Tough People to Follow

Yale N. Patt, 2011 Recipient

Josh A. Fisher, 2012 Recipient

A Tribute to my Fellow Travelers

* HPS - the beginning

* IMPACT — an Era with Bob Rau
* GPU Computing

* Some thoughts

MICRO-18 (1985)

:::ﬁ:lef $TaTic T-JSraaars

flow

" o peoier e Patt, Hwu, Shebanow,

igl:lly ! {4

:-m:;: PYNAMIC TI-S5STacam HPS' A NeW

very el | , Microarchitecture:

fow A Lcome Rationale and Initial
o) Results”

uting ' 1 £ .

Fest, DATA Flow swren | o \Work started in 1984

th to Neves 18

cssing TASUs AwamiNG l * Most |mp0rtant|y, | met

1wch as Flring . .

nents, @]] Sabrina in 1984

atove ro] [0 * The vision is complete

- | with the ISCA-92 paper

d 10 by Yeh and Patt

stalls.

n fire, f {.

(1] TI.'I.E Frﬁ“

Si

g 13:: data flow graph for the entire program is in the machi

des to at one time. We define the active window as the set ..
Tha ISP instructions whose corresponding data flow nodes are

HPS — from my vantage point

e Patt, Melvin, Hwu, Shebanow, * Melvin, Hwu, Shebanow, Chen,
“Critical Issues Regarding HPS, A Wei, Patt, “Run-Time Generation
High Performance of HPS Microinstructions from a
Microarchitecture,” Micro-1985 VAX Instruction Stream” Micro-

1986

 Hwu, Melvin, Shebanow, Chen,

Wei, Patt, “An HPS * Hwu, Patt, “Design Choices for
Implementation of VAX; Initial the HPSm Microprocessor Chip,

Design and Analysis,” HICSS-1986 HICSS-1987

 Hwu, Patt, "HPSm, a High * Hwu, Patt, Checkpoint Repair for
Performance Restricted Data Out-of-order Execution
Flow Architecture Having Machines, ISCA-1987, IEEE TC
Ii/ggémal Functionality”, ISCA-

Emer (and Clark) - 1984
Smith (and Pleszkun) — 1985
Sohi (Vajapeyam) -1987

The Beginning of IMPACT

Exploiting Parallel Microprocessor Microarchitectures with a
Compiler Code Generator

Wen-mei W. Hwu ISCA-1988

Pohua P. Chang

Trace Selection for Compiling Large C Application Programs to
Microcode

Pohua P. Chang

Wen-mei W, Hwu MlCRO'1988

Comparing Software and Hardware Schemes
For Reducing the Cost of Branches

ISCA-1989

Wen-me1r W. Hwn Thomas M. Conte Pohua P. Chang

IMPACT 198/7-2001

* Chang, Mahlke, Chen, Warter, Hwu,
"IMPACT: An Architectural
Framework for Multiple-Instruction-
Issue Processors.", ISCA-1991

Gallagher, Chen, Mahlke,
Gyllenhaal, Hwu, "Dynamic Memory

Disambiguation Using the Memory
Conflict Buffer.", ASPLOS-1994

Mahlke, Hank, McCormick, August,
Hwu, "A Comparison of Full and
Partial Predicated Execution
Support for ILP Processors.", ISCA-
1995.

* Lavery, Hwu, "Unrolling-Based

Optimizations for Modulo
Scheduling.", MICRO-1995.

August, Connors, Mahlke, Sias,
Crozier, Cheng, Eaton, Olaniran, Hwu,
"Integrated Predicated and
Speculative Execution in the IMPACT
EPIC Architecture.", ISCA-1998.

Hwu, Sias, Merten, Nystrom, Barnes,
Shannon, Ryoo, Olivier, "ltanium
Performance Insights.",
Microprocessor Forum, 2001.

Hennessy — 1987, Flynn — 1987 Davidson — 1987, Ebcioglu — 1987, Kuck — 1987,
Belgard — 1985, Colwell — 1990, Rau — 1991, Fisher — 1992, Valero - 1994

ASPLOS-V (1992)

Sentinel Scheduling for VLIW and Superscalar Processors

Scott A. Mahlke William Y. Chen Wen-me1r W. Hwu < B. Ramakrishna Rau Michael 5. Schlansker
Center for Reliable and High-Performance Computing Hewlett Packard Laboratories
University of Illinois Palo Alto, CA 94303

Urbana-Champaign, 1L 61801

Abstract cuses on compile-time engineered speculative execution, or
speculative code motion.

Speculative execution is an important source of parallelism There are two problems associated with speculative code

for VLIW and superscalar processors. A serious challenge motion. The first problem is that the result value of a specu-

with compiler-controlled specunlative execntion is to accu- lative instruction that was not required to execute must not

Bob also convinced me to chair MICRO-25 in 1992.

PLDI 1993

Reverse If-Conversion

Nancy J. Warter Scott A. Mahlke
Center for Reliable and High-Performance Computing
Unjversity of Illinois
Urbana-Champaign, IL 61801

Abstract

In this paper we present a set of isomorphic control trans-
formations that allow the compiler to apply local scheduling
techniques to acyclic subgraphs of the control flow graph.
Thus, the code motion complexities of global scheduling are
eliminated, This approach relies on a new technique, Reverse
If-Conversion (RIC), that transforms scheduled If-Converted

Wen-meli W. Hwu

@Rmnakrishna Rau >

Hewlett Packard Laboratories
Palo Alto, CA 94303

predicate IR
-1 scheduled
ggg:‘!:ﬁ] Local f Reverse acyel.
flow If-Conversion Scheduling ;—-mn if-Conversion —bcﬂg:"ml
gkl 1 g graph
(hyperblock)

Figure 1: Overview of the Isomorphic Control Transforma-
tion (ICT} approach for global scheduling.

