
994 IEEE TRANSACTIONS ON COMPUTERS, VOL. 43. NO. 9, SEPTEMBER 1994

The Susceptibility of Programs to Context Switching
Wen-mei W. Hwu, Member, IEEE, and Thomas M. Conte

Abstruct- Modern memory systems are composed of several
levels of caching. Design of these levels is largely an empirical
practice. One highly-effective empirical method is the single-pass
method wherein all caches in a broad design space are evaluated
in one pass over the trace. Multiprogramming degrades memory
system performance since (process) context switching reduces the
effectiveness of cache memories. Few single-pass methods exist
which account for multiprogramming effects. This paper uses a
general model of single-pass algorithms, the recurrencdconflict
model, and extends the model for recording the effects due to both
voluntary context switches (e.& system calls) and involuntary
context switches (e+, time quantum expiration). Involuntary
context switches are modeled using the distribution of lengths
between a reference to an address and the re-reference to the same
address. The paper makes the assumptions that involunary con-
text switches are equally likely to occur between each reference,
and that one can independently estimate, f r -5 , the fraction of a
cache’s contents flushed between context switches. The case where
fc,s = 1 is used to measure the effect of worst-case context switch
penalty (the susceptibility) of several members of the SPEC89
benchmark set to context switching. Some empirical results of
frs are presented to illustrate the case where fc,. < 1. The model
is validated against its assumptions by comparing its results with
more-restrictive methods.

Zndex Terms- Multiprogramming, cache, simulation, single-
pass algorithm, memory hierarchy, performance anaysis, bench-
marking, SPEC.

I. INTRODUCTION
ULTIPLE levels of caching and buffering have become M the norm in memory system design. These systems are

typically designed using simulation to determine the perfor-
mance of a wide range of memory system organizations. The
inputs to the simulator are benchmarks that represent nominal
system workloads. The designer’s job is to choose the most
cost-effective organization using the simulation results as a
guide. A class of powerful simulation methods, called single-
pass stack methods, have become available to memory system
designers [11-[5]. With these methods, the memory system
performance of thousands of organizations can be determined

Manuscript received March 25, 1991; revised October 1992. This was
supported by the National Science Foundation (NSF) under Grant MIP-
8809478, AT&T Global Information Solutions, the AMD Corp. 29K Advanced
Processor Development Division, the National Aeronautics and Space
Administration (NASA) under Contract NASA NAG 1-61 3 in cooperation
with the Illinois Computer laboratory for Aerospace Systems and Software
(ICLASS), and the Office of Naval Research under Contract N00014-88-K-
0656, and an equipment domation from the Hewlett-Packard Co.

W.-m. W. Hwu is with the Center for Reliable and High-Performance
Computing, University of Illinois, Urbana, IL 61x01 USA; e-mail:
hwu@crhc.uiuc.edu.

T. M. Conte is with the Department of Electrical and Computer
Engineering University of South Carolina, Columbia, SC 29208 USA; e-
mail: conte@ece.scarolina.edu.

IEEE Log Number 9400780.

using a single pass through the memory access trace of the
benchmark, whereas traditional, multiple-pass methods require
one pass per potential memory system design.

Multiprogramming degrades memory system performance
since (process) context switching reduces the effectiveness of
cache memories. This occurs when cache contents that will
be needed after the process returns from a context switch are
purged by the intervening processes. The cache contents that
may fall victim to context switching are determined by the
process’ reference pattern (a program characteristic) and the
cache dimension (a system design parameter). The portion
of the cache contents that is actually purged by intervening
processes is determined by the load of the system, the number
of ready processes and access patterns of these processes. The
method presented in this paper accurately records, for all cache
dimensions and all context switching intensities in a single
pass, the total amount of cache contents that will be needed
after the process returns. This information is defined as the
susceptibility of the program to the effect of context switching.

Several other approaches have been used to measure the
effects of context switching [6]-[141. The earliest approaches
flushed the cache being simulated at fixed intervals in the
trace [6], 171. Shedler and Slutz [8] approached the problem
by stochastically merging several memory reference traces.
Easton [9] used the average working set size of the memory
reference trace to estimate cold-start miss ratios. Haikala [121
simplified Easton’s approach by estimated cold-start miss ra-
tios using a Markov chain model. Cold-start miss ratios can be
used to approximate the multiprogramming effects. Switching
between multiple memory reference traces at a fixed interval
was used by Smith [101 to measure multiprogramming effects.
Also, measurements of actual multiprogrammed workloads
were performed by Clark 1111, Agarwal et al. 1131, and Mogul
and Borg 11.51. Apart from the approximations of Easton [9]
and Haikala [121, no work has been done to extend single-pass
methods to model the effects of context switching exactly.
Since multiprogramming effects can account for a 4%-12%
degradation in performance [11]-1131, this omission in the
literature has limited the usefulness of single-pass methods.

One obvious extension to single-pass methods to model
context switching effects is to flush the LRU stack periodically.
The shortcoming of this approach is that one simulation would
have to be performed for each context switching intensity
(e.g., time quantum and I/O workload). A more desirable
method is to record the context switching effects for all
intensities in one pass. This paper introduces a single-pass
method for measuring the susceptibility of a program to the
effects of context switching for all cache dimensions and all
intensities. It is demonstrated that the susceptibility measures

00 18-9340/94$04.00 0 I994 IEEE

mailto:hwu@crhc.uiuc.edu
mailto:conte@ece.scarolina.edu

HWU AND CONTE: THE SUSCEPTIBILITY OF PROGRAMS TO CONTEXT SWITCHING

-

995

Reference 1 a b c d e f g h
Address I 0 1 2 3 1 2 1 0

Fig. I . An example trace of addresses.

