by blocking instructions or the start or end of the kernel. Examples
of blocking instructions are those that consume the results of long
latency operations (generally global and texture memory loads)
and synchronization instructions. SFU instructions are considered
to have long latency when longer latency operations are not
present.

The quantity within the brackets represents the number of
independent warps in the SM, other than the one currently
executing, that can be executed while the blocking instruction is
being resolved.

• The first term in the bracket is the number of other warps in
the same thread block as the currently executing warp. WTB is
the number of warps in a thread block, which is determined
by dividing the number of threads in a thread block by 32.
There is a division by two because if the blocking instruction
is a synchronization instruction, on average half of the warps
in the same block still need to execute until they also reach
the synchronization point. Although loads do not have this
restriction, we assume worst-case behavior.

• The second term in the bracket is the number of warps in other
thread blocks on the SM that can execute. BSM is the number
of thread blocks assigned to each SM. The runtime assigns the
maximum number of thread blocks possible to each SM, up
to eight, without violating local resource usage. This number
can be calculated from the local resource usage obtained via -
cubin.

Synchronization instructions are grouped with the consumers
of long latency memory operations in order to simplify the
calculation of the Regions term, even though they display different
behavior. Execution at a barrier synchronization proceeds only
when all of the threads in a thread block have reached that point,
while global load operations execute immediately and do not block
execution until a use of the destination operand is encountered.
The division by two in the first term in the bracket is a worst-case
assumption.

There is a distinct upper limit on how much the execution
resources can be utilized. If utilization were used in a single cost
metric (e.g., efficiency ∗ utilization), it would be expected that
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the value would be capped or asymptotically approach the peak
theoretical limit of 10 operations per cycle, per SM. However,
because the intent is to use this metric as part of a Pareto-
optimal selection, it is more important that the superiority or
inferiority of a configuration relative to other configurations is
retained.We do not cap the value because it is unnecessary for this
purpose. Because of this decision, the relative utilization values of
configurations may not be meaningful.

As discussed previously, running nvcc with -cubin and -ptx
flags is faster than full compilation of an application. Computing
the efficiency and utilization metrics is relatively fast after this
information and a few numerical inputs from the developer or a
profile are obtained. This allows for fast exploration of the search
space.

The utilization metric simplifies some aspects of the architec-
ture for which details are not available. It does not use instruction
latency values or instruction schedules and makes very simple as-
sumptions about the warp scheduling policy. During tradeoff carv-
ing, a good configuration may be undervalued because the metrics
do not capture all performance aspects of the architecture. Using
more detailed performance estimates, particularly those that in-
troduce more variables into the calculations, increases the risk that
any effects that are not exactly modeled will inflate the metric val-
ues for poor-performing configurations. This possibility of ‘‘false
precision’’ means that metrics used for tradeoff carving should
either be very broad or extremely correct. Another method for in-
creasing the robustness of tradeoff carving is to retain configura-
tions that are within a certain distance from the Pareto-optimal
curve, although this increases the number of configurations to be
evaluated. Exploration of the use of more precise metrics is de-
scribed in Shane Ryoo’s Ph.D. dissertation [24].

4.2. Applying metrics to matrix multiplication

The matrix multiplication kernel shown in Fig. 3 is used to
demonstrate the calculation of the metrics. The kernel is first
compiled with -cubin to obtain the resource usage, which shows
that each thread uses 13 registers, and each block uses 2088 bytes
of shared memory for its 256 threads. The number of blocks per
SM is determined by referring to the per-SM resource limits in
Table 2. In this case, register usage is the limiting factor: BSM =

b8192/(13 ∗ 256)c = 2. The number of warps per thread block is
WTB = d256/32e = 8.

This kernel is then compiled with -ptx to determine its
execution profile. The loop is annotated with a trip count of
256, found by dividing the matrix size (4096) by the tile length
(16). With this annotation, the number of dynamically executed
instructions can be counted statically. A single thread runs 15,150
instructions, including 512 barriers and 256 load-consuming
instructions, so Instr = 15,150 andRegions = 512+256+1 = 769.
The final piece of information needed is the number of threads in
the kernel. There is one thread for each element of the 4k-by-4k
output matrix: Threads = 224. From these numbers, Efficiency =

3.93 ∗ 10−12 and Utilization = 227. As previously stated, the
relationship of these metrics among different configurations is
more meaningful than their absolute values.

5. Experiments

This section presents the use of optimization carving to
find high-performance configurations of several benchmarks. We
discuss some of the shortcomings of the technique and illustrate
them with a simple example. We also compare the technique to
random sampling of the entire optimization space, and the use of
different computations for the utilization metric.
Fig. 3. Matrix multiplication example for calculating metrics. This is the same as
Fig. 2(b) with regions delineated for clarity.

