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ABSTRACT
Points-to analysis is a critical component of optimization
and software engineering tools. A higher degree of precision
in this analysis can significantly benefit such tools if it can be
provided with a reasonably bounded analysis cost. The fo-
cus of this work is to enable a fully context-sensitive modular
points-to analysis under the flow-insensitive and inclusion-
based intraprocedural setting. Such a modular approach
reduces the interprocedural problem to a series of intrapro-
cedural ones. The main source of difficulty with such an
approach is that the size of the module grows very quickly
as they are built up as the bottom-up phase of the analysis
proceeds.

The main contribution of this work is compaction, an algo-
rithm that produces a concise-yet-equivalent summary of a
procedure’s module. It allows the modular points-to anal-
ysis to enjoy the full power of context sensitivity in a scal-
able fashion. Through empirical results, both the necessity
and the effectiveness of the proposed techniques are demon-
strated.

1. INTRODUCTION
Context sensitivity is becoming increasingly more impor-
tant because modern programming practices exasperate the
problem of spurious data-flow between independent calling
contexts by encouraging code reuse. In these situations, a
context-sensitive program analysis achieves a higher degree
of precision than its context-insensitive counterpart by dis-
allowing unrealizable interprocedural data-flow.

In the domain of points-to analysis, the significance of con-
text sensitivity is increased further when programs make use
of heap allocation. For example, consider a program that
makes all heap allocations via a program-specific wrapper
around the standard library allocation routines. Without
context sensitivity the entire heap is abstracted into a single
static entity through which an enormous amount of spurious
data-flow can occur. A carefully designed context-sensitive
points-to analysis can resolve such a problem by specializing
heap objects according to call paths.

Some empirical results have not supported the significance of
context sensitivity in the precision of pointer analysis [26, 14,
11]. However, the first two algorithms [26, 14] are not tested
with large programs, since they do not scale well, while the

last algorithm [11] achieves scalability by sacrificing a non-
trivial amount of precision. It is unclear how much of the
result is affected by the precision degradation. Our expe-
riences within our own compilation framework have shown
that the benefit can be large but varies substantially from
program to program, being nominal for some while achiev-
ing a large reduction (30-80%) in points-to size for others.
The benefit is typically increased for large programs.

One methodology for achieving context sensitivity is through
modularization [7, 8]. A modularized analysis consists, at
least conceptually, of two phases. Guided by the call graph,
the first phase transforms each procedure into a single, self-
contained module that encapsulates all of the internal points-
to relationships of the procedure along with all of the side-
effects of its immediate and transitive callees. This reduces
the interprocedural problem to a series of intraprocedural
problems. The second phase obtains the final points-to re-
sults by analyzing the modular version of the procedure
along with all potential inputs to that procedure. The com-
plete process is covered in detail in Section 2.2.

Exhaustive inlining of callees would be a sufficient way to ac-
count for the side-effects of a procedure’s callees but, clearly,
this would be far from concise and quickly explodes in size.
The key issue in a modular approach is finding an effective
way to represent the side-effects of each callee in the form
of a concise summary.

Depending on the desired analysis goal, a summary can be
formed either in a conservative way or in an exact way.
Orthogonally, a summary may be valid across all possible
calling scenarios or partial thus may need to be continu-
ously updated to cover unexplored situations. Conservative
or partial methods may, in some cases, allow for the for-
mation of smaller summaries. However, it may also suffer
from reduced precision, increased overhead, or necessitate
multiple summarizations of the same procedure. Contrast-
ing with such approaches, we present an technique called
compaction that obtains exact and universally applica-

ble, yet, in practice, small procedure summaries at low costs.

2. PRELIMINARIES
This section gives a brief and intuitive description of our
entire modular points-to analysis methodology. This back-
ground will provide a foundation on which more detailed
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discussion central to compaction can be constructed. 2.1 Intraprocedural setting
Intraprocedurally, we have made our modular points-to anal-
ysis operate in a flow-insensitive manner for the following
reasons: it greatly simplifies our initial investigations, and
it is less likely to affect precision significantly, as reported
by [18, 19]. Among many different forms of flow-insensitive
approaches [4, 10, 17, 21, 27], we have chosen the inclusion-
based approach [4], which is the most precise among those,
with the goal of keeping the cost within a reasonable bound.

Offset sensitivity, alternatively, has an important effect on
the resultant precision and is readily compatible with our
compaction approach. However, since the focus of this work
is on context sensitivity, we consider offset expressions only
as part of future work in Section 9.

Given these simplifications, the following four kinds of as-
signments are sufficient for our discussion:

u := &v | u := v | ∗u := v | u := ∗v

where u, v are variables, & the address operator, ∗ the deref-
erence operator. The intuitive meaning of those operators
are the same as it is in the C language.

Given a set of assignments A, the points-to deduction can
be described in the style of [17] as follows:

α ∈ A

A ` α
(1)

A ` u := v A ` v := &w

A ` u := &w
(2)

A ` ∗u := v A ` u := &w

A ` w := v
(3)

A ` u := ∗v A ` v := &w

A ` u := w
(4)

If A ` α, then we say that α is derivable in A. If α is an
address assignment in a form u := &v, we say that u points
to v in A.

