BLUE WATERS sustained petascale computing

Moving Towards Exascale with Lessons Learned from GPU Computing

Wen-mei Hwu ECE, CS, PCI, NCSA University of Illinois at Urbana-Champaign

Agenda

- Blue Waters and recent progress in petascale GPU computing
- Upcoming innovations in exascale computing
 - Architecture
 - Programming Systems
- Conclusion and discussions

Blue Waters - Operational at Illinois since 3/2013

13.2 PF 1.6 PB DRAM \$250M

120+ Gb/sec

WAN

LAKES CONSORTIUM

Two Petascale Computing Systems

I

System Attribute	NCSA Blue Waters	ORNL Titan
Vendors	Cray/AMD/NVIDIA	Cray/AMD/NVIDIA
Processors	Interlagos/Kepler	Interlagos/Kepler
Total Peak Performance (PF)	13.2	27.1
Total Peak Performance (CPU/GPU)	7.7/5.5	2.6/24.5
Number of CPU Chips	49,504	18,688
Number of GPU Chips	4,224	18,688
Amount of CPU Memory (TB)	1600	584
Interconnect	3D Torus	3D Torus
Amount of On-line Disk Storage (PB)	26	13.6
Sustained Disk Transfer (TB/sec)	>1	0.4-0.7
Amount of Archival Storage	300	15-30
Sustained Tape Transfer (GB/sec)	100	7

Cray XK7 Nodes

Blue Waters contains 4,224 Cray XK7 compute nodes.

- Dual-socket Node
 - One AMD Interlagos chip
 - 8 core modules, 32 threads
 - 156.5 GFs peak performance
 - 32 GBs memory
 - 51 GB/s bandwidth
 - One NVIDIA Kepler chip
 - 1.3 TFs peak performance
 - 6 GBs GDDR5 memory
 - 250 GB/sec bandwidth
 - Gemini Interconnect
 - Same as XE6 nodes

Cray XE6 Nodes

Blue Waters contains 22,640 Cray XE6 compute nodes.

- Dual-socket Node
 - Two AMD Interlagos chips
 - 16 core modules, 64 threads
 - 313 GFs peak performance
 - 64 GBs memory
 - 102 GB/sec memory bandwidth
 - Gemini Interconnect
 - Router chip & network interface
 - Injection Bandwidth (peak)
 - 9.6 GB/sec per direction

Science Area	Number of Teams	Codes	Struct Grids	Unstruct Grids	Dense Matrix	Sparse Matrix	N- Body	Monte Carlo	FFT	PIC	Sig I/O
Climate and Weather	3	CESM, GCRM, CM1/WRF, HOMME	Х	Х		Х		X			х
Plasmas/ Magnetosphere	2	H3D(M),VPIC, OSIRIS, Magtail/UPIC	x				х		Х		x
Stellar Atmospheres and Supernovae	5	PPM, MAESTRO, CASTRO, SEDONA, ChaNGa, MS-FLUKSS	X			X	Х	X		Х	Х
Cosmology	2	Enzo, pGADGET	Х			х	Х				
Combustion/ Turbulence	2	PSDNS, DISTUF	х						х		
General Relativity	2	Cactus, Harm3D, LazEV	х			Х					
Molecular Dynamics	4	AMBER, Gromacs, NAMD, LAMMPS				X	X		Х		
Quantum Chemistry	2	SIAL, GAMESS , NWChem			Х	X	X	X			X
Material Science	3	NEMOS, OMEN, GW, QMCPACK			Х	X	X	X			
Earthquakes/ Seismology	2	AWP-ODC, HERCULES, PLSQR, SPECFEM3D	Х	х			X				X
Quantum Chromo Dynamics	1	Chroma, MILC, USQCD	х		Х	Х					
Social Networks	1	EPISIMDEMICS									
Evolution	1	Eve									
Engineering/System of Systems	1	GRIPS,Revisit						х			
Computer Science	1			Х	х	х			Х		Х

