
40

Microprocessors exploit instruction-
level parallelism and tolerate memory-access
latencies to achieve high-performance. Out-
of-order microprocessors do this by dynami-
cally scheduling instruction execution, but
require power-hungry hardware structures.
Other general-purpose microprocessors, such
as the Sun UltraSparc1 and Intel Itanium,2 and
most embedded microprocessors, avoid such
costs, relying instead on the compile-time
scheduling of instruction execution.

Appropriate instruction set architecture fea-
tures—large register files, explicit speculation,
and predication—help compilers successful-
ly exploit instruction-level parallelism. In the
absence of runtime delays, such as cache-miss-
induced stalls, the compiler-arranged sched-
ules can effectively use execution resources,
overlap execution latencies, and work around
execution constraints.3 For example, if we dis-
count runtime stall cycles, the Intel reference
compiler achieves an average throughput of
2.5 instructions per cycle (IPC) across
SPECint2000 benchmarks for a 1.0-GHz Ita-
nium 2 processor.

However, the compile-time scheduling
approach has had less success in tolerating
memory access latencies. Memory access
latencies can’t be determined reliably at com-
pile time and can vary by orders of magnitude,

according to the accessed memory data’s run-
time position in the multilevel cache/dynam-
ic RAM (DRAM) hierarchy. Data cache
misses significantly prolong compile-generat-
ed schedules during runtime, causing data
cache stalls to disproportionately affect the
performance of in-order processors. Clearly,
in-order microprocessors need to better tol-
erate memory access latencies without resort-
ing to power-hungry solutions.

This article describes multipass pipelining,
a microarchitectural model that provides an
alternative to out-of-order execution for tol-
erating memory access latencies. We call our
approach “flea-flicker” multipass pipelining
because it uses two (or more) passes of preex-
ecution or execution to achieve performance
efficacy. In American football, a flea-flicker
offense tries to catch the defense off guard by
adding a forward pass to a lateral-pass play.
Defenders covering the ball carrier thus miss
the tackle and, hopefully for the offense, the
ensuing play.

Multipass pipelining assumes compile-time
scheduling for lower-power and lower-
complexity exploitation of instruction-level
parallelism. Unlike traditional in-order proces-
sors, multipass allows persistent advance exe-
cution of instructions beyond those that are
interlocked on a cache miss. In a multipass

Ronald D. Barnes
George Mason University

Shane Ryoo
Wen-mei W. Hwu
University of Illinois,

Urbana-Champaign

MULTIPASS PIPELINING USES PERSISTENT ADVANCE EXECUTION TO ACHIEVE

MEMORY-LATENCY TOLERANCE WHILE MAINTAINING THE SIMPLICITY OF AN

IN-ORDER DESIGN.

TOLERATING
CACHE-MISS LATENCY WITH

MULTIPASS PIPELINES

Published by the IEEE Computer Society 0272-1732/06/$20.00 © 2006 IEEE

pipeline, instructions continue to execute after
an instruction that needs the result of a cache
miss. The pipeline skips over instructions that
aren’t ready and persistently executes those that
are ready. We achieve this through multiple,
carefully controlled in-order execution passes
over instructions following the interlock. A
low-complexity result buffer preserves the valid
results of independent instructions. Because
persistent advance execution requires additional
hardware components, we examine its benefit
relative to the more traditional in-order execu-
tion models.

In-order operation models
Figure 1 shows an example timeline repeat-

ed for three different execution models. For
each model, we divided the execution activi-
ty into actual instruction execution (Exe) and
the handling of data-cache misses caused by
executing load instructions (Mem). In each
example, the Exe line represents many exe-
cuting instructions. Arrows represent data
dependences between instructions. Figure 1
shows two types of misses: relatively long level-
2 cache misses (L2 miss) and relatively short
level-1 cache misses (L1 miss).

Figure 1a demonstrates the most hinder-
some problem accompanying in-order proces-
sors: Instructions can artificially stall behind
consumers of load instructions that missed in
the cache. In the example, load instruction A
misses in the data cache, and a stall on use
occurs when execution reaches instruction B,
A’s first consumer. Because the processor relies
on the compiler’s instruction ordering, it stalls
for the remaining duration of A’s miss (marked
as stall). D and F trigger similar execution gaps.

