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The Susceptibility of Programs to Context Switching 
Wen-mei W. Hwu, Member, IEEE, and Thomas M. Conte 

Abstruct- Modern memory systems are composed of several 
levels of caching. Design of these levels is largely an empirical 
practice. One highly-effective empirical method is the single-pass 
method wherein all caches in a broad design space are evaluated 
in one pass over the trace. Multiprogramming degrades memory 
system performance since (process) context switching reduces the 
effectiveness of cache memories. Few single-pass methods exist 
which account for multiprogramming effects. This paper uses a 
general model of single-pass algorithms, the recurrencdconflict 
model, and extends the model for recording the effects due to both 
voluntary context switches (e.& system calls) and involuntary 
context switches (e+, time quantum expiration). Involuntary 
context switches are modeled using the distribution of lengths 
between a reference to an address and the re-reference to the same 
address. The paper makes the assumptions that involunary con- 
text switches are equally likely to occur between each reference, 
and that one can independently estimate, f r -5 ,  the fraction of a 
cache’s contents flushed between context switches. The case where 
fc,s = 1 is used to measure the effect of worst-case context switch 
penalty (the susceptibility) of several members of the SPEC89 
benchmark set to context switching. Some empirical results of 
frs  are presented to illustrate the case where fc,. < 1. The model 
is validated against its assumptions by comparing its results with 
more-restrictive methods. 

Zndex Terms- Multiprogramming, cache, simulation, single- 
pass algorithm, memory hierarchy, performance anaysis, bench- 
marking, SPEC. 

I. INTRODUCTION 
ULTIPLE levels of caching and buffering have become M the norm in memory system design. These systems are 

typically designed using simulation to determine the perfor- 
mance of a wide range of memory system organizations. The 
inputs to the simulator are benchmarks that represent nominal 
system workloads. The designer’s job is to choose the most 
cost-effective organization using the simulation results as a 
guide. A class of powerful simulation methods, called single- 
pass stack methods, have become available to memory system 
designers [ 11-[5]. With these methods, the memory system 
performance of thousands of organizations can be determined 
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using a single pass through the memory access trace of the 
benchmark, whereas traditional, multiple-pass methods require 
one pass per potential memory system design. 

Multiprogramming degrades memory system performance 
since (process) context switching reduces the effectiveness of 
cache memories. This occurs when cache contents that will 
be needed after the process returns from a context switch are 
purged by the intervening processes. The cache contents that 
may fall victim to context switching are determined by the 
process’ reference pattern (a program characteristic) and the 
cache dimension (a system design parameter). The portion 
of the cache contents that is actually purged by intervening 
processes is determined by the load of the system, the number 
of ready processes and access patterns of these processes. The 
method presented in this paper accurately records, for all cache 
dimensions and all context switching intensities in a single 
pass, the total amount of cache contents that will be needed 
after the process returns. This information is defined as the 
susceptibility of the program to the effect of context switching. 

Several other approaches have been used to measure the 
effects of context switching [6]-[ 141. The earliest approaches 
flushed the cache being simulated at fixed intervals in the 
trace [6],  171. Shedler and Slutz [8] approached the problem 
by stochastically merging several memory reference traces. 
Easton [9] used the average working set size of the memory 
reference trace to estimate cold-start miss ratios. Haikala [ 121 
simplified Easton’s approach by estimated cold-start miss ra- 
tios using a Markov chain model. Cold-start miss ratios can be 
used to approximate the multiprogramming effects. Switching 
between multiple memory reference traces at a fixed interval 
was used by Smith [ 101 to measure multiprogramming effects. 
Also, measurements of actual multiprogrammed workloads 
were performed by Clark 1111, Agarwal et al. 1131, and Mogul 
and Borg 11.51. Apart from the approximations of Easton [9] 
and Haikala [ 121, no work has been done to extend single-pass 
methods to model the effects of context switching exactly. 
Since multiprogramming effects can account for a 4%-12% 
degradation in performance [11]-1131, this omission in the 
literature has limited the usefulness of single-pass methods. 

One obvious extension to single-pass methods to model 
context switching effects is to flush the LRU stack periodically. 
The shortcoming of this approach is that one simulation would 
have to be performed for each context switching intensity 
(e.g., time quantum and I/O workload). A more desirable 
method is to record the context switching effects for all 
intensities in one pass. This paper introduces a single-pass 
method for measuring the susceptibility of a program to the 
effects of context switching for all cache dimensions and all 
intensities. It is demonstrated that the susceptibility measures 
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Reference 1 a b c d e f g h 
Address I 0 1 2 3 1 2 1 0 

Fig. I .  An example trace of addresses. 

Refercncc: a b C d 
Address: 0 miss 1 miss 2 miss 3 miss 

block 0: 

block 1: 

e f L? h 
1 miss 2 1 0 miss 

* Dimensional conflict 

Fig 2 An example two-block direct-mapped cache behavior. 

can be combined with system load parameters and context 
switching intensity to yield the performance degradation in 
various multiprogramming environments without resimulation. 
Obtaining memory system performance degradation under 
many different system loads allows the mcmory system to 
be designed with a degree of robustness. It further increases 
the advantage of single-pass stack methods over multiple-pass 
methods. This is the first such study to make the dichotomy 
between program susceptibility and multiprogramming effects. 
The measured performance of the method is compared to 
results from periodic and random flushing of the LRU stack. 

