Program Ogtimization Study on a
128-Core GPU

Shane Rgoo, Christopher |. Rodrigues, Sam S. Stone,
aara S. Baghsorkhi, Sain-Zee Ueng, and Wen-mei W.
wu

Yu, Xuan

Dept of Computer & Information Sciences
University of Delaware

CISC 879 : Software Support for Multicore Architectures J

Good news

X/
o0

» Improving programmability and generality on

» Possibility to perform a wide variety of
parallelization optimizations

Problem

X/
o0

+» How do you choose and control optimizations on
GPU properly

Possible combination of optimization is very large and
makes the optimization space tedious to explore

Limited local resources and global memory bandwidth
makes performance sensitive to even small changes in
code, unpredictable

CISC 879 : Software Support for Multicore Architectures

. Presented a study that examines a
broad space of optimizations performed

on several applications

. Found configurations up to 74% faster
than previously thought optimal.

. Explained why this is happening on
GPU, discuss some principles and

techniques for finding near-optimal

configurations

CISC 879 : Software Support for Multicore Architectures

a Architecture Overview (CUDA)

Introduction of execution hardware and threading model

- Compute Unified Device Architecture (CUDA)

o optimization space search

Discussion of the space search process and the classifications and
characteristics of the program optimizations

o Experiments

Discuss result of the search for several applications
Matrix Multiplication

Magnetic resonance Imaging

Sums of Absolute Difference

0 Conclusmn

CISC 879 : Software Support for Multicore Architectures

. General Programming and compilation process

v GPU is treaded as a coprocessor that
executes data-parallel kernel functions

v The user supplies a both host (CPU) and
kernel (GPU) code

v Codes are separated and compiled by
NVIDIA's compiler.

v Host code transfers data to GPU’s and
Initialed the kernel code via API calls

CISC 879 : Software Support for Multicore Architectures

Device

SM 16

SM 2

SM 1

Shared Memory

A

A

Register File

[]
Processor 1 I Processor 8

Constant Cache

A

Texture Cache

A

Off-Chip (Global, Constant, Texture) Memories

16 streaming multiprocessors (SMs)

Each SM containing eight streaming
processors (SPs), or cores

Each core executes a single thread's
instruction in SIMD

multiply-add arithmetic unit
two special functional units (SFUs)

reciprocal square root, sine, and
cosine

fully pipelined,

CISC 879 : Software Support for Multicore Architectures

Device

Off-Chip (Global, Constant, Texture) Memories

SM 16 Memory | Location | Size Latency Read-
Only
. Global off-chip [768MB| 200-300 | no
SM 2 total cycles
SM 1
Shared on-chip | 16KB [~register [no
Shared Memory per latency
A _ _ A SM
Register File Constant | on-chip | 64KB [~register | yes
]
Processor 1 I Processor 8 cache total latency
i Texture | on-chip | up to | =100 yes
Constant CaCheA | cache global | cycles
Texture Cache Local off-chip | up to [same as | no
A global | global

CISC 879 : Software Support for Multicore Architectures

Device

SM 16

SM 2
SM 1

Shared Memory

A A

Register File

[]
Processor 1 I Processor 8

Constant Cache

A

Texture Cache

Off-Chip (Global, Constant, Texture) Memories

Three Level Hierarchy:
*Grid

Block

*Thread

Each kernel creates a single grid

A grid consists of many thread
blocks.(512, on single SM)

Threads in a block are organized
into warps of 32 threads. Each
warp executes in SIMD fashion,
issuing in four cycles on the eight
SPs of an SM.

When one wrap stall, SM switch to
another warp

CISC 879 : Software Support for Multicore Architectures

Hardware constraints

Resource or Configuration Parameter Limit
Threads per SM 768 threads
Thread Blocks per SM 8 blocks

32-bit Registers per SM

8,192 registers

Shared Memory per SM

16,384 bytes

Threads per Thread Block

512 threads

These constrains interacts with each other

making accurately Fredlctlng the effects
er optimizations of CUDA

one or more compi
difficult.

