
Advanced MRI Reconstruction Toolbox with Accelerating on GPU

Xiao-Long Wu*a, Yue Zhuoc, Jiading Gaib, Fan Lama, Maojing Fua, Justin P. Haldara,
Wen-Mei Hwua, Zhi-Pei Lianga, Bradley P. Suttona

aDepartment of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign,
1406 W. Green St. Urbana, IL 61801 USA, bBeckman Institute, University of Illinois at Urbana-
Champaign, 405 North Mathews Avenue, Urbana, IL 61801 USA, cBioengineering Department,

University of Illinois at Urbana-Champaign, 1304 West Springfield Urbana, IL 61801 USA

ABSTRACT

In this paper, we present a fast iterative magnetic resonance imaging (MRI) reconstruction algorithm taking advantage of

the prevailing GPGPU programming paradigm. In clinical environment, MRI reconstruction is usually performed via

fast Fourier transform (FFT). However, imaging artifacts (i.e. signal loss) resulting from susceptibility -induced magnetic

field inhomogeneities degrade the quality of reconstructed images. These artifacts must be addressed using accurate

modeling of the physics of the system coupled with iterative reconstruction. We have developed a reconstruction

algorithm with improved image quality at the expense of computation time and hence an implementation on GPUs

achieving significant speedup. In this work, we extend our previous work on GPU implementation by adding several

new features. First, we enable Sensitivity Encoding for Fast MRI (SENSE) reconstruction (from data acquired using a

multi-receiver co il array) which can reduce the acquisition t ime. Besides, we have implemented a GPU -based total

variation regularization in our SENSE reconstruction framework. In this paper, we describe the different optimizations

employed from levels of algorithm, program code structures, and specific architecture performance tuning, featuring

both our MRI reconstruction algorithm and GPU hardware specifics. Results show that the current GPU implementation

produces accurate image estimates while significantly accelerating the reconstruction.

Keywords: MRI, GPU, SENSE, total variation regularizat ion, field inhomogeneity, susceptibility.

1. INTRODUCTION

In clinical environment, MR image reconstruction is usually performed via fast Fourier transform (FFT) which offers an

immediate reconstructed image available fo r the physician to review. Reconstruction with FFT, however, cannot correct

imaging artifacts, such as susceptibility-induced magnetic field inhomogeneities. The field inhomogeneity is due to

difference in susceptibility between air and tissue (e.g. in the orbito -frontal cortex), which creates a local magnetic field

distorting the overall field and leads to signal loss and signal distortions thus hindering accurate diagnosis. To correct the

imaging art ifacts, we developed a reconstruction algorithm with improved image quality at some sacrifice on

computation time. In order to enable clinical use of s uch advanced reconstruction methods, we have developed in our

previous work [7-10] a fast MRI reconstruction toolbox making use of the latest advances in parallel programming via

GPU. The prev iously proposed method aims at offering fast reconstruction of M R images while correcting for

susceptibility artifacts. This is done by using a conjugate gradient algorithm with our advance d MR imaging model

(include the magnetic field map and its gradients) regularized by a smoothness constraint implemented using sparse

matrix representations. Previous results showed significant speedup while offering image quality enhancement.

In this work, we elaborate on our previous work by adding new features to our GPU MRI reconstruction toolbox.

Recently, sensitivity encoding (SENSE) [6] has seen an increased interest due to its ability to significantly reduce

acquisition time. SENSE reconstruction allows fo r combination of mult i-coil signals during reconstruction. Using

multip le receivers during the acquisition results in a parallel acquisition scheme, therefore reducing the time needed to

acquire the same number of k-space samples. SENSE reconstruction further makes use of data acquired by each coil and

combines them by using a SENSE weighting map. Here, we integrate SENSE reconstruction into our GPU

reconstruction algorithm correcting for magnetic susceptibility art ifacts. This addition to our toolbox can potentially

have a great impact since it allows for combination of fast acquisition and its corresponding reconstruction with

*xiaolong@illino is.edu Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted

without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citat ion on the first page. To copy otherwise, to republish, to post on
servers or to redistribute to lists, requires prior specific permission and/or a fee.

correction for magnetic susceptibility artifacts (which get more severe with h igher magnetic field scanners). Allowing

reconstruction of 256x256 data in about half a second could be a major step for clinical applications.