11. RECURRENCES, CONFLICTS AND CONTEXT SWITCHES 

The metric used in many memory system studies is the miss 
ratio. This is the ratio of the number of references that are not 
satisfied (Le., that miss) for a cache at a level of the memory 
system hierarchy over the total number of references made 
at that level. The miss ratio has served as a good metric for 
memory systems since it is a characteristic of the workload 
(e.g., the memory trace) yet independent of the access time 
of the memory elements. A given miss ratio can be used to 
decide whether or not a potential memory element technology 
will meet the required access time for the memory system [6].  

The recurrence/conflict model of the miss ratio is best 
illustrated with an example. Consider the trace of Fig. 1. The 
recurrences in the trace are accesses e ,  f 9 and h. In the ideal 
case of an infinite cache, the miss ratio may be expressed as 

N - R  p = -  
N '  

where R is the total number of recurrences and N is the 
total number of references. Nonideal behavior occurs due 
to conflicts. A dimensional conflict is defined as an event 
which converts a recurrence into a miss due to limited cache 
capacity or mapping inflexibility. For illustration, consider a 
direct mapped cache composed of two one-byte blocks shown 
in Fig. 2. (Note that in practice, such a small cache would 
be impractical to build.) A miss occurs for the recurring 
reference e because reference d purges address 1 from the 
cache due to insufficient cache capacity. Similarly, a miss 

occurs for recurring reference h due to reference c. References 
d and c represent a dimensional conflict for the recurrences 
e and h, respectively. The other misses, a ,  b,  c and d, occur 
because these are the first references to addresses 0 , 1 , 2  and 3, 
respectively. The following formula can be used for deriving 
cache miss ratio, p. for a given trace, a given cache dimension: 

where D the total number of dimensional conflicts. (For the 
example, p = (8 - (4 - 2))/8 = 0.75.) This is a general 
model and can be extended to account for other effects. This 
paper extends this model to address conflicts due to context 
switching. 

A multiprogramming conflict is defincd as an event which 
converts a recurrence into a miss due to a context switch. 
For example, both f and g are dimensional hits of the cache 
in Fig. 1. If a context switch occurs between references e 
and f which purges addresses 1 and 2 from the cache, two 
multiprogramming conflicts will occur, one to reference f and 
one to reference g. Equation (2 )  can be extended to account 
for these multiprogramming conflicts: 

N -  ( R -  D - M )  
, (3) N p =  

where M the total number of multiprogramming conflicts. 

A. Reference Streams and Cache Dimensions 

A formal abstraction of a benchmark's trace is termed a 
reference stream. This is a sequence of references to addresses, 
w ( k ) ,  of length N (0 5 k < N ) .  When required, the addresses 
are represented by lower-case Greek letters, such as a,  p, y. 
The reference stream is assumed to be generated by a single 
process in a multiprogramming system. Note that a reference 
at w ( k )  occurs later than w ( k  - 1) in time, but the parameter 
IC does not represent parameterized time since it does not take 
into account the difference in service times between cache 
hits and cache misses. For this reason, k is referred to as 
the reference count. The trace also contains information about 
voluntary context switching. A reference is called a voluntary 
context-switch event if the benchmark relinquishes the CPU 
after the reference (e.g., a system call is performed). 

The dimension of a cache is expressed using the notation, 
( C , B , S ) ,  for a cache of size 2" bytes, with block size Z B  
bytes, and 2' blocks contained in each associativity set. The 
term set size is used to mean associativity level, or the number 
of blocks per set. Cache size is the total number of bytes per 
cache. Block size has been called line size elsewhere [ 101. Note 
that C 2 B + S. The notation (C, B ,  m) is an abbreviation 
for the dimension of a fully-associative cache (S = C - B). 
For example, a cache of dimension (10,6,0) is a 1-KB direct- 
mapped cache with a block size of 64 bytes; and, a cache 
of dimension (21,10,11) (alternately, (21,10, m)) is of size 
2 MB with 1---length blocks and it is fully-associative. A 
dash is substituted for an entry in the triple to indicate all 
caches of that dimension: (-, 5 , l )  are all caches with block 
size of 32 bytes and having two-way associativity. Caches are 
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Fig. 3. An example of LRU stack operation 

assumed to use LRU replacement and map addresses into sets 
using bit selection [3]. 

It is useful to partition the reference stream by setting the 
block offset portion of all addresses in the stream to zero. This 
produces a block reference stream, W B ( ~ ) ,  is defined such that, 

In binary, this is equivalent to setting the least-significant B 
bits of each address to zero. 

B. Least Recently Used (LRU) Stack Operation 

LRU stacks were first introduced by Mattson, et al. in [ l ]  
as a way to model the behavior of paging systems. An LRU 
stack operates as follows: when an address, wg(k )  = a, is 
encountered in the block reference stream, the LRU stack is 
checked to see if a is present on the stack. If a is not present, 
it is pushed onto the stack. 

