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Abstract

This paper presents an analytical model to predict the performance
of general-purpose applications on a GPU architecture. The model
is designed to provide performance information to an auto-tuning
compiler and assist it in narrowing down the search to the more
promising implementations. It can also be incorporated into a tool
to help programmers better assess the performance bottlenecks in
their code. We analyze each GPU kernel and identify how the ker-
nel exercises major GPU microarchitecture features. To identify
the performance bottlenecks accurately, we introduce an abstract
interpretation of a GPU kernel, work flow graph, based on which
we estimate the execution time of a GPU kernel. We validated our
performance model on the NVIDIA GPUs using CUDA (Compute
Unified Device Architecture). For this purpose, we used data paral-
lel benchmarks that stress different GPU microarchitecture events
such as uncoalesced memory accesses, scratch-pad memory bank
conflicts, and control flow divergence, which must be accurately
modeled but represent challenges to the analytical performance
models. The proposed model captures full system complexity and
shows high accuracy in predicting the performance trends of dif-
ferent optimized kernel implementations. We also describe our ap-
proach to extracting the performance model automatically from a
kernel code.

Categories and Subject Descriptors C.1.2 [Processor Architec-
ture]: Multiple Data Stream Architectures; C.4 [Performance of

Systems] – Modeling Techniques

General Terms Design, Measurement, Performance

Keywords Analytical model, GPU, Parallel programming, Perfor-
mance estimation

1. Introduction

Graphics processors traditionally had highly specialized program-
ming models and interfaces that limit the ability of developers to
map general-purpose applications to these platforms. With the in-
troduction of CUDA [17] and OpenCL [15], developers now have
the programming and architectural features to quickly port pro-
grams to a platform with a massively parallel, GPU-based co-
processor [16]. The intent of our work is to model the GPU or-
ganization and features for analyzing the performance of general-
purpose applications. In this paper we focus on CUDA-enabled
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NVIDIA GPUs. However, the model is not tightly coupled to any
specific GPU architecture or high-level programming interface. In
Section 1.2 we lay out the common design features of GPU archi-
tectures that are integrated into our model. Our framework can sim-
ilarly collect information about microarchitectural effects of pro-
gram statements that are expressed through OpenCL extensions.

1.1 Motivation

The amount of effort required to maximize the performance of
applications on GPU architectures can be relatively high. Due to
resource restrictions and the threading model of the GPU, the
optimization space can also be discontinuous. A study by Ryoo
et al. [19] demonstrated a very large configuration space even
for relatively small kernels. Ryoo et al. also concluded that the
difference in performance between manually optimized variants of
code and the optimal configuration was 17%.

Empirical performance tuning is a well-known technique for
solving the above pitfalls. Despite significant research to develop
models and frameworks for predicting performance of applications
[21, 14, 3, 18], most of it applies to non-GPU architecture.

In this paper we demonstrate a performance model to help prune
the search space of GPU kernel optimizations. The model can be
used as a supporting module for an automated optimizing compiler
for GPU architecture.

1.2 Performance Factors

GPUs support the Single-Program Multiple-Data (SPMD) model.
Threads within certain granularities – thread-blocks in NVIDIA
GPUs, groups in ATI GPUs [1], and work-groups in OpenCL –
share their data and synchronize their actions. During execution,
threads within a thread-block are grouped into warps, which are the
granular multi-threading scheduling units. Threads in a warp are
executed in SIMD mode, and warps can be interleaved with hard-
ware multi-threading to tolerate intra-warp stalls, which enables
overlap of memory latency with useful computation. A warp is con-
ceptually equivalent to a wavefront in ATI GPUs. In this work, the
term SIMDwork indicates the size of a warp. A warp is executed
on a streaming multiprocessor (SM). We use the term SIMDengine

to refer to the number of streaming processors for each SM. There-
fore, to execute an instruction for all the threads in a warp, the SM

should be clocked SIMDwork
SIMDengine

times.

We now briefly review major microarchitecture features that are
considered in analyzing the performance of a kernel.

1. GPUs generate and maintain thousands of threads to toler-
ate memory and SIMD pipeline latency. A high compute-to-
memory-access ratio is also necessary to avoid saturation of
memory channels.

2. To conserve global memory bandwidth, when the neighboring
threads that access the memory simultaneously execute a global



load, the loads are consolidated if they meet constraints neces-
sary for the hardware to perform memory coalescing.

3. Working memory within a group of cores consists of software-
managed cache memory (shared memory in CUDA or local
memory in OpenCL). These high fan-out, low latency, limited-
capacity memories are partitioned among thread-blocks.

4. Memories have a limited number of ports, so appropriate thread
ordering helps preserve performance by avoiding bank con-
flicts.

5. The GPU programming model is based on the SPMD model in
general and the SIMD mode among subsets of threads (warps in
NVIDIA GPUs or wavefronts in ATI GPUs). Although this is a
cost-effective hardware model for exploiting data parallelism, it
can be ineffective for algorithms that require diverging control
flow decisions in data-parallel sections of the code.

1.3 Contributions

Previous studies on performance estimation [12, 8, 6] and tuning
[11] for GPUs were constrained by the programming environment
and the necessity of mapping algorithms to existing GPU features.

More recently, Ryoo et al. [19] used Pareto-optimal curves to
prune the optimization space of general-purpose applications on
GPUs. They introduce efficiency (a flat instruction count) and uti-
lization (a measure of how many pure compute cycles are avail-
able from other executing warps) as single number metrics. They
did not model memory latency and assumed that none of the ker-
nels were memory bound. A more recent work [10] proposes an
analytical model to capture a rough estimate of the cost of mem-
ory operations. Neither of these approaches [10, 19] take into ac-
count performance factors such as diverging control flow, memory
bank conflicts and SIMD pipeline delays. Furthermore, in the cur-
rent work the accuracy has been significantly improved owing to
a compiler-based approach to collect information on microarchi-
tectural effects. The work by Schaa et al. [20] focuses on how to
predict the execution time for a multi-GPU system, knowing the
execution time for a single GPU.

