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Abstract—In this paper, we present a scalable, numerically
stable, high-performance tridiagonal solver. The solver is based
on the SPIKE algorithm for partitioning a large matrix into
small independent matrices, which can be solved in parallel.
For each small matrix, our solver applies a general 1-by-1 or
2-by-2 diagonal pivoting algorithm, which is also known to be
numerically stable. Our paper makes two major contributions.
First, our solver is the first numerically stable tridiagonal solver
for GPUs. Our solver provides comparable quality of stable
solutions to Intel MKL and Matlab, at speed comparable to the
GPU tridiagonal solvers in existing packages like CUSPARSE. It
is also scalable to multiple GPUs and CPUs. Second, we present
and analyze two key optimization strategies for our solver: a high-
throughput data layout transformation for memory efficiency,
and a dynamic tiling approach for reducing the memory access
footprint caused by branch divergence.

Index Terms—GPU Computing, GPGPU, Tridiagonal Solver,
SPIKE

I. INTRODUCTION

The tridiagonal solver is a very important component in a
wide range of engineering and scientific applications, includ-
ing computer graphics [1][2], fluid dynamics [3][4], Poisson
solvers [5], preconditioners for iterative solvers [6], cubic
spline interpolation [7], and semi-coarsening [8] for multi-grid
methods. Many of these applications require solving several
independent tridiagonal linear systems, with the number of
systems varying greatly between different applications. For
example, a multi-dimensional problem tends to have a large
number of independent systems, while a one-dimensional
problem often results in a small number of independent
systems. In this paper, we are particularly interested in solving
only one or a few large systems for several reasons. First, a set
of independent systems can always be expressed as a single
large system (by uniting those matrices into a large matrix
with some zero sub-diagonal elements), but not vice-versa. A
parallel solver that performs well even for a single system is
therefore the most generally applicable, and can even handle a
set of irregularly sized systems with no additional complexity.
Second, a single system is the most difficult case for a parallel
solver implementation, because the problem has no inherent
independence to exploit from disjoint systems. Finally, even
in applications where there are several huge systems to solve,
the limited memory size of the graphics processing unit (GPU)
encourages a solution where the GPU processes a large portion

of a single system at a time. Assuming that the systems
are all large enough to require partitioning, the amount of
communication and transfer overhead will grow with the
number of times each system is partitioned. The number of
partitions will grow directly in proportion to the number of
unrelated systems being solved simultaneously on the same
device. All else being equal, we should then prefer to send
large integrated systems to the GPU for minimal transfer
overhead. Internally, the GPU solver is then free to perform
further partitioning as necessary to facilitate parallel execution,
which does not require external communication.

Recently, high-performance GPU architectures have been
widely used for scientific computation due to their high com-
putational throughput and large memory bandwidth. However,
only few GPU-based tridiagonal solvers can efficiently solve
a small number of large systems. Davidson et al. [9] and
Kim et al. [10] both proposed solvers using a hybrid of
parallel cyclic reduction (PCR) [11] and the Thomas algo-
rithm [12] with intelligent decision mechanisms for switching
from PCR to Thomas to balance parallelism and computational
complexity. NVIDIA released a tridiagonal solver using a
hybrid of cyclic reduction (CR) [11] and PCR algorithms in
CUSPARSE library [13]. Several other GPU-based tridiagonal
solvers are also notable, although they do not directly support
use cases with a small number of large systems. Sengupta
et al. [2], Göddeke et al. [8], and Davidson et al. [14]
proposed tridiagonal solvers for GPUs by using CR, while
Egloff [15][16] developed a PCR-based solver. Sakharnykh
implemented thread-level parallel Thomas algorithm [3] and
introduced a hybrid of PCR-Thomas algorithm [4]. Zhang et
al. [17][18] proposed a hybrid technique among the Thomas
algorithm, CR, PCR, and recursive doubling (RD) [19].

In general, most previous GPU-based tridiagonal solvers
fell short in solving a small number of large systems due
to one or both of the following two reasons. The first is
that their parallel execution is based on the inherent massive
parallelism of a large number of simultaneous systems. The
second reason is that they require that the data of each system
fit into the high bandwidth of scratchpad memory. Since these
scratchpad memories are of modest size, these solvers fail
when each system is large. These solvers may work well in
some applications, but cannot be used as a general library.
Most importantly, to the best of our knowledge, all existing
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GPU-based solvers exhibit numerical instability. CR, PCR,
RD, and the Thomas algorithm are all known to be numerically
unstable for some distributions of matrix values, which we
will demonstrate in our results. Tridiagonal solver algorithms
known to be numerically stable, such as diagonal pivoting or
Gaussian elimination with partial pivoting, are less naturally
suited to GPUs. None are inherently data-parallel in each step,
like CR or PCR. Even if we were to assume a large number
of independent systems, numerically stable algorithms tend to
rely heavily on data-dependent control flow, which can cause
divergence and reduce GPU performance significantly.

