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ABSTRACT

The main loop of modular points-to analysis typically con-
sists of two major phases. The first, a bottom-up process,
transforms each procedure into a self-contained module that
encapsulates all the internal dataflow along with side effects
from procedure calls. The second, a top-down process, pro-
vides the input points-to information to each procedure and
computes the actual points-to information.

We propose an ultimately precise (with respect to context-
sensitivity), yet very efficient holistic top-down process that
produces points-to information valid across all call paths.
When combined with our previously proposed, efficient and
exact bottom-up process [22], the resultant modular points-to
analysis is equivalent to that of a context-sensitive algorithm
entirely reliant on exhaustive inlining. The scalability and
usefulness of the proposed approach is demonstrated by em-
pirical results.

1. INTRODUCTION

Modern programming practices encourage code reuse and
result in extensive sharing of procedures throughout a pro-
gram. In the domain of points-to analysis, pervasive use of
shared procedures exacerbates the problem of unrealizable
interprocedural dataflow [25].

Context-sensitive algorithms deliver a higher degree of
precision than their context-insensitive counterparts because
these analyses are able to avoid cross-contamination through
shared procedure calls. Furthermore, in a context-sensitive
algorithm allowing heap object specialization, the spurious
dataflow through aggregated static heap objects can also be
alleviated to a certain degree.

The major challenge in context-sensitive points-to analy-
sis lies in regulating complex interprocedural dependencies
formed by destructive updates via procedure calls, termed
side effects in this paper. A straightforward way to solve
the problem is by completely inlining procedure calls and
specializing the accompanying variables, thus reducing the
problem to a single intraprocedural one. However, exponen-
tial code-size growth makes this naive approach impractical
even for moderate-size programs with acyclic call graphs.

Modularization [7, 8] is one of the popular methods used
to implement context sensitivity while avoiding serious code-
size growth. At a high level, the main loop of modular
points-to analysis consists of two major phases. The first
phase is a bottom-up process that transforms each procedure
into a self-contained module. Each module encapsulates all
of the procedure’s internal dataflow as well as all possible
side effects from its descendants in the call graph. By doing

so, the interprocedural dataflow problem is reduced into a
series of topologically-sorted intraprocedural problems. The
most important issue in the bottom-up process is the ef-
ficient capture of all potential procedural side effects and
then concisely representing those side-effects in a procedure
summary. We have proposed one such a method that com-
pacts procedure modules into summaries without altering
their external behavior [22].

The main focus of this paper is on the second phase which
is a top-down process. This process provides the input points-
to information to each procedure and then computes the
actual, or concrete, points-to information for that proce-
dure. Two commonly used approaches to the top-down pro-
cess that appear in literature are the (call-)path-specific ap-
proach [7, 15] and the (call-)path-unspecific approach. The
path-specific approach is effective when points-to informa-
tion is only needed along a particular call path and the re-
sult obtained is very precise. However, this approach does
not scale well when points-to information needs to be ex-
haustive across all call paths (for example, to precompute
alias relationships for use by a scheduler) because there may
be an exponential number of distinct call paths. In order
to scalably generate points-to information valid across all
call paths, one must avoid explicit enumeration of points-to
information from individual call paths. However, at least
in [8, 15], the means used to achieve the path-unspecific re-
sult leads to a partial loss in context sensitivity, which also
turns into precision degradation.

In this paper, we propose an ultimately precise (with re-
spect to context sensitivity) yet extremely efficient top-down
process that produces points-to information representative
of all call paths. In particular, its result is equivalent to that
collected from exhaustive runs of the path-specific top-down
process (one run for each distinct call path). Consequently,
when combined with our previously proposed, exact bottom-
up process [22], the resultant modular points-to analysis is
equivalent to a context-sensitive algorithm entirely reliant
on exhaustive inlining yet operates in an incomparably scal-
able way.

The proposed modular points-to analysis is implemented
as part of a flexible points-to analysis framework in the IM-
PACT C compiler, allowing exploration of the multidimen-
sional points-to analysis design space. Using this framework
we performed a number of empirical studies presented in
Section 8. These demonstrate that, with few exceptions,
context-sensitivity can be achieved with a reasonable cost
across large benchmarks. Furthermore, context sensitivity
and heap-object specialization are shown, in many cases, to
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Figure 1: Small-step executions given an assignment set
A. An assignment above a line is the input and the one
below is the output of the small-step execution.

provide a significant precision improvement.

2. INTRAPROCEDURAL SETTING

To simplify our initial investigations, the proposed points-
to analysis operates flow-insensitively. Though supported in
the implemented algorithm, the issue of field sensitivity will
not be discussed until Section 7. Given these two simplifi-
cations, the following four kinds of assignments suffice!

ui=&v | u:=v | *u:=v | u:=%v

where u,v are variables, & the address operator, * the deref-
erence operator, whose meanings follow those in the C lan-
guage.

