
J Supercomput
DOI 10.1007/s11227-011-0680-7

Scalable SIMD-parallel memory allocation
for many-core machines

Xiaohuang Huang · Christopher I. Rodrigues ·
Stephen Jones · Ian Buck · Wen-mei Hwu

© Springer Science+Business Media, LLC 2011

Abstract Dynamic memory allocation is an important feature of modern program-
ming systems. However, the cost of memory allocation in massively parallel exe-
cution environments such as CUDA has been too high for many types of kernels.
This paper presents XMalloc, a high-throughput memory allocation mechanism that
dramatically magnifies the allocation throughput of an underlying memory allocator.
XMalloc embodies two key techniques: allocation coalescing and buffering using
efficient queues. This paper describes these two techniques and presents our imple-
mentation of XMalloc as a memory allocator library. The library is designed to be
called from kernels executed by massive numbers of threads. Our experimental re-
sults based on the NVIDIA G480 GPU show that XMalloc magnifies the allocation
throughput of the underlying memory allocator by a factor of 48.

Keywords Malloc · CUDA · GPGPU

X. Huang · C.I. Rodrigues (�) · W.-m. Hwu
University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
e-mail: cirodrig@illinois.edu

X. Huang
e-mail: xhuang22@illinois.edu

W.-m. Hwu
e-mail: w-hwu@illinois.edu

S. Jones · I. Buck
NVIDIA Corporation, 2701 San Tomas Expressway, Santa Clara, CA 95050, USA

S. Jones
e-mail: stjones@nvidia.com

I. Buck
e-mail: IBuck@nvidia.com

mailto:cirodrig@illinois.edu
mailto:xhuang22@illinois.edu
mailto:w-hwu@illinois.edu
mailto:stjones@nvidia.com
mailto:IBuck@nvidia.com


X. Huang et al.

1 Introduction

Dynamic memory allocators are widely used in modern applications. Efficient mem-
ory allocation poses a special challenge in architectures that support a high degree of
multithreading and SIMD-parallel execution. The NVIDIA Fermi GPU architecture,
for instance, sustains thousands of concurrently running threads with a large number
of processors each with a high degree of SIMD execution. To provide enough mem-
ory allocation throughput to satisfy such a large number of concurrent threads, the
memory allocator should itself be highly parallel and avoid generating high memory
traffic.

In versions 3.2 and later of the CUDA SDK, NVIDIA has included support for
dynamic memory allocation in CUDA kernel functions. Programmers no longer need
to preallocate all the memory for a kernel before launching the kernel for parallel
execution. Based on our preliminary analysis, the throughput of the allocator is on the
order of microseconds for the G480 GPU. This is still at least an order of magnitude
too slow for many applications.

In this paper, we present two techniques that amplify the throughput of the mem-
ory allocator provided in the CUDA SDK. One technique, called allocation coalesc-
ing, aggregates memory allocation requests from SIMD-parallel threads into one re-
quest to be handled by the underlying memory allocator. The single allocated mem-
ory block is then subdivided and distributed to the individual requesting threads. This
technique takes advantage of lock-step execution of groups of SIMD threads (what
are called warps in CUDA) to reliably amplify the throughput of the underlying mem-
ory allocator.

The other technique, allocation buffering, buffers a limited number of free mem-
ory blocks for fast access. These buffers are used in conjunction with allocation coa-
lescing. Allocation requests are processed in parallel by distributing the load among
multiple buffers.

We have implemented both allocation coalescing and allocation buffering into
XMalloc, a user-level memory allocation layer that can be used to magnify the
throughput of an underlying, standard memory allocator. On an NVIDIA G480 GPU,
XMalloc achieves up to 48× speedup for a microbenchmark that stresses the memory
allocator.

2 Background and related work

Berger et al. survey parallel memory allocators [1]. Many parallel memory alloca-
tors [1, 5, 11] use private heaps. That is, multiple heaps are set up so that each pro-
cessor or thread interacts predominantly with only one of the heaps. Different pro-
cessors can interact with different heaps concurrently. In a cache-coherent system, a
heap’s data tends to reside in the cache of the processor that uses it most, so that heap
management involves mostly processor-local memory traffic. Unfortunately, private
heaps do not benefit the current generation of NVIDIA GPU architectures due to the
absence of cache coherence.