This paper introduces several contributions to the field of
tridiagonal matrix solvers, including:
• A numerically stable GPU tridiagonal solver based on the

SPIKE algorithm and diagonal pivoting
• High-performance data marshaling techniques to interface

the SPIKE decomposition with the thread-parallel solver
• A dynamic tiling scheme for controlling inherent diver-

gence in the diagonal pivoting solver
These contributions together are used to produce the first nu-
merically stable tridiagonal solver library that can utilize both
the CPU and GPU computational elements of a distributed-
memory cluster.

We first describe the first numerically stable tridiagonal
solver for GPUs, based on the SPIKE partitioning algo-
rithm [20][21] and 1-by-1 or 2-by-2 diagonal pivoting [22] for
solving each partition. The SPIKE algorithm was designed to
decompose a banded matrix into several smaller matrices that
can be solved independently, and is widely used on CPU-
based parallel computers. The solution is completed by a
thread-parallel solver for the many partitioned systems. The
standard input and output data formats for a tridiagonal solver
(e.g. those of LAPACK’s gtsv function) are incongruent
with good memory access patterns for GPU memory band-
width for a typical thread-parallel solver for partitions of the
tridiagonal system. A fast GPU data layout transformation
method [23][24] is applied to ensure the various kernels each
get the most bandwidth possible from the GPU memory
system.

Next, as mentioned previously, a thread-parallel diagonal
pivoting kernel has heavily data-dependent control flow, result-
ing in thread divergence and widely scattered memory accesses
that render GPU caches nearly useless. Initial performance
results revealed a slowdown of up to 9.6x compared to existing
solvers based on a parallel Thomas algorithm. Although such
divergence can never be eliminated, we introduce a dynamic
tiling technique that can keep divergence under control so the
caches of modern GPUs deliver much more benefit, resulting
in competitive performance.

After that, we further extend our GPU-based solver to sup-
port multi-GPUs and heterogeneous clusters (CPUs+GPUs) by
applying MPI (Message Passing Interface) [25], OpenMP [26]
and working with corresponding CPU-based implementations
(Intel MKL [27] gtsv in this paper). We present three
evaluations in our experimental results: numerical stability
test, performance test for single GPU, and scalability test

for multi-GPUs and clusters. All experiments in this paper
are evaluated in double precision, and it is easy to support
other precisions. In the numerical stability test, we compare
our GPU-based results with CUSPARSE for GPU, and Intel
MKL, Intel SPIKE [28], and Matlab [29] for CPUs. In the
single GPU performance test, we compare our GPU-based
methods with only CUSPARSE, and use Intel MKL as the
reference. In the scalability test, we show performance scaling
for both our GPU-based solver and our heterogeneous solver,
using Intel SPIKE as the reference on a compute cluster
with CPU+GPU nodes. Table I summarizes the libraries we
evaluate. 3 means good performance or supported, whereas 7
means poor performance or not supported.

TABLE I
SUMMARY FOR TRIDIAGONAL SOLVERS

Solvers Numerical
Stability

High CPU
Perfor-
mance

High GPU
Perfor-
mance

Cluster
scalability

CUSPARSE
(gtsv) 7 7 3 7a

MKL
(gtsv) 3 3 7 7

Intel SPIKE 3 3 7 3
Matlab

(backslash) 3 7 7 7

Our GPU
solver 3 7 3 3

Our hetero-
geneous

MPI solver
3 3 3 3

aCUSPARSE currently supports only a single-GPU solver, but the Cyclic
Reduction algorithm it uses could be extended to multiple GPUs.

In the following sections, we use NVIDIA CUDA ter-
minology [30], although our methods could just as easily
apply to OpenCL [31]. Individual functions executed on the
GPU device are called “kernel” functions, written in a single-
program multiple-data (SPMD) form. Each instance of the
SPMD function is executed by a GPU “thread”. Groups of
such threads, called “thread blocks”, are guaranteed to exe-
cute concurrently on the same processor. Within each group,
subgroups of threads called “warps” are executed in lockstep,
evaluating one instruction for all threads in the warp at once.
We will introduce other architecture and programming model
constructs throughout the paper as necessary.

II. SPIKE ALGORITHM FOR SOLVING LARGE
TRIDIAGONAL SYSTEMS
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Fig. 1. Data partitioning for SPIKE Algorithm



The SPIKE algorithm decomposes a single system of equa-
tions described by a banded matrix into a set of disjoint
systems that can be solved independently. A tridiagonal system
is a special case of a banded system, allowing us to use the
SPIKE algorithm to partition the problem. This section de-
scribes a specialized implementation of the SPIKE algorithm
for tridiagonal matrices using GPUs. In algebraic terms, we
are solving for X in Eq 1.

AX = F, (1)

where A is a tridiagonal matrix, and X and F are vectors.
The matrix A can be partitioned in several square diagonal
blocks Ai and a collection of off-diagonal single elements Bi
and Ci, as shown in Figure 1. For this particular example, we
are partitioning the matrix A into four blocks. Similarly, X
and F can also have corresponding partitions, each partition
of which has a length equal to the side-length of the tile Ai.
We can algebraically isolate the block-diagonal components
of A by defining matrices D and S such that

A = DS. (2)

D is simply the isolated diagonal blocks of A, while S has the
structure shown in Figure 2, with values constrained by Eq 3
and Eq 4.
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Fig. 2. Matrices D and S

AiVi =


0
...
0
Bi

 (3) AiWi =


Ci
0
...
0

 (4)

Using this formulation, we can substitute Eq 2 into Eq 1
and reassociate the operations, resulting in Eq 5 and Eq 6.