Refercncc: a b C d
Address: 0 miss 1 miss 2 miss 3 miss

block 0:

block 1:

e f L? h
1 miss 2 1 0 miss

* Dimensional conflict

Fig 2 An example two-block direct-mapped cache behavior.

can be combined with system load parameters and context
switching intensity to yield the performance degradation in
various multiprogramming environments without resimulation.
Obtaining memory system performance degradation under
many different system loads allows the mcmory system to
be designed with a degree of robustness. It further increases
the advantage of single-pass stack methods over multiple-pass
methods. This is the first such study to make the dichotomy
between program susceptibility and multiprogramming effects.
The measured performance of the method is compared to
results from periodic and random flushing of the LRU stack.

11. RECURRENCES, CONFLICTS AND CONTEXT SWITCHES

The metric used in many memory system studies is the miss
ratio. This is the ratio of the number of references that are not
satisfied (Le., that miss) for a cache at a level of the memory
system hierarchy over the total number of references made
at that level. The miss ratio has served as a good metric for
memory systems since it is a characteristic of the workload
(e.g., the memory trace) yet independent of the access time
of the memory elements. A given miss ratio can be used to
decide whether or not a potential memory element technology
will meet the required access time for the memory system [6].

The recurrence/conflict model of the miss ratio is best
illustrated with an example. Consider the trace of Fig. 1. The
recurrences in the trace are accesses e , f 9 and h. In the ideal
case of an infinite cache, the miss ratio may be expressed as

N - R p = -
N '

where R is the total number of recurrences and N is the
total number of references. Nonideal behavior occurs due
to conflicts. A dimensional conflict is defined as an event
which converts a recurrence into a miss due to limited cache
capacity or mapping inflexibility. For illustration, consider a
direct mapped cache composed of two one-byte blocks shown
in Fig. 2. (Note that in practice, such a small cache would
be impractical to build.) A miss occurs for the recurring
reference e because reference d purges address 1 from the
cache due to insufficient cache capacity. Similarly, a miss

occurs for recurring reference h due to reference c. References
d and c represent a dimensional conflict for the recurrences
e and h, respectively. The other misses, a , b, c and d, occur
because these are the first references to addresses 0 , 1 , 2 and 3,
respectively. The following formula can be used for deriving
cache miss ratio, p. for a given trace, a given cache dimension:

where D the total number of dimensional conflicts. (For the
example, p = (8 - (4 - 2))/8 = 0.75.) This is a general
model and can be extended to account for other effects. This
paper extends this model to address conflicts due to context
switching.

A multiprogramming conflict is defincd as an event which
converts a recurrence into a miss due to a context switch.
For example, both f and g are dimensional hits of the cache
in Fig. 1. If a context switch occurs between references e
and f which purges addresses 1 and 2 from the cache, two
multiprogramming conflicts will occur, one to reference f and
one to reference g. Equation (2) can be extended to account
for these multiprogramming conflicts:

N - (R - D - M)
, (3) N p =

where M the total number of multiprogramming conflicts.

A. Reference Streams and Cache Dimensions

A formal abstraction of a benchmark's trace is termed a
reference stream. This is a sequence of references to addresses,
w (k) , of length N (0 5 k < N) . When required, the addresses
are represented by lower-case Greek letters, such as a, p, y.
The reference stream is assumed to be generated by a single
process in a multiprogramming system. Note that a reference
at w (k) occurs later than w (k - 1) in time, but the parameter
IC does not represent parameterized time since it does not take
into account the difference in service times between cache
hits and cache misses. For this reason, k is referred to as
the reference count. The trace also contains information about
voluntary context switching. A reference is called a voluntary
context-switch event if the benchmark relinquishes the CPU
after the reference (e.g., a system call is performed).

The dimension of a cache is expressed using the notation,
(C , B , S) , for a cache of size 2" bytes, with block size Z B
bytes, and 2' blocks contained in each associativity set. The
term set size is used to mean associativity level, or the number
of blocks per set. Cache size is the total number of bytes per
cache. Block size has been called line size elsewhere [101. Note
that C 2 B + S. The notation (C, B , m) is an abbreviation
for the dimension of a fully-associative cache (S = C - B).
For example, a cache of dimension (10,6,0) is a 1-KB direct-
mapped cache with a block size of 64 bytes; and, a cache
of dimension (21,10,11) (alternately, (21,10, m)) is of size
2 MB with 1---length blocks and it is fully-associative. A
dash is substituted for an entry in the triple to indicate all
caches of that dimension: (-, 5 , l) are all caches with block
size of 32 bytes and having two-way associativity. Caches are

996 IEEE TRANSACTIONS ON COMPUTERS, VOL. 43. NO. 9, SEF'TEMBER 1994

Fig. 3. An example of LRU stack operation

assumed to use LRU replacement and map addresses into sets
using bit selection [3].

It is useful to partition the reference stream by setting the
block offset portion of all addresses in the stream to zero. This
produces a block reference stream, W B (~) , is defined such that,

In binary, this is equivalent to setting the least-significant B
bits of each address to zero.

B. Least Recently Used (LRU) Stack Operation

LRU stacks were first introduced by Mattson, et al. in [l]
as a way to model the behavior of paging systems. An LRU
stack operates as follows: when an address, wg(k) = a, is
encountered in the block reference stream, the LRU stack is
checked to see if a is present on the stack. If a is not present,
it is pushed onto the stack.

However, if a is present (e.g, it is a recurring reference), it
is removed from the stack, then repushed onto the stack. This
is illustrated in Fig. 3 for the example reference stream at
the beginning of this section (Fig. 1). This stack maintenance
policy is specific to a particular block size, as is the discussion
below.

A stack is represented as S ~ (l c) , maintained for a block
size B at time k. The ith ordered item of SB(~) is expressed
as, S ~ (k) [i] . The stack may also be expressed as an ordered
list, such that s ~ (k) = { s ~ (k) [O] , s,(k)[l], . . . , s ~ (k) [M] } ,
where m is the depth of the stack. The following operations
are defined for a stack: the push(.) function,

and, the repush(.) function,

1.
1.1 determine D from I?
1.2
2.
3. N t " l

if a E S s (k - 1) then

S ~ (l i) +- repush(Ss(k - l) , a) ,
else S B (k) t push(SB(h - 1),a)

The least recently used management policy for a stack, s ~ (k) Fig. 4.
(adapted from Mattson et al.).

are defined as side-effect-free functions rather than procedures.
This is to remove dependence on the time variable, k .