However, if a is present (e.g, it is a recurring reference), it 
is removed from the stack, then repushed onto the stack. This 
is illustrated in Fig. 3 for the example reference stream at 
the beginning of this section (Fig. 1). This stack maintenance 
policy is specific to a particular block size, as is the discussion 
below. 

A stack is represented as S ~ ( l c ) ,  maintained for a block 
size B at time k. The ith ordered item of SB(~) is expressed 
as, S ~ ( k ) [ i ] .  The stack may also be expressed as an ordered 
list, such that s ~ ( k )  = { s ~ ( k ) [ O ] ,  s,(k)[l], . . . , s ~ ( k ) [ M ] } ,  
where m is the depth of the stack. The following operations 
are defined for a stack: the push(.) function, 

and, the repush(.) function, 

1. 
1.1 determine D from I? 
1.2 
2. 
3. N t " l  

if a E S s ( k  - 1) then 

S ~ ( l i )  +- repush(Ss(k - l ) , a ) ,  
else S B ( k )  t push(SB(h - 1),a) 

The least recently used management policy for a stack, s ~ ( k )  Fig. 4. 
(adapted from Mattson et al.). 

are defined as side-effect-free functions rather than procedures. 
This is to remove dependence on the time variable, k .  

For an address a =  WE(^), the least recently used (LRU) 
management policy for a stack is shown in Fig. 4. In Step 
1.1, the references between the top of stack and the recurring 
reference have been referred to as the set I' = {pi I pi = 

Fig. 4 is applied to a = W B ( ~ )  for all k .  The LRU policy is 
essentially a definition for calculating Sg ( k )  from Sg ( k  - 1) 
and a. In most situations, S B ( ~ )  is calculated in order to obtain 
other statistics, such as the stack depth distribution. (Step 1.1 
is explained in detail in [ 161.) 

S B ( ~  - l)[i],O 5 i 5 A } .  

C. Types of Context Switching 

Context switching occurs due to two distinct events: 1) a 
voluntary context switch, where the benchmark relinquishes 
the processor, and, 2) an involuntary context switch, where the 
benchmark's execution is suspended due to external interrupts. 
Voluntary context switches are a characteristic of the bench- 
mark. They occur at the same place in the execution between 
different benchmark runs. On the other hand, involuntary 
context switches are determined by the YO system behavior 
(device interrupts), clock frequency (timer interrupts), etc. 
They do not occur at the same place between runs of the 
benchmark, and are not characteristic of the benchmark. Page 
faults are treated as involuntary context switches because page 
faults depend on the interaction of processes in the system, 
whose interaction is assumed to be pseudo-random in nature. 

Since involuntary context switches occur at random in- 
stances, it is assumed that involuntary context switches can 
occur with equal probability for each reference in the reference 
stream [12]. This probability is denoted, q, and termed the 
involuntary context switching intensity. Separation of the sys- 
tem's characteristics from the characteristics of the benchmark 
allows many different systems to be considered without re- 
simulating the benchmark's behavior. This is the main goal of 
single-pass techniques in general [2]. Although the occurrence 
of involuntary context switches is not a characteristic of the 
benchmark, the benchmark's susceptibility to their occurrence 
is. This susceptibility can be measured as the expected number 
of multiprogramming conflicts due to random involuntary 
context switching. A method to measure this susceptibility is 
presented below that records the benchmark's susceptibility 
to all context-switching intensities in a single-pass through 
the trace. The empirical results discussed in Section 111-A 
demonstrate the validity of this single-pass approach. 

The working set of a process (benchmark) may have been 
flushed from the cache before it re-enters the run state after a 
context switch. Let fcs represent the fraction of the cache's 
contents Pushed between context switches. The number of 
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processes executed before a process returns from a context 
switch is a function of the system load and the operating 
system scheduling policy. Furthermore. the particular cache 
block5 flushed due to a context switch also depends on the 
reference patterns of the processes executing on the system. 
This makes fCs highly dependent on several volatile variables 
and therefore difficult to measure. (Several empirical estimates 
of fcs are presented in Section 111-E.) Some virtual mem- 
ory system implementations force a cache flush to eliminate 
problems with page sharing of writable pages [13]. Also, it 
has been shown that for small cache sizes, a context switch 
effectively flushes the cache, therefore fcs = 1 [ I O ] .  For 
larger caches, this provides an upper bound for the effects of 
context switching. 