The proposed performance model in this work captures perfor-
mance effects of all major GPU microarchitecture features. We also
explain a systematic approach to analyzing the code and initializing
the the performance model with accurate information. For this pur-
pose, we revisited the program dependence graph (PDG) [7], an in-
termediate program representation, for the purpose of performance
evaluation. The PDG provides a coherent framework to explicitly
represent control and data dependences for each program opera-
tion. Based on the PDG representation, we can identify computa-
tionally related operations in the program that exercise key perfor-
mance factors. We also devise a tractable framework for performing
symbolic evaluation of certain fragments of code in order to deter-
mine loop bounds, data access patterns, control flow patterns, etc.
These program characteristics are helpful for estimating the effects
of control flow divergence, memory bank conflicts, and memory
coalescing.

Another contribution of this work compared to the previous
work [19, 10] is that we measure each performance factor in iso-
lation (through symbolic evaluation or dynamic instrumentation)
and later combine them to model the overall performance. There-
fore, the interactive effects between different performance factors
are modeled correctly. To accomplish this purpose, we introduce
the work flow graph.

We would like to note that the key factors for the success of the
model and tractability of the symbolic evaluation to extract initial
information from the source code are the hardware constraints of
GPU architecture and the data-parallel programming model.

2. Performance Model

In a GPU architecture, threads within certain granularities (thread-
blocks), share their data and synchronize their actions. During ex-
ecution threads within a block are grouped into warps. A warp
is the SIMD work granularity or a batch of threads that are exe-
cuted in lock-step SIMD fashion by the hardware. Warps can be
interleaved with hardware multi-threading to tolerate intra-warp la-
tencies. Interleaving execution of warps at thread-block and multi-
thread-block levels is very similar to the notion of thread-level par-
allelism (TLP), except that warps are special forms of medium-
grain threads. In this work we use the term warp-level parallelism
(WLP) when we refer to the concurrency at this level.

For each kernel, we calculate the maximum warp-level paral-
lelism, WLPmax, which is the maximum number of warps that
can be simultaneously assigned to a GPU streaming multiprocessor
without violating local resource usage, i.e., the amount of shared
memory and the number of registers used by a kernel along with
other hardware limits. We currently rely on NVIDIA’s compiler to
track kernel resource usage.

As diverging control flow turns off a number of active warps for
steps with a sparse computation pattern, WLP can change from one
phase of computation to another. We call the WLP that is restrained
to a segment of code WLPlocal. Similarly we name the average
WLP available throughout the whole kernel WLPavg. Details on
computing these parameters are discussed in Section 2.2.

Although warps can be interleaved in any order by the hardware
scheduler, we assume that warps within the same thread-block
are relatively synchronous, while warps from different thread-
blocks run asynchronously. With this assumption, we compute
the effective WLP (WLPeffect) according to Equation (1), where
NUMblocks is the number of active thread-blocks on a streaming
multiprocessor.

WLPeffect =
WLPlocal + (NUMblocks − 1) ×WLPavg

NUMblocks
(1)

Equation (1) illustrates that as a warp observes other warps in its
own thread-block at the same phase of computation, the amount of
WLP contribution from them is equal to WLPlocal. Warps from
other thread-blocks can be at any random computation point. Ac-
cordingly, the amount of WLP delivered by them is approximated
by WLPavg. Notice that in a GPU kernel with no control flow
divergence, WLPlocal, WLPavg , and WLPeffect are all equal to
WLPmax.

At the warp level, GPUs attempt to reduce memory latency by
exploiting the data-level parallelism (DLP); DLP is achieved by op-
erating on multiple memory banks simultaneously through a single
vector instruction and by having SIMD instructions exploit the si-
multaneously fetched memory words. The key performance indica-
tor at the warp level is the efficient utilization of the SIMD pipeline,
and the long and low-latency memory bandwidth. To model these
effects we use symbolic evaluation to determine the access patterns
of vector memory instructions with respect to memory bank con-
figuration and coalescing rules. Conflicts and uncoalesced accesses
lead to a decrease in DLP. In case of a branch divergence, different
threads may follow different control flow paths. Through symbolic
evaluation we identify the pattern of diverging threads and the cor-
responding warps that follow each path. A weight is assigned to
each diverging control flow path based on the number of warps
that execute it. A warp that is counted toward the weight of a con-
trol flow path with some of its threads turned off, will exhaust the
SIMD pipeline bandwidth.

At the thread level, instruction-level parallelism (ILP) can still
improve performance by partially covering intra-warp stalls. In our
model intra-warp stalls result from global memory loads (memory
latency) and back-to-back register dependencies (pipeline latency).
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Figure 1. WFG for statement x = A[threadID] + y, which breaks
down to two address calculations, a memory load, and an add
instruction. (a) The initial WFG. (b) Assuming a pipeline latency
of 24 cycles, a warp size of 32, a SIMD engine of 8 streaming
processors, and 16 active warps (WLPmax) on each streaming
multiprocessor, Latencycomp is computed to be 1 cycles [Eq. (3)].
(c) Reduction of the WFG results in a CYCcompute of 16 cycles
and a NBCavg of 8 cycles [Eq. (5)]. (d) If M loads a four-byte word
and the allocated bandwidth to each multiprocessor is 4 bytes/cycle,
the weight assigned to the transition arc from M to C1 is computed
to be 20 cycles [Eq. (4)]. With an average memory latency of
250 cycles, the weight for the data-dependence arc is set to be
130 cycles [Eq. (6)]. (e) The data-dependence arc is collapsed; the
weight on the outgoing transition arc from M is adjusted to reflect
the uncovered memory latency. (f) The WFG is reduced once more;
the weight on the transition arc represents the average warp latency.

Available ILP may also vary from one segment of the code to
another segment. We approximate the amount of ILP for a region
of a kernel, ILPlocal, by dividing the total number of instructions
of that region by the length of the longest def-use chain built from
them. In Section 2.2 we show how to calculate ILPavg, the average
ILP available in a kernel. Following a similar discussion given
earlier for WLP, the amount of ILP observed by a warp at each
point of computation is approximated by Equation (2).