In addition, this paper summarizes the optimization techniques used in the latest version of our toolbox. In this context, it

can be seen as a set of general guidelines for translation of reconstruction algorithm to CUDA programming. Current

optimization techniques described in this work include memory management (e.g. use of memory coalescence), branch

reduction, etc.

2. METHODS

Our reconstruction toolbox is currently implemented to solve the following image reconstruction problem:

2

2

2

2
f

||WCf||||Y
~

fF
~

||
2

1
minargf̂ (1)

Where f is the target image to be reconstructed, is the measured data, and is a matrix modeling the data acquisition

process. The first term of the cost function in Eqn. (1) is usually referred as the data consistency constraints, while the

second term is a regularization term. Regularization is important if minimizing the data consistency term alone does not

guarantee sufficient well-posedness of the inverse problem. The matrix C is a regularization matrix, W is an optional

weighting matrix and is a regularizat ion parameter obtained by tuning which different trade-offs between the

regularizat ion term and the data consistency term. The use of W enables advanced reconstruction formulations

incorporating different kinds of regularizat ion functions (e.g., l1 regularizat ion or total variat ion regularization [11]). The

implementation of the software in solving various kinds of reconstruction problems will be presented.

2.1 SENS E reconstruction for parallel imaging with multi-receivers

Parallel imaging is performed by placing an array of receiver coils around the object to be imaged, with each receiver

coil lending spatially distinct reception profiles to the acquired data sets [6]. Considering the following formulation of

the complex baseband signal during an MRI experiment

 (2)

where f(r) is a continuous function of the object’s traverse magnetization at location r; S(r) is the spatial sensitivity of the

receiver coil; ω(r) is the field inhomogeneity present at r; k(t) is the input data trajectory at time t; ε(t) is the noise term.

Looking at Eqn. (2) we can see that the signal equation includes coil sensitivity informat ion. The data from multiple

coils can be combined together and each coil has its own sensitivity incorporated into a larger system of equations. With

each coil receiving its own data, weighted by Sl(r), where l = 1, ..., L, i.e. the complex spatial sensitivity profile of coil l,

the parallel imaging model in matrix form can be represented as follows (with L = 3 as an example):

3

2

1

3

2

1

3

2

1

f

F
~

F

F

F

Y
~

Y

Y

Y

S

S

S

 ,

where Yl is the signal vector received from coil l and is formed by stacking Yl’s into a single column; Sl is the diagonal

matrix ho lding the complex spatial sensitivity profiles on the d iagonal entries from the l
th

 coils; denotes the parallel

imaging augmented system matrix.

Inclusion of parallel imaging into the GPU framework is simple. Using the image reconstruction formulation as in Eqn.

(1), the two computations that we are interested in computing: and (denoted as the forward operator and the adjoint

operator). We start with the computation of ,

f

F

F

F

fF
~

3

2

1

S

S

S

, (3)

In Eqn. (3), again using L = 3 as an example, Ff can be viewed as a column vector concatenated from L sub-vectors,

each of which is obtained by first performing a matrix-vector mult iplication between the input f the coil sensitivity

profile Sl, followed by applying the single-coil forward operator on the resulting matrix-vector product. Note that

multip licat ions with the Sl matrices are trivial as they are diagonal matrices. In order to min imize the memory usage of

GPU, we represent Sl as a 1D array encoding only its diagonal elements as opposed to the full 2D matrix.

The second bottleneck computation that is required by the CG algorithm is the calculat ion of the adjo int operator . By

going through some algebra, we have:

l

H
L

l

H

l

HHHHHH

S

SSS

YF

Y
~

FFFY
~

F
~

3

1

321

H

 (4)

The adjoint operator is calculated as a sum of L terms. Each
H H

l lS F Y term is again evaluated in two steps as

 H H

l lS F Y , which can be accomplished by first applying the single-coil adjo int operator on Yl and then computing

the matrix multiplication between the result and the sensitivity matrix.