SX = Y (5)

DY = F (6)

Since D is block-diagonal, the tiles of the system are indepen-
dent, so Eq 6 can be restated as a the collection of independent
systems as shown in Eq 7.

AiYi = Fi (7)

In Eq 7, each Ai and Fi are known, allowing us to solve for
each Yi. Similarly, in Eq 3 and Eq 4, Ai, Bi and Ci are known,
allowing us to solve for Vi and Wi. The solutions of these three

equations can be computed in a procedure and all partitions
can be computed in parallel.

Having computed all components of Y and S, we can solve
for the final solution vector X using Eq 5. The particular
structure of the matrix S, makes the solution the Eq 5 simpler
than it may appear at first. Specifically, most of the values can
be computed simply by back-substituting the solution to the
smaller system defined in Eq 8.

ŜX̂ = Ŷ , (8)

Ŝ =



1 0 V (t)
1

0 1 V (b)
1

W (t)
2 1 0 V (t)

2

W (b)
2 0 1 V (b)

2

W (t)
3 1 0 V (t)

3

W (b)
3 0 1 V (b)

3

W (t)
4 1 0

W (b)
4 0 1


,

X̂ =



X (t)
1

X (b)
1

X (t)
2

X (b)
2

X (t)
3

X (b)
3

X (t)
4

X (b)
4


, and Ŷ =



Y (t)
1

Y (b)
1

Y (t)
2

Y (b)
2

Y (t)
3

Y (b)
3

Y (t)
4

Y (b)
4


. (9)

Here, the superscripts (t) and (b) mean the most top and
bottom single elements, respectively, of V , W , X , and Y . X̂
and Ŷ can also be defined with top and bottom elements. After
X̂ is solved, the remaining unknown values of the vector X
(i.e. the middle elements of each partition) can be computed
by applying a backward substitution for each partition. The
substitutions for each partition are independent from each
other, and can be computed in parallel.

In summary, SPIKE algebraically isolates tiles of the matrix
A such that a parallel solver can solve many partitions of
the larger system independently. This leads us to the com-
putational implementation of the SPIKE algorithm shown in
Figure 3.

A. Our SPIKE implementation

The solver begins by creating the partitions of the input
matrix and vector, preparing for the parallel solver step. The
parallel partitioned solver for the collection of independent
systems then computes both the solutions to the partitions of
the original system as well as the W and V components of the
spike matrix S. The parallel solver constitutes the majority of
the computation in the SPIKE algorithm, and we explain our
implementation in detail in Section III. Then a solver for the
spike system is invoked, first solving the reduced spike system,
followed by the computation of all remaining values in the



 Fig. 3. The SPIKE Algorithm

solution X through backward substitution. Finally, the results
from all the different partitions are collected and merged into
the expected output format and returned. Figure 4 summarizes
the functionality of each block in the SPIKE implementation.

In the parallel partitioned system solver step, any solver can
be used to solve the independent systems. In our experimental
results, we provide both our thread-parallel diagonal pivoting
solver (Section III) and a parallel Thomas solver [3][10]
for GPUs, and use MKL gtsv routine with OpenMP for
multi-threaded CPU. In either solver, the thread with Index
i solves for Yi, Vi, and Wi, which all depend on the matrix
partition Ai but with different result vectors. The parallel solver
step requires the most computation time out of all the steps,
and was therefore the focus of more optimization efforts.
Section III will describe the most important optimizations,
data layout transformation and dynamic tiling, for the diagonal
pivoting solver. Data layout transformation was also applied
for the Thomas algorithm solver, but dynamic tiling was
irrelevant because the Thomas implementation has no thread
divergence.

In the spike system solver step, solving the reduced spike
system in Eq 8 only occupies less than 5% of the overall
solver runtime in our final library. As such, we will only briefly
describe its implementation here, and refer the reader to the
work of Pollizi et al. [20] for more details. If the number of
partitions is small enough, the reduced spike system can be
easily solved by collecting all top and bottom elements from
partitions, and using a direct solver (a sequential method in
most cases) in one node. We apply this method, called the

Partitioning:
• Data partitioning for distributed memory
• Data marshaling (Section III-A) for GPUs

Parallel partitioned system solver:

• Invoke a tridiagonal solver on each compute unit
– GPU uses diagonal pivoting (Section III)
– CPU uses Intel MKL with OpenMP

The spike system solver:
The reduced system solver:

• A local reduced system solver on each compute unit
• Collect the reduced systems for distributed memory
• A global reduced system solver for all compute units
• Distribute the reduced solution for distributed memory

Backward substitution:

• Invoke backward substitution on each compute unit

Result collection:

• Data marshaling (Section III-A) for GPUs
• Result collection for distributed memory

Fig. 4. Our SPIKE Implementation

explicit SPIKE method, in the global communication step any
time our solver is using more than one node or compute device
(CPU or GPU). However, if the number of partitions and the
size of the parallel computing system is large, the sequential
direct solver may dominate the overall solver’s runtime. Since
our GPU implementation creates thousands of partitions, we
employ a recursive SPIKE method on the GPU (specifically, an
“on-the-fly” recursive SPIKE algorithm [20]) to again break
the spike system into many partitions that can be solved in
parallel. At the cluster level, a recursive SPIKE algorithm
permits each node to solve locally the partition of the spike
system generated locally, minimizing communication.