ILPeffect =
ILPlocal + (NUMblocks − 1)× ILPavg

NUMblocks
(2)

A performance model’s ability to identify bottlenecks and estimate
execution cycles accurately depends on examining both the amount
of concurrency available in a kernel (WLP, DLP and ILP) and
the latencies of the SIMD pipeline and the memory system. To
combine these aspects into a coherent framework, we introduce the
work flow graph (WFG).

2.1 Work Flow Graph

The work flow graph (WFG) is an extension of the control flow
graph of a GPU kernel. Nodes in the WFG are either a long latency
(global) memory operation (M), a low latency (scratch-pad) mem-
ory operation (S), a barrier synchronization (B), a block of n con-
tinuous computational instructions (Cn), or synthetic entry and exit
nodes. In addition to edges that correspond to the control flow graph
(transition arcs), the WFG also contains data-dependence arcs that
connect global memory loads to their corresponding uses.

The initial WFG is an abstraction of the computation of a kernel
independent of the underlying hardware. No weight is assigned
to transition arcs initially. A transition arc only indicates that the
destination node can be executed immediately after the source
node. Figure 1(a) shows the initial WFG for a simple statement.

To estimate the performance on a particular GPU, we special-
ize the arcs in the WFG with information that is calculated by
symbolic evaluation based on hardware parameters such as mem-
ory bandwidth, read latency, memory coalescing rules, memory
bank configuration, SIMD work granularity, SIMD engine width,
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Figure 2. Loop reduction in WFG. (a) A WFG loop with the trip
count, ×WL, labeled on the back-edge arc. (b) Subgraph of the
loop body; the back-edge arc is removed. (c) The loop body is
reduced; WBody represents the latency of one iteration. (d) The
back-edge arc is added back. (e) Total loop execution latency is
equal to wBody × wL.
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Figure 3. Branch reduction in WFG. (a) Control flow diverges at
node B and converges back at node G. The dashed arc indicates that
node C depends on the data loaded by node M. (b) Control flow
paths are required to be disconnected from the rest of the WFG
except through the nodes at which divergence starts or ends. To
restore this property, some of the nodes before or after the diverging
control flow are duplicated in both paths. (c) Each path is reduced
independently. (d) WT and WF are computed latencies for each
path. (e) With ρT and ρF being the execution weights of each path,

the average latency from M to G is computed to be ρTWT+ρFWF
ρT+ρF

.

pipeline latency, etc. These parameters are either provided to the
model through a spec-file or collected by running a set of micro-
benchmarks. The resulting WFG fuses the GPU kernel code signa-
ture to the hardware configuration. After specializing the WFG for
the hardware, the weight assigned to each transition arc indicates
the number of cycles that are required on average to execute the
instruction(s) at the source node.

The WFG represents an average warp in a GPU kernel. In case
of a branch divergence, different threads may follow different con-
trol flow paths. Therefore, proper weight should be assigned to
the diverging control flow paths to indicate the fraction of warps
that execute each path. Similarly, if there are long-latency or low-



latency memory accesses along these diverging paths, the num-
ber of memory transactions or bank conflict serialization delays
should be adjusted according to the portion of warps and pattern
of threads that issue the memory instructions. In Section 3 we dis-
cuss how symbolic evaluation can be used to augment the WFG
with adjusted weights for each diverging path, the adjusted num-
ber of memory transactions required to be issued for global mem-
ory accesses, and shared memory access delays, based on hardware
specifications such as SIMD work granularity, memory coalescing
rules and memory bank configuration.

We mentioned earlier that the execution latency exposed by
each instruction determines the total number of execution cycles.
The amount of exposed latency is itself a function of hardware pa-
rameters and the level of parallelism available in the code. To esti-
mate the execution latency of a kernel, we investigate the exposed
SIMD pipeline latency first and later account for the untolerated
global memory latency.

2.1.1 SIMD Pipeline Latency

The degree of resilience of a kernel at each phase of computation to
the pipeline latency is determined by the observed amount of WLP,
intra-thread ILP, and the ratio of SIMD work granularity (size of
a warp) to the SIMD engine width; special function instructions
are modeled based on the pipeline latency of their functional unit
and the corresponding SIMD width. Based on the latency of the
SIMD pipeline, the WLPeffect and the ILPeffect, the latency of a
simple computational instruction is computed by Eq. (3). Notice
that Latencycomp is at least equal to one clock cycle (due to
the issue latency) and may change from one segment of code to
another.

Latencycomp = max(1,
Latencypipeline

SIMDwork
SIMDengine

× ILPeffect ×WLPeffect

) (3)

Accordingly, the execution latency of a computational instruction

in the granularity of a warp is equal to Latencycomp × SIMDwork
SIMDengine

.

Consequently, the weight of an outgoing transition arc from a
WFG computation node with n instructions, Cn, is set to be

n× Latencycomp × SIMDwork
SIMDengine

. Weights on transition arcs from a

low-latency memory operation node is computed through symbolic
evaluation. Barrier synchronization nodes have fixed execution is-

sue latency of SIMDwork
SIMDengine

. We also temporarily set the weights on

outgoing arcs from global memory operations equal to the instruc-

tion issue latency of SIMDwork
SIMDengine

.

Figures 2 and 3 show a high-level overview of a system of
transformation rules on the WFG that recursively collapses loops
and branches into a pair of nodes with a single arc in between.
Having the WFG populated with proper weights on transition arcs,
we use these transformation rules to collapse the WFG into a pair
of entry and exit nodes and a transition arc from entry to exit.
The weight associated with this transition arc reflects the average
number of compute cycles (latency) of a warp (CYCcompute).
When estimating CYCcompute, the data-dependence arcs in the
WFG are ignored during the reduction process. Parts (b) and (c)
in Fig. 1 show the the initial weight assignments and the reduced
WFG for the single statement example that we discussed earlier.

2.1.2 Global Memory Latency

We classify memory stalls into those due to limited memory band-
width and those purely due to latency. We first measure the stalls
due to lack of available bandwidth (LatencyBW) and later show
how an abundance of WLP and ILP helps tolerate the latter stalls.