2.2 Preparation of GPU implementation for S ENS E reconstruction

We complete Section 2 with the description of the GPU implementation of our iterative approach to a SENSE

reconstruction. A GPU version of the forward/adjoint operators under the single-coil scenario has been implemented in

our previous work [7-10]. Here we extend them to multicoil cases by writing a wrapper around the two operators that

loops through all co ils in a dataset (illustrated below in Algorithm 1 and Algorithm 2). Since, in the GPU code, the coil

sensitivity matrix Sl is represented as a 1D vector containing only the non-zero components on the diagonal, all the

matrix-vector multiplications involving Sl are reduced to pointwise vector-vector multip licat ions implemented by the

function ’pointMultGpu’. Inside ’pointMultGpu’, each thread performs one complex multip licat ion on one pair of data

points in the two input vectors and each pair of points are pre-loaded into registers from g lobal memory prior to the

actual computation to minimize the global memory access.

Input: The sensitivity matrix Sl and the input vector f.

Output: 1D array B of length L×K, where K denotes the k-space size per co il.

foreach Coil l=1:L do

tmp = pointMultGpu(Sl, f);

B[l · K : (l + 1) · K] = ForwardGpu(tmp);

End

Algorithm 1: Forward operator pseudocode for parallel imaging

Input: The sensitivity matrix Sl and the input vector Ỹ.

Output: 1D array D of length N, where N denotes the image size.

foreach Coil l =1:L do

tmp = Adjo intGpu(Ỹ [l · K : (l + 1) · K]);

D += pointMultGpu(
H

lS , tmp);

end

Algorithm 2: Adjo int operator pseudocode for parallel imaging

Figure 1 Algorithms of GPU implementation for SENSE reconstruction

2.3 Total Variation Regularization

In certain types of applications, sufficient data for high quality reconstruction will not be available du e to imaging time

constrains. Hence, proper regularizat ion is essential for obtain ing high quality reconstructions from the limited data of

the target image to be reconstructed. Total variation (TV) regularization is one of the most widely used techniques due to

the recent development of compressed sensing based reconstruction techniques [12]. We implement an algorithm for

solving TV-regularized reconstruction based on solving the problem in Eqn. (1) with different matrix W multip le times

[11]. In this case, C is a dual direction fin ite difference operator which can be expressed as C = [DH ; DV]
H

, where DH

and DV denote the finite difference o f every pixel pair along the horizontal and ve rt ical directions of the image f

respectively.

3. TRANSFORMATION AND OPTIMIZATIONS

The NVIDIA hardware arch itecture provides tremendous parallel computation power and memory bandwidth, increased

by an order of magnitude compared to a modern CPU. The Intel Core2 Duo has 32 GFLOPS computation power and 8.4

GB/s memory bandwidth. Yet the current prevalent GTX 280 GPU provides 933 GFLOPS with 141.7 GB/s memory

bandwidth. However, behind these excit ing numbers are the many-core SIMD (Single-Instruction, Multiple-Data)

hardware arch itecture and the Non-Uniform Memory Arch itecture (NUMA). There are 240 processor cores on a GTX

280 device for mult i-thread processing. These 240 cores are grouped into 30 Stream Multiprocessors (SM), each of

which is composed of 8 cores as an execution unit. 32 threads are executed as a whole, called warp, on an SM. Besides,

the CUDA memory hierarchy provides a handful of memory types as compared to the dual-memory system on a CPU,

i.e., registers and DRAM memory. For applications fitting this new hardware architecture well, the performance

enhancement is expected to be huge. To fu lly take advantage of this architecture, programmers must tailor their

applications to the proposed CUDA programming model by NVIDIA.

Before fitting to this parallel programming model, fo remost a program must be analyzed from different levels of

abstractions, such as coding styles and program semantics. And not every application or code segment suits CUDA.