2.2 Interprocedural setting
As briefly mentioned in Section 1, we take a modular ap-
proach to transforming an inherently interprocedural prob-
lem into many modularized intraprocedural subproblems.
Such a technique forms intraprocedural entities, called mod-
ules, that encapsulate all interprocedural actions taken in-
side a procedure, including all the side effects from its callees
in a transitive fashion. Figure 1 presents a graphical overview
of the entire process and demonstrates where the compaction
algorithm fits within it. Figure 1(a) depicts the procedure
call graph for an example program to be analyzed.

The most intuitive way to construct a module is through
procedure inlining, as shown in Figure 1(b). In the figure,
inlining proceeds upward from the bottom of the call graph
until it reaches the root procedure, which, in this case, is
procedure A. The following are the highlights of this process:
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Figure 1: Modular process overview (a) Call graph (b) Modularization through exhaustive inlining (c) Modu-
larization using compaction between inlining steps (d) Top-down resolution of concrete points-to information.

• Modularization begins from the leaf of the call graph,
in this case, procedure C. Since it does not have any
callees, it is already in a modular form.

• Procedures B and D call procedure C. To modularize
them, C is inlined into each. For context sensitivity,
two distinct instances of C are inlined into B and D,
respectively.

• Procedure A calls B twice and D once. To modularize
A, the modules of B and D are inlined. As consequence,
the module of A contains three versions of C, which
corresponds to the number of paths from A to C.

The modularization process shown in Figure 1(b) is called
exhaustive inlining. It is apparent that a high level of con-
text sensitivity is achieved by such a process. However, it
is also apparent that the module size grows exponentially.
Therefore, to be practical, modularization requires a tech-
nique like compaction to reduce the size of the modules.
Intuitively, compaction is possible for two reasons. First,
many actions that occur in a callee do not affect its callers.
Second, even for those actions that do affect callers, the ef-
fects likely can be more concisely represented. The process
of compaction is depicted in Figure 1(c). Since compaction
is performed before a callee summary is inlined into a caller,
module growth is reduced. In practice, our technique proves
to be effective at controlling module growth.

Once all the modules are constructed, the top-down phase,
depicted in Figure 1(d), generates the actual point-to infor-
mation.

• Since procedure A has no callers, there is no calling

context—its points-to information is computed solely
from its module.

• Since B is called within A, it needs some information
from A to compute its own points-to information. The
points-to information from A is fed into the module of
B to complete the setup for computing the points-to
information of B. D is handled in an identical fashion.

• Since C is called from both B and D, both are needed for
C’s calling context. The points-to information from B

and D are fed into the C’s module, and then its points-
to information then can be computed.

The example shown in the process in Figure 1 assumes a
known, acyclic call graph. However, in real programs, a call
graph is not known a priori (due to indirect calls) and may
contain cycles (due to recursion). Within our framework,
such complications are resolved in a manner similar to other
works such as [7, 8].

Indirect calls are handled in an optimistic iterative manner.
The algorithm begins with a call graph resulting only from
direct calls. At the end of each iteration, the new points-to
information updates the call graph with new indirect call
targets. Iterations continue until no more updates on the
call graph are made. Recursion is handled by merging re-
cursive procedures into a single procedure. All recursive
calls are simulated context-insensitively; only assignments
for parameter passing are added.

The rest of the paper assumes a fixed acyclic call graph and
solely focuses on the compaction process.
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2.3 Module representation
In this work, all variables are classified as either global vari-
ables or local variables. At this point, we will not explicitly
consider heap objects; such objects can be treated either as
global variables or as special local variables, whose lifetime
is not bounded by their home procedures. The first option
yields a single heap object per allocation site. The second
introduces specialized heap objects per allocation site, each
corresponds to a call path to the allocation site. In Sec-
tion 7, we will show some preliminary experimental results
comparing these two options.

Since modularization completely encapsulates all interpro-
cedural actions for a procedure, a module can be seen simply
as a procedure without any callees. The following is a syn-
tactic representation of a module:

M (~P ) with L in A (5)

where M is the module being defined, ~P a vector of parame-
ters, L a set of local variables that also contains all elements
of ~P , and A a set of assignments. Return values have been
excluded from the module definition, since they can be sim-
ulated through the addition of an extra argument. (In the
actual implementation, we have extended the algorithm de-
scribed in this paper to work directly with return values.)
The assignments in a module can only contain declared local
variables, and global variables.

Consider the dynamic semantics of the C language. Some
input memory state exists before the execution of a pro-
cedure begins. Once the procedure has completed its exe-
cution, some final output memory state has been created.
Modules can be regarded in a similar way. In this situation,
the inputs and outputs are abstractly represented as sets
of address assignments, which we call points-to graphs. In
the case of an input, the points-to graph is called a calling
context.

Given a calling context and the module M , defined as in (5),
the output computation is performed as follows:

M, C |= α if and only if C ∪ A ` α (6)

If M, C |= α, we say that α is derivable within module M

given calling context C. Also, if α is an address assignment
in the form u := &v, we say that u points to v within module
M given calling context C.