For an address a = WE(^), the least recently used (LRU)
management policy for a stack is shown in Fig. 4. In Step
1.1, the references between the top of stack and the recurring
reference have been referred to as the set I' = {pi I pi =

Fig. 4 is applied to a = W B (~) for all k . The LRU policy is
essentially a definition for calculating Sg (k) from Sg (k - 1)
and a. In most situations, S B (~) is calculated in order to obtain
other statistics, such as the stack depth distribution. (Step 1.1
is explained in detail in [161.)

S B (~ - l)[i],O 5 i 5 A } .

C. Types of Context Switching

Context switching occurs due to two distinct events: 1) a
voluntary context switch, where the benchmark relinquishes
the processor, and, 2) an involuntary context switch, where the
benchmark's execution is suspended due to external interrupts.
Voluntary context switches are a characteristic of the bench-
mark. They occur at the same place in the execution between
different benchmark runs. On the other hand, involuntary
context switches are determined by the YO system behavior
(device interrupts), clock frequency (timer interrupts), etc.
They do not occur at the same place between runs of the
benchmark, and are not characteristic of the benchmark. Page
faults are treated as involuntary context switches because page
faults depend on the interaction of processes in the system,
whose interaction is assumed to be pseudo-random in nature.

Since involuntary context switches occur at random in-
stances, it is assumed that involuntary context switches can
occur with equal probability for each reference in the reference
stream [12]. This probability is denoted, q, and termed the
involuntary context switching intensity. Separation of the sys-
tem's characteristics from the characteristics of the benchmark
allows many different systems to be considered without re-
simulating the benchmark's behavior. This is the main goal of
single-pass techniques in general [2]. Although the occurrence
of involuntary context switches is not a characteristic of the
benchmark, the benchmark's susceptibility to their occurrence
is. This susceptibility can be measured as the expected number
of multiprogramming conflicts due to random involuntary
context switching. A method to measure this susceptibility is
presented below that records the benchmark's susceptibility
to all context-switching intensities in a single-pass through
the trace. The empirical results discussed in Section 111-A
demonstrate the validity of this single-pass approach.

The working set of a process (benchmark) may have been
flushed from the cache before it re-enters the run state after a
context switch. Let fcs represent the fraction of the cache's
contents Pushed between context switches. The number of

HWU AND CONTE. THE SUSCEPTIBILITY OF PROGRAMS TO CONTEXT SWITCHING

processes executed before a process returns from a context
switch is a function of the system load and the operating
system scheduling policy. Furthermore. the particular cache
block5 flushed due to a context switch also depends on the
reference patterns of the processes executing on the system.
This makes fCs highly dependent on several volatile variables
and therefore difficult to measure. (Several empirical estimates
of fcs are presented in Section 111-E.) Some virtual mem-
ory system implementations force a cache flush to eliminate
problems with page sharing of writable pages [13]. Also, it
has been shown that for small cache sizes, a context switch
effectively flushes the cache, therefore fcs = 1 [I O] . For
larger caches, this provides an upper bound for the effects of
context switching.

D. lhe Components of Multiprogramming CnnJicts

Multiprogramming conflicts are defined in terms of po-
tential victims. A recurring reference that is not removed
from a specific cache by a dimensional conflict, yet that may
be removed by a context switch, is a potential victim of
the context switch. The numbers of each type of potential
victims are defined as XI [C.B,S] and X I [C , B .S ,q] , for
all voluntary and involuntary context switches, respectively.
X I [C. B , SI is the total number of potential victims due to
voluntary context $witching for caches of dimension (C, B , S).
X,[C. B, S , q] is the expected number of potential victims
due to involuntary context switching of intensity q. The
multiprogramming conflicts are expressed in terms of victims
as,

M[G,B.S,q] f c s (X t ~ [C . B . S] + X I [C . B , S , ~]) . (4)

The equation for the miss ratio (2) can be modified to take
into account the new conflicts,

N - (R - D - M)
N P =

- N - (R - D - fcs(X1. IC, B, SI + X I [C > B , s, 91))
-

N
(5)

Determining the multiprogramming conflicts involves measur-
ing X I . and X I from the reference stream. The measurement
can be done by extending the recurrence/conflict single-pass
technique. The miss ratio is then calculated by first calculating
M [C , B. S , q] using Equation 4 for a value of fcs, then using
the result to complete Equation 5.

E. Multiprogramming Extensions to LRU Stack Operation

The extensions required to the recurrence/conflict single-
pass technique measure X I . and X I are shown in Fig. 6. The
procedure for determining X\.[C:, B. S] is illustrated in Fig. 5.
The procedure operates as follows: When Q is processed, if
it is not a recurring reference (Le., the test of Step 1 of Fig.
6 fails), then it cannot be a victim since it cannot produce
a hit. However, if CL is a voluntary context switch event, it
is marked as such when it is pushed on the stack in Step 2
(marked references are shown using asterisks in Fig. 5) .

991

voluntary context switch

Reference: 1 2 I 0

potential miss potential miss potential miss

(* marked slack position)

Fig. 5.
operation.

An example for voluntary context switch of the modified LRU stack

If (Y is a recurring reference, XI/[C, B , S] is conditionally
incremented if a marked reference is encountered when the
dimensional conflicts are calculated. X v [C , B , SI is only
incremented for all dimensions in which Q does not have a
dimensional conflict. If Xv [C. B , S] were incremented for all
dimensions, a reference might be counted more than once as
a conflict, once as a multiprogramming conflict and once as
a dimensional conflict. Notice that the references immediately
below repushed, marked references inherit the marking in Fig.
5 (Step 1.6 and its substeps of Fig. 6). This is done to insure all
subsequent recurring references that cross the context switch
event are subject to a voluntary context switch.