5.1. Methodology

The results in this section were obtained with CUDA version
1.0. Experiments were performed on an Intel Core2 Extreme Quad
running at 2.66 GHz with 4 GB of main memory. The presented
data represent runs with smaller inputs than those considered
typical, which allowed us to explore the entire optimization space
in a reasonable amount of time and determine the proximity
of our selected configurations to the highest-performing one.
Informal experiments have shown that execution time will
scale accordingly with an increase in input data size for these
applications on this architecture, due to the regular and otherwise
data-independent execution of the kernels. The data are gathered
from a single run of each configuration; repeated runs have shown
that the gathered runtimes are reliable.

Benchmark applications were selected from those presented
in previous work [25]. Table 3 lists the applications, optimization
parameters varied (ones with no effect were excluded), the
number of configurations in the optimization space, and the total
time needed to evaluate the performance of every configuration in
the optimization space. These applications were selected for their
large number and variety of applicable optimizations, although
none of the search spaces presented here are provably complete.
Optimizations were performed only on the kernel source code.
References to the ‘‘best’’ configuration indicate the configuration
with the highest performance in the optimization space.

5.2. Results

Fig. 4 shows plots of the metric values for each optimization
configuration for all of the applications. The maximum metric
value along each axis has been normalized to one for comparison
purposes. In general the best performance should come from
configurations with both high efficiency and utilization, meaning
points towards the right and/or the top of the graph. The
configuration with the best performance for each application is
circled in Fig. 4 for higher visibility. The average values of efficiency
and utilization are different for each benchmark, reflecting the
difficulty of establishing a simple cost function to find the best
configuration.
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Table 3
Applications and parameter search properties

Kernel Parameters varied Total
configurations

Total evaluation time (s)

Matrix Multiplication (MM) Thread block/memory tile size, rectangular tile dimension,
unroll factor, prefetching, register spilling

93 363.3

Coulombic Potential grid (CP) Thread block size, per-thread tiling, coalescing of output 38 159.5
Sum of Absolute Difference (SAD) Per-thread tiling, unroll factor (3 loops), work per thread

block
908 7.677

Magnetic Resonance Imaging reconstruction (MRI-FHD) Thread block size, unroll factor, work per kernel invocation 896 2875
(a) MM. (b) CP.

(c) SAD. (d) MRI-FHD.

Fig. 4. Optimization carving for four Benchmark applications. The best performing configuration is circled in each graph. Configurations pruned by threshold carving are
marked with squares rather than ‘+’. In (b), each point represents as many as seven configurations with indistinguishable efficiency and utilization.
The matrix multiplication kernel has thread blocks of size
8 × 8 and 16 × 16 in its configuration space. Although a
developer with detailed knowledge of global memory coalescing
would know to exclude 8 × 8 blocks, we were not aware of
the specific constraints of coalescing when these experiments
were first performed. We use this opportunity to show the
effects of threshold carving: configurations pruned by threshold
carving in MM are marked with an square rather than ‘+’.
These configurations run significantly more slowly than the plot
would indicate because they are limited by memory bandwidth.
A Pareto-optimal curve that includes these configurations will
still find the best configuration, but at the cost of evaluating
several configurations with poor performance. The other kernels
had naturally coalesced access patterns and were not affected by
threshhold carving.

Table 4 shows the number of configurations selected by
carving and the resulting reductions in space and evaluation
time. The reductions were significant. The table also shows the
performance of the best configuration in the Pareto-optimal curve
compared to the best performance of all configurations, found
via exhaustive search. For three applications, the Pareto-optimal
subset contains the best configuration. The configuration with
the best performance in the MRI-FHD kernel does not lie on
the Pareto-optimal curve, but the second-best configuration does,
with a performance difference of less than 1%. The variation in
runs is relatively close to this difference, and there are several
points on the Pareto-optimal curve that are within 2% of the best
performance.