Initial Production Use Results

- NAMD
 - 100 million atom benchmark with Langevin dynamics and PME once every 4 steps, from launch to finish, all I/O included
 - 768 nodes, Kepler+Interlagos is 3.9X faster over Interlagos-only
 - 768 nodes, XK7 is 1.8X XE6
- Chroma
 - Lattice QCD parameters: grid size of 48³ x 512 running at the physical values of the quark masses
 - 768 nodes, Kepler+Interlagos is 4.9X faster over Interlagos-only
 - 768 nodes, XK7 is 2.4X XE6
- QMCPACK
 - Full run Graphite 4x4x1 (256 electrons), QMC followed by VMC
 - 700 nodes, Kepler+Interlagos is 4.9X faster over Interlagos-only
 - 700 nodes, XK7 is 2.7X XE6

Blue Waters Science Breakthrough Example

- Determination of the structure of the HIV capsid at atomic-level
- Collaborative effort of experimental groups, at the U. of Pittsburgh and Vanderbilt U., and the Schulten's computational team at the U. of Illinois.
- 64-million-atom HIV capsid simulation of the process through which the capsid disassembles, releasing its genetic material, is a critical step in HIV infection and a potential target for antiviral drugs.

LESSON #1

Production GPU code often involve complex tradeoffs.

Tridiagonal Solver

- Implicit finite difference methods, cubic spline interpolation, pre-conditioners
- An algorithm to find a solution of Ax = d, where A is an nby-n tridiagonal matrix and d is an n-element vector

Efficient Storage Format for A

- Stored as 3 1D arrays
 - No need for column indices
 - No need for row pointers

GPU Tridiagonal System Solver Building Blocks

• Thomas (sequential)

• Cyclic Reduction (1 step)

- Hybrid Methods
 - PCR-Thomas (Kim 2011, Davidson 2011)
 - PCR-CR (CUSPARSE 2012)
 - Etc.

 CUSPARSE is supported by NVIDIA

GPU Performance Advantage

Runtime of solving an 8M-row matrix

Relative Backward Error

I

Matrix type	SPIKE-diag_pivoting	SPIKE-Thoma	CUSPARSE	MKL	ntel SPIKE	Matlab
1	1.82E-14	1.97E-14	7.14E-12	1.88E-14	1.39E-15	1.96E-14
2	1.27E-16	1.27E-16	1.69E-16	1.03E-16	1.02E-16	1.03E-16
3	1.55E-16	1.52E-16	2.57E-16	1.35E-16	1.29E-16	1.35E-16
4	1.37E-14	1.22E-14	1.39E-12	3.10E-15	1.69E-15	2.78E-15
5	1.07E-14	1.13E-14	1.82E-14	1.56E-14	4.62E-15	2.93E-14
6	1.05E-16	1.06E-16	1.57E-16	9.34E-17	9.51E-17	9.34E-17
7	2.42E-16	2.46E-16	5.13E-16	2.52E-16	2.55E-16	2.27E-16
8	2.14E-04	2.14E-04	1.50E+10	3.76E-04	2.32E-16	2.14E-04
9	2.32E-05	3.90E-04	1.93E+08	3.15E-05	9.07E-16	1.19E-05
10	4.27E-05	4.83E-05	2.74E+05	3.21E-05	4.72E-16	3.21E-05
11	7.52E-04	6.59E-02	4.54E+11	2.99E-04	2.20E-15	2.28E-04
12	5.58E-05	7.95E-05	5.55E-04	2.24E-05	5.52E-05	2.24E-05
13	5.51E-01	5.45E-01	1.12E+16	3.34E-01	3.92E-15	3.08E-01
14	2.86E+49	4.49E+49	2.92E+51	1.77E+48	3.86E+54	1.77E+48
15	2.09E+60	Nan	Nan	1.47E+59	Fail	3.69E+58
16	Inf	Nan	Nan	Inf	Fail	4.68E+171