Scalable SIMD-parallel memory allocation for many-core machines

Parallel allocators may also allow concurrent access to a single heap through con-
current data structures [2, 9]. Iyengar [8] uses multiple free lists for parallel allocation
and deallocation.

An earlier version of XMalloc [7] was the first general-purpose memory allocator
usable in computational GPU kernels. It used superblock allocation and CAS-based
lock-free critical sections, similar to an allocator presented by Michael [11]. Due
to the absence of writable caches in CUDA-capable GPUs at the time, all shared,
writable data structures were assumed to reside in off-chip memory. XMalloc intro-
duced allocation coalescing and an optimized FIFO-based free list to more efficiently
utilize the limited-bandwidth, long-latency off-chip memory. We use the same alloca-
tion coalescing mechanism and FIFO data structure in this work. We also considered
XMalloc’s superblock allocation algorithm, but did not find its performance to be
competitive with the CUDA SDK.

Starting with version 3.2, the CUDA SDK [3] has incorporated a memory alloca-
tor. We use version 4.0 of the SDK to provide the memory allocation functionality
in this work. To our knowledge, the design and performance characteristics of that
allocator are not published. XMalloc is modified to magnify the throughput of the
SDK’s allocator. This use model allows one to easily port XMalloc to any CUDA or
OpenCL platform that provides a base GPU memory allocator.

3 Shared-memory parallel programming in CUDA

The CUDA programming language encourages a task-parallel, bulk-synchronous
programming style, in which a parallel workload consists of a large number of in-
dependent tasks, and each task consists of many parallel threads that share access
to a scratchpad memory and can barrier-synchronize with one another. Yet CUDA
code is not restricted to this programming style; synchronization and communica-
tion between arbitrary running threads is possible. Dynamic memory allocation uses
these more general capabilities to manage a pool of free memory that is shared by
all threads. To write race-free, deadlock-free, and efficient code in this more general
programming model, one must mind details of the compiler and processor architec-
ture that aren’t part of the basic CUDA programming model. We review these details
as they pertain to the Fermi GPU architecture, used to evaluate XMalloc in this work.

In CUDA, a task or thread block consists of a group of threads that are scheduled
together onto a processor, called an SM. Once a task is initiated, all the threads of the
task run on the SM until completion. The threads in a thread block can synchronize
using a hardware-supported barrier operation. CUDA kernels that adhere to the task-
parallel, bulk-synchronous style of programming use only the hardware-supported
barrier for synchronization and communicate only between threads in the same thread
block.

The threads of a thread block are organized into groups of 32, called warps, that
execute in a SIMD-parallel manner: each thread executes the same instruction in one
lane of a 32-wide SIMD processor. Nevertheless, each thread maintains its own flow
of control. When threads in a warp follow different control flow paths, the hard-
ware executes each control flow path separately, enabling only those SIMD lanes



X. Huang et al.

#include "Xmalloc.h"

__global__ void kernel(void) {
void *p = xmcMalloc(64); // Allocate GPU memory
/* ... use p ... */
xmcFree(p); // Free GPU memory

}

int main() {
xmcInit(); // Initialize XMalloc heap
kernel<<<1000, 256>>>(); // Run a GPU kernel

}

Fig. 1 Code example showing usage of XMalloc library functions

corresponding to threads on the active control flow path. Hardware multithreading is
employed to interleave the execution of all warps on an SM.

The Fermi GPU architecture does not have cache coherence among its L1 caches.
Consequently, an ordinary load from a shared data structure may not return the correct
data, even in a properly synchronized program. Atomic operations, ordinary stores,
and loads from volatile pointers appear to bypass the L1 cache and access the
globally coherent L2 cache. Memory consistency can be achieved by avoiding non-
volatile pointer reads and using memory fences at synchronization points.