It is difficult to make a judgment about whether a given
value of utilization is ‘‘good’’ or ‘‘bad’’. As previously stated, the
utilizationmetricmeasures the relative ability of a configuration to
utilize the execution units, but the differences in value are of less
importance. For example, consider that the best configuration for
matrix multiplication in Fig. 4(a) has one of the lowest utilization
values of the entire space. The reason low utilization is not a
reliable predictor of poor performance is because all configurations
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Table 4
Optimization carving space reduction

Kernel Selected configurations Space reduction (%) Selected evaluation time Time reduction (%) Selected best relative to overall best (%)

MM 8 91 10.2 s 97 100
CP 10 74 42.95 s 73 100
SAD 19 99 62.21 ms 99 100
MRI-FHD 58 93 270.0 s 91 99.2
Table 5
Random sampling results

Kernel Best
configuration

Optimization carving
configs

Expected maximum
performance of same
size random sample

Performance relative to
best (%)

Random sample
size for 90%
of best

Random sample size for
95% of best

MM (16 × 16 only) 1.147 s 8 1.404 s 81.7 20 37
CP 2.679 s 10 2.869 s 93.4 8 15
SAD 2.029 ms 19 2.479 ms 81.8 78 93
MRI-FHD 3.727 s 58 3.763 s 99.0 2 4
Fig. 5. Execution time of MRI-FHD with cache conflicts.

are quite good at ensuring that execution resources are almost
always occupied. Thus, efficiency is the primary determinant of
performance for this benchmark. This is not necessarily true for the
other applications.

Fig. 4(d) shows the metric plot for the MRI-FHD application. In
this graph, configurations tend to be clustered in groups of seven
because changing the tiling factor affects neither the efficiency
nor the utilization of this benchmark, appearing as a single point
at this resolution. Differences in actual performance within each
cluster are small, with the maximum variation in performance
among configurations within a cluster being 7.1%. Hence, when
several configurations have identical or nearly identical metrics
and similar optimization parameters, it may be sufficient to
randomly select a single configuration from that cluster, rather
than evaluating all the configurations.

The utilization metric does not reflect optimizations’ effect
on instruction latency. The kernels used to evaluate optimization
carving have been written to avoid cache conflicts and stalls
caused by contention for hardware resources. However, in some
cases these hardware interactions may cause instruction latency
to vary systematically across the optimization space. Consider
Fig. 5, which depicts the performance of a preliminary version
of MRI-FHD as the tiling factor (number of data points processed
by each thread block) changes. The performance metrics indicate
that efficiency and utilization remain constant as the tiling
factor changes, predicting no significant change in performance.
However, Fig. 5 shows that performance worsens dramatically as
the tiling factor increases.

The sharp contrast between the predicted performance trend
and the actual performance led us to consider that the layout
of data in constant memory might be causing frequent constant
cache conflicts. Configurations with a smaller tiling factor had
smaller working sets and fewer cache conflicts, and consequently
a faster effective constant memory access latency. Changing the
data layout yielded a kernel that is insensitive to changes in the
tiling factor and 17% faster than the previous best configuration.
Incorporating cache effects into optimization carving will be
addressed in future work.

5.3. Comparison to random sampling

The last stage of optimization carving requires execution of
the remaining configurations to determine the best-performing
one. A question that arises is whether a random sample of the
optimization space might be capable of achieving similar results.
In this section we compare random sampling of the optimization
space to the results of optimization carving.

The value of interest in random sampling is the highest
performance of the configurations in the sample, or the expected
maximum performance. Fig. 6 shows the expected maximum
performance of random samples of varying size, while Table 5
shows the number of samples required to have an expected
maximum performance of 90% and 95% of the best configuration.
For matrix multiplication we used only 16 × 16 thread blocks,
since thread blocks that do not take advantage of global memory
coalescing havemediocre performance and can be eliminated prior
to sampling. A vertical dotted line corresponds to the number
of selected configurations from optimization carving, shown for
comparison.

We find that random sampling is an effective method for
finding good configurations for both CP and MRI-FHD, with an
expected maximum performance close to the best configuration’s
performance with a small random sample. This is because there
are many configurations with near-best performance in the
optimization spaces of those benchmarks.

Matrix multiplication and SAD require much larger random
samples before a near-best configuration can be expected. Unlike
CP and MRI-FHD, there are only a few configurations with
performance near the best, and even these can still be several
percent inferior. The right combination of local memory tiling,
register tiling, and loop unrolling gives significant performance
advantages to the highest-performing configurations.

6. Related work

Code transformation and optimization for parallel programs
have a long history,withmuch of the foundationalwork performed
by the Parafrase [18], PTRAN [2], and PFC [4] projects. Many
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(a) MM (16 × 16 only). (b) CP.

(c) SAD. (d) MRI-FHD.

Fig. 6. Expected maximum performance of a random sample. A vertical dotted line marks the number of configurations that optimization carving selects.
optimization techniques are detailed in [16,34]. Our work builds
on past work by determining when transformations are likely
to provide higher performance on this new class of parallel
architecture.