CISC 879 : Software Support for Multicore Architectures

Consider an application:

*Uses 256 threads per block

10 registers per thread

*4KB of shared memory per thread block.
Can schedule 3 thread blocks and 768 threads on each SM.

An optimization:

Increases each thread's register usage from 10 to 11 (an increase of only
10%) will decrease the number of blocks per SM from 3 to 2. This
decreases the number of threads on an SM by 33%.

Why? 768 * 11 = 8448 > 9192

" Resource or Configuration Parameter Limit
Threads per SM 768 threads
Thread Blocks per SM 8 blocks

32-bit Registers per SM

8,192 registers

Shared Memory per SM

16,384 bytes

Threads per Thread Block

512 threads

By contrast, an optimization that increases
each thread block's shared memory usage by
1KB (an increase of 25%) does not decrease
the number of blocks per SM. Clearly, the
optimization space is inherently non-linear.

Resource or Configuration Parameter Limit
Threads per SM 768 threads
Thread Blocks per SM 8 blocks

32-bit Registers per SM

8,192 registers

Shared Memory per SM

16,384 bytes

Threads per Thread Block

512 threads

CISC 879 : Software Support for Multicore Architectures

a Architecture Overview (CUDA)

Introduction of execution hardware and threading model
« Compute Unified Device Architecture (CUDA)
a Optimization space search

Discussion of the space search process and the classifications and
characteristics of the program optimizations

o Experiments

Discuss result of the search for several applications
Matrix Multiplication

Magnetic resonance Imaging

Sums of Absolute Difference

0 Conclusmn

CISC 879 : Software Support for Multicore Architectures

Basic strategy for good performance:
Reduce dynamic instruction count while maintaining high SP

occupancy.

Four categories of machine-level behavior to optimizae
»Thread-level work redistribution

»Instruction count reduction

»Intra-thread parallelism

»Resource balancing

CISC 879 : Software Support for Multicore Architectures

Example of matrix multiplication

The kernel is tiled so that each
thread block computes a square 16-
by-16 tile of the output matrix

CISC 879 : Software Support for Multicore Architectures

Example of matrix multiplication

Ctemp = 0; tx and ty are each thread's coordinates
for (.. 4 in the thread block;
— e I gl
—shared_ tieat Bstieliiel; indexA , indexB , and indexC are
As[tyl[tx] = A[indexA]; positions in the matrices
Bs[ty] [tx] = B[indexB]; _ _
e T YL e Threads in a block cooperatively load
Cynothreads (): parts of the input matrices into shared
— memory, amortizing the cost of global
fo? (i =0; i< 16; i++) load latency
Eea SR Using larger tiles enhances the benefit
} TR of data sharing, but reduces scheduling
flexibility sinceé a greater fraction of thé
__syncthreads () ; threads on an SM must wait at barrier
Yoo synchronizations.
ClindexC] = Ctemp;

CISC 879 : Software Support for Multicore Architectures

Four categories of machine-level behavior

to optimize

»Thread-level work redistribution
»Instruction count reduction
»Intra-thread parallelism

»Resource balancing

Each thread compute two matrix elements

instead of one, presents opportunities for

eliminating redundant instructions

previously distributed across threads

Ctemp = Dtemp = 0;
for (...) {

__shared float As([lé][1l6]
__shared float Bs[le¢][32]
As[ty] [tx] E[indexd];

Bs[ty] [tx] B[indexB];
Bs[ty] [tx+16] = B[indexB+16];
indexA += 16;

indexB += 16 * widthB;
___syncthreads();

for (1 = 0; 1 < 16; i++)

syncthreads ()’

1
ClindexC] = Ctemp;
C[indexC+16] = Dtemp;

CISC 879 : Software Support for Multicore Architectures

Four categories of machine-level behavior
to optimize

» Thread-level work redistribution
»Instruction count reduction
»Intra-thread parallelism

»Resource balancing

Traditional compiler optimizations such as

common sub expression elimination, loop-

invariant code removal, and loop unrolling.