In the partitioning step, data is prepared and sent to cor-
responding computing resources. Certain steps may not be
necessary depending on the origin of input data. For instance,
data may be read from the file system and copied to one or
more GPUs on one or more nodes, or may be already resident
on the GPU devices as a result of previous computation in
a larger application. The transmission of data to GPUs can
be handled explicitly with the baseline language support, or
implicitly with supplemental libraries [32]. Data marshaling
kernels for data layout transformation (Section III-A) are
applied at the partitioning step as well. Similarly, in the result
collection step, to return data in the original layout, a reverse
data marshaling kernel for GPUs and data transfer among
nodes are needed.



III. A STABLE TRIDIAGONAL SOLVER WITH DIAGONAL
PIVOTING

Solving the large number of independent systems is the
most computationally demanding part of the SPIKE algorithm.
We implement a parallel solver with a generalized diagonal
pivoting method to achieve a numerically stable result. The
diagonal pivoting method for general and asymmetric tridi-
agonal systems was proposed by Erway et al. [22]. Unlike
Gaussian elimination with partial pivoting, it allows pivoting
without row interchanges, which can consume precious GPU
memory bandwidth.

An asymmetric and nonsingular tridiagonal matrix A can
be always defined as

A =



b1 c1 0 · · · 0

a2 b2 c2
. . .

...

0 a3 b3
. . . 0

...
. . . . . . . . . cn−1

0 · · · 0 an bn


(10)

Then A can be decomposed to LBMT by applying Eq 11
recursively, where L and M are unit lower triangular and B is
block diagonal with 1-by-1 or 2-by-2 blocks. The factorization
can be defined as follows:

A =

[
Bd T T

12
T21 T22

]
=

[
Id 0

T21B−1
d In−d

][
Bd 0
0 As

][
Id B−1

d T T
12

0 In−d

]
(11)

where Bd is a 1-by-1 or 2-by-2 block, and

As = T22−T21B−1
d T T

12

=

{
T22− a2c1

b1
e(n−1)

1 e(n−1)T
1 if d=1

T22− a3b1c2
∆

e(n−2)
1 e(n−2)T

1 if d=2,
(12)

where ∆ = b1b2− a2c1 and e(k)1 is the first column of the k-
by-k identical matrix. Since the Schur complement As is also
tridiagonal, we can define the factorization recursively, and
eventually, form LBMT .

The dimension of the pivot block Bd (d is 1 or 2) is chosen
based on some pivoting criteria [22]. Our implementation
uses asymmetric Bunch-Kaufman pivoting [33][22], which
chooses a 1-by-1 pivot if the pivoting diagonal entry is
sufficiently large relative to adjacent off-diagonal elements, i.e.
|b1|σ1 ≥ κ |a2c1|, where σ1 = max

{
|a2|, |a3|, |b2|, |c1|, |c2|

}
and κ =

√
5−1
2 . On the other hand, if the condition is not

satisfied, 2-by-2 pivoting is applied.
After factorization, A can be easily solved by applying a

forward substitution for lower triangular L, a block-diagonal
matrix solver for B, and a backward substitution for upper tri-
angular MT . Our implementation combines these three solvers
into one procedure (Figure 5).

Here, we note two important facts. First, this algorithm has
control flow divergence, since the pivoting strategy is chosen
dynamically and depends on the data. Second,the algorithm is

sequential, since As is dynamically calculated and influences
later data. Because of the second fact, we apply a thread-level
parallel algorithm to let each system be solved by a thread.
However, this strategy may cause branch divergence, because
of the first fact. An optimization technique called dynamic
tiling is proposed to minimize effect of branch divergence in
Section III-B.

Input:
Lower diagonal array a
Main diagonal array b
Upper diagonal array c
Rhs vector f
Size n

Output:
Vector x

Kernel body:
k=0
while(k<n){
if(pivoting criteria) {
//1-by-1 pivoting (d=1)
gradually solve y in Lz=f and By=z
form M
k+=1;

} else {
//2-by-2 pivoting (d=2)
gradually solve y in Lz=f and By=z
form M
k+=2;

}
}
solve x in MˆTx=y;
// This part also contains divergence,
// since the structure of M depends on
// d in each step.

Fig. 5. Diagonal pivoting pseudo-code

A. Data Layout Transformation
For the GPU memory system to perform well, the data

elements simultaneously accessed by threads in a thread block
should be very close together in the memory address space,
for good coalescing and cache line usage. However, as we
mentioned in Section I, adjacent elements in each diagonal are
stored in consecutive locations in the most solver interfaces,
such as LAPACK gtsv. In that format, simultaneous accesses
from threads reading from different partitions will have widely
spread addresses. Therefore, in the partitioning step of the
SPIKE algorithm, we marshal the data such that Element K
of Partition I is adjacent to Element K from partitions I-1 and
I+1. This strategy can guarantee better memory efficiency in
the kernel execution but pay the cost of data marshaling. Also,
output of GPU may require another data marshaling step to
move the results back to the layout matching the initial input
data before returning the results.