In the process of reducing the WFG to compute CYCcompute,
we also collect the average number of global memory operations
(NUMmem), the total amount of data that are required to be trans-

fered to or from global memory (NUMbytes), and the number
of barrier synchronization points (NUMsync) in a warp. Part of
this information is calculated through symbolic evaluation (Sec-
tions 3.1 and 3.3) and is added to the initial WFG. Based on
the memory bandwidth allocated for each streaming multiproces-
sor and NUMbytes, we compute the average number of cycles
that are required to transfer all the data to or from global mem-
ory (CYCmem). The latency for a kernel’s global memory opera-
tions is calculated based on the difference between CYCmem and
CYCcompute as shown in Eq. (4). The ratio

CYCcompute

CYCmem
can be

interpreted as the compute intensity of an average warp. When
CYCmem is less than CYCcompute, memory bandwidth is not the
critical limiting factor if execution of different warps is interleaved.
Otherwise, the latency is adjusted accordingly to compensate for
the number of memory cycles that are not covered by the compute

cycles of the kernel. The term SIMDwork
SIMDengine

in Eq. (4) is associated

with the cycles required to issue the memory instructions of a warp.

LatencyBW = max(0,
CYCmem − CYCcompute

Nummem
) +

SIMDwork

SIMDengine
(4)

We combine the bandwidth-related stalls into the WFG by setting
the weight of all outgoing transition arcs from global memory
operations equal to LatencyBW.

To accommodate the stalls purely due to memory latency, we
introduce the average number of non-blocking cycles for a warp,
NBCavg , which is computed according to Eq. (5). In Eq. (5),
NUMmem +NUMsync is an approximation of the number of con-
text switches that occur during a warp execution time.

NBCavg =
CYCcompute

NUMmem +NUMsync + 1
(5)

On average each of the WLPeffect active warps can use NBCavg

cycles before execution returns to a warp that has issued a long
latency memory load. Now, let Latencymem be the global mem-
ory load latency for the GPU. We set the weight on each data-
dependence arc in the WFG equal to Latencyexposed, which is the
portion of the GPU load latency that is not covered by interleaving
execution of different warps, and is computed as shown in Eq. (6).

Latencyexposed = Latencymem − (WLPeffect − 1)× NBCavg (6)

Latency-based memory stalls can also be implicitly covered by
ILP through reduction of data-dependence arcs. Notice that there
is also a control flow path from the source of a data-dependence arc
(a memory load) to its destination (the use of the memory load).
Cumulative weights of all transition arcs that are on this path equals
the number of intra-warp cycles that can be interleaved with the
exposed memory latency. If the weight on a data-dependence arc
is greater than the cumulative latencies of transition arcs from the
memory node to its use, the difference is added to the weight on
the last transition arc of the path. Figures 4(a) and (b) illustrate
the process through which the data-dependence arc is collapsed.
Parts (c), (d), and (e) of Fig. 4 show a similar reduction process
in the case of interleaving memory loads. Notice that at the time
of reducing a data-dependence arc, all nodes between the memory
load and its use are laid on a sequential path; the subgraph has
already been flattened through application of the transformation
rules shown in Figs. 2 and 3.

As weights on transition arcs are adjusted to accommodate long
memory latencies, we reduce the WFG once again. This time the
weight on the transition arc from the entry to the exit node reflects
the total latency of an average warp. Parts (d), (e) and (f) of Fig. 1
describe the process of incorporating the global memory latency
into the WFG for the single statement example. Given the average
warp latency, estimating the total execution time of a kernel is
straightforward.
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that includes the untolerated memory latency of M is incorporated
in covering the memory latency for N; the overlapped latency is
counted once toward the warp execution latency.
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Figure 5. Program dependence graph

2.2 Extracting the Model

In the previous section we explained that through the WFG we
combine effects of different performance factors. In this section we
present our approach to approximate some of the parameters that
were discussed in Section 2 such as WLPavg, WLPlocal, ILPlocal,
and ILPavg. We also describe how the initial WFG is constructed.

Our compiler front-end analyzes the kernel source code and
translates it into a program dependence graph (PDG) representa-
tion. The PDG provides a coherent framework to explicitly repre-
sent control and data dependences in the program [7]. We perform

traditional scalar analysis such as induction variable detection and
forward substitution based on an SSA[4] form on the PDG. As a
result, program expressions are represented by symbolic expres-
sions in terms of thread coordinates (thread ID and block ID), in-
duction variables, and symbolic constants (input parameters). Our
framework currently provides closed form expressions for linear
and geometric induction variables. We also ignore the redundant
computation that is eventually eliminated by the back-end optimiz-
ing compiler through value numbering [13].

Figure 5 shows an example of a PDG. Nodes in the PDG repre-
sent either a statement in the program (S1,S

′

1,S
′′

1 , etc), a predicate
node that controls execution of a set of instructions (the square node
in Fig. 5), or a region node that summarizes the set of control condi-
tions for a node or a set of nodes. Region nodes, shown with circles
in Fig. 5, also summarize information such as the average execu-
tion weight of their descendent nodes. For example, instructions in
a loop should be weighted proportional to the trip count of the loop.
Therefore, the region that contains the body of a loop is augmented
with the trip count of the loop. If the trip count or the execution
weight are not known at compile time, we generate a parametric
performance number, which can be specialized later based on the
input parameters. In case of a branch divergence, proper weight
should be assigned to the two descendent region nodes of the pred-
icate that controls the divergence; the weight assigned to the true
descendent region of a predicate node indicates what fraction of
the warps that reach the condition evaluate it to true and therefore
execute the instructions under the true region.

Through a preorder walk on the PDG, we symbolically eval-
uate conditions and memory access expressions through efficient
techniques discussed in Section 3. Knowing which threads are ac-
tive during a computation step, we determine the number of active
warps and the pattern of memory accesses for each step. Based on
this information we compute the average execution weight for a
region, the average bank conflict penalty for shared memory ac-
cesses, and the average number of bytes transferred to or from
global memory for each long latency memory operation.