The procedure for determining X I [C , B , S, q] using an LRU
stack is somewhat more complicated than that for determining
Xv[C, B , SI. Recall that an involuntary context switch may
occur between every reference. Let L, the context switch
distance, be the number of potential involuntary context switch
events for the recurring reference a at reference count k (i.e.,
a = wg(k - L) = wg(lc)). Let p~ be the probability that
at least one involuntary context switch occurs between times
k - L and k . Then,

Define ~ L [C , B , SI to be the number of recurrences not subject
to dimensional conflicts that have a context switch distance of
L. Therefore,

Equation 7 expresses the expected number of potential victims
due to involuntary context switching.

The equation fits naturally into a stack-based method. The
new metric ~ L [C , B , S] can be recorded by annotating the
references on the stack.

Figure 7 shows an example of calculating Xr[C, B , SI. The
figure shows that a counter of the number of context switch
events affecting cy is kept, defined as c l (a) . Initially and after
a recurring reference is repushed, c ~ (a) + 1 (Step 2.1 and
1.8 of Fig. 6). In Step 1.3 and its substeps and Step 1.4, L
is computed from one plus the sum of the counters of entries

IEEE TRANSACTIONS ON COMPUTERS, VOL. 43, NO. 9, SEPTEMBER 1994

Benchmark
dodur

eqntot t
espresso

998

1.
1 1
I '
1.7
13.1
1.3.2
1.3.2 1
1.3 3
1.4
1.5
1.5.1
1.5.2
1.5.2.1
1.6
1.6.1
1.6.2
1.7
1.8
1.9
2
2.1
2.2

Description
Monte Carlo simulation of the t ime evolution of a thermohydraulical
modelization for a nuclear reactor.
Generates t ruth table from logic equations.
Performs I'LA optimization.

if a E SB(k ~ 1) then
u01.c~ + false
L t l
for I - 0 to A do

0, S E (k -
if pc marked as (I voluntary contezt swttch went then

u01.c~ + t rue
L + L i .I(%)

nL[C.B,S] -nL[C , l ? .S]+ I

L t L + 1
for all (C, B , S) wilhout a dimenstono/ conj7id do

if v01.c~ then
Xv[C. 0. S] + X i [C. B , S] + 1

if a morked as a oollrntory contert swtlch ccent then
mark ~ A + I

unmark a
C l (b A - ,) + C l (8 A - 1) + c l (a)

c l (a) - 1

cr(a) - 1
S B (k) - push(sB(k - l) , a)

SB(k) + repush(SB(k - l) , u) ,
else

xlisp

Fig. 6. An L R U stack method modified for context switching.

Lisp interpreter (t he application) executing the Nine-Queens problem
(the recursive benchmark).

Reference: 0 I 2 3

1-
2 c - 1

o c - 1 1 c - 1

0 c - 1

Rcference: 1 2 1 0

L = 3 L = 3 L = 2 L = l

(C, is slack counter-- see text)

Fig. 7.
stack operation.

An example for involuntary context switching of the modified LRU

above (1 on the stack. (Notice that c ~ (a) is not part of the
calculation of L, Fig. 7 illustrates this). In Step 1.5 and its
substeps, ~ L [C , B, S] is incremented for all caches in which
there are no dimensional conflicts. Let SB(& l) [A- 11 = B o ,
the address that is directly above N in the stack S B (~ - 1).
As a bookkeeping step. <:i([jo) is incremented by c I ((x) (Step
1.7). In this way, all the references deeper in the stack than N
in S B (~ - 1) will arrive at the correct context switch distance.

The algorithm shows TLL[C, B. S] being maintained for
all values of L. Not all values of L must be recorded
using TLL[C: B, SI. Rather, power-of-two sized categories can
be retained. The scheme used for the simulations that is
presented below uses 14 categories. The first category contains
~ L [C : B, S] for 1 5 L < 4, following this, the ith category
contains TLL[C: B , S] for 2(i+2) 5 L < 2''1-3. This quantiza-
tion scheme is based on observations of the distribution of
TLL[C, B. S] vs. L. The scheme does however produce error
for small q, and this is commented on in the following section.

Notice that the calculation of ,rt~[C. B, S] is independent
of the context switching intensity distribution assumptions.
The function used to calculate p~ in (7) need not be (6).
It is possible to substitute other context switching intensity
distributions into (7) without altering the presented single-pass
method. The impact of this observation is that the method
is more general than the assumption of uniformly-distributed
involuntary context switching of (6).

I GNU C compiler, version 1.35.
I Performs 300 x 300 matr ix multiulv.

gcc
matrix300

111. EMPIRICAL RESULTS OF PROGRAM SUSCEPTIBILITY

The validity of the single-pass method of the previous sec-
tion is discussed below by comparing the method's results with
the results from other techniques that have similar assump-
tions. The results from the model are presented and discussed
for members of the SPECS9 benchmark set presented in Table
I (from [IS]).

The dimensional conflicts that occur due to different cache
sizes are discussed in Section 3.4 to compare their perfor-
mance degradation with that of context switching. Empirically
observed values of the parameter f cs are also presented. It
is found that fcs < 1 for moderate multiprogramming loads,
confirming the observation that fcs = 1 produces overly-
pessimistic results.

A. The Validity qf the Single-Pass Method

It is important to question whether the single-pass method
extended to measure context switching produces performance
estimates that are consistent with the assumptions made in
Section 11-C. (Whether these assumptions are valid themselves
is beyond the scope of this study.) The approach used in testing
the validity of the method is to compare its predictions against
methods used for traditional cache simulators.

One commonly-used simulation technique to measure the
effects of context switching is to flush the state of the simula-
tion at context switching events [6],[7],[10]. It is clear that in
this case, f cs = 1 is assumed. The decision of when to flush
the stack for voluntary context switch events is known since
these are present in the trace. The decision of when to flush
the cache for involuntary context switch events is done by
distributing involuntary context switch events throughout the
trace uniformly. This random-interval simulation flushes the
contents of the stack based on a uniformly-distributed random
number with mean q. Note that the random-interval simulation
requires a simulation for each value of q . The single-pass
method does not have this restriction since it measures the
effects of all y in one pass over the trace.