Figure 6 illustrates the relationships between layouts before
and after data marshaling. In this example, there are two thread
blocks, each containing three threads, each solving a 4-element
system. In the initial layout, all coefficients of the same system
are placed into consecutive locations, such as b1, b2, b3, and b4



address 
address 

local 
transpose 

Fig. 6. Illustration for data layout transformation
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in Figure 6. The threads start by accessing the elements along
the left edge, the first elements of their respective partitions,
creating a strided access pattern. To create a better access
pattern, we perform a local transpose on the data assigned
to one thread block. Then, the threads within a thread block
accessing element K of their respective partitions will be
accessing elements adjacent in the address space. This tiled
transpose is analogous to the Array of Structures of Tiled
Arrays layout analyzed by Sung et al. [24]; we adapted their
general transpose kernel to our specific context.

In Figure 7, we evaluate the performance improvement by
comparing three kinds of data sets(8 million row), where
the tridiagonal matrix is either randomly generated, strictly
column diagonally dominant, or has a zero diagonal with non-
zero off-diagonal entries. The random matrix causes strong
branch divergence as different pivoting degree are chosen.
The strictly column diagonally dominant matrix results in
no branch divergence with 1-by-1 diagonal pivoting always
selected. The matrix with main-diagonal entries always zero
also has no branch divergence, always causing 2-by-2 diagonal
pivoting.

Data layout transformation can potentially provide up to
4.89x speedups, because of better memory efficiency. For
the input matrices without branch divergence, our new data
layout results in perfectly coalesced memory accesses and
outperforms the original layout by a factor of 3.99-4.89x.
The overheads of data marshaling are also shown in Figure 7.
The overhead may be amortized if applications are iterative,
or may be partially ignored if users do not care about the
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Fig. 8. Illustration of dynamic tiling

order of output. However, it is really application-dependent, so
the overhead is counted as a part of our final execution time
in our evaluations in Section IV. Even with data marshaling
overhead, our new layout still outperforms the original layout
in all cases.

B. Dynamic Tiling

On the random matrix, which causes strong branch di-
vergence, our new data layout has only a minimal impact.
This is because on each iteration, different threads in a warp
consume a different number of input elements based on
whether they perform 1-by-1 or 2-by-2 pivoting that iteration.
As each thread progresses, choosing 1-by-1 or 2-by-2 pivoting
independent of other threads in the warp, the elements required
by each thread on a particular iteration become fragmented
and uncoalesced. Figure 8(a) shows an illustration where four
threads are iterating through elements of their partition in
the proposed layout. Elements are marked with the iteration
number where the thread assigned to that system consumes
that element. On iteration one, the threads touch two “lines”
of data. Even if not perfectly coalesced, a cache or other
read-combining mechanism will deliver reasonable bandwidth
for these accesses. However, as threads consume different
numbers of elements on each iteration, by the time they get to
iteration four their elements are scattered across five “lines” of
data. If the threads get far enough apart, the amount of data the
cache needs to hold to avoid evicting lines before all threads
consume their elements continues to grow. When the access
“footprint” exceeds the cache capacity available to the thread
block, memory system performance degrades significantly.

To counteract this problem, we propose a dynamic tiling
mechanism, shown in Figure 9, which bounds the size of
the access footprint from the threads in a warp. The original
while loop is dynamically tiled to a few smaller while loops.
A barrier synchronization is put between the smaller while
loops to force “fast” threads to wait for “slow” threads.
Figure 8(b) illustrates the new footprint after dynamic tiling.
At the first barrier synchronization, two fast threads idle
one iteration to wait for the other two slow threads. After
dynamic tiling, the size of the footprint is controlled by the



(a) Un-tiled

k=0
while(k<n) {
if(condition) {

1-by-1 pivoting
k+=1

} else {
2-by-2 pivoting
k+=2

}
}

(b) Tiled

k=0
for(i=0; i<T; i++) {
n_barrier=(i+1)*n/T
while(k<n_barrier) {
if(condition) {

1-by-1 pivoting
k+=1

} else {
2-by-2 pivoting
k+=2

}
}
barrier for a warp*

}
∗An implicit barrier synchronization for a warp is automatically
generated after the end of a while loop or for loop in CUDA

Fig. 9. Source code difference for dynamic tiling
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Fig. 10. Performance improvement in parallel partitioned system solver by
applying dynamic tiling

tiling parameters, which can be tuned to balance increased
computational divergence (from fast threads idling) with the
limits on the access footprint size.