D. lhe  Components of Multiprogramming CnnJicts 

Multiprogramming conflicts are defined in terms of po- 
tential victims. A recurring reference that is not removed 
from a specific cache by a dimensional conflict, yet that may 
be removed by a context switch, is a potential victim of 
the context switch. The numbers of each type of potential 
victims are defined as XI [C.B,S]  and X I [ C ,  B .S ,q] ,  for 
all voluntary and involuntary context switches, respectively. 
X I  [C. B ,  SI is the total number of potential victims due to 
voluntary context $witching for caches of dimension (C,  B ,  S). 
X,[C. B, S ,  q]  is the expected number of potential victims 
due to involuntary context switching of intensity q. The 
multiprogramming conflicts are expressed in terms of victims 
as, 

M[G,B.S,q]  f c s ( X t ~ [ C . B . S ]  + X I [ C . B , S , ~ ] ) .  (4) 

The equation for the miss ratio (2) can be modified to take 
into account the new conflicts, 

N - ( R  - D - M )  
N P =  

- N - ( R  - D - fcs(X1. IC, B, SI + X I [ C >  B ,  s, 91) )  
- 

N 
( 5 )  

Determining the multiprogramming conflicts involves measur- 
ing X I .  and X I  from the reference stream. The measurement 
can be done by extending the recurrence/conflict single-pass 
technique. The miss ratio is then calculated by first calculating 
M [ C ,  B. S ,  q] using Equation 4 for a value of fcs, then using 
the result to complete Equation 5.  

E. Multiprogramming Extensions to LRU Stack Operation 

The extensions required to the recurrence/conflict single- 
pass technique measure X I .  and X I  are shown in Fig. 6. The 
procedure for determining X\.[C:, B.  S] is illustrated in Fig. 5. 
The procedure operates as follows: When Q is processed, if 
it is not a recurring reference (Le., the test of Step 1 of Fig. 
6 fails), then it cannot be a victim since it cannot produce 
a hit. However, if CL is a voluntary context switch event, it 
is marked as such when it  is pushed on the stack in Step 2 
(marked references are shown using asterisks in Fig. 5) .  

991 

voluntary context switch 

Reference: 1 2 I 0 

potential miss potential miss potential miss 

(* marked slack position) 

Fig. 5.  
operation. 

An example for voluntary context switch of the modified LRU stack 

If (Y is a recurring reference, XI/[C, B ,  S] is conditionally 
incremented if a marked reference is encountered when the 
dimensional conflicts are calculated. X v [ C ,  B ,  SI is only 
incremented for all dimensions in which Q does not have a 
dimensional conflict. If Xv [C. B ,  S] were incremented for all 
dimensions, a reference might be counted more than once as 
a conflict, once as a multiprogramming conflict and once as 
a dimensional conflict. Notice that the references immediately 
below repushed, marked references inherit the marking in Fig. 
5 (Step 1.6 and its substeps of Fig. 6). This is done to insure all 
subsequent recurring references that cross the context switch 
event are subject to a voluntary context switch. 

The procedure for determining X I [ C ,  B ,  S, q] using an LRU 
stack is somewhat more complicated than that for determining 
Xv[C, B ,  SI. Recall that an involuntary context switch may 
occur between every reference. Let L, the context switch 
distance, be the number of potential involuntary context switch 
events for the recurring reference a at reference count k (i.e., 
a = wg(k  - L )  = wg(lc)). Let p~ be the probability that 
at least one involuntary context switch occurs between times 
k - L and k .  Then, 

Define ~ L [ C ,  B ,  SI to be the number of recurrences not subject 
to dimensional conflicts that have a context switch distance of 
L. Therefore, 

Equation 7 expresses the expected number of potential victims 
due to involuntary context switching. 

The equation fits naturally into a stack-based method. The 
new metric ~ L [ C , B , S ]  can be recorded by annotating the 
references on the stack. 

Figure 7 shows an example of calculating Xr[C, B ,  SI. The 
figure shows that a counter of the number of context switch 
events affecting cy is kept, defined as c l (a ) .  Initially and after 
a recurring reference is repushed, c ~ ( a )  + 1 (Step 2.1 and 
1.8 of Fig. 6). In Step 1.3 and its substeps and Step 1.4, L 
is computed from one plus the sum of the counters of entries 
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Benchmark 
dodur 

eqntot t  
espresso 
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1. 
1 1  
I '  
1.7 
13.1 
1.3.2 
1.3.2 1 
1.3 3 
1.4 
1.5 
1.5.1 
1.5.2 
1.5.2.1 
1.6 
1.6.1 
1.6.2 
1.7 
1.8 
1.9 
2 
2.1 
2.2 

Description 
Monte Carlo simulation of the t ime evolution of a thermohydraulical 
modelization for a nuclear reactor. 
Generates t ruth table from logic equations. 
Performs I'LA optimization. 

if a E SB(k ~ 1) then 
u01.c~ + false 
L t l  
for I - 0 to A do 

0, S E ( k  - 
if pc marked as (I voluntary contezt swttch went then 

u01.c~ + t rue  
L + L i .I(%) 

nL[C.B,S] -nL[C , l ? .S ]+  I 

L t L + 1  
for all (C, B ,  S) wilhout a dimenstono/ conj7id do 

if v01.c~ then 
Xv[C.  0. S] + X i  [C. B ,  S] + 1 

if a morked as a oollrntory contert swtlch ccent then 
mark ~ A + I  

unmark a 
C l ( b A - , )  + C l ( 8 A - 1 )  + c l ( a )  

c l ( a )  - 1 

cr(a)  - 1 
S B ( k )  - push(sB(k - l ) , a )  

SB(k) + repush(SB(k - l ) , u ) ,  
else 

xlisp 

Fig. 6. An L R U  stack method modified for context switching. 