The random-interval simulation method approximates the
assumptions of Section 11-C, except that the simulation pro-
duces results for one particular random distribution of con-
text switch events across the trace. The single-pass method
measures the average effect of all distributions. This dis-
crepancy can be eased by averaging the results of several
random-interval simulations. Random-interval simulations are
performed iteratively until the results converged.

Figure 8 present the difference between the random-interval
simulation and the single-pass method for the benchmarks

HWU AND CONTE THE SUSCEFTIBILITY OF PROGRAMS TO CONTEXT SWITCHING

Average
Std. dev.

~

999

21.2% 9.73% 4.35% 16.7% 6.64% 2.64% 13.9% 4.76% 1.69%
12.2% 4.96% 1.66% 9.72% 3.52% 1.04% 8.24% 2.72% 0.71%

..pr...o, g - 0.001 .m-
pcc, q - 0.001 +

X1i.P. q - 0.001 *.-
e q n t o t t . q - 0.01 -+--

aspre.c.0, q - 0.01 9-
qcc, q - 0 .01 c

X l 1 . P . q - 0.01 -.--
mtrlx300, q - 0.001

doduc, q - 0.01 -C-

matrix300. q - 0.01 -a-

1
14 16 18 20

cache sIzs (LOG byto.)
12

" ~~ ~~

10

Fig. 8.
single-pass method, q = 0.01 and q = 0.001.

Absolute error of the miss ratio for random-interval simulation vs.

expressed as the absolute error of the miss ratio, for q = 0.01
and q = 0.001, respectively. Only the absolute errors for fully-
associative caches are shown in the figure for brevity. Smaller
levels of associativity were found to have lower error.

The figure demonstrates that the difference between the
simulation and the model is approximately 2.5% to 3.3% for
q = 0.01 and less than 1% for q = 0.001. The increase in error
for larger q values is due to the quantization of L discussed
in the previous section. This error of 2.5% to 3.3% is large
for q = 0.01, however empirical evidence suggests that q
values are typically in the range of q = 0.001 to q = 0.0002
(calculated from [19] and [20] and assuming one reference
made every five instructions). The single-pass technique using
the power-of-two quantization of L produces results within 1%
of the random-interval simulation for practical q values. This
evidence suggests the single-pass method produces results that
are consistent with its assumptions.

B. Involuntary Context Switching Susceptibility

It is useful to define Ap = M[C, B, S, q] / N as a measure
of benchmark susceptibility to context switching. This is the
difference between the uniprogramming and multiprogram-
ming miss ratios. Figure 9 presents Ap for gcc and xlisp for
block size 16 bytes. The results in the figure are for the cache
(31,4, oo), to eliminate the effects of dimensional conflicts.
Section III-D discusses the effects of dimensional conflicts.
The figure considers only involuntary context switching. The
effects of voluntary context switching are discussed in Section
III-C. Also, complete cache flushing (fcs = 1) is used to
emphasize the worst case context switching penalty (Section
III-E discusses other values of fcs). The figure demonstrates
that when the intensity of context switching, q, is small, Ap
approaches zero such that context switching has little effect for
q 5 0.0001. This value of q corresponds to an average context
switching interval of loo00 references. The gcc benchmark is
slightly more susceptible to context switching than the xlisp
benchmark for q = 0.1. This situation reverses itself and xlisp
becomes more susceptible for q > 0.01. This phenomenon
can be explained with the cumulative distribution of n~ vs. L,
which is plotted in Fig. 10. The figure has a logarithmic axis

Fig. 9.
cache dimension (31,4, m).

Ap (involuntary) of gcc and xlisp vs. q for block size 16 bytes,

95 -
90 -
85 -

qcc block size 16 c
x l isp block size 16 c.

~

0 1 2 3 4 5 6 1 8 9 1 0 1 1 1 2 1 3 1 4 1 5
Contmt S w i t c h I w d i s t a n c e , L (IM: base 21

Fig. 10. Cumulative distribution of n~ vs. L for block size 16 bytes, cache
dimension (3 1 , 4 , m) .

TABLE I1
INVOLUNTARY CONTEXT SWITCHING

SUSCEFTIBIL~ (A p) FOR CACHES (31, -, m)

for the independent variable, L. From the figure, it is apparent
that xlisp has a higher number of recurrences for L 5 2% 85%
for gcc vs. 87.4% for xlisp. This would imply that a context
switch frequency of greater than every 25 = 32 references
would impact xlisp more than gcc. This explains the behavior
observed in Fig. 9.

Figures 11 and 12 presents Ap for gcc, espresso and xlisp
for block sizes 32 bytes and 64 bytes, respectively. The data for
all the benchmarks is presented in Table II. The corresponding
cumulative distribution functions of n~ vs. L are presented in
Figs. 13 and 14, respectively. Together, Figs. 9-12 demonstrate
that the susceptibility to context switching decreases as block
size increases. From Table 11, for q = 0.01, the difference in

IEEE TRANSACTIONS ON COMPUTERS, VOL. 43, NO. 9, SEITEMBER 1994

65

60

55

a

.

'

,

le-05 0.0001 0.001 0.01 0.1
contex t Switch probabi l i ty , g

Fig. 1 1 .
bytes, cache dimension (3 1 , 5 , .u).

A p (involuntary) of gcc, espresso and xlisp vs. q for block size 32

Fig. 12.
bytes, cache dimension (3 1 . 6 . x).

A p (involuntary) of gcc, espresso and xlisp vs. q for block size 64

the miss ratio is 21.2% for block size 16 bytes and 13.9% for
block size 32 bytes, on average. One possible reason for this
is that the block reference streams for larger block sizes have
smaller context switching distances. This occurs since more
references occupy the same cache block for larger block sizes
than for smaller block sizes.