Figure 10 shows the performance improvement. Our dy-
namic tiling strategy provides up to a 3.56x speedup when
branch divergence is heavy, and causes minimal overhead
when there was no divergence to address. In Figure 11, our
performance analysis is further supported by the hardware
performance counters from the NVIDIA Visual profiler [34].
The nondivergent datasets exhibited practically perfect mem-
ory utilization with or without dynamic tiling, as expected.
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Fig. 11. Profiler counters for dynamic tiling

The L1 hit rate is close to 0% because lines of data are
touched only once each, entirely copied to registers in a single
instruction. Without dynamic tiling, the random dataset had a
global memory load efficiency of only 11.7%, and a global
memory store efficiency of only 25.3%. The low hit rate of the
L1 cache (17.2%) suggests that the footprint was so large that
the cache could not contain it all simultaneously, evicting lines
before all the threads could consume their elements from that
line. Dynamic tiling improved global memory load efficiency
on the random dataset from 11.7% to 32.5%, global memory
store efficiency from 25.3% to 46.1%, and L1 cache hit rate
from 17.2% to 48.0%, with only a minor decrease in warp
execution efficiency. These metrics support our conclusion
that dynamic tiling improves performance by more effectively
using the hardware cache.

IV. EVALUATION

In this section, we evaluate three important features for a
high-performance numerical solver: numerical stability, per-
formance, and scalability. Table II lists the specifications of
the machines used to collect the data presented here, which
we will refer to by name (AC and Forge) for the remainder
of the paper.

TABLE II
MACHINES USED FOR EVALUATIONS

Name Description Specification

AC

A single node of
the NCSA GPU
Accelerated
Cluster [35]

CPU: 1× Intel Xeon X5680 @3.33GHz
Memory: 24GB DDR3
GPU: 2 NVIDIA GTX480
OS: Fedora 12
Compiler: icc 11.1
MKL: 10.2.6
NVIDIA Driver: 295.20
NVCC: 4.1, V0.2.1221
CUSPARSE Version: 4010

Forge

NCSA GPU
Forge
cluster [36]a

CPU: 2 AMD Opteron 6128 HE @2.0GHz
Memory: 64GB DDR3
GPU: 6 or 8 NVIDIA M2070
OS: Red Hat Enterprise Linux Server 6.1
Compiler: icc 12.0.4
MPI: OpenMPI 1.4.3
MKL: 10.3.4
NVIDIA Driver: 285.05.33
NVCC: 4.0, V0.2.1221
CUSPARSE Version: 4000

aThe machine specification of Forge is per node.

A. Numerical Stability Evaluation

We test numerical stability of our solver against 16 types of
nonsingular tridiagonal matrices of size 512, including ones
from Erway et al. [22] and recent literature [37][38]. These
matrices are carefully chosen to challenge the robustness and
numerical stability of the algorithm. All solvers are tested
on AC. Our matrix size is only 512, near the limit of what
Matlab would solve with reasonable time and memory. The
description and the condition number of each tridiagonal
matrix is listed in Table III, while the corresponding relative
error of each solver is shown in Table IV. Here, the relative
error for a solution x̂ is calculated from the following equation:

‖Ax̂−F‖2
‖F‖2

(13)



TABLE III
MATRIX TYPES USED IN THE NUMERICAL EVALUATION

Matrix
type

Condition
number

Description

1 4.41E+04 Each matrix entry randomly generated from a uniform distribution on [-1,1] (denoted as U(-1,1))
2 1.00E+00 A Toeplitz matrix, main diagonal is 1e8, off-diagonal elements are from U(-1,1)
3 3.52E+02 gallery(‘lesp’,512) in Matlab: eigenvalues which are real and smoothly distributed in the interval approximately [-2*512-3.5, -4.5].
4 2.75E+03 Each matrix entry from U(-1,1), the 256th lower diagonal element is multiplied by 1e-50
5 1.24E+04 Each main diagonal element from U(-1,1), each off-diagonal element chosen with 50% probability either 0 or from U(-1,1)
6 1.03E+00 A Toeplitz matrix, main diagonal entries are 64 and off-diagonal entries are from U(-1,1)
7 9.00E+00 inv(gallery(‘kms’,512,0.5)) in Matlab: Inverse of a Kac-Murdock-Szego Toeplitz
8 9.87E+14 gallery(‘randsvd’,512,1e15,2,1,1) in Matlab: A randomly generated matrix, condition number is 1e15, 1 small singular value
9 9.97E+14 gallery(‘randsvd’,512,1e15,3,1,1) in Matlab: A randomly generated matrix, condition number is 1e15, geometrically distributed

singular values
10 1.29E+15 gallery(‘randsvd’,512,1e15,1,1,1) in Matlab: A randomly generated matrix, condition number is 1e15, 1 large singular value
11 1.01E+15 gallery(‘randsvd’,512,1e15,4,1,1) in Matlab: A randomly generated matrix, condition number is 1e15, arithmetically distributed

singular values
12 2.20E+14 Each matrix entry from U(-1,1), the lower diagonal elements are multiplied by 1e-50
13 3.21E+16 gallery(‘dorr’,512,1e-4) in Matlab: An ill-conditioned, diagonally dominant matrix
14 1.14E+67 A Toeplitz matrix, main diagonal is 1e-8, off-diagonal element are from U(-1,1)
15 6.02E+24 gallery(‘clement’,512,0) in Matlab: All main diagonal elements are 0; eigenvalues include plus and minus 511, 509, ..., 1
16 7.1E+191 A Toeplitz matrix, main diagonal is 0, off-diagonal element are from U(-1,1)