Our transformation guidance technique is based on a full
exploration of the optimization space, an approach that has been
explored by others in various fashions. Wolf et al. [30] introduced
a compiler that explores the entire optimization space to find the
optimal optimization configuration, but they do not use metrics
to prune the space. Han et al. [12] also use static models to
search for the optimal tiling and padding size for a conventional
multiprocessor. Work has also been done to study the interaction
among different optimizations and between optimizations and the
hardware without a full search. These range from those based on
analytical models [10,17] to those that use statistical models [13]
and those that utilize adaptive learning and intelligent search
techniques [1,28] to find an optimal configuration.

Optimization carving is most similar to work by Wolf et al.,
but our performance metrics are customized for a massively data
parallel architecture with a large memory bandwidth and latency-
hiding memory system. To our knowledge, the only similar study
of this emerging family of data-parallel architectures being used
for general purpose computing domains is work by Jimenez-
Gonzalez et al. [15]. They present an evaluation of communication
bandwidth between different storage and computing components
of the Cell Broadband Engine [21], and general guidelines in
terms of optimizations, communication, data access patterns, and
programming models for full utilization.

Our work is related to previous work in phase ordering [19].
Similarly, iterative approaches to space exploration, such as
that done by the SPIRAL project [22], start at one or several
basic configuration points and then apply optimizations in an
attempt to find a good optimization configuration. The effects of
optimizations on the GPU are unlike those on manycore CPU, due
to the high thread count and fine-grained sharing of resources.
Transformations tightly interact on the GeForce 8 Series GPUs
and must be evaluated based on their joint effects to avoid being
trapped at local maxima.
Previous attempts at general purpose programmingonGPU sys-
tems have been limited in size and complexity. In particular, in-
flexibility of memory accesses [6,27] and memory performance
[9,11] were major hurdles. A previous study on performance tun-
ing for GPU [14] was also constrained by the programming envi-
ronment and the necessity of mapping algorithms to existing GPU
features. The CUDA programming model, along with the hardware
support of the GeForce 8800, allows larger, more complex kernel
code to access the low-latency, high-bandwidth on-chip memory
in amore generalmanner.Memory usage and optimization choices
for this new generation of GPUs are critical to achieving good
performance.

Recent work has focused on making it less necessary for appli-
cation developers to manually designate the use of specific mem-
ories in CUDA. Baskaran et al. [5] have developed a technique to
automatically map global memory accesses to the shared scratch-
pad memory on the GeForce 8 Series. They are currently working
on techniques for similar mapping to other memories.

7. Conclusion and future work

In this work we have proposed an approach for attacking
the complexity of optimizing code for GPUs such as the NVIDIA
GeForce 8 Series. Because predicting the performance effects of
program optimizations is difficult on this type of platform, devel-
opers or compilers may need to experiment to find the config-
uration with the best performance. To aid in this, we developed
metrics to judge the relative performance of optimization config-
urations. By plotting the configurations and examining only those
configurations on the Pareto-optimal curve, we were able to re-
duce the search space by up to 98% without missing the configu-
ration with the highest performance. The cases where the Pareto-
optimal curve does not contain a near-best configuration are at-
tributable to factors that are usually not first-order performance
determinants.

A more directed way to optimize code for the GeForce 8800
is to target specific granularities of parallelism and maintain
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them throughout the optimization process. Instead of trying
various optimizations without regard to their effects, the compiler
can separately compile a number of configurations that have
different characteristics, such as thread blocks simultaneously
executing per SM or the degree of register tiling. It can then
control optimizations that allow configurations to maintain
those characteristics. Although the compiler will still need to
compile multiple configurations, this would reduce the number of
generated configurations, in essence targeting the points on the
Pareto-optimal curve from tradeoff carving. This technique would
require careful study of optimization phase ordering in order to
prevent the accidental bypass of desirable configurations.

Similar to many other architectures, optimizations can be
detrimental to performance on the GeForce 8800. The primary
example is when additional registers per thread are required
by an optimization, reducing the number of thread blocks
simultaneously executing per SM. If an iterative approach is
taken for optimization, it will be necessary to predict the effects
of particular optimizations. Zhao et al. [33] have constructed
a framework for predicting the effects of optimizations for
embedded systems codes.

One major issue with the GeForce 8800 architecture is
that the number of of thread blocks assigned to each SM is
highly dependent on the local resource usage. Although this
issue is a fundamental limitation of many-core processors, the
unpredictable performance changes resulting from small changes
in the kernel exacerbate the optimization process. It may be
possible to provide support in the runtime to automatically spill
registers when it would allow significantly better utilization of
execution resources. This mechanism could be enhanced with
architectural support to spill registers to unused shared memory
space, avoiding the placement of additional burden on global
memory bandwidth.
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