3. CHALLENGES
To motivate and focus the development of the compaction
algorithm described in Section 5, the difficulties in perform-
ing compaction are articulated in this section. As observed
in Section 2, not all the actions taken in a module directly
affect callers. Consider the following example:

E(p,q) with {u} in {∗q:=u, u:=p}

Given a calling context {p:=&a, q:=&b}, the following set of
assignments are newly derived within the module: {u:=&a,
b:=u, b:=&a}. Among these, the only assignment mean-
ingful from the perspective of the caller is b:=&a. In this
paper, we call such an assignment a side effect. All other
assignments are called intermediate assignments.

From this perspective, two modules are said to be equivalent
if they produce the same set of side effects given the same
calling contexts. Also, in such a case, one module is said
to be a summary of the other module. For instance, it is
apparent that the following is is a summary of module E:

F(p,q) with {} in {*q:=p}

3.1 Back substitution
The main goal of this paper is to present an efficient algo-
rithm to construct a smaller yet equivalent summary of a
module. One strategy toward this goal is to minimize the
number of local variables within a summary by performing
back substitution. For instance, the summary F is obtained
from E by performing back substitution on assignment *q:=u
from its source u towards assignment u:=p. This back sub-
stitution produces assignment *q:=p. Since no further back
substitution can be performed, the effect of *q:=u within
module E is completely subsumed by *q:=p. Therefore, in a
summary of module E, it is the only assignment required.

In certain cases, back substitution can also be made involv-
ing dereference assignments as follows:

G(p,q) with {u} in {u:=p, *u:=q}
H(p,q) with {} in {*p:=q}

For module G, back substitution can begin from the destina-
tion of *u:=q towards u:=p and result in *p:=q. A similar
situation occurs when the dereference occurs in the right-
hand side of an assignment.

In the examples so far, it has been possible to eliminate all
of the local variables within the original module. However,
in certain cases, back substitution may be unable to bypass
all local variables. Consider the following example:

I(p,q) with {u,v} in {*p:=u, u:=*v, v:=*q}

In this case, none of the uses of u can be removed since
our assignment syntax does not contain double dereference
assignments like *p:=*v or u:=**q.

3.2 Implicit data-flow through aliases
The primary complicating factor we consider in this paper is
that of implicit data-flow 1 induced by aliases. Within our
setting, aliasing results solely from address assignments. For
instance, u := &v makes ∗u and v alias. Aliasing makes it
difficult to remove local variables via back substitution be-
cause back substitution is only capable of handling explicit 2

assignments. Consider the following example:

J(p,q) with {u,v} in {u:=&v, *u:=q, *p:=v}

In this example, there is an implicit data-flow v:=q induced

1Informally speaking, a data-flow corresponds to a collec-
tive action that may span more than one assignment. For
instance, from u := v and v := w, data-flow u := w is
established.
2An assignment is explict if it is in a module or in a calling
context. An assignment is implicit if it is not explicit and
yet derivable. An implicit assignment becomes explicit by
adding it into a module.
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*r:=**q

[*q≡ *p]

*p:=w w:=&u

*p:=&u

*q:=&u

**q≡ u u:=p

**q:=p

*r:=p

Figure 2: Informal visualization of the establishment
of data-flow *r:=p within module H when *p and *q

alias. The symbol ≡ is used to represent alias rela-
tionships between expressions.

by aliases between *u and v. Taking this into account, data-
flow *p:=q can be established. Fortunately in this case, the
data-flow *p:=q occurs regardless of calling contexts and is
the only assignment needed in the summary. The following
is equivalent to module J:

K(p,q) with {} in {*p:=q}

Note that the local variable v has been successfully removed,
even though its address is taken. This elimination is possi-
ble because the aliasing of v is independent of calling con-
texts. However, in other cases, the nature of the aliasing
may be impossible to determine without exact knowledge of
the calling context. Consider the following example, where
a multiple dereference is allowed in favor of clarity:

L(p,q,r) with {u,w} in

{u:=p, *p:=w, w:=&u, *r:=**q}

Since the address of u flows into *p, aliases of u cannot be
determined without consulting calling contexts. Consider a
calling context where *p and *q alias, and **q and u alias.
In this case, as depicted by Figure 2, a data-flow *r:=p is
established. However, if *p and *q do not alias, such data-
flow cannot be established.

The ability to derive the assignment *r:=p varies by calling
context. This means that any data-flow involving *r:=p will
be context-dependent and all the others context-independent.
The challenge here is to encode this data-flow within a sum-
mary while retaining its context-dependence. In fact, as it
will be clearer in Section 5, it is impossible to encode such
dependence without allowing the address of local variable u,
the main cause of such dependence, in the summary.

3.3 Necessity of back substitution
The second source of complication is including only the rel-
evant results from back substitution, as well as finding the
best locations from which to begin back substitution. One
solution is to perform back substitution from every left deref-
erence assignment, such as ∗u := v. However, this is in-
efficient, may miss many opportunities to produce smaller
summaries, and may require a more complex algorithm that
includes backtracking. Consider the following example.

M() with {u,v,w} in {*u:=v, v:=*w}

If back substitution begins blindly with *u:=v, it will next
see v:=*w. Back substitution cannot continue through v be-
cause of the dereference on w. This means that the algorithm
must decide whether or not to add the assignment. It would
be a bad choice to add the assignment because the it is un-
necessary. However, otherwise the algorithm would require
backtracking, since it may turn out to be a necessary one
later.