TABLE IV
RELATIVE ERRORS AMONG METHODS

Matrix type SPIKE-diag pivota SPIKE-Thomasa CUSPARSE MKL Intel SPIKEb Matlab
1 1.82E-14 1.97E-14 7.14E-12 1.88E-14 1.39E-15 1.96E-14
2 1.27E-16 1.27E-16 1.69E-16 1.03E-16 1.02E-16 1.03E-16
3 1.55E-16 1.52E-16 2.57E-16 1.35E-16 1.29E-16 1.35E-16
4 1.37E-14 1.22E-14 1.39E-12 3.10E-15 1.69E-15 2.78E-15
5 1.07E-14 1.13E-14 1.82E-14 1.56E-14 4.62E-15 2.93E-14
6 1.05E-16 1.06E-16 1.57E-16 9.34E-17 9.51E-17 9.34E-17
7 2.42E-16 2.46E-16 5.13E-16 2.52E-16 2.55E-16 2.27E-16
8 2.14E-04 2.14E-04 1.50E+10 3.76E-04 2.32E-16 2.14E-04
9 2.32E-05 3.90E-04 1.93E+08 3.15E-05 9.07E-16 1.19E-05

10 4.27E-05 4.83E-05 2.74E+05 3.21E-05 4.72E-16 3.21E-05
11 7.52E-04 6.59E-02 4.54E+11 2.99E-04 2.20E-15 2.28E-04
12 5.58E-05 7.95E-05 5.55E-04 2.24E-05 5.52E-05 2.24E-05
13 5.51E-01 5.45E-01 1.12E+16 3.34E-01 3.92E-15 3.08E-01
14 2.86E+49 4.49E+49 2.92E+51 1.77E+48 3.86E+54 1.77E+48
15 2.09E+60 Nan Nan 1.47E+59 Fail 3.69E+58
16 Inf Nan Nan Inf Fail 4.7E+171

aThe number of partitions is 64 for a 512-size matrix on a GPU.
bThe number of partitions is 4 for a 6-core Intel Xeon X5680 CPU .

In Table IV, we use the default Matlab tridiagonal solver as
a baseline for numerical accuracy and stability. Bold numbers
indicate solution errors 100× larger than the baseline results,
while bold and struckthrough highlight solution errors 1 mil-
lion times worse than the baseline results. Significantly low
relative error rates, 100× better than the baseline results, are
underlined. Among 16 types of test matrices, outright solver
failures can be grouped into three categories: 1) CUSPARSE,
Intel SPIKE, and our SPIKE-Thomas implementation fail two
particular matrices; 2) our SPIKE-diagonal pivoting solver
and MKL fail one specific matrix; and 3) Matlab produces
results with finite errors for all matrices. The accuracy of the
valid solutions from the different solvers also varies greatly.
With CUSPARSE, 7 matrices result in high relative errors (at
least 100× worse than Matlab) and 5 of those 7 are at least
1 million times worse than Matlab. Our SPIKE-Thomas has
only one matrix with a finite solution error more than 100×
worse that the Matlab solution error. Intel MKL, Matlab, and
our SPIKE-diagonal pivoting have roughly comparable error

rates. While the best solver for a particular application will
depend on the properties of the tridiagonal system in that
application, on average, the Intel SPIKE solver produces the
most stable results for a “typical” system, whereas our SPIKE-
diagonal pivoting solver is the best GPU solver overall for
numerical stability.

B. Single GPU Performance Evaluation

We evaluate the performance of our GPU-based solver in
which we compare against the results of CUSPARSE library
on a GPU and MKL library on a CPU. Note that the MKL
library does not include a multithreaded version of the gtsv
function. All the tests are done on AC, where the results of
MKL were generated using icc with -O3 optimization, and
the results of our SPIKE-based solvers and CUSPARSE are
generated using nvcc and gcc with -O3 optimization.

Figure 12 shows the performance for two kinds of matrices,
a random matrix, which is similar to the type 1 from the
stability evaluation but with a larger size (8 million), and a
strictly column diagonally dominant matrix. In our evaluation,
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the random matrix is used to estimate robustness of our
SPIKE-diagonal pivoting, because it causes very strong branch
divergence in our method. For the GPU-based solvers, the
time we list is the kernel execution time on a single GPU
without counting time of data transfer, which is independent
of the GPU solver itself and listed separately for both pageable
and pinned host memory. In the case of the random matrix,
our method performs with comparable execution time (less
than 5% difference) to that of CUSPARSE, while in terms of
precision, our SPIKE-diagonal pivoting has a much smaller
error rate. Compared to MKL, our method can get 3.20× and
12.61× speedups with and without considering data transfer
for GPU, respectively. Our SPIKE-Thomas implementation,
which is numerically stable in many cases but cannot be
guaranteed, outperforms CUSPARSE by a factor of 1.72×,
and compared to MKL, it shows 3.60× and 22.70× speedups
with and without data transfer, respectively. CUSPARSE and
SPIKE-Thomas have no data-dependent conditions in their
implementation, and so perform identically for either test
matrix. However, for a random matrix, the tridiagonal solver
in CUSPARSE and our SPIKE-Thomas implementation may
have stability issues, which may compute solutions that are
either invalid or with a higher error rate than is tolerable.

