
CISC 879 : Software Support for Multicore Architectures

Yu, Xuan
Dept of Computer & Information Sciences

University of Delaware

Program Optimization Study on a
128-Core GPU

Shane Ryoo, Christopher I. Rodrigues, Sam S. Stone,
Sara S. Baghsorkhi, Sain-Zee Ueng, and Wen-mei W.
Hwu

CISC 879 : Software Support for Multicore Architectures

General Idea
 Good news

 Improving programmability and generality on
GPU

 Possibility to perform a wide variety of
parallelization optimizations

 Problem
 How do you choose and control optimizations on

GPU properly
 Possible combination of optimization is very large and

makes the optimization space tedious to explore

 Limited local resources and global memory bandwidth
makes performance sensitive to even small changes in
code, unpredictable

CISC 879 : Software Support for Multicore Architectures

General Idea
• Presented a study that examines a

broad space of optimizations performed
on several applications

• Found configurations up to 74% faster
than previously thought optimal.

• Explained why this is happening on
GPU, discuss some principles and
techniques for finding near-optimal
configurations

CISC 879 : Software Support for Multicore Architectures

Organization
 Architecture Overview (CUDA)

 Introduction of execution hardware and threading model

 Compute Unified Device Architecture (CUDA)

 optimization space search
 Discussion of the space search process and the classifications and

characteristics of the program optimizations

 Experiments
 Discuss result of the search for several applications

 Matrix Multiplication

 Magnetic resonance Imaging

 Sums of Absolute Difference

 Conclusion

CISC 879 : Software Support for Multicore Architectures

Architecture
• General Programming and compilation process

 GPU is treaded as a coprocessor that
executes data-parallel kernel functions

 The user supplies a both host (CPU) and
kernel (GPU) code

 Codes are separated and compiled by
NVIDIA’s compiler.

 Host code transfers data to GPU’s and
initialed the kernel code via API calls

CISC 879 : Software Support for Multicore Architectures

Architecture

16 streaming multiprocessors (SMs)

Each SM containing eight streaming
processors (SPs), or cores

Each core executes a single thread's
instruction in SIMD

multiply-add arithmetic unit

two special functional units (SFUs)

reciprocal square root, sine, and
cosine

fully pipelined,

CISC 879 : Software Support for Multicore Architectures

Architecture

CISC 879 : Software Support for Multicore Architectures

Architecture
Three Level Hierarchy:
•Grid
•Block
•Thread

Each kernel creates a single grid

A grid consists of many thread
blocks.(512, on single SM)

Threads in a block are organized
into warps of 32 threads. Each
warp executes in SIMD fashion,
issuing in four cycles on the eight
SPs of an SM.

When one wrap stall, SM switch to
another warp

CISC 879 : Software Support for Multicore Architectures

Architectural Interactions
• Hardware constraints

These constrains interacts with each other
making accurately predicting the effects of
one or more compiler optimizations of CUDA
difficult.

CISC 879 : Software Support for Multicore Architectures

Architectural Interactions
Consider an application:
•Uses 256 threads per block
•10 registers per thread
•4KB of shared memory per thread block.
Can schedule 3 thread blocks and 768 threads on each SM.

An optimization:
Increases each thread's register usage from 10 to 11 (an increase of only
10%) will decrease the number of blocks per SM from 3 to 2. This
decreases the number of threads on an SM by 33%.
Why? 768 * 11 = 8448 > 9192

CISC 879 : Software Support for Multicore Architectures

Architectural Interactions

By contrast, an optimization that increases
each thread block's shared memory usage by
1KB (an increase of 25%) does not decrease
the number of blocks per SM. Clearly, the
optimization space is inherently non-linear.

CISC 879 : Software Support for Multicore Architectures

Optimization space search
 Architecture Overview (CUDA)

 Introduction of execution hardware and threading model

 Compute Unified Device Architecture (CUDA)

 Optimization space search
 Discussion of the space search process and the classifications and

characteristics of the program optimizations

 Experiments
 Discuss result of the search for several applications

 Matrix Multiplication

 Magnetic resonance Imaging

 Sums of Absolute Difference

 Conclusion

CISC 879 : Software Support for Multicore Architectures

Optimization space search

Basic strategy for good performance:

Reduce dynamic instruction count while maintaining high SP

occupancy.

Four categories of machine-level behavior to optimizae

Thread-level work redistribution

Instruction count reduction

Intra-thread parallelism

Resource balancing

CISC 879 : Software Support for Multicore Architectures

Example of matrix multiplication

The kernel is tiled so that each
thread block computes a square 16-
by-16 tile of the output matrix

Optimization space search

CISC 879 : Software Support for Multicore Architectures

Optimization space search
Example of matrix multiplication

tx and ty are each thread's coordinates
in the thread block;

indexA , indexB , and indexC are
positions in the matrices

Threads in a block cooperatively load
parts of the input matrices into shared
memory, amortizing the cost of global
load latency

Using larger tiles enhances the benefit
of data sharing, but reduces scheduling
flexibility since a greater fraction of the
threads on an SM must wait at barrier
synchronizations.