Comparison between the benchmarks reveals significant
variance in susceptibility. The matrix300 and eqntott bench-
marks have the lowest change in the miss ratio, whereas
benchmarks such as doduc and xlisp are quite sensitive to
the value of q . For q = 0.01, A p = 37.8% for doduc
compared to 5.98% for xlisp. This confirms that susceptibility
is a characteristic of the benchmark and that workload choice
influences the observed effects of context switching.

C. Voluntary Context Switching Susceptibility

The susceptibility of the benchmarks to voluntary context
switching effects is relatively small compared to the invol-
untary effects. This can be seen in Table 111, which presents
the voluntary susceptibility (Ap) for fully-associative caches
of the largest dimension for gcc and espresso. The largest-
dimensional fully-associative caches were selected so that Ap
would be at its maximum since no dimensional conflicts occur.

100

9s

90

85

80

t 7 s

70

6o

55 r eEpleSS0 block size 32 t
qcc block size 32 +-

x l i r p block slze 32 -8.-

0 1 2 3 4 5 6 7 8 9 1 0 1 1 1 2 1 3 1 4
5 D I " " " " " " "

context s u l t c h l n g distance. L (LOG base 2)

Fig. 13.
dimension (3 1 , 5 , ~ ') .

Cumulative distribution of 111, vs. L for block size 32 bytes, cache

a

100

95

90

85A
.-.+

...........

7 0 :::/

espresso block size 64 t
qcc block size 64 +-

xllsp block s i r e 64 -0.-

0 1 2 3 4 5 6 7 8 9 1 0 1 1 1 2 1 3 1 4 1 S
context Swltchlnq distance, L (LOG base 2)

50' " " " " " ' " I

Fig. 14.
dimension (3 1 . 6 . ea).

Cumulative distribution of 111, vs. L for block qize 64 bytes, cache

TABLE I I I
VOI.UNTARY CONTEXT SWIrCHlNC SUSCEPTIBII.ITY VS. BLOCK SlZ t

I Block size (bytes)
Brnchmark 1 16 32 64

dodric I 0.07% 0.04% 0.03%
espresso 0.03% 0.02% 0.01%

gcci 3.1% 2.0% I:*%

xlisp G . O X I O - ~ % 6 .0~10- '% G . O X I O - ~ %

eqntott 5.6x~0-3% 3.8~10-3% 2 . 4 ~ 1 0 - 3 %

matrix300 1 . 9 ~ IO-"% 1 . 8 ~ 1 . 7 ~

The occurrences of voluntary context switches are rare for
these benchmarks as well as for other members of the SPECS9
set [171. This explains the small susceptibility due to voluntary
context switches. This may well be an artifact of benchmark
selection and should not be taken as a general statement that
voluntary context switches do not have much effect. One of
the benchmarks, gcc, is selected to serve as an example for
the discussions that follow to illustrate the behavior of the
susceptibility model.

D. Dimensional Conjict EfSects

The dimensional conflicts have been excluded from consid-
eration thus far by considering large, fully-associative caches
to isolate the effects of context switching. The relative impor-
tance of dimensional conflicts to multiprogramming conflicts is

HWU AND CON= THE SUSCEPTIBILITY OF PROGRAMS TO CONTEXT SWITCHING 1001

100

[ICC dlrect-mapped t

0
le-06 le-05 0.0001 0.001 0.01 0.1 1

Context switch probablllty, g

Fig. 15. Ap (involuntary) of gcc for caches (10,4, -).

, I

;; ?I '.' .I
I ; ,I :.. / -

113, 4. 1) -I-- '; I' ,

gcc 110. 4. 0) t
110. 4. 1) +-
110, 4. 21 e-
110. 4. 00) .*--
113. 4. 0) 4.-

(13, 4 , 0 0) -+-
(13, 4 , 2) + - (I.' ; ,!

le-05 0.0001 0.001 0.01 0.1 1
context swltch probabllity, g

16. M I D vs. y for gcc, caches (10,4,-) and (13,4,-) .

interesting because some cache designs may be more resilient
to context switching than others due to the influences of
dimensional conflicts. Consider caches of size 1-K bytes: it
is selected as a worst case since it should experience a high
percentage of dimensional conflicts due to its extremely small
size. Figure 15 shows Ap vs. q for gcc using caches of
1 -K-bytes and several set-associativities.

Calculating the miss ratios for the uniprogrammed case for
gcc reveals a variation of 18% in the miss ratio for (10,4,0)
to 15% for (10,4,00) (this data is not shown in the figure).
However, there is much less variation in Ap apparent in Fig.
15. This same effect is apparent from the data collected for
the other benchmarks.

The above data suggests that dimensional conflicts dominate
over context switching effects for small caches. To quantify
this, the ratio of the multiprogramming conflicts to the dimen-
sional conflicts, M[C, B , S, q] /D[C, B, SI, can be used as a
measure of the relative impact of multiprogramming conflicts
to dimensional conflicts. This ratio is plotted against q using
caches of dimension (10,4, -) and (13,4, -) for gcc and the
results are shown in Fig. 16.

The figure demonstrates that for small q. dimensional con-
flicts dominate. The two kinds of conflicts have equal effect
(Le., M/D = 1.0) for q M 0.02 with caches (10,4, -) and for

m 10000

qcc 64-byte blocks e-

:
100

Fig. 17. l o g (M / D) vs. cache size, for various block sizes (y = 0.02).

q z 0.00003 with caches (13,4, -). As associativity increases,
the performance depends more on the multiprogramming
conflicts than dimensional conflicts. Also, the importance of
associativity increases with overall cache size. This implies
that when associativity is used, multiprogramming effects can
decide the cache size, which is similar to the observations of
[131 concerning associativity.

To show the effects observed are not an artifact of the test
cache sizes of 1-K and 8-K bytes, Fig. 17 presents M I D ratios
for various cache and block sizes.