As we walk down the PDG, we also compute WLPlocal and
ILPlocal for each region. Local WLP for the three regions in Fig. 5
is computed as ρ3WLPmax, ρ3ρ1WLPmax, and ρ3ρ2WLPmax.
To compute the local ILP for a regions with no predicate child,
we divide the total number of instructions of that region by the
length of the longest def-use chain built from them. For a region
with diverging control flow, to compute ILPlocal we only consider
the immediate instruction children.

Next, we approximate the values for WLPavg and ILPavg

by performing a postorder walk on the PDG. For each region,
WLPavg is approximated by getting a weighted average of the
local WLP of all the regions it contains, including itself; regions
that contain more instructions contribute more to the average. For
example, WLPavg for the top PDG region in Fig. 5 is computed
by Eq. (7).

WLPavg =
pρ3ρ1WLPmax + qρ3ρ2WLPmax + nρ3WLPmax

p + q + n
(7)

The process of approximating ILPavg is similar to that of WLPavg .
For example, the ILPavg for the top region of Fig. 5 is approxi-
mated according to Eq. (8), where ILPp, ILPq, and ILPn are local
ILP values for each of the three PDG regions in Fig. 5.

ILPavg =
pρ1ILPp + qρ2ILPq + nILPn

pρ1 + qρ2 + n
(8)

We construct the initial WFG recursively through another preorder
walk of the PDG that is augmented with results of symbolic evalu-
ation and other dataflow analyses.



3. Symbolic Evaluation

In this section, we propose a tractable approach to symbolic eval-
uation of conditions and array access expressions. Our symbolic
evaluation system has two components:

1. A symbolic execution engine for evaluating effects of expres-
sions that are simple enough.

2. A set of simplification rules for simplifying more complex
expressions.

If the expression to be evaluated is too complicated for the sym-
bolic evaluation engine, the expression is conditionally simplified
such that the evaluation of the simplified expression implies results
equal to that of the original expression. The simplification process
may be applied recursively until tractable expressions are obtained
or the simplification engine decides that no further simplification is
applicable. In the latter case, the expression is interpreted conser-
vatively, which results in a lower bound for the performance.

During the simplification process we may impose certain con-
straints on free variables, e.g., input parameters. The validity of
the results is contingent on the truth of the conjectures made about
free variables by the simplification system. Therefore, the results
of each evaluation step are accompanied by a set of constraints that
specify the domain of applicability of each evaluation step.

The average evaluation time for a kernel is in the order of a
few milliseconds and below the average kernel execution time, even
when we ignore the data transfer time from CPU to GPU.

3.1 Structural Conditions

A predicate denotes either a structural condition or a data-dependent
condition. A structural conditional expression is a function of
thread coordinates, enclosing loop induction variables and sym-
bolic constants of the kernel. In this section we show how to ana-
lyze a large class of structural conditions that are defined by Defi-
nition (9), through symbolic evaluation. Analyzing data-dependent
conditions requires statistical knowledge of the data and is dis-
cussed in Section 4.3.

O(At + B,I(i)), I(i) = αi + β or I(i) = 2αi+β (9)

i ∈ {0, 1, ..., I}, t ∈ {0, 1, ...,T− 1} and A,B, α, β ∈ Z

O(x, y) ∈ {x = y, x 6= y, x ≤ y, x ≥ y, x (mod y) ≡ 0}

For brevity, we consider one-dimensional thread-blocks of the
size T, where T is well-bounded due to hardware limitations. Vari-
able t stands for the thread ID in the affine expression At + B. In
Definition (9), i is the loop induction variable with the upper bound
of I, which may not be known at compile time. Operator O can be
either a comparison or a modulo operator. Without loss of gener-
ality, we restricted our discussions to ≤ for comparison operators,
A, B, α, β ∈ N, and I(i) = αi + β. Conclusions on other cases can
be derived similarly. The following two cases apply, based on the
type of operator O.

1. O is a comparison operator: At + B ≤ αi + β
We solve At + B for each t ∈ {0, 1, ...,T− 1}. Let At′ +B ≤

αi + β for 0 ≤ t′ < T; we have At′+B−β
α

≤ i ≤ I. Consequently,
the total number of steps for symbolic evaluation is given by:

T−1
∑

t=0

I −
⌈At + B− β

α

⌉

+ 1 ≈
2T(αI − B+ β + α) −AT(T− 1)

2α

(10)

Notice that for I0 ≤ i, where I0 =
A(T−1)+B−β

α
, all threads

satisfy the inequality. In other words, control flow divergence
does not occur for computation steps greater than I0. If we

replace I with I0 in Eq. (10) the upper-bound for the total
number of evaluation steps becomes:

AT2 − AT+ 2αT

2α
(11)

Notice that we have iterated over the thread IDs. To measure
the thread ID dependent effects correctly, we replay the active
threads for each computation step i and measure the control
flow divergence, coalescing and bank conflict effects. As a re-
sult, the total cost is twice the value of Expression (11). Notice
that if I0 ≤ T, we directly iterate over i. The cost in Expression
(11) is formulated in terms of program constants or known hard-
ware limits and is proportional to cost of symbolically evaluat-
ing the condition. We compute the cost in advance. If the com-
puted cost is less than a predefined threshold, we symbolically
evaluate the condition. Otherwise, the condition is assumed to
be true for all threads.

Now, let w0 be the computed execution weight for the region
under the control of the above predicate. To make up for the
divergence-free part (the I− I0 iterations), the overall weight is
computed as:

max(I − I0, 0) + w0I0

max(I0, I)
(12)

If I is known at compile time, Expression (12) is reduced to a
single value, otherwise it remains parametric on I and conse-
quently the total execution cycles become a function of I. Note
that in cases where I is not known statically and its actual value
is less than I0, we have approximated the corresponding execu-
tion weight by w0.

2. O is the modulo operator: (At + B) ≡ 0 (mod αi + β)
We solve At + B for each t ∈ {0, 1, ...,T− 1}. Let (At′ + B)
≡ 0 (mod αi + β) which implies that αi + β is some combi-
nation of prime factors of At′ +B. If AT +B is not a very
large number we can store combinations of prime factors of
all numbers less that AT+ B in a lookup table in order to re-
trieve them efficiently. Let P be a combination of prime factors
of At′ +B. Factor P is equal to αi + β if P−β

α
is an integer and

0 ≤ P−β
α

≤ I; the converse is also true. Therefore, t′ is a can-
didate thread that satisfies the condition. The total number of
steps to test all values of t is bounded by:

T−1
∑

t=0

⌊At + B

2

⌋

≈
AT(T− 1)

4
+

BT

2

Similar to case 1, this method requires two passes to collect the
performance information.