Since the CUDA language is an extension of C, the code segments not suitable for CUDA can still be executed by a

CPU processor. Therefore, programmers need to know which code segments are best suitable for the GPU and which are

for the CPU in order to fu lly utilize both hardware computation powers. Basically, the very first step is to identify the hot

spots in an application program. Hot spots mean, the program code segments take the most of the execution time of the

whole application. Then, programmers can start the analysis on these hot spots and see if they can be transformed into

CUDA or, instead, optimized fo r the CPU arch itecture.

The transformat ion process from a h igh-level language into a lower-level one involves various optimizations at different

phases. During our transformation, the C program serves as a performance baseline for its counterpart CUDA program

which is further optimized for the target GPU arch itecture. This section will enumerate the considerations and

optimizations we take during the transformation phases from a p lain CUDA program to an optimized one.

3.1 Optimizations of the CUDA Program

Performance optimizat ion on the GPU architecture is a multi -metric optimization problem [4] or called a non-linear

optimization problem. And the transformed code achiev ing the optimal performance can be very different. To achieve

the best performance for a given application, programmers need to be familiar with three things. Firstly, they need to

know the GPU hardware features such as SPMD (Single -Program, Mult iple-Data) and resource constraints like register

number of the given device generation. By this they can avoid incontinent use of resources and the wrong mapping

between the program and the machine. Secondly, they must understand their application at the algorithm level, software

structure level, and statement level. Then they can gain parallelis ms at these levels by transforming the application to

match the hardware characteristics. Finally, they must be equipped with the optimizat ion skills and strategies such that

they can efficiently ach ieve the optimal performance instead of through exhaustive try-and-error.

Table 1 is the summarized optimization strategies from [3] we conclude from this work. Although we haven’t applied all

the strategies, for completeness we propose this table can be a guideline for optimizing other applications on GPU. The

optimization issues can be categorized into optimizations across threads (horizontal point of v iew) and those within

threads (vertical point of v iew). Horizontal optimizations can introduce warp, b lock, memory, and kernel level

parallelisms. Vertical optimizations can add instruction and data level parallelis ms. The goal of the performance tuning

on GPU is to achieve the optimal parallelis m for a g iven application. To achieve this goal, a complete understanding of

the three things is a must, i.e ., machine arch itectures, application characteristics, and performance optimization strategies.

Below we enumerate the key transformations.

Table 1 Optimization strategies for performance tuning on GPU

Compute-bound Memory-bound
Optimization

issues Reduce

instructions

Hide memory

latency

Reduce memory

bandwidth

Optimizations

across threads

(Horizontal)

Manual warp

scheduling

(Avoid divergence)

Tiled compute

(Using high-bandwidth

memory)

Memory layout

transformation

(Coalescing/Bank

conflicts/Access patterns)

Optimizations

within threads

(Vertical)

Common subexpression

elimination

(Using registers)

Automatic instruction

scheduling

(Loop unrolling)

Reuse data

(Using high-bandwidth

memory)

Reduce branches

(Loop unrolling)

Manual instruction

scheduling

(Data prefetching)

Using high-bandwidth memory for reused data: Using the registers, shared memory, or constant memory to store

frequently reused data can save memory bandwidth to the global memory and thus improves the performance. But using

too many registers can cause a loss on thread occupancy and potentially lose warp level parallelism. And sometimes

compilers will use local memory (g lobal memory) for overuse of registers. Using too much shared memory or constant

memory can cause kernel launch failure or compilation erro r. As for choosing which memory, it depends on the

application characteristics like the data access type, size, and usage frequency.

Figure 2 demonstrates the techniques on the use of registers, loop invariant code mo tion, and common subexpression

elimination. Arrays v1 and v2 are stored in global memory. The code on the left -hand side makes (N*M)+(N*M)

memory load requests. We can see array v1 is reused M times in the inner-most loop. Therefore we can use a register

“temp”, as shown on the right-hand side, to eliminate redundant memory loads of v1 elements. Also it’s moved to the

outer loop. The code on the right-hand side makes N+(N*M) memory loads. In addition, cos(sum) is executed twice in

the inner loop of the left-hand side code segment. It can be reduced to one as listed on the right -hand side without using

additional registers.