Lisp interpreter ( t he  application) executing the  Nine-Queens problem 
( the  recursive benchmark). 

Reference: 0 I 2 3 

1- 
2 c  - 1  

o c  - 1  1 c - 1  

0 c - 1  

Rcference: 1 2 1 0 

L = 3  L = 3  L = 2  L = l  

(C, is slack counter-- see text) 

Fig. 7. 
stack operation. 

An example for involuntary context switching of the modified LRU 

above (1 on the stack. (Notice that c ~ ( a )  is not part of the 
calculation of L, Fig. 7 illustrates this). In Step 1.5 and its 
substeps, ~ L [ C ,  B, S] is incremented for all caches in which 
there are no dimensional conflicts. Let SB(& l ) [A-  11 = B o ,  
the address that is directly above N in the stack S B ( ~  - 1). 
As a bookkeeping step. <:i([jo) is incremented by c I ( ( x )  (Step 
1.7). In this way, all the references deeper in the stack than N 
in S B ( ~  - 1) will arrive at the correct context switch distance. 

The algorithm shows TLL[C, B. S ]  being maintained for 
all values of L. Not all values of L must be recorded 
using TLL[C: B, SI. Rather, power-of-two sized categories can 
be retained. The scheme used for the simulations that is 
presented below uses 14 categories. The first category contains 
~ L [ C :  B, S ]  for 1 5 L < 4, following this, the ith category 
contains TLL[C: B ,  S] for 2(i+2) 5 L < 2''1-3. This quantiza- 
tion scheme is based on observations of the distribution of 
TLL[C, B. S] vs. L. The scheme does however produce error 
for small q, and this is commented on in the following section. 

Notice that the calculation of ,rt~[C. B, S] is independent 
of the context switching intensity distribution assumptions. 
The function used to calculate p~ in (7) need not be (6). 
It is possible to substitute other context switching intensity 
distributions into (7) without altering the presented single-pass 
method. The impact of this observation is that the method 
is more general than the assumption of uniformly-distributed 
involuntary context switching of (6). 

I GNU C compiler, version 1.35. 
I Performs 300 x 300 matr ix  multiulv. 

gcc 
matrix300 

111. EMPIRICAL RESULTS OF PROGRAM SUSCEPTIBILITY 

The validity of the single-pass method of the previous sec- 
tion is discussed below by comparing the method's results with 
the results from other techniques that have similar assump- 
tions. The results from the model are presented and discussed 
for members of the SPECS9 benchmark set presented in Table 
I (from [IS]). 

The dimensional conflicts that occur due to different cache 
sizes are discussed in Section 3.4 to compare their perfor- 
mance degradation with that of context switching. Empirically 
observed values of the parameter f cs  are also presented. It 
is found that fcs < 1 for moderate multiprogramming loads, 
confirming the observation that fcs = 1 produces overly- 
pessimistic results. 

A.  The Validity qf the Single-Pass Method 

It is important to question whether the single-pass method 
extended to measure context switching produces performance 
estimates that are consistent with the assumptions made in 
Section 11-C. (Whether these assumptions are valid themselves 
is beyond the scope of this study.) The approach used in testing 
the validity of the method is to compare its predictions against 
methods used for traditional cache simulators. 

One commonly-used simulation technique to measure the 
effects of context switching is to flush the state of the simula- 
tion at context switching events [6],[7],[10]. It is clear that in 
this case, f cs  = 1 is assumed. The decision of when to flush 
the stack for voluntary context switch events is known since 
these are present in the trace. The decision of when to flush 
the cache for involuntary context switch events is done by 
distributing involuntary context switch events throughout the 
trace uniformly. This random-interval simulation flushes the 
contents of the stack based on a uniformly-distributed random 
number with mean q.  Note that the random-interval simulation 
requires a simulation for each value of q .  The single-pass 
method does not have this restriction since it measures the 
effects of all y in one pass over the trace. 

The random-interval simulation method approximates the 
assumptions of Section 11-C, except that the simulation pro- 
duces results for one particular random distribution of con- 
text switch events across the trace. The single-pass method 
measures the average effect of all distributions. This dis- 
crepancy can be eased by averaging the results of several 
random-interval simulations. Random-interval simulations are 
performed iteratively until the results converged. 

Figure 8 present the difference between the random-interval 
simulation and the single-pass method for the benchmarks 
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Average 
Std. dev. 

~ 

999 

21.2% 9.73% 4.35% 16.7% 6.64% 2.64% 13.9% 4.76% 1.69% 
12.2% 4.96% 1.66% 9.72% 3.52% 1.04% 8.24% 2.72% 0.71% 

..pr...o, g - 0.001 .m- 
pcc, q - 0.001 + 

X1i.P. q - 0.001 *.- 
e q n t o t t .  q - 0.01  -+-- 

aspre.c.0, q - 0.01 9- 
qcc, q - 0 .01  c 

X l 1 . P .  q - 0.01 -.-- 
mtrlx300,  q - 0.001 

doduc, q - 0.01 -C- 

matrix300. q - 0.01 -a- 

1 
14 16 18 20 

cache sIzs (LOG byto.) 
12 

" ~~ ~~ 

10 

Fig. 8. 
single-pass method, q = 0.01 and q = 0.001. 