CISC 879 : Software Support for Multicore Architectures

Optimization space search
Four categories of machine-level behavior

to optimize

Thread-level work redistribution

Instruction count reduction

Intra-thread parallelism

Resource balancing

Each thread compute two matrix elements

instead of one, presents opportunities for

eliminating redundant instructions

previously distributed across threads

CISC 879 : Software Support for Multicore Architectures

Four categories of machine-level behavior

to optimize

Thread-level work redistribution

Instruction count reduction

Intra-thread parallelism

Resource balancing

Traditional compiler optimizations such as

common sub expression elimination, loop-

invariant code removal, and loop unrolling.

Optimization space search

CISC 879 : Software Support for Multicore Architectures

Four categories of machine-level behavior

to optimize

Thread-level work redistribution

Instruction count reduction

Intra-thread parallelism

Resource balancing

A developer can unroll loops to facilitate
code scheduling in the compiler or explicitly
insert pre-fetching code.

Optimization space search

CISC 879 : Software Support for Multicore Architectures

Four categories of machine-level behavior to optimize

Thread-level work redistribution

Instruction count reduction

Intra-thread parallelism

Resource balancing

Trade certain resource usages, some of which may be counterintuitive, to
produce a better performing application.

An example of this is using shared memory to buffer data for reuse,
regardless of whether it is shared with other threads.

Another example is proactive register spilling by the programmer. By
reducing register usage, often a critical resource, more thread blocks can be
assigned to each SM.

Optimization space search

CISC 879 : Software Support for Multicore Architectures

Experiments
 Architecture Overview (CUDA)

 Introduction of execution hardware and threading model

 Compute Unified Device Architecture (CUDA)

 optimization space search
 Discussion of the space search process and the classifications and

characteristics of the program optimizations

 Experiments
 Discuss result of the search for several applications

 Matrix Multiplication

 Magnetic resonance Imaging

 Sums of Absolute Difference

 Conclusion

CISC 879 : Software Support for Multicore Architectures

Experiments

Comparison:

GPU experiments:

AMD Opteron 248 2.2GHz with 1GB main memory.

CPU versions:

Intel Core2 Extreme Quad running at 2.66 GHz with 4GB
main memory.

CISC 879 : Software Support for Multicore Architectures

Experiments
We varied tiling sizes, tiling dimensions, pre-fetching, and unroll factors,

CISC 879 : Software Support for Multicore Architectures

Experiments
The general trend: Larger tiles sizes and more work per thread gives
higher performance

Initial thought optimal
1x1 tiling, 16x16 tiles, complete unrolling, pre-fetching
87.5 GFLOPS.

Actual peak performing:
1x1 tiling, 16x16 tiles, complete unrolling, no pre-fetching
91.3 GFLOPS, an improvement of 4.2%.

CISC 879 : Software Support for Multicore Architectures

Experiments
Increasing the tiling dimensions:
•Stable performance
•Slight advantage in average
•does not result in peak performance.
Reason: negative effects of unrolling by more than a factor of two for the
higher tiling dimensions.

CISC 879 : Software Support for Multicore Architectures

Experiments
In summary:
larger thread blocks are good due to data sharing.
Complete unrolling often good due to reducing the branches calculations.
However, the runtime's scheduling may increase register pressure such that
the number of thread blocks assigned to each SM is reduced.

CISC 879 : Software Support for Multicore Architectures

Experiments
Another application:
Magnetic resonance imaging (MRI) reconstruction

Reconstruct high-quality images from non-Cartesian trajectories.
The computation required to perform these reconstructions is
substantial.

Parameters sensitive to performance:

loop unrolling factor,
The number of threads per block (tpb),
The number of scan points processed by each grid

CISC 879 : Software Support for Multicore Architectures

Shorter execution time for an unrolling factor of 8
4 is often worse than either 2 or 8
Reason:
•12 registers when unrolled, 2 thread blocks per SM and 6.17s.
•12 registers Unrolling factor is 2, 5.52s.
•24 registers unrolling factor is 4, only admit on block per SM 5.89s
•30 registers unrolling factor is 8, 1 block per SM, 4.64s

CISC 879 : Software Support for Multicore Architectures

Experiments

CISC 879 : Software Support for Multicore Architectures

there is a smaller chance of conflicts when fewer thread
blocks run on an SM.

Experiments

CISC 879 : Software Support for Multicore Architectures

To summarize MRI

Performance relatively insensitive to block size

An unrolling factor of 8 provided the highest performing

Experiments

CISC 879 : Software Support for Multicore Architectures

Gradual changes in optimization parameters can have wildly
varying effects on an application.

Local resources used by a thread increases to points where
fewer thread blocks can be assigned to each SM will reduce
overall performance.

They believe that scheduling should be better
controlled, possibly by the compiler rather than the runtime.

Conclusions