// Without using registers

for (k=0; k<N; i++){

 for (i=0; i<M; i++) {

 sum += v1[k]*v2[i];

 expr1 = cos(sum);

 expr2 = cos(sum)+sin(sum);

 … = expr1 …;

 }

}

// Using registers

for (k=0; k<N; i++){

 temp = v1[k];

 for (i=0; i<M; i++) {

 sum += temp*v2[i];

 expr1 = cos(sum);

 expr2 = expr1+sin(sum);

 … = expr1 …;

 }

}

Figure 2 Code segments with and without using registers

Manual warp scheduling : CUDA language is a multi-thread parallel programming language in the concept of SPMD.

Based on this concept and the given SM-centric hardware architecture, every thread inside the same warp executes the

same instruction with or without the same data. Hence, the branch instructions, like if-else and loop bound check, can

diverge the thread execution path when the threads are grouped in the same warp. Such situation is usually called branch

divergence.

The left code snippet of Figure 3 delineates one example of this situation. A half warp will go one way and at the same

time the other half warp is waiting. When the first half warp fin ishes, it waits fo r the other half warp and both move on

to the following instruction together. In a sense, it doubles the execution time as compared to the situation without

branch divergence. The right code snippet of Figure 3 demonstrates a different coding style, where even warps will

execute the if-part path and odd warps will go the other way.

if (threadIdx.x % 2 == 0) {

// if-part thread execution path

} else {

// else-part thread execution path

}

// if-part threads must wait for the

// else-part threads

if ((threadIdx.x / WARP_SIZE) % 2 == 0) {

// if-part warp execution path

} else {

// else-part warp execution path

}

// No threads are waiting

Figure 3 Code segment with and without branch divergence

Somet imes branch divergence can be introduced due to the non-power-of-two data element number, as demonstrated in

Figure 4. So all thread blocks except the last one will enter the if -control statement without doubt. As for the threads in

the last thread block, they d iverge. However, the performance loss comes from not only the divergence in the last block

but also the branch instruction in all other blocks. To overcome this if-control statement, a technique, called padding, is

widely used which introduces the regular thread processing. Besides this, it also favors further performance tunings like

loop unrolling and tile-compute. For loop unrolling, no fixup code is needed. (See the details in the next paragraphs.)

int i = blockIdx.x * blockDim.x + threadIdx.x;

if (i < num_elements) {

 …

}

Figure 4 The if-control statement for handling the leftover operations

Data prefetching: As the name suggests, it is to fetch data in advance. It's used to fetch the data for the next loop

iteration(s) in order to hide the memory latency by leveraging the asynchronous aspect of memory accesses in GPU

hardware. When a memory access operation is executed, it does not block other operations following it , as long as they

don't use the data from the memory operation. As written on the left-hand side of Figure 5, every addition waits for its

data to be loaded from memory. Inside the loop on the right-hand side, the device first launches a memory load operation

for the next iteration and does an addition in parallel. The time for the addition is actually overlapping with the memory

access time. But as referred in the previous optimizat ion technique, the increased register usage may lower the number

of active warps on an SM. During our optimization process, we tried data prefetching in the FT kernel but the

performance doesn’t increase significantly. We suspect the added latency hiding effect doesn ’t help to compensate the

loss of occupancy due to the increased register usage.

// Without prefetching

for (i = 0; i < N; i++) {

sum += array[i];

}

// With prefetching

temp = array[0];

for (i = 0; i < N-1; i++) {

temp2 = array[i+1];

sum += temp;

temp = temp2;

}

sum += temp;

Figure 5 Kernel without prefetching vs. with prefetching

Loop unrolling: Loop unrolling is the act of executing mult iple copies of the loop body within the same loop iteration.

The advantage of loop unrolling is to reduce the number of branches. However, loop unrolling may require extra

registers to store the data for multiple loop bodies depending on the ways of unrolling. Figure 6 and Figure 7

demonstrate two ways of loop unrolling with and without increasing register usage. Note that if the data is not a multiple

of the unrolling factor, “fixup code” is needed after the main loop as in Figure 8. To avoid this, padding the data

elements is needed.