Parallel programs typically employ synchronization, where one or more threads
wait for some event to occur. However, synchronization of individual threads tends
to be inefficient due to the GPU’s scheduling policy. There is no way to suspend ex-
ecution of an individual GPU thread. Although a thread may busy-wait for an event
by looping until it detects that the event has occurred [10], it is costly to do so: since
many threads are time-sliced onto one processor, busy-waiting consumes processor
time and memory bandwidth that could have been used by other threads. Instead of
using synchronization, we employ lock-free code [6] where communication is re-
quired. Lock-free code tolerates the GPU’s indifferent thread scheduling policy by
guaranteeing progress to whichever thread completes its critical section first.

4 Using XMalloc

XMalloc exports a memory management interface that is almost identical to the
CUDA SDK’s malloc and free functions. Before using XMalloc, a program must
initialize the allocator’s global data structures by calling xmcInit(). GPU heap
memory is allocated within kernel code by calling xmcMalloc and freed by calling
xmcFree. Allocated memory persists between kernel invocations. A program can
use both xmcMalloc and malloc as long as xmcFree is only used for XMalloc
objects and free is only used for other objects. Figure 1 summarizes the usage of
XMalloc.



Scalable SIMD-parallel memory allocation for many-core machines

Fig. 2 Throughput comparison
of XMalloc against using the
CUDA SDK memory allocator
directly

5 Implementation

Figure 2 compares the CUDA 4.0 SDK’s memory allocation throughput (time per
object allocated) against our enhanced allocator under a high load scenario on an
NVIDIA G480 GPU. The measured times are the average of four runs of a mi-
crobenchmark consisting of one million worker threads that allocate an int, write
to it, and then free it. A 500 megabyte heap was used. The heap was initially empty,
aside from data structures created when XMalloc was initialized. On the graph’s x-
axis, we vary the number of worker threads per SIMD processor from one up to 32,
where 32 is the SIMD width of the current NVIDIA GPU architectures. In cases
where the number of worker threads is less than 32, the remaining SIMD lanes are
occupied by nonworker threads that do nothing. The horizontal trend shows how well
the allocators utilize SIMD parallelism. A flat line would indicate that SIMD-parallel
calls are, effectively, processed serially with no overhead. The CUDA SDK appears
to take advantage of a small amount of SIMD parallelism, evidenced by the down-
ward slope of the left part of the curve, but the curve quickly levels out. In the best
case, allocation takes 0.9 µs.

Our allocator uses two fast, high-throughput mechanisms to handle the majority of
memory allocations and deallocations, effectively amplifying the throughput of the
CUDA SDK’s allocator. Allocation coalescing (Sect. 5.1) specifically targets SIMD-
parallel memory allocation, combining multiple SIMD-parallel memory allocations
into one. Buffering of free blocks (Sect. 5.2) allows us to satisfy frequent memory
requests quickly and in parallel. With our enhancements, we are able to reduce the
allocation time to as little as 0.024 µs. With 32 threads, we achieve a 48× speedup
over the CUDA SDK.

Our allocation layer performs a constant amount of work per memory request, not
counting the work performed by the underlying memory allocator. Thus, its perfor-
mance is not directly affected by the heap size or the number of allocated objects.



X. Huang et al.

Fig. 3 SIMD memory
allocation coalescing. Boxes
represent allocated memory;
shaded areas are
allocator-managed metadata. In
the figure, four threads request
memory spaces of 56 bytes, 56
bytes, 40 bytes, and 120 bytes
simultaneously. The total size
and offset of each compartment
is computed. These requests are
converted into compartment
sizes of 64 bytes, 64 bytes, 48
bytes, and 128 bytes assuming
that each compartment header is
8 bytes. One thread allocates a
memory space of this size. All
threads select and initialize their
compartment within the new
memory space simultaneously

The underlying memory allocator’s performance can still affect the performance of
XMalloc. For example, filling the heap with 217 one-kilobyte blocks (approximately
one quarter of the heap) before testing slows down memory allocation both with and
without XMalloc. The speedup of XMalloc with 32 threads diminishes in this case to
just under 6×.