Any value of q would have been sufficient to demonstrate
the general relationship between M I D and C. The data from
Fig. 16 was used to select q = 0.02 for Fig. 17. Since in
this region the effects of associativity are relatively minor,
the associativity is fixed at 2-way associative (e.g., all caches
(-, -, 1)). (Note that here, unlike the earlier figure, M I D
is presented using a logarithmic scale). From the figure, it
is immediately apparent that the worst-case relative impact
of multiprogramming (i.e., M / D) increases approximately
linearly with cache size (both axes are logarithmic). Also,
as a refinement of the observations made in Section 111-B,
block size is inversely proportional to program susceptibility
for small caches (less than 2-K bytes). However, program
susceptibility appears to be directly proportional to block
size for moderately-large cache sizes (4-K bytes up to 256-K
bytes), after which the trend reverses itself again.

E. Some Empirical Measurement of
Fraction of Cache Flush (fcs)

The majority of this section has assumed fcs = 1 in
order to measure the worst-case susceptibility of programs
to context switching. This section presents some empirical
estimates of the fcs parameter. Note that these measurements
are presented as some examples of fcs values. They should
not be used to make general conclusions about fcs. The data is
intended to illustrate the role of fcs in the model of context
switching used in this paper.

The method used is to simulate a multiprogrammed system
using a trace composed of interleaved sections of traces taken
from several benchmarks. At each reierence, the interleaver

1002

0.5

0 .45

0 . 4

IEEE TRANSACTIONS ON COMPUTERS, VOL. 43, NO. 9, SEPTEMBER 1994

s. - o c
p - 1 -I-- - 0 * 2 .e.-

5 - 00 *-
-

I

1 0.05

Y-

10 11 12 13 I 4 15 16 17 18 19 20
cache SlZe (Iq bytes)

a

10 11 12 13 1 4 15 16 17 18 19 20
cache sire (Iq bytes1

Fig. 18. fcs vs. cache size for espresso, q = 0.01. Fig. 19. fcs vs. cache size for espresso, q = 0.001.

makes a decision whether to continue processing the current
trace or to switch to another waiting trace. This probability is
assumed to be uniformly distributed with mean q.

The values of fcs for each benchmark can be derived by
comparing the number of misses for a uniprogramming cache
to the observed number of misses for the multiprogramming
cache. Any additional misses in the multiprogrammed case
must be due to context switching. Let D,[C, B , S] represent
the dimensional misses from the uniprogramming trace and
D,[C, B, S] represent the dimensional misses measured from
the multiprogramming trace. Let h;r represent the estimated
multiprogramming conflicts. Then,

(8)

Note that it can always be assumed that Dm[C,B,S] >
D,[C, B , SI since any dimensional conflicts for a benchmark
trace must come as a result of the interleaving of traced events.
Using (4) and neglecting the XV term as justified by the
experimental results of Section 111-C, then,

&[C, B , s, q] = L [C , B , SI - D,[C, B , SI.

> (9)
A Dm[C, B, SI - D,[C, B, SI

XZ[C, B , s, q1 fcs =

where ~ C S is the experimental value for fcs. Equation (9)
requires knowledge of X I , which would require use of the
algorithm of Fig. 7.

The two experiments interleave espresso, gcc, and xlisp
with q = 0.01 and q = 0.001. A block sizes of 32 bytes
was assumed for these experiments. Values of fcs across
cache size and associativities for the espresso benchmark are
presented in Figs. 18 (q = 0.01) and 19 (q = 0.001) from the
perspective of the espresso benchmark.

It is clear from these two Figs. that fcs is a function of
cache size, as suggested by Equation 9. For small caches,
f c s M 13%-18%, whereas for large caches, fcs M 8%,
when q = 0.01. The effect of associativity on fcs are less
pronounced than the effects of cache size for q = 0.01 (Fig.
18). For q = 0.001 (Fig. 19), fcs M 0 large, fully-associative
cache sizes. This is not true for smaller associativities, since
dimensional conflicts occur between the references of the three
benchmarks regardless of cache size. The effects of associa-
tivity also become less noticeable as cache size increases,

possibly because less dimensional conflicts occur between the
references from espresso and those of gcc and xlisp.

These experiments show that fcs = 1 is a pessimistic
assumption under moderate load. When workloads are de-
composed into workload elements or workload elements are
taken from standard benchmark sets such as SPEC89, it is not
possible to predict the different combinations of benchmarks
that may execute together in the final system. In this situation,
a conservative assumption such as fcs = 1 is appropriate.
The results for the susceptibility measures presented above
for fcs = 1 suggest that the difference in the miss ratio will
not change considerably for values of q 5 lo4. If designs
are selected to satisfy a required maximum miss ratio, this
observation suggests that selecting prototypes with fcs = 1
adds degree of tolerance to context switching to the designs
with small increase in cost.

IV. CONCLUSION

This paper presented a method for constructing the worst-
case context switching penalty (susceptibiliry) on the cache
performance of a benchmark in the presence of multipro-
gramming. This was done by extending existing single-pass
methods to measure the susceptibility in terms of potential
victims of context switching. The method removes the single-
pass simulation’s dependence on involuntary context switching
intensity and system load effects, allowing performance to be
calculated for values of these parameters without the need
for re-simulation. This generalization of single-pass methods
extends their usefulness into domains where multiple-pass
methods are the only option.

The experimentation performed in this paper revealed that
a benchmark’s susceptibility to context switching can be
minimized by using large block sizes with small and large
cache sizes. Interestingly, for medium-sized caches (4K-256K
bytes for gcc) small block sizes minimize the impact of context
switching.

An increase in context-switching intensity has an roughly-
linear effect on a benchmark’s susceptibility. For all but
extremely high intensities, dimensional conflicts dominate the
miss ratio. Since all the benchmarks elicited very small invol-
untary context switching distances, a relatively high intensity

HWU AND CONTE: THE SUSCEPTIBILITY OF PROGRAMS TO CONTEXT SWITCHING 1003

of context switching (q 2 0.0001) was needed to have
significant effects.