The pro for the unrolling method in Figure 6 (b) is not increasing register usage. The con is not having instruction level

parallelism across unrolled loop bodies. More specifically, the instructions in Figure 6 (b) cannot be reordered. On the

other hand, Figure 7 provides the most parallelis m on instructions across loop bodies where all instructions can be

reordered by the compiler because of the use of additional registers. As a consequence, Figure 6 (b) relies on more warp-

level parallelism to hide memory latency. So a b igger number of threads in each block is suggested as compared to

Figure 7. In our FT and IFT kernel, we adopt the mixture of Figure 6 (b) and Figure 7 to benefit from both.

// (a) No unrolling

for (i = 0; i < N; i++) {

expr = …

sum += array[i] + expr;

}

// (b) With unrolling

for (i = 0; i < N; i=i+2) {

expr = …

sum += array[i+0] + expr;

expr = …

sum += array[i+1] + expr;

}

Figure 6 No unrolling vs. unrolling by a factor of 2 without increasing register usage

#define UNROLL_FACTOR 2 // 2 or 4

float sumt[UNROLL_FACTOR], expr[UNROLL_FACTOR];

for (i = 0; i < N; i=i+UNROLL_FACTOR) {

expr[0] = …

sumt[0] = array[i+0] + expr[0];

expr[1] = …

sumt[1] = array[i+1] + expr[1];

#if UNROLL_FACTOR == 2

 sum += sumt[0] + sumt[1];

#endif

#if UNROLL_FACTOR > 2

expr[2] = …

sumt[2] = array[i+2] + expr[2];

expr[3] = …

sumt[3] = array[i+3] + expr[3];

#endif

#if UNROLL_FACTOR == 4

 sum += sumt[0]+sumt[1]+sumt[2]+sumt[3];

#endif

}

Figure 7 Loop unrolling with increasing resisters

for (i = 0; i < N-1; i=i+2) {

sum += array[i];

sum += array[i+1];

}

if (N % 2 != 0) {

sum += array[N-1];

}

Figure 8 Unrolling by a factor of 2 with fixup code

Memory layout transformation: Another key feature of the GPU hardware is the memory system enhanced for

accessing data from the global memory. The g lobal memory is using DRAM (Dynamic Random Access Memories) as

the media. Modern DRAM is designed to favor data accesses with adjacent memory addresses, so called coalesced

memory access patterns. In the GPU hardware, if the instruction executed by all threads of the same warp is accessing

the global memory with consecutive locations, these memory requests will be grouped as one for the DRAM system.

The data transfer rate will be close to the maximum global memory bandwidth. As we can see for non -coalesced

memory access patterns, the memory requests can be 32. From the p rogrammers point of view, one best way to take

advantage of this feature is to have a nice memory layout such that the array indexing is usually in the form of

“array[threadIdx.x]” instead of “array[threadIdx.x op stride]” where the resultant memory

addresses are not continuous.

Tiled compute : Tiling of the computation helps to ease the need for a big amount of resource at one time. This is

beneficial because the tiled computation can fully saturate the hardware computation and memory resources. Otherwise,

the bottleneck can be limited by the global memory bandwidth. Tiled compute can be realized by the use of shared

memory or constant memory. Both provide different sharing scopes, access types, and sizes. In our previous work [7-10],

we found using the constant memory as the media of tiled data meets our need the best. Besides, transferring a bunch of

data together from global memory to constant memory can also benefit from the maximum global memory bandwidth.

The constant memory size is 64 K bytes where only 8 K bytes are on-chip cached. If the memory access locations (or

called the working set size) do not randomly exceed the 8 K bytes, the constant memory access latency can be close to

that of a register access. In addit ion, because of the limited size, two issues need to consider for choosing the right data.

Firstly, constant memory is read-only by all threads. So the chosen data are better to be used by all threads instead of

parts. Secondly, the chosen data should be reused for multiple t imes. Based on these two criteria, we choose the

trajectory data which are read by all threads in both FT and IFT kernels. Figure 9 delineates the phases of tiled compute

on the IFT kernel.