5.1 SIMD-level allocation coalescing

The first stage of our memory allocator combines multiple SIMD-parallel memory re-
quests into one, which we call allocation coalescing. Allocation coalescing improves
performance because subsequent stages of the allocator process only one memory
allocation and deallocation per warp, whereas they may otherwise have to deal with
up to 32 separate memory requests. Figure 3 illustrates the coalescing process in the
case where four threads in the same warp request memory.

To keep track of allocated memory, additional space is requested when XMal-
loc makes a coalesced request on behalf of all the threads in a warp. As shown in
Fig. 3, two kinds of metadata are added by XMalloc. First, a header for a coalesced
memory area tracks bookkeeping information for the area, including the number of
compartments in the coalesced area. During allocation, the number of compartments
is initialized to be the number of threads in the warp that participated in the coalesced
memory allocation request. In Fig. 3, there are four compartments.

Each compartment contains a header along with the memory area allocated to
each thread. A compartment header contains the byte offset of the beginning of the
memory area and a tag value. The tag is used during deallocation to distinguish a
coalesced memory compartment from a memory area that was allocated without coa-
lescing. Internally, XMalloc frees a coalesced memory area after all its compartments
have been freed by the client application. To free a compartment, the client retrieves
the offset from the compartment’s header and uses it to find the beginning of the co-
alesced memory area. Then it decrements the count of compartments that is stored in



Scalable SIMD-parallel memory allocation for many-core machines

void *xmcMalloc(unsigned int request_size)
{
unsigned int alloc_size; // Number of bytes this thread will allocate
__shared__ unsigned int allloc_sizes[MAX_WARPS];

char *allocated_ptr; // Pointer returned by malloc
__shared__ char *allocated_ptrs[MAX_WARPS];

1 unsigned int warpId = getWarpIndex();

// Number of threads in the current warp that are allocating
2 unsigned int num_threads = __popc(__ballot(1));

3 alloc_sizes[warpId] = sizeof(CoalesceHeader);

// Determine how much memory to allocate
4 unsigned int offset =

atomicAdd(&alloc_sizes[warpId], compartmentSize(request_size));

// Pick one thread to perform allocation
5 alloc_size = offset == sizeof(CoalescedHeader) ? alloc_sizes[warpId] : 0;

// Allocate memory (if alloc_size is nonzero)
6 allocated_ptr = buffered_malloc(alloc_size);

7 if (alloc_size) {
// Send the address to all threads and initialize the coalesced block

8 allocated_ptrs[warpId] = allocated_ptr;

9 if (allocated_pointer != NULL)
*(CoalesceHeader *)allocated_ptr = (CoalesceHeader){.count = num_threads};

}

// Get the address and initialize this thread’s compartment
10 allocated_ptr = allocated_ptrs[warpId];
11 if (allocated_ptr == NULL) return NULL;

12 char *compartment = allocated_ptr + offset;
13 *(CompartmentHeader *)compartment =

(CompartmentHeader){.offset = offset, .tag = COMPARTMENT};

// Return the payload
14 return (void *)(compartment + sizeof(CompartmentHeader));
}

Fig. 4 Implementation of memory allocation coalescing in XMalloc. For clarity, we omit the code that
chooses whether to perform allocation coalescing

the header. The client that frees the last compartment, reducing the counter to zero,
proceeds to call free on the coalesced memory area to return it to the free memory
pool.

The XMalloc code is shown in Fig. 4. When called by client threads, XMalloc first
calculates the number of threads that are participating in the allocation request in the
current warp (line 2 in Fig. 4). XMalloc then calculates the compartment size for each
thread (line 4). The compartmentSize function returns a size that is big enough
for the compartment header and the requested memory, rounded up to a multiple of 8
bytes to maintain pointer alignment. Figure 3 assumes that there are four threads that
participate in the allocation in the current warp and their requested memory sizes are



X. Huang et al.

Fig. 5 Allocation throughput
with and without allocation
coalescing

56, 56, 40, and 120 bytes. The current XMalloc implementation uses 8 bytes for each
compartment header. Therefore, the compartment sizes for these four threads are 64,
64, 48, and 128, as shown in Fig. 3.