A similar situation can happen even when back substitution
starts at a relevant location. Consider the following:

N(p,q) with {u,w} in {*p:=u, u:=*q, u:=*w}

If back substitution knows to begin from *p:=u, it will next
see u:=*q which is a necessary assignment. It will proceed
to u:=*w, resulting in the same dilemma as before.

The proposed algorithm resolves these two problems by com-
puting necessity information before beginning back substi-
tution.

4. RELATED WORK
A large body of research surrounds pointer analysis and it is
important to delineate how the approach advocated by this
paper fits within the continuum of other mechanisms.

4.1 Summary encoding
From the perspective of semantics, a procedure summary
can be understood as a partial function betweens points-to
graphs. Within our terminology, an input points-to graph
corresponds to as calling context and an output points-to
graph a set of side effects.

In our work, we utilize the computational aspects of partial
functions to encode a summary: Taking points-to deduc-
tions as a semantic basis, our summary essentially describes
how the output can be computed from the input. On the
other hand, other context-sensitive points-to analyses in lit-
erature, such as [30, 7], represent a procedure summary
as a mapping between abstract forms of points-to graphs.
For instance, in [7], the input points-to graph is abstracted
into alias pairs, whereas the output points-to graphs are
abstracted into symbolic points-to graphs. Unfortunately,
those algorithms are flow-sensitive and a direct comparison
between their approach and ours is not possible. However,
we can make a generic comparison between our computa-
tional approach and the mapping approach.

A mapping approach is usually inexact in the sense that the
finite presentations in a mapping form can describe only a
small set of partial functions without becoming conservative.
Additionally, encoding and decoding processes are required
to move between the concrete and abstract points-to graphs.
Scalability is maintained by controlling the size of mapping
by the degree of abstraction for input and output points-to
graphs. Finally, the formation of the summaries is eager
in the sense the algorithm must explicitly consider all the
possible cases, which may affect how the output is produced.

On the other hand, our computational approach is exact
because the summary represents the exact partial function
without any loss in precision. Scalability is maintained by
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performing compaction, replacing a larger summary with
a smaller yet equivalent one. Finally, our computational
approach is lazy in the sense that the actual computation
of the output is done only after a summary is inlined into a
caller, at which point the actual input is available.

4.2 Polymorphic flow analysis
In the functional language domain, there has been significant
interest in polymorphic flow analysis. Recently work such as
[24, 16] have reduced the complexity to O(n3), where n is a
size of a type-annotated program potentially exponentially
larger than its type-erased counterpart. One key concept
is shared by both algorithms—polymorphism is achieved
through constraint instantiation rather than inlining.

There are two factors which make such an approach appli-
cable. First, they exploit type information to reason and
model information flow in programs. This implies that the
calling contexts of a function have a fixed, known shape that
is solely determined by type information. Second, there is
no aliasing. This implies that the shape of intraprocedural
data-flow is also fixed and independent to calling contexts.

The situation in context-sensitive points-to analysis is quite
different. First, the shapes of calling contexts are not known
a priori because this knowledge requires the points-to infor-
mation itself. Second, the shape of the intraprocedural data-
flow depends on calling contexts through the effect of alias-
ing. In general, the data-flow created by context-sensitive
points-to analysis has a less regular structure and thus is
more difficult to exploit.

One interesting difference between our work and [24, 16] is
how recursion and indirect calls are handled. We handle
recursive procedures context-insensitively by merging them
into a single procedure. However, [24, 16] handle recursive
procedures in a context-sensitive way. We also handle each
instance of indirectly invoked procedures context-sensitively
whereas [24, 16] allows polymorphism per each instance of
a procedure appearance.

4.3 Constraint simplification
Simplification has been used in context-insensitive frame-
works to improve efficiency [12, 25, 28]. There has also been
significant interest in constraint simplification in the con-
text of subtyping, for instance, [1, 23, 22]. In particular, the
overall structure of the proposed algorithm is close to [22]
in three ways. First, it forms a closure to make information
more explicit. Second, it determines which information is
relevant and throws away any irrelevant part. Third, it uses
the DFA minimization algorithm [20] to merge equivalence
information.

5. COMPACTION ALGORITHM
The compaction algorithm is roughly divided into three com-
ponents: the first reduces the number of address-taken vari-
ables, the second determines where back substitution begins,
and the third performs the actual back substitution.

The overall strategy of the compaction algorithm is to re-
move as many local variables as possible by performing back
substitution. However, as described in Section 3, back sub-
stitution is largely ineffective in the presence of aliasing.

global(u)

opaque(u)
(7)

u := &v ∧ opaque(u)

opaque(v)
(8)

∗ u := v ∧ v := &w ∧ hold(u)

opaque(w)
(9)

param(u) ∨ opaque(u)

hold(u)
(10)

u := v ∧ hold(v)

hold(u)
(11)

u := &v ∧ opaque(v)

hold(u)
(12)

u := ∗v ∧ hold(v)

hold(u)
(13)

Figure 3: Transparency Detection.