It is not true that all workloads will have susceptibilities
similar to the SPEC89 benchmark members considered here.
However, the method itself is not limited to a specific type of
benchmark. Other results are easily generated. The benchmark
results were shown to demonstrate the approach’s usefulness
and validity. It was shown to perform comparable to less-
general multiple-pass test methods. Also, the behavior of
the multiprogramming miss ratio agrees with actual multi-
programming behavior results presented by other researchers,
suggesting the results obtained using the single-pass method
are reliable for design purposes.

ACKNOWLEDGMENT

research group for their support, comments and suggestions.
The authors would like to thank all members of the IMPACT

REFERENCES

[I] R. L. Mattson, J. Gercsei, D. R. Slutz, and I. L. Traiger, “Evalutation
techniques for storage hierarchies,” IBM Syst. J., vol. 9, no. 2, pp.
78-117, 1970.

[2] I. L. Traiger and D. R. Slutz, “One-pass techniques for the evaluation
of memory hierarchies,” IBM Res. Rep. RJ 892, IBM, San Jose, CA,
July 1971.

[3] M. D. Hill and A. J. Smith, “Evaluating associativity in CPU caches,”
IEEE Trans. Comput., vol. 38, pp. 1612-1630, Dec. 1989.

[4] T. M. Conte and W. W. Hwu, “Single-pass memory system evaluation
for multiprogramming workloads,” Tech. Rep. CSG-122, Ctr. for Reli-
able and High-Performance Computing, Univ. of Illinois, Urbana, IL,
May 1990.

[5] W.-H. Wang and J.-L. Baer, “Efficient trace-driven simulation methods
for cache performance analysis,” ACM Trans. Comput. Sys., vol. 9, pp,

[6] K. R. Kaplan and R. 0. Winder, “Cache-based computer systems,”
Computer, vol. 6, pp. 30-36, Mar. 1973.

[7] W. D. Strecker, “Cache memories for (PDP-11) family computers,”
in Proc. 3rd Annu. In?. Symp. Comput. Architecture, Jan. 1976, pp.
155-158.

[8] G. S. Shedler and D. R. Slutz, “Derivation of miss ratios for merged
.access streams,” IBM J. Res. Develop., vol. 20, pp. 505-517, Sept. 1976.

[9] M. C. Easton, “Computation of cold-start miss ratios,” IEEE Trans.
Comput., vol. C-27, pp. 404-408, May 1978.

[IO] A. J. Smith, “Cache memories,’’ ACM Computing Surveys, vol. 14, no.

[I l l D. W. Clark, “Cache performance in the VAX-11/780,” ACM Trans.
Comput. Syst., vol. 1, pp. 24-37, Feb. 1983.

[I21 I. J. Haikala, “Cache bit ratios with geometric task switch intervals,” in
Proc. I l t h Annu. In?. Symp. Comput. Architecture, Ann Arbor, MI, June
1984, pp. 364-371.

222-241, Aug. 1991.

3, pp. 473-530, 1982.

[I31 A. Aganval, J. Hennessy, and M. Horowitz, “Cache performance
of operating system and multiprogramming workloads,” ACM Trans.
Comput. Syst., vol. 6, pp. 393-431, Nov. 1988.

[I41 D. Thiebaut and H. S. Stone, “Footprints in the cache,” ACM Trans.
Compur. Syst., vol. 5, pp. 305-329, Nov. 1987.

151 J. C. Mogul and A. Borg, “The effect of context switches on cache
performance,” in Proc. Fourth Int. Con$ on Architectural Support for
Prog. Lang. andOperating Syst., Santa Clara, CA, Apr. 1991, pp. 75-84.

161 T. M. Conte. “Systematic computer architecture prototyping,” Ph.D.
thesis, Dept. of Elect. and Comput. Eng., Univ. of Illinois, Urbana,
IL, 1992.

171 T. M. Conte and W. W. Hwu, “Benchmark characterization,” IEEE
Computer, pp. 48-56, Jan. 1991.

[18] “Spec newsletter,” SPEC, Fremont, CA, Feb. 1989.
[I91 J. S. Emer and D. W. Clark, “A characterization of processor perfor-

mance in the VAX-1 U780,” in Proc. I l t h Annu. In?. Symp. Comput.
Architecture, Ann Arbor, MI, June 1984, pp. 301-309.

[20] D. W. Clark, P. J. Bannon, and J. B. Keller, “Measuring VAX 8800
performance with a histogram hardware monitor,” in Proc. 15th Annu.
Int. Symp. Comput. Architecture, Honolulu, HI, May 1988, pp. 176185.

Wen-mei W. Hwu (S’81-M’87) received the Ph.D.
degree in computer science from the University of
California, Berkeley, in 1987.

He is an Associate Professor at the Department of
Electrical and Computer Engineering, University of
Illinois at Urbana-Champaign. His research interest
is in the area of architecture, implementation, and
compilation for high performance computer sys-
tems. He is the director of the IMPACT project,
which has delivered new compiler and computer
architecture technologies to the computer industry

since 1987. The IMPACT project has been sponsored by NSF, ONR, NASA
as well as major corporations such as Hewlett-Packard, Intel, SUN, NCR,
AMD, and Matsushita.

In recognition of his contributions to the areas of compiler optimization
and computer architecture, the Intel Corporation named Dr. Hwu the Intel
Associate Professor at the College of Engineering, University of Illinois in
1992. He received the National Eta Kappa Nu Outstanding Young Electrical
Engineer Award for 1993 and the 1994 Senior Xerox Award for Faculty
Research.

Thomas M. Conte received the BSEE degree from
the University of Delaware, Newark and the M.S.
and Ph.D. degrees in electrical engineering from the
University of lllinois, Urbana-Champaign.

He is an Assistant Professor in the Department of
Electrical and Computer Engineering at the Univer-
sity of South Carolina, Columbia, South Carolina.
His interests are in computer architecture and the
history of computing.
Dr. Conte is a member of the IEEE Computer
Society, the ACM, Tau Beta Pi, and Eta Kappa Nu.