The threads cooperatively sum their compartment sizes using atomic adds to a
shared variable (line 4 in Fig. 4). Line 3 initializes the shared variable to be the size
of the header for the coalesced memory area, 8 (bytes) in the current XMalloc imple-
mentation. This is illustrated as the number 8 feeding into the summation process in
Fig. 3. The final value in this shared variable is the total amount of memory, including
the headers, to allocate on behalf of all four threads. This is shown as 312 (bytes) in
Fig. 3.

During the summation, each thread receives the old contents of the variable it
adds to, i.e., the partial sum of memory requests so far, which determines the offset
of each thread’s compartment within the coalesced memory block. Then the thread
whose compartment offset equals the size of the coalesced memory header (the thread
whose compartment is the first in the coalesced memory area) calls the next stage of
the allocator to obtain a coalesced memory area (lines 5 and 6 of Fig. 4).

The newly allocated memory area is then distributed to all the threads (lines 9–11),
which initialize their own compartment within the memory area (line 12).

Coalescing is skipped when only one SIMD thread requests memory, as well as for
large memory requests. In the former case, only one SIMD thread is active so coalesc-
ing offers no benefit. The latter case ensures that large memory areas are reclaimed
immediately upon being freed. Uncoalesced memory areas also have a header cre-
ated by XMalloc, containing a tag value to distinguish them from coalesced memory
areas. The code is in the XMalloc implementation but omitted from Fig. 4 for sim-
plicity.

Figure 5 compares the performance of memory allocation with and without al-
location coalescing, with all other features disabled. Coalescing incurs overhead for



Scalable SIMD-parallel memory allocation for many-core machines

deciding whether to coalesce and for managing header fields. The overhead results
in a slowdown when only one thread allocates. Because coalescing n threads’ al-
locations reduces the number of malloc calls, and thus the work performed, by a
factor of n, we should expect the allocation time to be proportional to n−1. The curve
deviates from the expected shape due to variations in how fast the CUDA SDK’s al-
locator processes different memory request sizes. Adding buffers (Sect. 5.2) insulates
us from the SDK’s performance variability and produces the expected performance
curve. When all SIMD threads are allocating, allocation coalescing increases perfor-
mance by a factor of 50.

5.2 Raising thread-level throughput with buffering

Even after coalescing SIMD-parallel memory allocation requests, the CUDA SDK’s
memory allocator can still be bottlenecked by memory requests. We further improve
the allocator’s performance by buffering some allocated memory blocks. Buffering is
performed after allocation coalescing (in the call to buffered_malloc in Fig. 4).
Buffering is like using multiple free lists [8] in the sense that it enables allocation and
deallocation without going through a centralized data structure.

In order to find a memory request of the desired size, allocated blocks are classi-
fied into discrete size classes, and we create one or more buffers for each size class.
Requested memory sizes are rounded up to the nearest size class. Memory requests
larger than the largest size class are not buffered. A buffer is simply a fixed-capacity
FIFO that holds pointers to free memory blocks. Memory allocations are satisfied
from a buffer unless it is empty, in which case the CUDA SDK is invoked. Likewise,
freed blocks are returned to a buffer unless it is full, in which case they are is freed
through the CUDA SDK.

Space is maintained for 256 total free memory blocks in each size class, divided
among one or more buffers. Figure 6 shows how throughput varies with the number
of buffers. The graph shows the time per memory request that is processed by the
buffering stage of the allocator. Since a coalesced memory request is processed as
a single request, regardless of how many threads were involved, the speedup from
processing fewer memory requests is not represented in this graph. The solid line is
the same data as the solid line in Fig. 5. The curve is broken into several nearly-flat
intervals. Vertical steps in the curve reflect differences in the CUDA SDK’s through-
put for different memory request sizes. Using a single buffer per size class yields a
significant slowdown. By using a centralized FIFO, we have introduced a serializa-
tion point that slows down allocation. We can increase the allocation throughput by
creating multiple buffer instances per size class. To load-balance memory requests
across buffers, threads use a hash of their thread index, block index, and GPU clock
to choose a buffer to access.