If we assume the input matrix is strictly column diagonally
dominant (from prior knowledge or a matrix test before
running the solver), both CUSPARSE and our SPIKE-Thomas
implementation are stable and should produce solutions with
reasonable error. Meanwhile, our SPIKE-diagonal pivoting
would not suffer from branch divergence, and MKL can
also run slightly faster without row interchange. In this case,
our SPIKE-diagonal pivoting shows 1.35×, 3.13×, 16.06×
speedups over CUSPARSE, MKL with and without consider-
ing data transfer for GPU, respectively.

For a very large system, the whole data may be too big to fit
into the memory size on single GPU. For example, dgtsv in
CUSPARSE cannot support a double precision matrix whose
dimension is larger than 16776960 rows on GTX 480, because
it runs out of memory space. In our GPU-based solver, data can
be partitioned and solved chunk-by-chunk on a single GPU. By
using this strategy, our solver can work well for a matrix whose
data size is larger than GPU memory, though the data transfer
among CPUs and GPUs grows slightly faster than the problem
size itself. Figure 13 shows the final performance (including
all data transfer for the GPU-based solvers) of our SPIKE-
diagonal pivoting, our SPIKE-Thomas, CUSPARSE, and Intel
MKL for solving a random matrix. Note that CUSPARSE
fails when the input matrix size is larger than 8M. Let us
be especially clear that for these results, we are comparing
libraries on a single system, not processors within the system;
the Intel MKL solver uses only a single core of the six-core
CPU. In terms of performance, our numerically stable solver
can achieve up to 3.54× speedups over Intel MKL. When the
size of required memory is larger than GPU memory capacity
(1.5 GB for GTX 480), its speedups decrease but are still up
to 1.95× faster than Intel MKL.

C. Scalability Evaluation

We evaluate our GPU-based algorithms for multiple GPUs
on NCSA Forge. First, our GPU-based solver for a random
matrix is evaluated on 1, 2, 4, 8 and 16 GPUs. The results of
1, 2, and 4 GPUs use on single node, while the results of 8
and 16 GPUs are generated on multiple nodes.

 

Fig. 14. Multi-GPU scalability evaluation for a 16M-size problem

 

Fig. 15. Multi-GPU scalability evaluation for a varied-size problem(weak
scaling results)
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Fig. 16. Cluster scalability evaluation for CPUs only, GPUs only, and CPUs+GPUs configurations of our library.

In Figure 14, we show strong scaling to solve a 16M-
sized random matrix for our solver among multiple GPUs.
Within one node, our solver scales quite well to multiple
devices. However, it is not perfectly linear scalability, since
multiple GPUs may compete for the bandwidth of PCI-E
bus. Among GPUs in multiple nodes, our GPU-based solver
achieves perfectly linear scalability when the input begins
already distributed among the various nodes. However, when
the input source and solution reside on a single node, the
total runtime is dominated by the MPI data distribution time.
Figure 15 evaluates scaling among different sizes. In this case,
when the number of GPUs scales, we also scale the problem
size. It shows our library does scale well when the matrix size
increases.

In Figure 16, we evaluate our heterogeneous MPI solver
using CPUs only, GPUs only, or both CPUs and GPUs on the
Forge cluster. We compare against Intel SPIKE, which uses
the CPUs only, as a reference. Up to 4 nodes are used, and
in each node we use 2 GPUs and 4 CPU cores. Figure 16(a)
shows good strong scaling to solve a 16M-sized random matrix
when the data is predistributed, while Figure 16(b) shows that
MPI data distribution still dominates the runtime when the
library is invoked from a single node. Figure 16(c) shows weak
scaling performance including MPI distribution, which again
emphasizes that the cost of distributing partitions of data over
MPI grows with the number of nodes on our cluster, and grows
fastest for the heterogeneous solver, where the number of used
compute devices per node is greatest.

V. CONCLUSIONS AND FUTURE WORK

Previous tridiagonal libraries were relatively context-
specific, only applicable for certain kinds of matrices or on
certain kinds of processors. Invoking a sequential CPU library
will only utilize a single CPU core. Previous GPU solvers
required matrix systems with limited sizes or specific data
properties to compute a valid solution. The Intel SPIKE library
expresses all parallelism as MPI ranks, which can be less
efficient on a multicore, shared-memory system.

With this work, we provide a high-performance tridiago-
nal solver library that is much more broadly applicable. It
provides numerical stability comparable with other general-
purpose solvers, and can utilize any or all CPU and GPU
resources on shared- or distributed-memory systems. It can
distribute work to multiple compute resources when invoked

from a single process, and also provides a direct interface
to distributed programs. Even when better solvers for various
compute elements arise, our library’s infrastructure provides
the tools necessary to distribute work to each solver within a
unified interface.

Opportunities for future work include OpenCL implemen-
tations of the algorithms and optimizations described here
for even broader applicability. In addition, our dynamic tiling
optimization relies on the presence of a hardware cache to
improve memory system performance. Future work should
continue to explore potential numerically stable algorithms and
optimizations for GPUs that lack a hardware cache.

The full source code of our library with an open license
agreement is released at http://impact.crhc.illinois.edu.
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