Ctemp = 0;
for (...) {
shared
__shared
As[ty] [tx]
Bs[ty] [tx]

indexA += 16;

indexB += 16
__syncthreads();

Ctemp +=

A[index2];
B[indexB];

* widthB;

As[ty]l [0] * Bs[O] [tx];

Ctemp +=

As[ty] [15] * Bs[15][tx];

__syncthreads();

}
ClindexC] =

Ctemp;

CISC 879 : Software Support for Multicore Architectures

Four categories of machine-level behavior

to optimize

» Thread-level work redistribution

»Instruction count reduction
»Intra-thread parallelism

»Resource balancing

A developer can unroll loops to facilitate
code scheduling in the compiler or explicitly

insert pre-fetching code.

__shared float As[l€][1l€];
__shared_ float Bs[l1l€]([1le];

As[ty] [tx]
Bs([ty] [tx]
index® == 1g;

nn
w

indexB += l& * widchB;
__syncthreads();

a = A[indexi]:;
b = B[indexB]:;
for (i = 0; 1 < 1&; i++4)

" Ctemp += As[tyl[i]
* Bs[1] [tx];

__syncthreads();
}

ClindexC] = Ctemp;

(d) Prefetching

CISC 879 : Software Support for Multicore Architectures

Four categories of machine-level behavior to optimize
» Thread-level work redistribution

»Instruction count reduction

»Intra-thread parallelism

»Resource balancing

Trade certain resource usages, some of which may be counterintuitive, to
produce a better performing application.

An example of this is using shared memory to buffer data for reuse,
regardless of whether it is shared with other threads.

Another example is proactive register spilling by the programmer. By
reducing register usage, often a critical resource, more thread blocks can be
assigned to each SM.

CISC 879 : Software Support for Multicore Architectures

a Architecture Overview (CUDA)

Introduction of execution hardware and threading model
Compute Unified Device Architecture (CUDA)

o optimization space search

Discussion of the space search process and the classifications and
characteristics of the program optimizations

a Experiments

Discuss result of the search for several applications
Matrix Multiplication

Magnetic resonance Imaging

Sums of Absolute Difference

0 Conclusmn

CISC 879 : Software Support for Multicore Architectures

Comparison:

GPU experiments:
AMD Opteron 248 2.2GHz with 1GB main memory.
CPU versions:

Intel Core2 Extreme Quad running at 2.66 GHz with 4GB
main memory.

Application Description Max Speedup
over CPU

Matrix Multiplication of two dense 4k x 4k matrices. The CPU version uses version 9.0 of the Intel C++ Compiler 6.98X

Multiplication and version 8.0 of the Intel Math Kemel Library.

SAD Computation of sums of absolute differences. SADs are computed between 4x4 pixel blocks in two 19.6X
QCIF-size images over a 32 pixel square search area.

MRI-Q Computation of a matrix), representing the scanner configuration, used in a 3D magnetic resonance 351X
image reconstruction algorithm in non-Cartesian space.

MRI-FHD Computation of an image-specific matrix ™ d, used in a 3D magnetic resonance image reconstruction 220X

algorithm in non-Cartesian space.

CISC 879 : Software Support for Multicore Architectures

GFLOPS

We varied tiling sizes, tiling dimensions, pre-fetching, and unroll factors,

100
- _
o I .
70 |
60 |
50 -
40 |
20 -
20 |
101 u
0- |
prefetch prefetch | nomnal | prefetch | nomal | prefetch
1x1 12 1x4 1x1 1x2 x4
axa tiles 16x16 tiles

Matrix Multiplication Results

m unrall 1

O unrall 2

@ unroll 4

O complete
unrall

CISC 879 : Software Support for Multicore Architectures

The general trend: Larger tiles sizes and more work per thread gives

higher performance
Initial thought optimal
1x1 tiling, 16x16 tiles, complete unrolling, pre-fetching
87.5 GFLOPS.
Actual peak performing:
1x1 tiling, 16x16 tiles, complete unrolling, no pre-fetching
91.3 GFLOPS, an improvement of 4.2%.