Figure 1b illustrates the in-order runahead
approach, first introduced by Dundas and
Mudge.4 In-order runahead execution reduces
execution gaps by increasing the overlap
between cache-miss handling of independent
memory loads. In this example, when B
attempts to use A’s result before the cache-miss
handling completes, the runahead approach
lets execution continue speculatively. We show
this speculative execution—or advance execu-
tion—as a faint continuation of the Exe line,
marked as advance in the timeline beyond
deferred instruction b.

A replicated register file preserves a check-
point of the processor’s register state when
speculative advance execution begins. During

41JANUARY–FEBRUARY 2006

Memory miss
Normal execution
Advance execution
Dependence
Normal op
Load op
Speculative op
Deferred op
Not re-executed op

A

B

C

D

 b e

 D C

 F

Mem

Exe

Advance Restart Rally

A b C d e f b C D E f B C D E f

M
ul

tip
as

s
pi

pe
lin

in
g

 A b C d e f FB C D E f

Mem

Exe

Exe

Advance Normal

In
-o

rd
er

ru
na

he
ad

 A B C E FD

Mem
L2 miss L1 miss L2 miss

Time

Stall Stall Stall

In
-o

rd
er

(a)

(b)

(c)

Figure 1. Execution and memory-access timeline for three in-order execution models: basic (a), in-order runahead (b), and
multipass pipelining (c).

advance execution, instructions such as b don’t
have operands required to compute a valid
result. The pipeline suppresses b’s execution,
and b writes a specially marked nonresult to its
consumers and destination. The pipeline will
suppress any instructions that consume b’s
result, delivering specially marked nonresults
to their consumers and destinations. In the
example timeline, execution continues past b
and reaches independent instruction C, which
can begin its memory access. C’s access will
overlap C with that of A. In Figure 1b, the
overlapping bold lines in the timeline’s Mem
component demonstrates the main source of
performance improvement from the in-order
runahead approach.

When A’s access is complete, the processor
returns to its checkpointed state. Instruction
execution returns to B, which now has the
operand needed for its execution. Because C’s
miss was already initiated during advance exe-
cution, instruction D no longer causes the
pipeline to stall after normal execution resumes.
Runahead execution is a relatively inexpensive
addition to an in-order processor: Replicated
processor state to support checkpointing, prop-
agation of special invalid operand markings
from instruction to instruction, and suppres-
sion of instructions whose operands are
unavailable during advance execution.

Multipass pipelining
Multipass pipelining enhances the in-order

runahead approach. As Figure 1c shows, mul-
tipass pipelining differs from in-order runa-
head in two important ways.

First, during advance execution (at the
point labeled restart), advance execution
restarts at original consumer instruction b.
Although b isn’t ready for execution, advance
execution restarts in the hope of finding addi-
tional instructions in the queue that might be
newly ready for execution. In the example
timeline, during the second pass, the short
cache-miss handling for C has completed, and
E can trigger its cache-miss handling. Advance
restart is particularly useful when the specu-
lative processor becomes so polluted with
nonresults that continued advance execution
is fruitless. Advance execution restart returns
to previously ignored instructions rather than
wasting advance execution effort further down
the instruction stream.

The additional overlap of E’s cache-miss
handling reflects the fact that multipass
pipelining addresses a limitation of in-order
runahead: When the in-order runahead
pipeline suppresses an instruction during
advance execution, it won’t reconsider that
instruction until normal execution begins
again. Advance execution restart in multipass
pipelining lets the suppressed instructions
whose operands become available during a
long cache miss have another chance to trig-
ger their cache-miss handling.

Figure 2 illustrates an implementation of
multipass pipelining on a base processor
pipeline similar to that of the Itanium 2. Mul-
tipass pipelining requires additional compo-
nents, indicated by the shaded boxes. We use
a speculative register file (SRF), advance bits
(A-bits), and invalid bits (I-bits) to separate
the register state for advanced execution from
the normal architectural execution state and to
implement the suppression of instructions
whose operands are unavailable during
advance execution. These components are
similar to those that support in-order runa-
head execution; they are shut off during nor-
mal execution.

During advance execution, instructions
aren’t allowed to write their results to the
architectural register file (ARF). Instead, the
multipass pipeline redirects their results to the
SRF, which stores the speculative processor
state for the current advance execution pass.
When the pipeline enters a new advance exe-
cution pass, the SRF contains no valid infor-
mation; advance instructions must initially
access ARF for their input operands. As
advance instructions write into SRF, A-bits
redirect consumers of the instructions’ results
to SRF for their operands. Each A-bit indi-
cates that future accesses to its associated reg-
ister entry should go to SRF.