Since the largest prime factor that is examined is equal to
A(T− 1) + B, the condition evaluates to true for all threads

if I0 ≤ i, where I0 =
A(T−1)+B−β

α
. Similar to the discussion

given for the previous case, the overall execution weight is
computed as stated in Expression (12).

3.2 Structural Memory Accesses

In this section we first describe the class of memory access ex-
pressions that is accepted by our expression simplification engine.
Later we explain how a candidate expression is simplified through
an example. Finally, we discuss our approach to efficiently capture
qualitative properties of these expressions from the point of view
of GPU architecture performance.

The subscripting function of an array reference, F , is a mul-
tivariate expression. Function F can be defined recursively as the
sum of possibly complex terms according to Definitions (13) and
(14), where v is a vector of integer variables of the program (thread



coordinates, input parameters, enclosing loops induction variables,
and an element representing integer number 1) all of which are in-
volved in the evaluation of the subscripting expression, and v[ℓ] is
the ℓth element of the variable vector v.

F(0)(v) = v[ℓ] for some ℓ ∈ { 1, 2, · · · , |v|} (13)

F(n)(v) =

N(n)
∑

i=1

M
(n)
i
∏

j=1

Pi,j

Pi,j ∈ {Ok ·
(

F
(n−1)
i,j

)

(v)} for k = 1, 2, 3, 4

For some α, β ∈ Z and some ℓ ∈ { 1, 2, · · · , |v|}, we define the
following four operators, namely O1, · · · , O4, on the subscripting
function F . Note that negative exponent expressions are excluded
by definition.

O1 · (F
(n−1)
i,j )(v) = F

(n−1)
i,j (v) mod 2αv[ℓ]+β (14)

O2 · (F
(n−1)
i,j )(v) = ⌊

F
(n−1)
i,j (v)

2αv[ℓ]+β
⌋

O3 · (F
(n−1)
i,j )(v) = 2αv[ℓ]+β ×F

(n−1)
i,j (v)

O4 · (F
(n−1)
i,j )(v) = α× F

(n−1)
i,j (v)

The operators defined above are commonly used to express
complex access patterns, e.g., wrap-around and strided accesses.

Example 1. Expression (15) shows a relatively complex index ex-
pression from the FFT kernel. Variables involved in this expression
include induction variables of two enclosing loops (i and 2j), input
parameter (N), and thread coordinates (b as thread-block ID and t
as thread ID).

⌊b×N + t

2j

⌋

× 2j+1 + (b ×N + t) mod 2j + i× 2j (15)

The following derivation shows how the first term in Expression
(15) satisfies the definition of F , where the vector of involved
variables is initialized as v = [b, t, i, j, N, 1]:

F(2)(v)= ⌊
F

(1)
1,1 (v)

2j
⌋ × 2j+1 ×F

(1)
1,2 (v) (16)

= ⌊
(F1,1)

(0)
1,1(v) × (F1,1)

(0)
1,2(v) + (F1,1)

(0)
2,1(v)

2j
⌋

× 2j+1 × (F1,2)
(0)
1,1(v)

= ⌊
b× N + t

2j
⌋ × 2j+1 × 1

In step two of the derivation above, it is understood that for
example, the term (F1,1)1,2 refers to the second factor of the first
term in F1,1.

Expression (15) is examined to determine whether the qualita-
tive behavior of residing threads in a memory vector instruction (a
half-warp in the case of NVIDIA GPUs) can be confined to their
local thread coordinates. Figure 6(a) shows the expression tree for
Expression (15). We refer to the multivariate expressions that are
composed of thread ID and a combination of other thread coor-
dinates (thread-block ID) with free variables as complex expres-
sions. Through a bottom-up process we label the complex sub-
expressions. Labels are propagated upward in the expression tree
until a non-distributive operator such as modulo or integer divi-
sion is reached (referred to as a tainted operator). At this point, the
simplification engine attempts to recursively disentangle the local
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Figure 6. Expression simplification for Example 1. (a) The initial
expression tree. (b) Distributing integer division over the add op-
erator. (c) Distribution is carried on along the path that contains
free variables; constraint N = k× 2J is bound to free variable N.
(d) Multiplication is distributed over the add operator. (e) Multipli-
cation and integer division cancel each other out. (f) The simplified
expression tree.

thread ID part from the rest of the terms by imposing constraints
on free variables.

We explain this simplification process for the first term of Ex-
pression (15) which is highlighted in the expression tree of Fig. 6(a)
by dashed arcs. The first non-distributive tainted operator node that



is visited during the bottom-up process for this sub-tree is the div
operator (⌊

2j
⌋). Operator div can be distributed if at least one of the

terms in its enumerator is a multiple of the denominator 2j. Tainted
operator div is distributed speculatively over + operator. From the
two resulting sub-expression trees in Fig. 6(b), only the one on the
left contains a free variable. Therefore, speculation continues down
the left sub-tree and along the path that leads to the free variable N,
as shown in Fig. 6(c). At this point, the constraint N = k× 2J (for
some k ∈ Z) is added to the simplified expression tree of Fig. 6(c),
where J is the upper bound for the induction variable j. The simpli-
fication steps are valid only if the constraint on N is proved to be
true. The proof can be either derived at compile time or checked at
runtime. Figure 6(d) shows the routine distribution of multiplica-
tion over addition. In Fig. 6(e), based on the constraint that we put
on N earlier, multiplication and integer division have equaled out
each other. As the result of these simplifications, the original ex-
pression tree is transformed to the one shown in Fig. 6(f). The local
thread coordinate t is now separated from other thread coordinates
such as b. The two highlighted sub-trees in Fig. 6(f) are now simple
enough to be symbolically evaluated.