Absolute error of the miss ratio for random-interval simulation vs. 

expressed as the absolute error of the miss ratio, for q = 0.01 
and q = 0.001, respectively. Only the absolute errors for fully- 
associative caches are shown in the figure for brevity. Smaller 
levels of associativity were found to have lower error. 

The figure demonstrates that the difference between the 
simulation and the model is approximately 2.5% to 3.3% for 
q = 0.01 and less than 1% for q = 0.001. The increase in error 
for larger q values is due to the quantization of L discussed 
in the previous section. This error of 2.5% to 3.3% is large 
for q = 0.01, however empirical evidence suggests that q 
values are typically in the range of q = 0.001 to q = 0.0002 
(calculated from [19] and [20] and assuming one reference 
made every five instructions). The single-pass technique using 
the power-of-two quantization of L produces results within 1% 
of the random-interval simulation for practical q values. This 
evidence suggests the single-pass method produces results that 
are consistent with its assumptions. 

B. Involuntary Context Switching Susceptibility 

It is useful to define Ap = M[C,  B, S, q ] / N  as a measure 
of benchmark susceptibility to context switching. This is the 
difference between the uniprogramming and multiprogram- 
ming miss ratios. Figure 9 presents Ap for gcc and xlisp for 
block size 16 bytes. The results in the figure are for the cache 
(31,4, oo), to eliminate the effects of dimensional conflicts. 
Section III-D discusses the effects of dimensional conflicts. 
The figure considers only involuntary context switching. The 
effects of voluntary context switching are discussed in Section 
III-C. Also, complete cache flushing (fcs = 1) is used to 
emphasize the worst case context switching penalty (Section 
III-E discusses other values of fcs). The figure demonstrates 
that when the intensity of context switching, q, is small, Ap 
approaches zero such that context switching has little effect for 
q 5 0.0001. This value of q corresponds to an average context 
switching interval of loo00 references. The gcc benchmark is 
slightly more susceptible to context switching than the xlisp 
benchmark for q = 0.1. This situation reverses itself and xlisp 
becomes more susceptible for q > 0.01. This phenomenon 
can be explained with the cumulative distribution of n~ vs. L, 
which is plotted in Fig. 10. The figure has a logarithmic axis 

Fig. 9. 
cache dimension (31,4,  m). 

Ap (involuntary) of gcc and xlisp vs. q for block size 16 bytes, 

95 - 
90 - 
85 - 

qcc block size 16 c 
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Fig. 10. Cumulative distribution of n~ vs. L for block size 16 bytes, cache 
dimension ( 3 1 , 4 , m ) .  

TABLE I1 
INVOLUNTARY CONTEXT SWITCHING 

SUSCEFTIBIL~ ( A p )  FOR CACHES (31, -, m) 

for the independent variable, L. From the figure, it is apparent 
that xlisp has a higher number of recurrences for L 5 2% 85% 
for gcc vs. 87.4% for xlisp. This would imply that a context 
switch frequency of greater than every 25 = 32 references 
would impact xlisp more than gcc. This explains the behavior 
observed in Fig. 9. 

Figures 11 and 12 presents Ap for gcc, espresso and xlisp 
for block sizes 32 bytes and 64 bytes, respectively. The data for 
all the benchmarks is presented in Table II. The corresponding 
cumulative distribution functions of n~ vs. L are presented in 
Figs. 13 and 14, respectively. Together, Figs. 9-12 demonstrate 
that the susceptibility to context switching decreases as block 
size increases. From Table 11, for q = 0.01, the difference in 
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Fig. 12. 
bytes, cache dimension ( 3 1 . 6 .  x). 

A p  (involuntary) of gcc, espresso and xlisp vs. q for block size 64 

the miss ratio is 21.2% for block size 16 bytes and 13.9% for 
block size 32 bytes, on average. One possible reason for this 
is that the block reference streams for larger block sizes have 
smaller context switching distances. This occurs since more 
references occupy the same cache block for larger block sizes 
than for smaller block sizes. 

Comparison between the benchmarks reveals significant 
variance in susceptibility. The matrix300 and eqntott bench- 
marks have the lowest change in the miss ratio, whereas 
benchmarks such as doduc and xlisp are quite sensitive to 
the value of q .  For q = 0.01, A p  = 37.8% for doduc 
compared to 5.98% for xlisp. This confirms that susceptibility 
is a characteristic of the benchmark and that workload choice 
influences the observed effects of context switching. 