Each SRF entry contains an I-bit that marks
nonresults written by suppressed advance
instructions. Advance instructions reading a
register with a set I-bit are suppressed. Bypass
logic will forward the I-bit value in addition
to register values. When normal execution
resumes, ARF will contain the checkpoint reg-
ister state. A-bits, I-bits, and SRF are no
longer necessary and can be shut off for ener-
gy efficiency.

We added the shaded latches in Figure 2 to

42

MICRO TOP PICKS

IEEE MICRO

facilitate fast advance execution restart and
fast normal execution resumption. The shad-
ed latches preserve the instructions immedi-
ately following the instruction that triggered
advance execution. The instruction queue in
Figure 2 is an enlarged version of the Itanium
2 queue. With a large instruction queue and
the additional latches, the pipeline incurs no
start-up latency cycles at the beginning of each
pass of advance execution or the resumption
of normal execution.

Our initial experiments used the compiler
to control advance restart. Advance restart is
likely desirable if a deferred instruction will
defer most subsequent preexecution. For the
results we present, the compiler explicitly
inserts restart instructions to check whether
critical operands are ready, and, if not, cause
advance restart to occur. A hardware mecha-
nism could likely dynamically control advance
restart even more effectively.

The second important improvement of mul-
tipass pipelining over in-order runahead exe-
cution is that during advance execution,
multipass pipelining preserves valid execution
results, using them to reduce power consump-
tion and speed up execution during subsequent
passes. As the pipeline in Figure 2 shows, we
added a result store to the base pipeline to store
advance instruction results. In the period
labeled rally after advance restart occurs, the
processor doesn’t have to execute advance

instructions such as D again, because the result
queue already contains their correct results.

Preserving advance results also allows the
second advance execution pass in Figure 1c
reach E more rapidly, because the instructions
with preserved execution results no longer have
dataflow dependence on other instructions.
The empty bits (E-bits) and the regroup stage
in Figure 2 make this accelerated execution
possible. The regroup stage checks depen-
dences on an instruction-by-instruction basis
(as would a wide-issue in-order processor’s
dependency check stage1). Each E-bit indicates
whether its corresponding result queue entry
contains a valid execution result. If the instruc-
tion’s associated E-bit is cleared, then the
instruction has previously executed with suc-
cess. It no longer requires execution in the cur-
rent pass and can be treated as an instruction
that simply moves a literal value into a register
file. This process, instruction regrouping,
achieves a dynamic schedule compaction
beyond what was possible at compile time.
When the processor returns to normal execu-
tion, the processor can again use the preserved
results for C and D to speed up the instruc-
tions’ processing while saving energy.

The complete state of memory contents
can’t be checkpointed the same way that the
register state is preserved. Other work describes
mechanisms for maintaining memory state
during advance execution and supporting store

43JANUARY–FEBRUARY 2006

IPQ ROT ENQ

In
st

ru
ct

io
n

qu
eu

e

Latch

DEQ
Latch

DISP

Latch

REG
DET WRB

PEEK

Latch

Regroup

A
-b

its E
S

-b
its

I-
bi

ts Speculative
register

file

R
es

ul
t

st
or

e

Architectural
register

file

Execution
merge

IPG
ROT
ENQ
DEQ

PEEK
DISP
REG
DET
ARF
SRF

WRB

Instruction pointer generation and fetch
Instruction rotation
Enqueue
Dequeue
Peek
Disposal
Register file read
Exception detection
Architectual register file
Speculative register file
Write back

Figure 2. Integer multipass pipeline.

to load memory dependences, even in the pres-
ence of suppressed memory stores.5

Multipass benefits
Multipass pipelining lets in-order processors

perform useful processing instead of stalling
(potentially for hundreds of cycles) while an
instruction waits on a data cache miss. Multi-
pass advance execution first targets the initia-
tion of positionally blocked long-latency data
cache misses by overlapping them with the
advance-mode-causing miss. It also accelerates
in-order execution following the handling of
the miss by reusing advance results.

Advance execution restart
As advance execution proceeds, the proces-

sor often reaches a point at which it can per-
form little fruitful forward advance execution
because most subsequent instructions depend
on cache-missing loads or deferred instruc-
tions. At the same time, instructions that have
previously been deferred because of an
unready operand can now represent an oppor-
tunity for productive advance execution. The
general wakeup mechanisms of out-of-order
execution let such instructions execute as soon
as their operands are ready. Multipass pipelin-
ing achieves the same benefit by relying on
advance execution’s systematic restart.