100
0 —
w |
70 —
m unrall 1
v €0 N
% O unrall 2
50 -
|
6 @ unroll 4
40 i O complete
unroll
20 -
20 -
10 - —
0 L
nomal | prefetch | nomal | prefetch | nomal | prefetch | normal | prefetch | noma | prefetch | nommal | prefetch
1x1 1x1 1x2 1x4
16x16 tiles

—_— Fig. 3. Matrix Multiplication Results

Increasing the tiling dimensions:

Stable performance

*Slight advantage in average

«does not result in peak performance.

Reason: negative effects of unrolling by more than a factor of two for the
higher tiling dimensions.

GFLOPS

100

nomal | prefetch | nomal | prefeich | nomal | prefetch | normal

1x1

Fig. 3.

1x1

Matrix Multiplication Results

prefetch | nomal | prefeich | nomal

x2
16x16 tiles

prefetch
1x4

munrall 1

Ounrall 2

@ unrall 4

O complete)
unrall

In summary:

v'larger thread blocks are good due to data sharing.

v'Complete unrolling often good due to reducing the branches calculations.
“*However, the runtime's scheduling may increase register pressure such that

the ngpber of thread blocks assigned to each SM is reduced.

0 —

o |

70 | [munroit 1
gfeo [|ounroil 2
f_jso | @ uroil 4
© 4 [|o complete

. | [uo

20 i

10 u

04 i

nomal | prefetch | nomal | prefetch [nomal | prefetch | nomal
1x1

prefetch | nomal | prefeich | nomal | prefetch
1x1 1x2 1x4

16x16 tiles

Another application:
Magnetic resonance imaging (MRI) reconstruction

Reconstruct high-quality images from non-Cartesian trajectories.
The computation required to perform these reconstructions is
substantial.

Parameters sensitive to performance:
=loop unrolling factor,

*The number of threads per block (tpb),
»The number of scan points processed by each grid

CISC 879 : Software Support for Multicore Architectures

o
-
roF
=
cof
a;

Unrolling Factor

v'Shorter execution time for an unrolling factor of 8
v'4 is often worse than either 2 or 8

Reason:

12 registers when unrolled, 2 thread blocks per SM and 6.17s.

12 registers Unrolling factor is 2, 5.52s.

24 registers unrolling factor is 4, only admit on block per SM 5.89s
30 registers unrolling factor is 8, 1 block per SM, 4.64s

CISC 879 : Software Support for Multicore Architectures

35

30

251

20F

15 ¢

10 E

5F

0

2 64 128 256 512
Threads per Thread Block

(b) Varying threads per thread block (tbp). Each
line fixes unrolling factor and points per grid.

CISC 879 : Software Support for Multicore Architectures

32 ¥ 128 256 512 1024 2048
Scan Points per Grid

(c¢) Varying scan points per grid (ppg). Each line
fixes unrolling factor and threads per block.

there is a smaller chance of conflicts when fewer thread
blocks run on an SM.

CISC 879 : Software Support for Multicore Architectures J

To summarize MRI
Performance relatively insensitive to block size
An unrolling factor of 8 provided the highest performing

CISC 879 : Software Support for Multicore Architectures J

Gradual changes in optimization parameters can have wildly
varying effects on an application.

Local resources used by a thread increases to points where
fewer thread blocks can be assigned to each SM will reduce
overall performance.

They believe that scheduling should be better
controlled, possibly by the compiler rather than the runtime.

CISC 879 : Software Support for Multicore Architectures