C. Voluntary Context Switching Susceptibility 

The susceptibility of the benchmarks to voluntary context 
switching effects is relatively small compared to the invol- 
untary effects. This can be seen in Table 111, which presents 
the voluntary susceptibility (Ap) for fully-associative caches 
of the largest dimension for gcc and espresso. The largest- 
dimensional fully-associative caches were selected so that Ap 
would be at its maximum since no dimensional conflicts occur. 
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Cumulative distribution of 111, vs. L for block qize 64 bytes, cache 

TABLE I I I  
VOI.UNTARY CONTEXT SWIrCHlNC SUSCEPTIBII.ITY VS.  BLOCK SlZ t  

I Block size (bytes) 
Brnchmark 1 16 32 64 

dodric I 0.07% 0.04% 0.03% 
espresso 0.03% 0.02% 0.01% 

gcci 3.1% 2.0% I:*% 

xlisp G . O X I O - ~ %  6 .0~10- '% G . O X I O - ~ %  

eqntott 5.6x~0-3% 3.8~10-3% 2 . 4 ~ 1 0 - 3 %  

matrix300 1 . 9 ~  IO-"% 1 . 8 ~  1 . 7 ~  

The occurrences of voluntary context switches are rare for 
these benchmarks as well as for other members of the SPECS9 
set [ 171. This explains the small susceptibility due to voluntary 
context switches. This may well be an artifact of benchmark 
selection and should not be taken as a general statement that 
voluntary context switches do not have much effect. One of 
the benchmarks, gcc, is selected to serve as an example for 
the discussions that follow to illustrate the behavior of the 
susceptibility model. 

D. Dimensional Conjict EfSects 

The dimensional conflicts have been excluded from consid- 
eration thus far by considering large, fully-associative caches 
to isolate the effects of context switching. The relative impor- 
tance of dimensional conflicts to multiprogramming conflicts is 
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16. M I D  vs. y for gcc, caches (10,4,-) and (13,4,-) .  

interesting because some cache designs may be more resilient 
to context switching than others due to the influences of 
dimensional conflicts. Consider caches of size 1-K bytes: it 
is selected as a worst case since it should experience a high 
percentage of dimensional conflicts due to its extremely small 
size. Figure 15 shows Ap vs. q for gcc using caches of 
1 -K-bytes and several set-associativities. 

Calculating the miss ratios for the uniprogrammed case for 
gcc reveals a variation of 18% in the miss ratio for (10,4,0) 
to 15% for (10,4,00) (this data is not shown in the figure). 
However, there is much less variation in Ap apparent in Fig. 
15. This same effect is apparent from the data collected for 
the other benchmarks. 

The above data suggests that dimensional conflicts dominate 
over context switching effects for small caches. To quantify 
this, the ratio of the multiprogramming conflicts to the dimen- 
sional conflicts, M[C,  B ,  S, q] /D[C,  B, SI, can be used as a 
measure of the relative impact of multiprogramming conflicts 
to dimensional conflicts. This ratio is plotted against q using 
caches of dimension (10,4, -) and (13,4, -) for gcc and the 
results are shown in Fig. 16. 

The figure demonstrates that for small q. dimensional con- 
flicts dominate. The two kinds of conflicts have equal effect 
(Le., M/D = 1.0) for q M 0.02 with caches (10,4, -) and for 

m 10000 

qcc 64-byte blocks e- 

: 
100 

Fig. 17. l o g ( M / D )  vs. cache size, for various block sizes (y = 0.02). 

q z 0.00003 with caches (13,4,  -). As associativity increases, 
the performance depends more on the multiprogramming 
conflicts than dimensional conflicts. Also, the importance of 
associativity increases with overall cache size. This implies 
that when associativity is used, multiprogramming effects can 
decide the cache size, which is similar to the observations of 
[ 131 concerning associativity. 

To show the effects observed are not an artifact of the test 
cache sizes of 1-K and 8-K bytes, Fig. 17 presents M I D  ratios 
for various cache and block sizes. 

Any value of q would have been sufficient to demonstrate 
the general relationship between M I D  and C. The data from 
Fig. 16 was used to select q = 0.02 for Fig. 17. Since in 
this region the effects of associativity are relatively minor, 
the associativity is fixed at 2-way associative (e.g., all caches 
(-, -, 1)). (Note that here, unlike the earlier figure, M I D  
is presented using a logarithmic scale). From the figure, it 
is immediately apparent that the worst-case relative impact 
of multiprogramming (i.e., M / D )  increases approximately 
linearly with cache size (both axes are logarithmic). Also, 
as a refinement of the observations made in Section 111-B, 
block size is inversely proportional to program susceptibility 
for small caches (less than 2-K bytes). However, program 
susceptibility appears to be directly proportional to block 
size for moderately-large cache sizes (4-K bytes up to 256-K 
bytes), after which the trend reverses itself again. 

E. Some Empirical Measurement of 
Fraction of Cache Flush (fcs) 

The majority of this section has assumed fcs = 1 in 
order to measure the worst-case susceptibility of programs 
to context switching. This section presents some empirical 
estimates of the fcs parameter. Note that these measurements 
are presented as some examples of fcs values. They should 
not be used to make general conclusions about fcs. The data is 
intended to illustrate the role of fcs in the model of context 
switching used in this paper. 