In order to remove the bulk of the obstructions created by
aliasing, our algorithm transforms as many address-taken
local variables as possible into an address-free form 3. This
transformation is possible because the callers of a procedure
are only affected by the subset of data-flow involving local
variables that result in side effects. Therefore, address-free
forms of local variables can be used as long as all implicit
data-flow encoded by them is explicitly reflected in the sum-
mary.

In many, if not most, cases implicit data-flow can be ex-
actly reflected through the addition of assignments, and an
address-free form can be obtained through the deletion of
certain address assignments. In the trivial case where no
local variable addresses are taken, all of the assignments are
explicit and context-independent. As shown in Section 3.2,
taking a local variable’s address may result in implicit, but
still context independent data-flow. In this case, the implicit
data-flow can be made explicit and the address assignment
removed.

However, the removal of all address assignments is not al-
ways possible. As shown in Section 3.2, some assignments
encode context-dependent data-flow. In these cases, the ad-
dress assignment must either be retained (an exact solution)
or all potential, implicit assignments must be made explicit
regardless of context (a conservative solution). Our mech-
anism retains the address assignments in order to maintain
precision.

3A variable u is said to be address-taken if the &u is used
in a module or calling context. Otherwise it is said to be
address-free. A local variable u is changed from address-
taken to address-free when all assignments involving &u on
the right-hand side are removed.
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In practice, the detection of variables whose data-flow are
context-independent is inexpensive. Additionally, the vast
majority of local variables in real programs, regardless of
whether their address is taken, are context-independent.

5.1 Transparency detection
The goal of this subsection is to show how to determine
the local variables whose data-flow is context-independent.
For convenience, local variables involved only in context-
independent data-flow are transparent while all other vari-
ables are opaque. These concepts are similar to escape of
objects, heavily discussed for object-oriented languages [2,
5, 6, 9, 15, 29].

The key to detecting transparent variables is recognizing the
following: Any local variables only pointed to by other local
variables will have only context-independent data-flow, and
thus be transparent.

• If a local variable u is pointed-to only by other non-
opaque local variables, all derived data-flow involving
u can only involve local variables.

• If u’s data-flow involves only other local variables, its
data-flow is context-independent.

• This implies every derivation involving u can be found
through purely local points-to deduction.

Before attempting to detect transparent variables, intrapro-
cedural points-to deduction is performed on the module us-
ing an empty calling context, and all derivable assignments
are added to the module. This does not affect the equiva-
lence of the module, and, by definition, all context indepen-
dent data-flow must now be explicit.

Initially, all local variables are considered to be transparent
and all global variables are considered to be opaque. The
algorithm uses the inference rules in Figure 3 to determine
which local variables are opaque; this process continues until
the solution converges.

At this point, it is helpful to revisit how a local variable be-
comes opaque. Consider the following assignments: {*u:=v,
v:=&w}. The net result of these two assignments is that
the address of w will get assigned into anything to which u

points. If it is possible for u to point to a non-local variable,
then w is opaque. Additionally, if u points to an opaque
local variable we conservatively make w opaque as well.

Since we do not have an actual calling context, the incoming
pointer relations are still unknown. Some other mechanism
must be used to determine whether or not a local variable
points to a non-local one. The flow of external pointer values
from an imaginary calling context is tracked using a property
we call holding. Intuitively, a variable is said to be holding if
it is theoretically possible for that variable to point to a non-
local variable in some calling context. From this property it
can be determined which local variables may be pointed to
by an external variable, and thus are opaque. Any opaque
variables are considered to hold, since their data-flow is un-
known. By default, parameters and globals are considered
to hold as well.

u := &v ∧ opaque(u)

initial(u := &v)
(14)

u := v ∧ opaque(u) ∧ hold(v)

initial(u := v)
(15)

∗ u := v ∧ hold(u) ∧ hold(v)

initial(∗u := v)
(16)

u := ∗v ∧ opaque(u)

initial(u := ∗v)
(17)

Figure 4: Initial assignment detection.

The following example will be used to step through the infer-
ence rules of the proposed transparency detection algorithm
in Figure 3:

P(p,q,r) with {u,v,w} in {u:=p, *u:=w, w:=&v}

In this example, the initial points-to deduction within the
module does not produce any new assignments. The opaque-
ness of variable v can be thus be derived as follows. Using
rule (10), variable p is a parameter and thus holds. Since
p potentially holds an external address, u:=p means that u

holds by rule (11). By rule (9), v is found to be opaque.

u:=p

param(p) ∨ opaque(p)

hold(p)

hold(u) *u:=w w:=&v

opaque(v)

5.2 Initial assignments
Once the transparency and opaqueness of all local vari-
ables is known, the address assignments involving transpar-
ent variables are pruned, leaving those variables address-
free. Next, the compaction algorithm must chose the as-
signments from which to begin back substitution, as was
illustrated in Section 3.

An assignment α is said to be an initial assignment if and
only if there exists a calling context such that α is a direct
cause of a side effect. Given a module M and calling context
C, there are four kinds of direct causes:

1. If the address assignment u := &v was originally in M

or C, then u := &v is a direct cause of u := &v.

2. If the following derivation is possible, then u := v is a
direct cause of u := &w.

u
?

:= v v := &w

u := &w

3. If the following derivation is possible, then ∗u := v is
a direct cause of w := &x.

∗ u
?