Using 16 buffers, we increase the allocator’s throughput by about 5× when a sin-
gle thread per warp is active, but incur a slight slowdown with 32 threads. In partic-
ular, whereas allocation coalescing alone performed poorly when 1 or 2 threads in a
warp were allocating, the combination of coalescing and buffering improves perfor-
mance for any number of allocating threads.



X. Huang et al.

Fig. 6 Allocation throughput
with different degrees of
buffering

Fig. 7 FIFO data structure
operations. Part (a) shows the
state of a FIFO containing 4
elements. In part (b), an element
is dequeued by incrementing the
head number. In part (c), a new
element is enqueued, updating
the tail and one message in the
array

5.2.1 Buffer design

Since the buffers are so heavily used, their design greatly affects the overall alloca-
tor performance. The buffers are fixed-capacity, lock-free FIFOs optimized to min-
imize memory traffic. In Fermi, this means minimizing the number of memory op-
erations, all of which must go to the shared L2 cache; this yields a different design
than for cache-coherent multiprocessors, where the cache coherence traffic is what
matters [12]. A FIFO dequeue or enqueue requires four or five memory operations,
respectively, when memory contention is low and the FIFO is not empty or full.

Rather than pointers or indices, messages are referenced using their sequence num-
ber. The nth message inserted into a FIFO has sequence number n. The number may
wrap around modulo the 32-bit integer size. Sequence numbers identify where a mes-
sage is stored, and also serve as pseudo-unique tags to avoid the ABA problem [4].

A FIFO data structure (Fig. 7) holds the sequence number of the head message, the
entire tail message, and an array that holds up to 2s messages for some fixed s. Each
message contains its own sequence number and a 32-bit payload holding a pointer to
a free block. To store 64-bit pointers in the payload field, we represent them as 32-bit



Scalable SIMD-parallel memory allocation for many-core machines

do { // Repeat until queue is empty or successfully updated
head_num = queue->headNum;
tail = queue->tail;

// Fail if queue is empty
if (tail.num - head_num + 1 == 0) return NULL;

// Read queue head
index = head_num % QUEUE_SIZE;
return_value = head_num == tail.num ? tail.payload

: queue->messages[index].payload;

// Write new head index
} while (!CAS(&queue->headNum, head_num, head_num + 1));

Fig. 8 Pseudocode for a lock-free buffer dequeue operation

offsets relative to a reference address. A message with sequence number n resides at
array index nmod 2s . Note that the number of elements in the queue can be computed
from the sequence numbers in the head and tail.

The FIFO manipulation functions ensure that threads observe a consistent state
of the queue’s head sequence number and tail value. Given those, it is possible to
determine the sequence numbers and locations of messages in the queue. Threads
verify that they are accessing the correct version of a message by checking its se-
quence number. All updates to a queue use compare-and-swap operations to replace
a message or the queue head sequence number.

To dequeue a message (Fig. 8), a thread first reads the head number and the tail
message. If the FIFO is empty, the dequeue operation fails. If the FIFO contains
more than one element, then the head message is read from the array; otherwise the
tail message (which has already been read) is the head message. Finally, the head
number is atomically incremented. If the increment fails, then some other thread has
dequeued the head, and the process restarts.

To enqueue a message (Fig. 9), a thread first reads the head number and the tail
message. If the FIFO is full, the enqueue operation fails. Otherwise, the old tail
message is transferred to the array. If the transfer fails, it is ignored; some other
thread has already transferred the data. Finally the new tail message is written. If
this write fails, then some other thread has enqueued a new tail, and the process
restarts.