The method used is to simulate a multiprogrammed system 
using a trace composed of interleaved sections of traces taken 
from several benchmarks. At each reierence, the interleaver 
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Fig. 18. fcs vs. cache size for espresso, q = 0.01. Fig. 19. fcs vs. cache size for espresso, q = 0.001. 

makes a decision whether to continue processing the current 
trace or to switch to another waiting trace. This probability is 
assumed to be uniformly distributed with mean q. 

The values of fcs for each benchmark can be derived by 
comparing the number of misses for a uniprogramming cache 
to the observed number of misses for the multiprogramming 
cache. Any additional misses in the multiprogrammed case 
must be due to context switching. Let D,[C, B ,  S] represent 
the dimensional misses from the uniprogramming trace and 
D,[C, B, S] represent the dimensional misses measured from 
the multiprogramming trace. Let h;r represent the estimated 
multiprogramming conflicts. Then, 

(8) 

Note that it can always be assumed that Dm[C,B,S]  > 
D,[C, B ,  SI since any dimensional conflicts for a benchmark 
trace must come as a result of the interleaving of traced events. 
Using (4) and neglecting the XV term as justified by the 
experimental results of Section 111-C, then, 

&[C, B ,  s, q] = L [ C ,  B ,  SI - D,[C, B ,  SI. 

> (9) 
A Dm[C, B,  SI - D,[C, B,  SI 

XZ[C, B ,  s, q1 fcs  = 

where ~ C S  is the experimental value for fcs. Equation (9) 
requires knowledge of X I ,  which would require use of the 
algorithm of Fig. 7. 

The two experiments interleave espresso, gcc, and xlisp 
with q = 0.01 and q = 0.001. A block sizes of 32 bytes 
was assumed for these experiments. Values of fcs across 
cache size and associativities for the espresso benchmark are 
presented in Figs. 18 (q = 0.01) and 19 ( q  = 0.001) from the 
perspective of the espresso benchmark. 

It is clear from these two Figs. that fcs is a function of 
cache size, as suggested by Equation 9. For small caches, 
f c s  M 13%-18%, whereas for large caches, fcs M 8%, 
when q = 0.01. The effect of associativity on fcs are less 
pronounced than the effects of cache size for q = 0.01 (Fig. 
18). For q = 0.001 (Fig. 19), fcs M 0 large, fully-associative 
cache sizes. This is not true for smaller associativities, since 
dimensional conflicts occur between the references of the three 
benchmarks regardless of cache size. The effects of associa- 
tivity also become less noticeable as cache size increases, 

possibly because less dimensional conflicts occur between the 
references from espresso and those of gcc and xlisp. 

These experiments show that fcs = 1 is a pessimistic 
assumption under moderate load. When workloads are de- 
composed into workload elements or workload elements are 
taken from standard benchmark sets such as SPEC89, it is not 
possible to predict the different combinations of benchmarks 
that may execute together in the final system. In this situation, 
a conservative assumption such as fcs = 1 is appropriate. 
The results for the susceptibility measures presented above 
for fcs = 1 suggest that the difference in the miss ratio will 
not change considerably for values of q 5 lo4. If designs 
are selected to satisfy a required maximum miss ratio, this 
observation suggests that selecting prototypes with fcs = 1 
adds degree of tolerance to context switching to the designs 
with small increase in cost. 

IV. CONCLUSION 

This paper presented a method for constructing the worst- 
case context switching penalty (susceptibiliry) on the cache 
performance of a benchmark in the presence of multipro- 
gramming. This was done by extending existing single-pass 
methods to measure the susceptibility in terms of potential 
victims of context switching. The method removes the single- 
pass simulation’s dependence on involuntary context switching 
intensity and system load effects, allowing performance to be 
calculated for values of these parameters without the need 
for re-simulation. This generalization of single-pass methods 
extends their usefulness into domains where multiple-pass 
methods are the only option. 

The experimentation performed in this paper revealed that 
a benchmark’s susceptibility to context switching can be 
minimized by using large block sizes with small and large 
cache sizes. Interestingly, for medium-sized caches (4K-256K 
bytes for gcc) small block sizes minimize the impact of context 
switching. 

An increase in context-switching intensity has an roughly- 
linear effect on a benchmark’s susceptibility. For all but 
extremely high intensities, dimensional conflicts dominate the 
miss ratio. Since all the benchmarks elicited very small invol- 
untary context switching distances, a relatively high intensity 
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of context switching (q 2 0.0001) was needed to have 
significant effects. 

It is not true that all workloads will have susceptibilities 
similar to the SPEC89 benchmark members considered here. 
However, the method itself is not limited to a specific type of 
benchmark. Other results are easily generated. The benchmark 
results were shown to demonstrate the approach’s usefulness 
and validity. It was shown to perform comparable to less- 
general multiple-pass test methods. Also, the behavior of 
the multiprogramming miss ratio agrees with actual multi- 
programming behavior results presented by other researchers, 
suggesting the results obtained using the single-pass method 
are reliable for design purposes. 
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