:= v u := &w

w := v
v := &x

w := &x

7



opaque(u) ∨ param(u)

input(u)
(18)

initial(e := e′)

visit(e := e′)
(19)

Figure 5: Summary construction: initiation.

4. If the following derivation is possible, then u := ∗v is
a direct cause of w := &x.

u
?

:= ∗v v := &w

u := w
w := &x

u := &x

Note that we have put symbol ? on the direct cause for
each case. Figure 4 presents our initial assignment detection
algorithm, whose inference rules are parallel to the four cases
described above.

5.3 Summary construction
The actual back substitution occurs as the summary con-
struction process. The process starts with an empty sum-
mary. Gradually, as back substitution proceeds, assign-
ments will be added into the summary until no more are
needed. This summary construction algorithm exploits the
following three concepts: visit, deferral, and addition.

1. An assignment is visited when the summary construc-
tion algorithm has chosen to simulate the consequences
of that assignment.

2. A visited assignment is deferred by visiting other as-
signments in the hope of using those new assignments
to simulate its consequences, thereby excluding it from
the compact summary.

3. If a visited assignment must be included in the sum-
mary because its consequences will not take place with-
out it, the assignment is added into the compact sum-
mary.

Figure 5 presents the initialization part of the summary con-
struction algorithm. At this stage all the initial assignments
are put into a work list so that they can be visited iteratively.
The predicate input is used to indicate that the contents of a
variable are unpredictable and cannot be back substituted.

Figures 6 and 7 describe the deferral process in detail. Each
inference rule can be interpreted as follows: The upper part
indicates the assignment that is about to be deferred along
with the conditions under which it may influence the resul-
tant summary. Should these conditions be met, the lower
part indicates which assignment to visit and/or which as-
signment to add to the summary.

At the completion of this process, the compact summary
will contain only those assignments added during the defer-
ral process. This summary can be universally used in place

visit(u := v) ∧ v := &w

visit(u := &w)
(20)

visit(u := v) ∧ v := ∗w ∧ hold(w)

visit(u := ∗w)
(21)

visit(u := v) ∧ v := w ∧ hold(w)

visit(u := w)
(22)

visit(u := v) ∧ input(v)

add(u := v)
(23)

visit(u := &v)

add(u := &v)
(24)

Figure 6: Summary construction: deferral of plain
and address assignments.

of the module that was summarized. Section 3 noted that
care is needed to avoid adding unnecessary assignments to
the summary during the back substitution process. The in-
ference rules take into account the hold property (Initially
derived for transparency detection) to avoid adding certain
unnecessary assignments. Consider the example first intro-
duced in Section 3:

N(p,q) with {u,v,w} in {*p:=u, v:=*q, u:=*w}

*p:=u is an initial assignment. When back substitution is
performed, it can not go through u:=*w. The only rule seem-
ingly applicable is (32), but it requires that variable w is
holding, which it is not. Therefore, no rule is applicable
and *p:=u is excluded from the summary.

6. MISCELLANEOUS COMPACTION
The compaction algorithm described in the previous section
is generally effective but leaves misses a couple of important
opportunities for further summary size reduction.

6.1 Redundancy elimination
An aspect in which back substitution cannot reduce the size
of summaries is the detection and removal of redundancy ob-
fuscated by intermediate variables. For example, the follow-
ing procedure contains two redundant pairs of assignments.

Q(p,q) with {u,v} in {u:=*p, v:=*p, *q:=u, *q:=v}

Ideally, the generated summary should include only one pair
since the two sets of assignments differ only in the inter-
mediate variable used not in their resultant effect. Our
technique accomplishes this by detecting equivalent vari-
ables and merging them accordingly. If v is merged into
u, only two assignments remain and the desired reduction is
achieved.

To exploit such opportunities we apply a variation of [20]
to detect equivalent variables. The same algorithm has also
been adapted by others, such as [3, 13, 22] for similar rea-
sons.
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visit(u := ∗v) ∧ v := w

visit(u := ∗w)
(25)

visit(u := ∗v) ∧ v := ∗w ∧ hold(w)

add(u := ∗v) ∧ visit(v := ∗w)
(26)

visit(u := ∗v) ∧ input(v)

add(u := ∗v)
(27)

visit(∗u := v) ∧ u := w

visit(∗w := v)
(28)

visit(∗u := v) ∧ v := w

visit(∗u := w)
(29)

visit(∗u := v) ∧ v := &w

add(∗u := v) ∧ visit(v := &w)
(30)

visit(∗u := v) ∧ u := ∗w ∧ hold(w)

add(∗u := v) ∧ visit(u := ∗w)
(31)

visit(∗u := v) ∧ v := ∗w ∧ hold(w)

add(∗u := v) ∧ visit(v := ∗w)
(32)

visit(∗u := v) ∧ input(u) ∧ input(v)

add(∗u := v)
(33)

Figure 7: Summary construction: deferral of deref-
erence assignments.

6.2 Global assignment promotion
So far we have only discussed how to remove local variables
from summaries. A final opportunity for compaction is by
relocating assignments whose left-hand and right-hand sides
are global variables. Such assignments are not specific to the
context in which they are found and, therefore, they can be
moved to the top-level summary without affecting correct-
ness nor the result in any way. This avoids some unnecessary
copying and propagation of global variables. Consider the
following

R(p) with {} in {g := h}

where g and h are global variables. The assignment only
involves global variables and is otherwise disjoint from M.
Therefore it is not necessary to include g1 := g2 into the
summary for M as long as the assignment gets handled some-
where. It is best to move such assignments to the top-level
so that they will be handled only once. A similar technique
has been also proposed in [14].