3.3 Memory Bank Conflict and Coalescing

In general, deriving the exact memory access pattern is infeasi-
ble, especially with the presence of relatively complex subscript-
ing functions (Section 3.2) and unknown upper bounds for the
induction variables. However, we are interested in certain quali-
tative properties of the array subscript expressions. For example,
for efficient utilization of memory bandwidth, successive words
are assigned to successive memory banks. Let NUMbank be the
number of memory banks, which is also equal to the number of
threads that can simultaneously access memory. The problem of
determining the pattern of memory bank conflicts can be trans-
formed to the problem of computing x mod NUMbank, where x
belongs to a finite set of integers. Size of this set is proportional to
the number of variables present in the subscripting expression. Let
v = [v1, v2, · · · , vn] be all n participating variables in evaluation of
expression E(v). Each vi can be formulated as αiNUMbank + ρi,
where 0 ≤ ρi < NUMbank. Evaluating E(v) to capture memory
bank conflict patterns is equivalent to evaluation of E(ρ), where
ρ = [ρ1, ρ2, · · · , ρn]. The difference is that members of variable
vector ρ are well-bounded.

The simplification engine is more stringent on subscripting
expressions that are evaluated for memory coalescing. Not only
should the terms involving local coordinates (thread ID) be sepa-
rable from the terms that involve other thread coordinates and free
variables, but each thread ID dependent term should be expressable
as a sum of terms such as At + B, ⌊ At+B

2αi+β ⌋ or (At + B) mod 2αi+β ,
where t is the local thread coordinate, A,B ∈ Z and α, β ∈ I. As a
result, the symbolic evaluation engine can identify through a lim-
ited number of steps, how many different memory segments are
accessed by threads within a single memory vector instruction.

4. Evaluation

In this section we show how well the execution times predicted
by the proposed performance model comply with the actual mea-
sured times. In cases where the estimated execution cycles were a
function of the input parameters, we evaluated the function for a
given set of input parameters for clarity of the graphs. We use the
NVIDIA GeForce 8800 GPU for our experiments.

4.1 Memory Bandwidth and Latency

To evaluate the effectiveness of our model in capturing the effects
of GPU global memory bandwidth and latency on performance, we
apply it to dense matrix multiplication and FFT kernels.

We first discuss several versions of dense matrix multiplication
which represents many tiled algorithms. A simple version of ma-
trix multiplication that loads the same array input elements mul-
tiple times by different threads (Global), will saturate the global
memory bandwidth of the GPU. Another pitfall with this version
is that global memory accesses to one of the arrays are not co-
alesced. In the GeForce 8800, global memory delivers the 86.4
GB/s memory bandwidth only when the global memory accesses
are coalesced within a half-warp (16 threads). The GeForce 8800
can fetch data in a single 64-byte or 128-byte transaction [17]. If
the memory accesses cannot be coalesced, then a separate mem-
ory transaction will be issued for each thread in the half-warp. As
a result, for accessing one word of the array with non-coalesced
accesses the GeForce 8800 issues a 16-word global memory trans-
action. This results in an increase in the average number of memory
cycles, CYCmem, which consequently increases the total warp la-
tency.

A tiled version of the the kernel takes advantage of shared mem-
ory to enhance data sharing between threads computing nearby re-
sults. We chose tile sizes of 16× 16, 16× 32, 16× 64, 16× 128,
and 16 × 192 elements to be executed by a thread-block. During
execution, threads work within two input tiles that stride across 16
contiguous rows and 16, 32, 64, 128, or 192 columns of input ma-
trices. For the tiled kernels, global memory loads are reduced by
a factor of 16, 32, 64, 128, or 192 respectively. Consequently, the
measured performance improves as the tile size increases. Figures
7(a) and 7(b) show the predicted and measured performance num-
bers for matrix multiply kernels next to each other. Based on these
results, the model perfectly captures the effect of data reuse and
coalescing on the overall performance. NVIDIA’s compiler unrolls
the loop automatically for the tile size of 16 × 16; when estimating
the performance for this version, we modeled the unrolled code.

The second benchmark we use is a power-of-two batched Fast
Fourier Transform (FFT), which is based on the Stockham formula-
tion. We used the pseudo-codes provided by Govindaraju et al. [9]
to implement the FFT kernels. The first set of kernels load the data
from global memory, compute an R-point FFT, and write the re-
sults back to global memory. The kernels are invoked several times
and during each iteration of the outer loop, values from R different
FFTs are combined together to generate a larger size FFT. For the
first few invocations of these kernels, global memory writes cannot
be coalesced, which decreases the performance. This is the same
subscripting expression that we discussed in Section 3. Through
symbolic evaluation we can determine the fraction of noncoalesced
accesses and adjust CYCmem accordingly.

The second set of the FFT kernels improves the data reuse by
keeping intermediate results in shared memory. They also write the
results in proper order to global memory to avoid poor global mem-
ory coalescing. For this experiment, each set of kernels includes
different radix sizes of 2, 4, and 16. Larger radices reduce the total
number of iterations required to combine the results of smaller size
FFTs. Meanwhile, larger radix sizes also consume more GPU re-
sources. For example, both global and shared memory versions for
radix-16 increase the use of registers substantially. Consequently
local arrays are spilled to global memory, resulting in an increase
in global memory traffic. Spilling local arrays into global memory
also increases the number of stall points in the kernel and the av-
erage non-blocking cycles, NBCavg , is reduced accordingly. The
number of active warps, WLPmax, is also reduced as each thread
uses more registers. Reduction in both NBCavg and WLPmax

makes global memory latency blatant for radix-16 kernels based on
Eq. (6). These effects are reflected in both predicted and measured
performance numbers in Fig. 8.



(a) (b)

Figure 7. Matrix multiply kernels. (a) Initial and tiled kernels: a breakdown of the predicted time for the global version shows the portion
of memory stalls versus compute time. (b) Zoomed for tiled kernels.