MICRO-28 (1995)

Region-Based Compilation: An Introduction and Motivation

Richard E. Hank Wen-mei W. Hwu

Center for Reliable and High-Performance Computing

University of Illinois
Urbana-Champaign, IL 61801

Abstract

As the amount of instruction-level parallelism required
to fully utilize VLIW and superscalar processors increases,
compilers must perform increasingly more aggressive anal-
ysis, optimization, paralielization and scheduling on the
input programs. Traditionally, compilers have been built
assuming functions as the unil of compilation. In this
framework, function boundaries tend to hide valuable opti-

< B. Ramakrishna@

Hewlett Packard Laboratories
Palo Alto, CA 94303

the Multiflow compiler provides an example [1]. As a re-
sult, a production quality implementation may not reflect
the true potential of a technique.

In order to satisfy the need for more ILP, compilers
increasingly resort to inlining to support inter-procedural
optimization and scheduling [2][3][4). However, inlining of-
ten results in excessively large function bodies that make
aggressive global analysis and transformation techniques,

MICRO-29 (1996)

Optimization of Machine Descriptions for Efficient Use

John C. Gyllenhaal Wen-me1 W. Hwu

Center for Reliable and High-Performance Computing

Umiversity of Illinois, Urbana-Champaign, IL 61801
gyllen, hwu@crhe.uiuc.edu

Abstract

A machine description facility allows compiler writers to
specify machine execution constraints to the optimization and
scheduling phases of an instruction-level parallelism (ILP) op-
timizing compiler. The machine description (MDES) facility
should support quick development and easy maintenance of
machine execution constraint descriptions by compiler writers.
However, the facility should also allow compact representation
and efficient usage of the MDES during compilation. This pa-

Hewlett PacKard Laboratories
1501 Page Mill Road, Palo Alto, CA 94304
rau@hpl.hp.com

Since each scheduling decision, and potentially each optimi-
zation decision, for every operation involves checking execution
constraints, the efficiency of such checks can significantly im-
pact the compile time. As a result., compiler writers have faced
the choice between two undesirable alternatives. One alterna-
tive is to sacrifice portability for accuracy. A compiler designed
for a particular processor often uses an accurate, very low-level
representation of the machine's description (commonly coded
directly into the compiler), that must be tediously modified in
order to be effective for subsequent processors. This approach

GPU Computing 2006-present

PPoPP-13, 2008

Optimization Principles and Application Performance Evaluation
of a Multithreaded GPU Using CUDA

Shane Ryoo! Christopher I. Rodrigues' Sara S. Baghsorkhif ~ Sam S. Stone!
David B. Kirk+ ~ Wen-mei W. Hwu!

Center for Reliable and High-Performance Computing, University of Illinois at Urbana-Champaign
+NVIDIA Corporation

{sryoo, cirodrig, bsadeghi, ssstone2, hwu} @crhc.uiuc.edu, dk@nvidia.com

Abstract hardware interfaces, programming them does not require special-

GPUs have recently aftracted the attention of many application iz::{j programming Iapguagcs or execution t[lﬂ)llp,h zgmphim appli-
developers as commodity data-parallel coprocessors. The newest cat:c_m programming mterfaces {A_FIS}‘ as wifh previous GPU gen-
generations of GPU architecture provide easier programmability erations. This makes an IMERPENSIVE, '“fé"'f parallel system avail-
and increased generality while maintaining the tremendous mem- able to a broader community of "‘ppl,'mhu" developers.

orv bandwidih and computational nower of traditional GPUs. This The NVIDIA CUDA programming model [3] was created for

Some Lessons from GPU Computing

* Practical JIT eliminates traditional ISA as a major limiter
of progress.

* Reduced clock frequency and power enabled continued
performance scaling of valuable parallel applications

* Numerical libraries were badly lacking in parallelism
before 2006 (e.g., Chang, et al 2012).

 CUDA/OpenCL programming is effective, useful but not
for more than a few thousand programmers.

* Data transfer cost in the modern PC architecture badly
limits the use of non-CPU compute devices.

» Software abstractions are poorly implemented in
modern systems.

Software Abstraction Creates Barriers

Map Task, in Java VM

Host

Input Split

Reduce Task, in Java VM

Host

Partition/Sort

e K-

Save on disk

Receive Data and Merge

————| Reduce

\ /

rtin
Sl compress.Compressor

Compression Codec org.apache.hadoop 8.

VLS

Shuffle codec org.apache.hadoop.mapred.
ShuffleConsumerPlugin

Compress;
compress,

Codec org.apache.hadoop.io.
mpressor

A

Native x86 \

Native compression lib

(libhadoop.so)

v

Native x86

Native¥compression library
(libhadoop.so)

Hwu

State of the Art Data Transfer Behavior
L ALA

PCle

Network |/O with

r} Compression engine

> Disk 1/0
\/

DMA

GPU card
(or other Accelerator cards)

Desired SoC Data Transfer Behavior

CPU/GPU

Network /0 with
compression engine

Disk 1/0O

Potential >30X savings in energy

A few thoughts for our early-
career colleagues

* That is, everyone here except for Yale
* Yale is mid-career

* Processor cores, accelerators, NICs, and storage controllers
are the new data path components in the SOC era.

* Impactful microarchitecture research will likely need to
involve OS and compiler innovations.
* Java Bytecode is arguably the most important ISA
 OS and VM implementations are long overdue for revamping.

* Performance/efficiency of many applications can be
improved by ~100x by squeezing out inefficiency from the
implementation stack.

* Will likely take a decade or more to materialize in a scaling manner
* Much of the progress will need microarchitecture support
* Be radical!

To Bob Rau, a gentleman in every
sense of the word.