7. EXPERIMENTAL RESULTS
We have extended the compaction algorithm described in
the previous sections to work with the full C language, and
implemented it as a component in the points-to analysis
framework currently integrated in a full-scale compiler. For
the primary experiments presented, the analysis parame-
ters were chosen in order to closely match the algorithm
described in this paper. This represents only one of many
setups feasible using the general concepts we advocate. Pre-

Call graph Built on-the-fly
Recursion Merge call graph cycles
Context Sensitive (except call gph)
Constraints Inclusion-based
Offset Insensitive
Heap (“Analysis” Expr) No Cloning
Heap (“Prelim HC” Expr) Exhaustive Cloning
Flow Insensitive

Figure 8: Key experimental parameters.

liminary results using exhaustive heap cloning are also pre-
sented because they provide some valuable insights into con-
text sensitivity, though a detailed treatment is beyond the
scope of this paper.

Figure 8 summarizes the major points-to analysis parame-
ters used. The analysis is inclusion-based and the call graph
is iteratively constructed. The analysis is context sensitive
except that call graph itself is context insensitive. This
means indirect calls made from a procedure are seen by all
callers of that procedure. To match the derivation rules pre-
sented, both offset sensitivity and heap cloning were turned
off for the results used in the primary discussions.

To demonstrate the usefulness of our approach, we evalu-
ated the presented techniques on nineteen benchmarks from
the SPEC92, SPEC95, and SPEC2000 suites. These bench-
marks are all of SPEC’s integer C programs excluding du-
plicates across suites (such as 022.li and 130.li). Some of
the older benchmarks were chosen for comparison with pre-
vious works such as [14]. Figure 9 shows the lines-of-code,
number of variables, and analysis run times for each bench-
mark. Times for runs without heap cloning are presented as
“Analysis”, while the results for preliminary, heap cloning
experiments are shown as “Prelim HC”. All of times have
been rounded to the nearest non-zero second.

The run times include the loading of the intermediate rep-
resentation of code from disk, the core analysis, and the
storing of the results back to disk. The analyzer was com-
piled with debug information and no optimization, but was
run on a 2.8 GHz Pentium 4 computer with 1G RAM.

The over-arching goal of this work is to facilitate a very pre-
cise yet scalable analysis framework. For this reason, all
analysis times were limited to 40 minutes, as longer seemed
intolerable for any user of an actual compiler. Most of
the benchmarks completed in a few seconds, while 130.li,
176.gcc, and 254.gap took substantially longer. Addition-
ally, the benchmarks 132.ijpeg and 253.perlbmk did not fin-
ish within the allotted time.

For the five problematic benchmarks, the root cause of the
extended analysis times was the effect of global variables
on the compaction process. Because of their opaqueness,
globals do not easily disappear from summaries as the bot-
tom up process progresses. For this reason, purely global-to-
global interactions are distilled out of the summaries. While
this prevented the summary sizes from exploding, the trans-
parency detection was still forced to make many local vari-
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Figure 10: Log graph comparison of module size, in variables, versus call graph depth for exhaustive inlining
and inlining using compaction.

ables opaque because of their interactions with global vari-
ables.

These opaque locals and the address assignments they gener-
ate are a direct cause of the disproportionate analysis times.
For example, 130.li is much smaller than 134.perl yet con-
sumes substantially more analysis time. Other issues notice-
ably affects the analysis times for a couple of benchmarks. In
particular, 132.ijpeg was impacted by the lack of offset sen-
sitivity and heap cloning, grossly reducing the precision of
its call graph, and the additional address assignments from
opaque locals exacerbated an already address-assignment-
burdened 253.perlbmk.

In response to these results, we have extended our tech-
niques to yield a more efficient, but equally precise treat-
ment of global variables. Our preliminary results show that
this technique permits everything, including 132.ijpeg and
253.perlbmk, to run in under 20 minutes, but the details of
this extension are beyond scope of this work.

An exhaustive form of heap cloning was performed, and the
preliminary results are shown in the “Prelim HC” column
of Figure 9. As mentioned in Section 2.3, exhaustive heap
cloning separates escaping objects along distinct call paths.
For this reason, it can cause substantial increases in the anal-
ysis precision and the analysis problem size. Such an explo-
sion in problem size is particularly the case for 008.espresso
which no longer completes and for 255.vortex which has a

four-fold increase in analysis time.

132.ijpeg is an important, but counterintuitive, example in
which the addition of heap cloning actually decreased the to-
tal analysis time enabling it to quickly complete. 132.ijpeg
makes many indirect calls through heap allocated objects.
These objects are allocated through a two-layer wrapper
that itself is called indirectly through a heap object. The
complete separation of the heap objects significantly im-
proves the precision of the call graph, resulting in a much
smaller program to analyze.