 SPIKE (Polizzi et al), diagonal pivoting for numerical stability

ĮΑ

, F_i

A

Partitioning

B

I F

C_i

Fast Transposition on GPU

Chang, et al, SC 2012 SAMOS 2013

Dynamic Tiling

Runtime

SAMOS 2013

I

NCSA

GREAT

LAKES CONSORTIUM

Chang, et al, SC 2012

2013

 $\mathbf{C}\mathbf{R}$

Matrix type SF	IKE-diag_pivoti	ng SPIKE-Thomas	CUSPARSE	MKL	ntel SPIKE	Matlab
1	1.82E-14	1.97E-14	7.14E-12	1.88E-14	1.39E-15	1.96E-14
2	1.27E-16	1.27E-16	1.69E-16	1.03E-16	1.02E-16	1.03E-16
3	1.55E-16	1.52E-16	2.57E-16	1.35E-16	1.29E-16	1.35E-16
4	1.37E-14	1.22E-14	1.39E-12	3.10E-15	1.69E-15	2.78E-15
5	1.07E-14	1.13E-14	1.82E-14	1.56E-14	4.62E-15	2.93E-14
6	1.05E-16	1.06E-16	1.57E-16	9.34E-17	9.51E-17	9.34E-17
7	2.42E-16	2.46E-16	5.13E-16	2.52E-16	2.55E-16	2.27E-16
8	2.14E-04	2.14E-04	1.50E+10	3.76E-04	2.32E-16	2.14E-04
9	2.32E-05	3.90E-04	1.93E+08	3.15E-05	9.07E-16	1.19E-05
10	4.27E-05	4.83E-05	2.74E+05	3.21E-05	4.72E-16	3.21E-05
11	7.52E-04	6.59E-02	4.54E+11	2.99E-04	2.20E-15	2.28E-04
12	5.58E-05	7.95E-05	5.55E-04	2.24E-05	5.52E-05	2.24E-05
13	5.51E-01	5.45E-01	1.12E+16	3.34E-01	3.92E-15	3.08E-01
14	2.86E+49	4.49E+49	2.92E+51	1.77E+48	3.86E+54	1.77E+48
15	2.09E+60	Nan	Nan	1.47E+59	Fail	3.69E+58
16	Inf	Nan	Nan	Inf	Fail	4.68E+171

GPU Performance Advantage

Runtime of solving an 8M matrix

- Driven by mobile market
- Computing devices are quickly become SOCs
 - Integrated CPU-GPU-I/O with DRAM Channels
 - Compute outside CPU cores gaining importance
 - Data movement off-chip must be minimized
 - CUDA and HSA (Heterogeneous System Architecture) are leading the trends
- New OS/runtime and programming systems are emerging to take advantage of these advances

UNIFIED ADDRESS SPACE AND SOC DISTRIBUTED COMPUTE

for acceleration of at scale data communication and compute - Innovation in HSA and OS BLUE WATERS

GREAT LAKES CONSORTIUM

NESA

NESA

GREAT LAKES CONSORTIUM

hav

for acceleration of pointer-based data structures - Innovation in CUDA and HSA

FOR PETASCALE COMPUTATION

NCSA

Legacy

FOR PETASCALE COMPUTATION

NCSA

FOR PETASCALE COMPUTATION

NCSA

CRA

FOR PETASCALE COMPUTATION

NCSA

FOR PETASCALE COMPUTATION

NCSA

FOR PETASCALE COMPUTATION

NCSA

FOR PETASCALE COMPUTATION

 \square

FOR PETASCALE COMPUTATION

NCSA

Large Spatial Data structure

GPU can Traverse entire hierarchy

GPU can Traverse entire hierarchy

GPU can Traverse entire hierarchy

Enabling high-performance programming using high-level languages - Innovation in Triolet and Tangram

Blue Waters SETAC Meeting - Feb 2014

Programming heterogeneous systems requires too many versions of code!