Instruction regrouping
Because of the persistent execution per-

formed during advance mode, much of rally
mode execution consists of merely merging
precomputed instruction results into the
processor state. The multipass pipeline doesn’t
recompute the results of precomputed instruc-
tions, and can consider such instructions to
no longer depend on their source operands’
original producers. This elimination of input
dependences permits instruction regrouping.
The regroup stage of the multipass pipeline
can form new issue groups without changing
the compiler-specified instruction order, and
can thus schedule formerly dependent instruc-
tions in the same cycle.

Performance highlights
We evaluated the performance improvement

of adding multipass pipelining to an in-order
microarchitecture based roughly on the Itani-
um 2.2 We used 12 C language benchmarks

from SPEC CPU2000 representing a wide vari-
ety of application types (we excluded the
remaining C SPECint2000 benchmarks
because of compilation issues). We compiled
and aggressively optimized each application
using the OpenImpact compiler (http://gelato.
uiuc.edu). We modeled a processor with a six-
instruction issue width; a 16-Kbyte, four-way,
one-cycle L1 data cache; a 256-Kbyte, eight-
way, five-cycle L2 data cache; a 3-Mbyte, 12-
way, 12-cycle L3 data cache; and a 145-cycle
main-memory latency.

We chose these moderate cache latencies to
reflect a near-term design. Multipass pipelin-
ing’s cache tolerance benefits increase with
longer memory latencies. We examine more
forward-looking cache parameters elsewhere.5

We modeled multipass pipelining as an
addition to this baseline machine with a 256-
entry instruction queue and result store. For
comparison, we also modeled an aggressive
out-of-order implementation with a 128-
entry scheduling table and a 256-entry
instruction window.

Figure 3 gives a performance breakdown of
the multipass concept and a comparison with
the aggressive out-of-order design using the
speedup over the baseline in-order model. The
first component is the performance improve-
ment achieved by Dundas and Mudge’s in-
order runahead-execution scheme. On
average, the prefetching effects of this simple
runahead approach achieves a 1.1× speedup.
The next component is the additional
speedup achieved by a multipass-pipeline
processor, which preserves advance execution
results and uses those results to perform
instruction regrouping. By eliminating many
dependences to preexecuted instructions,
instruction regrouping’s benefit is twice that
achieved by runahead execution alone.
Adding advance execution restart to multipass
pipelining provides a more modest 1.06×
additional speedup. This feature is particu-
larly important for mcf, where, by tolerating
data cache misses whose accesses aren’t ready
on the first advance execution pass, it raises
the overall speedup by 1.67×. For several other
benchmarks, advance restart provided no ben-
efit. This is because these benchmarks had
fewer important cache misses depending on
other (relatively short) cache misses, and they
didn’t exhibit the behavior targeted with the

44

MICRO TOP PICKS

IEEE MICRO

compiler identification of advance restart loca-
tions. On average, multipass pipelining
achieves a 1.36× speedup.

Overall, the somewhat idealized out-of-
order execution that we modeled only achieves
an additional 1.14× speedup over a multipass-
pipeline system. These benefits come from its
ability to find instruction-level parallelism by
reordering instruction executions and its more
general tolerance of runtime latency. Howev-
er, the parameters chosen for this model are
quite aggressive to match the aggressive 256-
instruction multipass implementation. In
other experiments, multipass pipelining per-
formed better than moderate implementa-
tions of out-of-order execution while using
simpler and lower-power structures.5

Cost and complexities
Multipass pipelining’s appeal over more tra-

ditional dynamic memory-latency-tolerant
designs (which use out-of-order execution) is
the relative power cost of its supporting struc-
tures. The additional structures required to
implement out-of-order execution create sig-
nificant power overhead. For example, in the
Alpha 21264 processor, support for dynamic
scheduling consumes as much at 18 percent
of total power—almost as much as all of its

integer and floating-point execution units
combined.6

We used power models adapted from the
Wattch framework7 to compare the power
consumption of associated structures in the
out-of-order and multipass models used in
our simulations, utilizing technology para-
meters similar to those of contemporary high-
performance microprocessors. Table 1 shows
the study’s results as power ratios for three cat-
egories of corresponding structures:

• preservation of computed results,
• instruction issue, and
• load/store ordering.