4.2 SIMD Divergence and Bank Conflicts

The third benchmark that we use is the prefix sum scan kernel,
which computes partial sums of all prefixes of an array. Unlike the
other two benchmarks, computation is not distributed uniformly
to threads. In mapping the algorithm to parallel threads, the tree-
like structure of the computation has been divided into discrete
steps containing different amounts of computation separated by
barrier synchronizations. Threads determine what to do by com-
puting branch conditions and array indices from their thread ID.
How computation is assigned to threads and the resulting branch
behavior affects performance.

We start with a simple version of the scan kernel (Init), where
thread t is responsible for the computation that produces array
element 2t + 1. For a thread-block size of T, the kernel loads data
from global memory, computes partial sums in log T + 1 steps,
propagates the partial sums to all array elements in another round of
log T + 1 steps, and saves the results to global memory. Subsets of
the threads in a block are turned off for each step of execution, but
in this organization the active threads are distributed throughout all
warps for most execution steps, leading to an increase in compute
latency (toward useless work).

By reassigning computation to different threads, we can group
threads that take the same control flow path into the same warp, thus
eliminating branch divergence except during the steps where fewer
than one warp of threads runs. The new kernel (Div) has a lower
compute latency with regard to pure computational cycles, but
as the regrouped threads issue more simultaneous accesses to the
same shared memory bank, increased latency for shared memory
accesses results in a small overall latency increase from the initial
version for some thread-block sizes.

Next, the shared memory bank conflicts are removed (by
padding shared memory arrays) for both of the above versions.
The performance rises for the kernel with reduced branch diver-
gence (Div B). For the initial version performance degrades after
the array layout is changed (Init B) as the latency of conflicting
shared memory bank accesses is less than the compute latency of
extra address calculation instructions.

Figure 9 summarizes the predicted and measured performance
numbers for different versions that we discussed above. For each
kernel configuration we tried thread-block sizes of 64, 128 and 256.
Half the threads become superfluous after each step of computation
in the first half of the scan kernel, yet they still must consume exe-
cution cycles to participate in barrier synchronization. As a result,
thread-blocks of larger sizes are expected to pay a slightly larger
penalty for synchronization in these kernels. In addition, with larger
thread-blocks fewer independent thread-blocks are active simulta-
neously during the last stages of tree-like computation; WLPeffect

drops below the level that is required to hide the pipeline latency.
Consistently, Fig. 9 shows the rise in pipeline latency for the thread-
block size of 256. The results in Fig. 9 verify the accuracy of the
proposed performance model in capturing the effect of SIMD di-
vergence and shared memory bank conflicts.

Figure 8. FFT kernels: predicted versus measured execution times.
Predicted time is composed of memory stalls and compute time.

Figure 9. Prefix sum scan kernels: predicted versus measured ex-
ecution times. A more detailed break down of predicted execution
time is presented to show where the cycles are used in each imple-
mentation.

4.3 Data-Dependent Conditions and Memory Accesses

Finally, we applied our performance model to sparse matrix-vector
multiplication kernels [2], known for indirect and irregular mem-
ory accesses. For this set of kernels, computation distribution and
thread mapping can affect memory bandwidth and SIMD utiliza-
tion.

We start with a version (Global) in which one thread is allo-
cated to each row of the matrix. Based on the number of nonzero
elements per row, this version can introduce extra compute latency
into the computation, as not all SIMD cycles are used efficiently.

In another version of the kernel (Shared), the array that stores
the starting position of each row (in the dense representation of the
sparse matrix) is loaded into shared memory and is reused across a
thread-block.

The third implementation (Consecutive) uses multiple threads
(a half-warp size) to compute each row. Consecutive threads access
consecutive nonzero elements to promote coalesced memory ac-
cesses and possibly reduce the effect of control flow divergence on
compute latency of the kernel. Each thread computes the partial
product for one nonzero element. A parallel sum reduction is used
to compute the final result for each row. Memory accesses are coa-



Figure 10. Sparse matrix-vector kernels: a breakdown of predicted
execution time versus measured execution time.

lesced in this version if the first element of the array (which stores
the starting position of each row) is well-aligned.

To guarantee coalesced accesses, in a new implementation
(Coalesced), a few threads load the first few unaligned mem-
ory accesses before proceeding to accessing the aligned portion of
the loads.

The warp latency computed for each of the above four kernels
is parameterized over factors that are determined by structural
properties of the input matrix, e.g., the trip count of the main
loop for the computation of each row is determined by the number
of nonzero elements of the row and the thread mapping scheme.
As a results, we generate a light-weighted backward slice of the
kernels that includes statements that their execution reveals partial
structural properties of the matrix. Statistics were collected by
running these micro-kernels to examine one warp on each GPU
streaming multiprocessor. The instrumentation cost for each kernel,
which is mainly dominated by the micro-kernel launch time, is in
the order of a few microseconds. Based on the results collected
from kernel instrumentation, we specialize the parametric warp
latency for each input set.

Figure 10 shows the predicted and measured execution times for
two sparse matrices from the University of Florida Sparse Matrix
Collection [5]. Notice that in this experiment, we conservatively
designate a portion of memory accesses as uncoalesced accesses.
However, the model is capable of capturing the trends and relative
merit of code versions, as shown in Figure 10.

5. Conclusions

We have presented a compiler-based approach to application per-
formance modeling on GPU architectures. Our model is equipped
with an efficient symbolic evaluation module to determine the ef-
fects of the structural conditions and complex memory access ex-
pressions on the performance of a GPU kernel. Our approach com-
bines the effects of different performance factors into a coherent
framework. In cases where it cannot statically determine perfor-
mance information, a parametric latency is derived which can be
customized later, according to the kernel inputs. In the case of data-
dependent conditions or access patterns, it employs a light-weight
dynamic instrumentation approach to specialize the parametric la-
tency.

Our model allows a compiler to determine the relative merits
of parallel kernel configurations without running all the variations.
More importantly, the model identifies the bottlenecks and can
guide the the compiler through the optimization process.

We validated our performance model for the matrix multiply,
prefix sum scan, FFT, and sparse matrix-vector benchmarks. These
benchmarks exhibit challenging conditional and memory access
patterns. Our evaluation shows that there is good agreement be-
tween predicted and observed performance rankings for the vari-
ous tuning versions of these kernels and that the model captures
the effect of all major performance factors for GPU architecture.
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