SoC for HPC

Programming in Triolet Python Nonuniform FT (real part)

$$y_i = \sum_{j=0}^{n-1} x_j \cos(r_i k_j)$$

for all $0 \le i < m$

Programming in Triolet Python Nonuniform FT (real part) Inner loop $y_i = \sum_{j=0}^{n-1} x_j \cos(r_i k_j)$ for all $0 \le i < m$

Inner loop
sum(x * cos(r*k) for (x, k) in zip(xs, ks))

- "map and reduce" style programming—no new paradigm to learn
- Parallel details are implicit—easy to use
- Automated data partitioning, MPI rank generation, MPI messaging, OpenMP, etc.

Library-Driven Optimization

- The basic idea:
 - Compilers are smart (inlining, unboxing, ...)
 - Software abstractions have no overhead when the compiler can "evaluate" them statically
 - Just write components as library code!
 - Embody optimizations in the library code as alternative function implementations, use auto-tuning to select a final arrangement
- Triolet uses this approach [Rodrigues, et al '14]
- Prior work demonstrates loop fusion, shared-memory parallelism, vectorization [Coutts et al. '07, Keller et al. '10, Mainland et al. '13]

Parallel Loop Fusion Based on Keller et al. '10
sum(map(square, range(k)))

Triolet

- ys = [sum(x * cos(r*k) for (x, k) in zip(xs, ks))]for r in par(rs)]
- Library functions factor out data decomposition, lacksquareparallelism, and communication

128-way Speedup (16 cores × 8 nodes)	Triolet	C with MPI+OpenMP
	99	115

!/01'2)%%'+"345/01'26//'7689:,!;%&"'#&()*+<. !/01'2)%%'(=#>5/01'26//'7689:,!;%&"'"-<. !*)#+\$!"#\$!(=#>?!@!%&"'"-!@@!?.

GREAT LAKES CONSORTIUM FOR PETASCALE COMPUTATION

!/01'A*=+\$5;+"34'B,!C,!/01'1DE,!?,!/01'26//'7689:<. !/01'A*=+\$5;+"34'>,!C,!/01'1DE,!?,!/01'26//'7689:<

!*)#+\$!"#\$!*FG#>'+"34'B!@!*4"H-"I5+"34'B,!%&"'#&()*+<. !*)#+\$!"#\$!&=--4-'+"34'B!@!*FG#>'+"34'B!J!%&"'#&()*+.

!KH)=\$!J>+,!JB+. !"K!5(=#>?<!L !!!>+!@!"#&G\$'>+. !!!B+!@!"#&G\$'B+.

14H+41L !!!>+!@!%=HH)*5+"34'>!J!+"34)K5KH)=\$<<. !!!B+!@!%=HH)*5+"34'>!J!+"34)K5KH)=\$<<.</pre>

!KH)=\$!J(+'*FG#>!@!%=HH)*5*FG#>'+"34'B!J!+"34)K5KH)=\$<<. !KH)=\$!JN+'*FG#>!@!%=HH)*5*FG#>'+"34'B!J!+"34)K5KH)=\$<<.

"K!5(=#>?<!L !!!"#\$!#0)(>4(+!@!%&"'#&()*+PC.

!!!/01'84QG4+\$!J(4Q+!@!%=HH)*5#O)(>4(+!J!R!J!+"34)K5/01'84QG4+\$<<. 111"#\$10. !!!K)(!50!@!?.!0!S!#0)(>4(+.!OTT<!L !!!!!"#\$!0)(>4('"-!@!OTC. !!!!!/01'1+4#-5>+,!+"34'>,!/01'U96VE,!0)(>4('"-, !!!!!!!!!!!!!!?,!/01'26//'7689:,!;(4Q+W0X<.