Figure 9 Phases of tiled compute on the IFT kernel

4. EXPERIMENTAL RESULTS

Our MRI toolbox is tested on different data sets with a variety of challenges to investigate the performance, and the

corresponding results are shown in this section. Our experiments are carried out through a machine with Intel Xeon

E5520 CPU having 8 logical threads and one Tesla C2050 (Fermi) GPU having 448 processing cores. Through the

experiments we show a possibility that GPU can be the stepping-stone to bridge the gap between a research work and the

real-t ime MRI application in clinics.

4.1 Reconstructed images

The adopted data set is based on the abdominal scan (Double Vis ion) from the 2010 ISMRM Data Reconstruction

Challenge [1]. It uses the spiral acquisition with 8 channel receivers and a magnetic field inhomogeneity map. To

simulate different matrix sizes, the 320x320 image from a single slice of the data set is simulated using various k-space
trajectories after adding noise to the image and interpolating to the correct image resolution. The spirals are designed

according to [13] using a maximum gradient amplitude of 22 mT/m and a maximum slew rate of 140 mT/m/ms. The

data of the image sizes, 128
2
, 256

2
, and 512

2
 are simulated using multi-shot spiral with 4, 8, and 20 shot spirals,

respectively. The 8-channel sensitivity maps and magnetic field inhomogeneity map are used from the distributed data

set.

The performance comparison is shown in Table 2. Three data sets are evaluated with finite difference and 20 conjugate

gradient iterat ions in single-precision floating-point mode. A 640x speedup for 256x256 data size is observed with

normalized root mean square error less than 10
-3

 compared to the corresponding CPU reconstruction. Using double

precision is moderately slower than single precision (e.g. 6x slower for 256x256), thoug h still much faster than CPU

(~128x speedup). Figure 10 shows three GPU reconstruction results of the 512x512 data set under different experimental

settings. Through the use of our toolbox, iterat ive field-corrected non-Cartesian SENSE reconstruction produces

dramat ically improved image quality with impressive execution time than ever before.

Figure 10 Reconstructed images at 512 matrix size: (a) single coil without field inhomogeneity , (b) SENSE reconstruction

without field correction, and (c) SENSE reconstruction with field map correction. Notice that the field inhomogeneity

correction corrects for the blurring induced by magnetic field inhomogeneities.

4.2 Performance comparisons

Table 2 lists the performance results on the data set referred in the previous section. Although we only optimize the CPU

code with OpenMP and the GCC compiler option “-O3”, the resultant CPU performance is far behind that of the GPU

performance with/without further optimizat ions. For the data set with image size 512
2
, the extrapolated CPU execution

time can be 44 to 150 hours. On the other hand, the GPU performance seems to scale along the line.

The comparison between two GPU versions shows the optimizat ion effect on the FT and IFT kernels which almost

dominate the whole execution time. Th is comparison demonstrates the performance gain through the loop -unrolling

technique with padding, referred previously. For the data set with 128
2
 image size, the performance gain from loop

unrolling is offset by the padded elements. However, the optimizat ion effect from loop unrolling appears when padded

elements become a minor portion for big data sets.

Table 2 Execution time of the CPU code, non-optimized GPU code, and the optimized GPU code, all in single-precision

mode with finite difference and 20 CG iterations. All images are with SENSE and 8 coils.

Data sets
CPU

(sec)

GPU

(non-optimized)

(sec)

GPU

(optimized)

(sec)

Speedup

GPU (non-optimized) /

GPU (optimized)

Speedup

GPU (optimized) /

CPU

128x128 872.270 4.673 4.644 1.006x 188x

256x256 34,007.280 71.425 53.142 1.344x 640x

512x512 ~days 1062.608 843.776 1.260x N/A

5. CONCLUSIONS AND FUTURE WORK

We had previously proposed a GPU implementation of our MRI toolbox for advanced MRI reconstruction. The toolbox

includes modeling the physics of the magnetic field inhomogeneity to reduce image art ifacts, such as geometric

distortion and signal loss. In this paper, we extend the GPU implementation to sensitivity encoding for fast MRI

reconstruction of parallel imaging with mult i-receiver coil array to enable faster MRI data acquisition. General

guidelines for porting an image reconstruction algorithm to GPU are also provided: we detail key optimization

techniques that can ease the translation of other algorithms to GPU. Final results show that the proposed GPU

implementation significantly speedups the SENSE reconstruction by two orders of magnitude. Future work includes

further optimizat ions and the addition of more features towards clinical deployment.