A ratio greater than 1 indicates higher out-
of-order power. The peak power ratio assumes
maximum switching activity. We based the
average power ratio on simulated results and
Wattch’s linear clock-gating model. To mea-
sure the average-power ratio, we incorporated
the relevant Wattch component models into
the cycle-by-cycle simulator used for perfor-
mance results.

The Wattch component power models con-
sist primarily of array components: decoders,
word lines, bit lines, and sense amplifiers. For
these structures, we expect power to scale

45JANUARY–FEBRUARY 2006

Runahead
With instruction regrouping
With advance restart
OOO

3.0

2.8

2.6

2.4

2.2

2.0

1.8

1.6

1.4

1.2

1.0

S
pe

ed
up

bz
ip2 ga

p
bz

ip2 mcf

pa
rse

r
tw

olf

vo
rte

x
vp

r

am
mp ar

t

eq
ua

ke
mes

a

Ave
ra

ge

SPEC
CINT2000

SPEC
CFP2000

Figure 3. Speedups over in-order for in-order runahead, multipass pipelining with instruction regrouping, multipass pipelining
with instruction regrouping and advance restart, and out-of-order execution.

nearly linearly with the number of ports, with
an additional effect due to cell size increase
because of the additional word lines and bit
lines needed for access. Table 1 only illustrates
the degree of disparity between out-of-order
and multipass structures; it doesn’t represent
the power consumption of any physical
implementation.

The large disparity in power ratios is pri-
marily due to the inherently in-order nature of
multipass execution. Sequential reads and
writes to both the instruction queue and the
result store enable simple array structures with
a small number of ports each with shared bit
lines. Array structures supporting out-of-order
designs allow general instruction reordering,
but require structures with many randomly
accessible ports (minimally, enough ports to
handle the pipeline’s issue width).

Our modeling of array-based dynamic
scheduling for out-of-order is a bit more ener-
gy efficient than most actual implementations.
Often, dynamic scheduling uses content-
addressable memories, which read and match
their entire contents, requiring far more power
than indexed arrays. Finally, multipass struc-
tures only consume power during advance and
rally modes, which causes the average power
consumption ratio to be higher than the peak
ratio for results storage and load/store ordering.

The importance of preserving advance exe-
cution results for reuse and instruction

regrouping invites comparison with other
runahead techniques that discard all preexe-
cuted work (other than preinitiated data cache
accesses). Previous examination of runahead
execution as a way to expand otherwise mod-

est instruction windows in out-of-order exe-
cution systems8 has found little benefit from
preserving runahead execution results.9 The
out-of-order runahead approach’s use of
dynamic scheduling logic and multipass
pipelining’s avoidance of dynamic scheduling
cause these seemingly contradictory results.

Instruction regrouping in multipass systems
uses advance execution results to eliminate
breaks in the issue of instructions caused by
the input dependences of preexecuted instruc-
tions. This compacts the still in-order schedule
height, the optimal number of cycles required
to issue instructions while meeting their
dependences. In out-of-order processors,
dynamic schedules are already more compact
than the static instruction arrangement, and
reducing input dependences due to result reuse
appears to have a smaller additional benefit.

A prominent issue for incorporating mul-
tipass pipelining into existing architectures is
using a restart mechanism that doesn’t require
instruction set changes or executable recom-
pilation. To support existing binaries, we
could use hardware mechanisms to detect the
opportunity for advance restart. Such a mech-
anism could be triggered on the required con-
dition for useful advance restart, when a load
other than advance-mode initiator returns its
value after a miss. We’re currently experi-
menting with configurations to determine
effective methods of balancing restart oppor-
tunities with further advance execution, and
preliminary investigation has shown cases in
which microarchitectural techniques achieve
greater speedups from advance restart than the
compiler technique used here.

We present multipass pipelining largely in

46

MICRO TOP PICKS

IEEE MICRO

Table 1. Power ratios (for circuits in a 100-nm process) for out-of-order to multipass structures.