!!!!!/01'1+4#-5B+, !+"34'>, !/01'U96VE, !0)(>4('"-, !!!!!!!!!!!!!!!?, !/01'26//'7689:, !; (40+W#0)(>4(+TOX<.</pre> !!!!!/01'1+4#-5(+!T!0)(>4(''-)*F6#>'+"34'B,!*F6#>'+"34'B,!*O1'U96VE,!0)(>4(''-, !!!!!!!!!!!!!!!!!!?,!/01'26//'7689:,!;(40+WYI#0)(>4(+TOX<.</pre>

!!!%4%*&N5(+'*FG#>,!(+,!*FG#>'+"34'B!J!+"34)K5KH)=\$<<.

!!!/01'7="\$=HH5#O)(>4(+JR,!(4Q+,!/01'ZEVE[Z\Z'1]D68\<. !!!K(445(4Q+<.

1 I M

!4H+4!L !!!/01'84*I5>+,!+"34'>,!/01'U96VE,!?, !!!!!!!!!!?,!/01'26//'7689:,!/01'ZEVE[Z'1]D68\<. !!!/01'84*I5B+,!+"34'>,!/01'U96VE,!?, !!!!!!!!!!?,!/01'26//'7689:,!/01'ZEVE[Z'1]D68\<. !!!/01'84*I5(+'*FG#>,!*FG#>'+"34'B,!/01'U96VE,!?, !!!!!!!!!!?,!/01'26//'7689:,!/01'ZEVE[Z'1]D68\<.</pre>

111 1111"#\$!". &(=`%=!)%&!&=(=HH4H!K)(!+*F4-GH45+\$=\$"*< !!!!K)(!5"!@!?.!"!S!*FG#>'+"34'B.!"TT<!L !!!!!!KH)=\$!+!@!?. !!!!!!"#\$!a. !!!!!!K)(!5a!@!?.!a!S!+"34'>.!aTT< !!!!!!!+!T@!B+WaX!J!*)+K5(+'*FG#>W"X!J!>+WaX<. !!!!!!N+'*FG#>W"X!@!+. LITIM

/01']=\$F4(5N+'*FG#>,!*FG#>'+"34'B,!/01'U96VE,!N+,!*FG#>'+"34'B,!/01'U96VE, 111111111111, 1/01'26//'7689:<.

!K(445(+'*FG#><. !K(445N+'*FG#><.

!"K!5(=#>?<!L !!!K(445(+<.

4H+4!I

!!!K(445B+< !!K(445>+<.

for HPC

Cleanu

- Blue Waters and related HPC systems have demonstrated that GPU computing can have narrow but deep impact on science
- New architectural innovations enable much easier work migration between CPUs and accelerators
- New programming systems innovations enable much faster application development and lowered maintenance cost

- D. August (Princeton), S. Baghsorkhi (Illinois), N. Bell (NVIDIA), D. Callahan (Microsoft), J. Cohen (NVIDIA), B. Dally (Stanford), J. Demmel (Berkeley), P. Dubey (Intel), M. Frank (Intel), M. Garland (NVIDIA), Isaac Gelado (BSC), M. Gschwind (IBM), R. Hank (NVIDIA), Isaac Gelado (BSC), W. Gschwind (IBW), K. Hank (Google), J. Hennessy (Stanford), P. Hanrahan (Stanford), M. Houston (AMD), T. Huang (Illinois), D. Kaeli (NEU), K. Keutzer (Berkeley), W. Kramer (NCSA), I. Gelado (NVIDIA), B. Gropp (Illinois), D. Kirk (NVIDIA), D. Kuck (Intel), S. Mahlke (Michigan), T. Mattson (Intel), N. Navarro (UPC), J. Owens (Davis), D. Padua (Illinois), S. Patel (Illinois), Y. Patt (Texas), D. Patterson (Berkeley), C. Rodrigues (Illinois), P. Rogers (AMD), S. Ryoo (ZeroSoft), B. Sander (AMD), K. Schulten (Illinois), B. Smith (Microsoft), M. Snir (Illinois), I. Sung (Illinois), P. Stenstrom (Chalmers), J. Stone (Illinois), S. Stone (Harvard) J. Stratton (Illinois), H. Takizawa (Tohoku), M. Valero (UPC)
- And many others!