6. ACKNOWLEDGMENTS

The authors acknowledge the high-performance computing resources provided by Institute for Advanced Computing

Applications and Technologies (IACAT). This work is partially supported by NIH grant 1R21EB009768-01A1.

a b c

REFERENCES

[1] Data Reconstruction Challenge. 2010 Intl Soc Magn Reson Med. (is mrm.org/mri_unbound)

[2] Gray H. Glover, “Simple analytic spiral K-space algorithm,” Magnetic Resonance in Medicine, vol. 42, Issue 2, pp.

412–415, August 1999.

[3] Wen-mei Hwu, “ECE598 HK: Computational Th inking for Manycore Processors,”

http://courses.engr.illinois.edu/ece598/hk/.

[4] Shane Ryoo, Christopher I. Rodrigues, Sam S. Stone, Sara S. Baghsorkhi, Sain -Zee Ueng, John A. Stratton, and

Wen-mei W. Hwu, “Program Optimizat ion Space Pruning for a Mult ithreaded GPU,” Proceedings of the 2008

International Symposium on Code Generat ion and Optimization, April 2008.

[5] Sam S. Stone, Justin P. Haldar, Stephanie C. Tsao, Wen-Mei W. Hwu, Zhi-Pei Liang, and Bradley P. Sutton,

“Accelerating Advanced MRI Reconstructions on GPUs,” J. Parallel Distrib. Comput., vol. 68, pp. 1307-1318, 2008.

[6] Klaas P. Pruessmann, Markus Weiger, Markus B. Scheidegger, and Peter Boesiger. “SENSE: Sensitivity encoding

for fast MRI,” Magn Reson Med, vol. 42, pp. 952-962, 1999.

[7] Yue Zhuo, Xiao-Long Wu, Justin P. Haldar, Zhi-Pei Liang, Wen-mei W. Hwu, Bradley P. Sutton, “The Role of

GPUs in Advancing Clinical Imaging with Magnetic Resonance Imaging,” in GPU Computing Gems, W.-M. W.

Hwu Ed., Elsevier Inc., 2011. In Press.

[8] Yue Zhuo, Xiao-Long Wu, Justin P. Haldar, Wen-mei W. Hwu, Zhi-Pei Liang, Bradley P. Sutton, “Accelerating

Iterative Field -Compensated MR Image Reconstruction on GPUs,” Proceedings of the IEEE Intl Sym on

Biomedical Imaging (ISBI), April 2010.

[9] Yue Zhuo, Xiao-Long Wu, Justin P. Haldar, Wen-mei W. Hwu, Zhi-Pei Liang, Bradley P. Sutton, “Multi-GPU

Implementation fo r Iterative MR Image Reconstruction with Field Correction,” Proceedings of the International

Society for Magnetic Resonance in Medicine (ISMRM), May 2010.

[10] Yue Zhuo, Xiao-Long Wu, Justin P. Haldar, Wen-mei W. Hwu, Zh i-Pei Liang, Bradley P. Sutton, “Sparse

Regularization in MRI Iterative Reconstruction using GPUs,” Proceedings of the 3rd International Conference on

BioMedical Engineering and Informat ics (BMEI'10), October 2010.

[11] Mila Niko lova and Michael K. Ng, "Analysis of Half-Quadratic Min imization Methods for Signal and Image

Recovery," SIAM J. Scientific Computing, vol. 27, pp. 937-966, 2005.

[12] Michael Lustig, David Donoho, and John M. Pauly, “Sparse MRI: The application of compressed sensing for rapid

MR imaging,” Magnetic Resonance in Medicine, vol. 58, pp. 1182–1195, 2007.

[13] Gray H. Glover, “Simple analytic spiral K-space algorithm,” Magnetic Resonance in Medicine, vol. 42, Issue 2, pp.

412–415, August 1999.