Reasonable comparisons between context-sensitive and in-
sensitive analyses can be made using the size of the points-to
graph as a metric. For the larger benchmarks, context sensi-
tivity alone yields reductions from 10% (for benchmarks like
130.li) to 30% (for those like 134.perl, 176.gcc, 254.gap), to
about 40% for 132.ijpeg. A comparison against heap cloning
is more difficult because the replication of heap locations can
expand the points-to graph even though the actual precision
is higher. However, the benefit of the increased precision to
132.ijpeg is so significant that it is noticeable despite this
difficultly. When compared to the context-insensitive re-
sult, the points-to graph for 132.ijpeg is 80% smaller with
heap cloning despite the heap object replication.

The major motivation for using compaction is to avoid the
potentially explosive growth of summaries as modular points-
to analysis progresses up the call graph. Figure 10 shows two
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Analysis Prelim HC
Benchmark LOC Vars Time (s) Time (s)

008.espresso 13505 7146 4 ∞
023.eqntott 3393 944 1 1

099.go 28547 3184 1 1
124.m88ksim 17251 3130 2 2
129.compress 1426 148 1 1
130.li 6930 4422 313 ∞
132.ijpeg 25897 4717 ∞ 70
134.perl 23969 10169 44 ∞

164.gzip 7759 663 1 1
175.vpr 16973 4707 1 2
176.gcc 205747 56428 1700 ∞
181.mcf 1909 408 1 1
186.crafty 18977 2457 1 1
197.parser 10924 3688 2 2
253.perlbmk 57541 26610 ∞ ∞
254.gap 59674 17808 1873 ∞
255.vortex 52634 22134 46 200
256.bzip2 4637 427 1 1
300.twolf 19749 3401 2 5

Figure 9: Input size and analysis time across select
SPEC92, SPEC95, and SPEC2000 integer bench-
mark suites (rounded to nearest non-zero second).
The symbol ∞ is placed for the benchmarks which
did not finish within the time limit.

graphs that plot the total number of variables in procedures
at a given depth in the call graph. Procedure main() is
always at a depth of one while the leaf procedures of a pro-
gram span depths from 11 to 39. The y-axis is a logarithmic
scale; thus, the upper graph extends to 10 trillion while the
lower graph extends only to 100 thousand.

The upper graph plots the total number of variables when
exhaustive inlining is used. The benchmarks are colored
black, dark grey, light grey, dotted block, dotted dark grey.
The colors divide the benchmarks in five pairs from the two
largest to the two smallest benchmarks at the completion
of the inlining. Clearly the growth is exponential meaning
that some summarization mechanism would be needed to
perform analysis for any but the smallest of benchmarks.

The lower graph plots the same result when compaction
is performed between each inlining step. The benchmarks
retain the coloring from the exhaustive graph. Instead of
monotonically increasing as the process moves closer to main,
the number of variables at a particular depth varies almost
independently of depth, increasing and decreasing instead
with respect to its ability to compact the summaries. The
largest and smallest programs at a particular depth in the
exhaustive graph are not necessarily the largest or small-
est at that depth when compacted. The largest peaks in
the compaction graph are generally points at which strongly
connected components in the call graph forced the merger of
a large number of procedures into one super-procedure. The
results demonstrate that compaction is definitely effective at
controlling summary growth.

8. CONCLUSIONS
This work presents compaction, an algorithm to reduce the
size of summary information generated in the bottom-up
process of modular, inclusion-based, context-sensitive points-
to analysis. Specifically, this approach allows the replace-
ment of original summaries with equivalent-yet-more-compact
ones. The proposed method is based on the detection and
elimination of transparent variables in the procedure sum-
maries at each level of inclusion. The proposed methods
effectively address the problems in reducing the size of sum-
maries (i.e. aliasing, multi-level dereferences, redundancies,
and global variable copying), and maintain the same level
of analysis precision while effectively reducing the size of
summaries.

The proposed methods have been implemented into a full-
scale C compiler, and using empirical results, we have also
shown that the proposed methods achieve a significantly
greater reduction in summary size than previously published
approaches. Our approach allow precise inclusion-based,
context-sensitive points-to analysis to scale large, complex
applications.

9. FUTURE WORK
The full form of our compaction approach was beyond the
scope of this work. In particular, space prevented covering
in detail two items closely tied to compaction:

• Compaction does not preclude offset sensitivity. While
the offset sensitive compaction steps are more complex,
the reduction in the resulting size, more than offsets
the additional cost.

• The use of heap cloning in conjunction with compaction
is largely seamless, but can be expensive if not care-
fully controlled, as we have demonstrated with prelim-
inary results.

With regard to the framework as a whole, there are three
major components of which compaction is one part of a big-
ger picture in terms of scalability:

• Experiments in Section 7 showed that interactions with
global variables were a root problem for compaction
because they are not easily removed and can readily
make locals opaque. For this reason, we have devel-
oped another technique for completely isolating the
global variables from the compaction mechanism.

• The top-down recovery process, introduced in Section 2,
is necessary to complete the points-to information and
can be made into a light-weight, powerful part of the
process.

Future evaluation is needed to evaluate the interactions be-
tween these three critical mechanisms. Finally, a more con-
crete evaluation of the benefits of context sensitivity in gen-
eral, as well as a better conceptual comparison of our work
with other existing context-sensitive work would be infor-
mative.
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