Peak- Average-
Function Out-of-order structures Multipass structures power ratio power ratio
Result storage Combined architectural and rename Architectural and 0.99* 1.20

register file, and register alias table speculative register
files, result score

Instruction storage Instruction wakeup and issue Instruction queue 10.28 7.15
Load/store ordering Load and store buffers Speculative memory 3.21 9.79

address queue and
advance store cache

*The 0.99 power ratio requires double the register file accesses that the architecture can actually incur; it’s an intentionally conservative

estimate. Under architectural constraints, the peak power would be 1.92.

the context of an explicitly parallel architec-
ture. However, increasingly restrictive power
budgets will require processor families that are
currently implemented with traditional out-
of-order microarchitectures to decrease their
reliance on expensive dynamic structures. MICRO

Acknowledgments
We acknowledge the past and present mem-

bers of the Illinois Microarchitecture Project
utilizing Advanced Compiler Technology
(IMPACT) research group for their feedback
and assistance. The Gigascale Systems Research
Center, US National Science Foundation ITR
Grant 86096, and generous gift funds from
Intel Corp. partially supported this work.

References
1. R. Heald et al., “A Third-Generation SPARC

V9 64-b Microprocessor,” IEEE J. Solid-State
Circuits, vol. 35, no. 11, Nov. 2000, pp. 1526-
1538.

2. C. McNairy and D. Soltis, “Itanium 2 Proces-
sor Microarchitecture,” IEEE Micro, vol. 23,
no. 2, Mar. 2003, pp. 44-55.

3. J.W. Sias et al., “Field-Testing Impact EPIC
Research Results in Itanium 2,” Proc. 31th
Ann. Int’l Symp. Computer Architecture
(ISCA 04), IEEE CS Press, 2004, pp. 26-37.

4. J. Dundas and T. Mudge, “Improving Data
Cache Performance by Preexecuting Instruc-
tions Under a Cache Miss,” Proc. 11th Ann.
Int’l Conf. Supercomputing (SC 97), IEEE CS
Press, 1997, pp. 66-75.

5. R.D. Barnes, S. Ryoo, and W.W. Hwu, “Flea-
Flicker Multipass Pipelining: An Alternative
to the High-Power Out-of-Order Offense,”
Proc. 38th Ann. Int’l Symp. Microarchitec-
ture (Micro-38), IEEE CS Press, 2005, pp.
319-330.

6. M.K. Gowan, L.L. Biro, and D.B. Jackson,
“Power Considerations in the Design of the
Alpha 21264 Microprocessor,” Proc. 35th
Design Automation Conf. (DAC 98), ACM
Press, 1998, pp. 726-731.

7. D. Brooks, V. Tiwari, and M. Martonosi,
“Wattch: A Framework for Architectural-level
Power Analysis and Optimizations,” Proc.
27th Ann. Int’l Symp. Computer Architecture
(ISCA 00), ACM Press, 2000, pp. 83-94.

8. O. Mutlu et al., “Runahead Execution: An
Alternative to Very Large Instruction Win-
dows for Out-of-Order Processors,” Proc.

9th Int’l Symp. High-Performance Computer
Architecture (HPCA 03), IEEE CS Press,
2003, pp. 129-140.

9. O. Mutlu et al., “On Reusing the Results of
Preexecuted Instructions in a Runahead Exe-
cution Processor,” Computer Architecture
Letters, vol. 4, Jan. 2005; http://www.cs.
virginia.edu/~tcca.

Ronald D. Barnes is an assistant professor at
George Mason University. His research inter-
ests include complexity-effective microarchi-
tectures, program-phase detection, and binary
and runtime optimization. Barnes has a PhD
in electrical engineering from the University
of Illinois, Urbana-Champaign. He is a mem-
ber of the IEEE and the ACM.

Shane Ryoo is a graduate student in electrical
engineering at the University of Illinois,
Urbana-Champaign. His research interests
include interprocedural analysis techniques
for identifying coarse-grained parallelism and
efficient algorithms for computer architectures
and compilers. Ryoo has an MS in electrical
engineering from the University of Illinois,
Urbana-Champaign. He is a student member
of the IEEE.

Wen-mei W. Hwu is the Sanders-AMD
Endowed Chair Professor in the Department
of Electrical and Computer Engineering, Uni-
versity of Illinois, Urbana-Champaign. He is
the director of the Illinois Microarchitecture
Project utilizing Advanced Compiler Tech-
nology (Impact) lab, which delivers new com-
piler and computer architecture technologies
to the computer industry. His research inter-
ests include architecture, implementation, and
software for high-performance computer sys-
tems. Hwu has a BSEE from the National Tai-
wan University and a PhD in computer science
from the University of California, Berkeley.
He is a Fellow of the IEEE and the ACM.

For further information on this or any other
computing topic, visit our Digital Library at
http://www.computer.org/publications/dlib.

47JANUARY–FEBRUARY 2006