6 Conclusion

We have presented two memory allocator enhancements that dramatically magnify
GPU dynamic memory allocation throughput. One enhancement utilizes SIMD-
parallel thread execution to combine simultaneous memory requests. The other
enhancement parallelizes allocation of frequently used blocks through the use
of replicated buffers. These enhancements enable an allocator to keep up with
concurrent memory requests generated from thousands of concurrently running
threads.



X. Huang et al.

do { // Repeat until queue is full or successfully updated
head_num = queue->headNum;
tail = queue->tail;

// Fail if queue is full
if (tail.num - head_num + 1 == QUEUE_SIZE) return false;

// Write old tail into the message array
index = tail.num % QUEUE_SIZE;
old_message = queue->messages[index];
if (old_message.num + QUEUE_SIZE == tail.num)

CAS(&queue->messages[index], old_message, tail);

// Write new tail
new_tail.payload = value;
new_tail.num = tail.num + 1;

} while (!CAS(&queue->tail, tail, new_tail));

Fig. 9 Pseudocode for a lock-free buffer enqueue operation

By making dynamic memory allocation fast, XMalloc reduces one of the barriers
to its adoption in GPU programming. Dynamic allocation is still a new and rarely
used feature on GPUs. Nevertheless, there is a trend toward more complex GPU codes
requiring more complete support for general-purpose programming. We anticipate
that, as this trend continues, GPU programmers will likely begin to take advantage of
memory allocation capabilities.

Acknowledgements This material is based upon work supported by the National Science Foundation
under Grant No. NSF-OCI07-25070.

References

1. Berger E, McKinley K, Blumofe R, Wilson P (2000) Hoard: a scalable memory allocator for multi-
threaded applications. In: Proceedings of the 9th international conference on architectural support for
programming languages and operating systems, pp 117–128

2. Bigler B, Allan S, Oldehoeft R (1985) Parallel dynamic storage allocation. In: Proceedings of the
international conference on parallel processing, pp 272–275

3. NVIDIA Corporation (2010) NVIDIA CUDA C programming guide
4. Dechev D, Pirkelbauer P, Stroustrup B (2010) Understanding and effectively preventing the ABA

problem in descriptor-based lock-free designs. In: Proceedings of the 13th IEEE international sympo-
sium on object/component/service-oriented real-time distributed computing, pp 185–192

5. Dice D, Garthwaite A (2002) Mostly lock-free malloc. In: Proceedings of the 3rd international sym-
posium on memory management. ACM, New York, pp 163–174

6. Herlihy M (1991) Wait-free synchronization. ACM Trans Program Lang Syst 13(1):124–149
7. Huang X, Rodrigues C, Jones S, Buck I, Hwu W-M (2010) XMalloc: A scalable lock-free dynamic

memory allocator for many-core machines. In: Proceedings of the 10th IEEE international conference
on computer and information technology, pp 1134–1139

8. Iyengar A (1993) Parallel dynamic storage allocation algorithms. In: Proceedings of the 5th IEEE
symposium on parallel and distributed processing, pp 82–91

9. Johnson T, Davis T (1992) Space efficient parallel buddy memory management. In: Proceedings of
the 1992 international conference on computing and information, pp 128–132



Scalable SIMD-parallel memory allocation for many-core machines

10. Mellor-Crummey J, Scott M (1991) Algorithms for scalable synchronization on shared-memory mul-
tiprocessors. ACM Trans Comput Syst 9(1):21–65

11. Michael M (2004) Scalable lock-free dynamic memory allocation. In: Proceedings of the ACM SIG-
PLAN 2004 conference on programming language design and implementation

12. Tsigas P, Zhang Y (2001) A simple, fast and scalable non-blocking concurrent FIFO queue for shared
memory multiprocessor systems. In: Proceedings of the 13th Annual ACM symposium on parallel
algorithms and architectures. ACM, New York, pp 134–143


	Scalable SIMD-parallel memory allocation for many-core machines
	Abstract
	Introduction
	Background and related work
	Shared-memory parallel programming in CUDA
	Using XMalloc
	Implementation
	SIMD-level allocation coalescing
	Raising thread-level throughput with buffering
	Buffer design


	Conclusion
	Acknowledgements
	References