2.1 Derivation tree

In the literature many different forms of flow-insensitive
approaches have been proposed [3, 10, 21, 27]. We have
chosen the inclusion-based approach [3], which is the most
precise among those, while keeping the cost within a rea-
sonable bound. Given an assignment set A, our abstract
execution can be modeled as a derivation tree constructed
by the small-step executions in Figure 1, presented in the
style of [18]. The rule (1) serves as a seed, upon which a
derivation tree can be grown by applying other inference
rules. For instance, given

A ={a:=&b, b:=&c, k:=a, k:=b, l:=k, p:=1, q:=*p}
the following derivation tree can be formed, where a label

for the inference rule has been placed beside each small-step
execution.

k:=a a:=&b
— (2
p:=k k:=&b )
q:=%p p:=&b (3)
q:= b:=&c

q:=&c @

In this case, A F q:=&c states that q:=&c has been derived
from A according to rule (1). By default, an assignment
explicitly in A is considered to be derived from A.

1In some code examples, we may abuse the syntax for clarity. For
instance, *k:=&1 is understood as *k:=x and x:=&1, where x is a fresh
variable appearing nowhere in the program.

2.2 Derivation graph

Given an assignment set A, its points-to information can
be collectively computed by an algorithm whose complexity
is cubic in the size of A. This will be named the intrapro-
cedural points-to (IA) algorithm. The main data structure
maintained by the IA algorithm is called a derivation graph,
which can be understood as an overlay of multiple derivation
trees.

Each vertex in the derivation graph corresponds to an as-
signment derivable from A and each edge to an input-output
relationship between assignments formed by small-step exe-
cutions. In particular, we draw an edge from a vertex n to
m if and only if a small-step execution having n as one of
its inputs and m as an output can be taken.

A complete derivation graph for the set A introduced in
Subsection 2.1 is shown in Figure 3. In this figure, we have
explicitly introduced a join from two incoming edges to make
the effect of small-step executions clearer. The derivation
tree shown in Subsection 2.1 is a subgraph in this derivation
graph.

3. INTERPROCEDURAL SETTING

Our modular points-to analysis begins with a call graph
initially devoid of indirect calls and is updated iteratively
throughout the analysis process until no new call targets
for indirect calls are found. Since our modular points-to
analysis is essentially inline-based, termination can be guar-
anteed by merging recursive procedures into a single proce-
dure. Without losing generality, the remainder of this paper
will only consider programs with a fixed acyclic call graph.

To further simplify the presentation, the assumed lan-
guage does not contain a return statement; its effect can be
replaced by an extra parameter into which the address of the
actual return variable is passed. However, in the actual im-
plementation, we have extended the techniques introduced
in this paper to work directly with a return statement. For
similar reasons, we have excluded global variables from the
discussion until Section 7.

3.1 Context-insensitvity

As briefly mentioned in Section 1, the key challenge to im-
plementing context-sensitive points-to analysis lies in deal-
ing with interprocedural dependencies caused by side ef-
fects?. Consider the following example.

P1: aa() {bb; (%a,&b,&a) ; bb,(&c,&d,&a);}
bb(k,1,m) {*k:=1; n:=#m;}

A context-insensitive (CI) algorithm blindly collects all
the assignments in the program into a single set along with
a number of assignments to mimic the effects of parameter
passing between procedure calls, called param-assignments.
From this set, a single run of the IA algorithm produces
points-to information for all the variables in the program.
Applying the CT algorithm to the example P1 yields the three
derivation trees shown in Figure 2, among others. Brackets
mark param-assignments and the subscripted number indi-
cates the particular call site.

2Intuitively speaking, when a callee makes an update visible to its
caller, we say that there is a side effect. In the discussion of this paper,
it is caused when a left-dereference assignment updates a variable
non-local to the procedure.
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Figure 2: Three possible derivation trees that result
from applying the CI algorithm to P1. Among them,
only (c) is interprocedurally spurious.

Derivation trees (a) and (b) follow a single call path and
produce an intended result. However, the derivation (c)
shows unrealizable, or spurious, dataflow occurring between
two call paths. It does not correspond to any actual execu-
tion sequence because a:=1 is valid only within the call site
1 while 1:=&4 is valid only within the call site 2.

This problem, termed the spurious dataflow problem, is
rooted in the existence of procedural side effects. It occurs
when interprocedural dataflow formed from two different call
paths to the same procedure interact due to a lack of context
differentiation.

Even for a program lacking side effects, another kind of
precision loss can occur, termed the context-loss problem. In
this case, the overlapping of interprocedural dataflow does
not cause any spurious interactions. However, a lack of con-
text information causes a different problem. Consider the
following example.

P2: cc()  { ddi(&a,&b); ddy(&b,&a); }
dd(p,q) { r:=*p; s:=*q; }

It is apparent that dd() has no side effects and that both
*p and *q can point to a and b. The direct use of the points-
to information will answer positively to the alias query be-
tween *p and *q. However, this is a spurious alias result
because p and g never point to the same variable simultane-
ously (i.e. along any given call path). The main contribution
of this paper, summarized in Section 4, is to completely elim-
inate both the spurious dataflow and context-loss problems in
a scalable way.

3.2 Inlining approach

A context-sensitive algorithm reliant on exhaustive inlin-
ing, sometimes simply referred to as the CS algorithm, is
an intuitive but unscalable way to resolve both the spurious
dataflow and context-loss problems. The inlining transforms
the interprocedural problem into a single, potentially huge,
intraprocedural problem. Context sensitivity is maintained
by specializing the variables of each inlined copy. This spe-
cialization is shown using subscripts, as in the following.

P1’: aa’() {
ky:=&a; 11:=&b; my:=&a; *kj:=1;; nj:=*my;
ko:=&c; 1lo:=&d; my:=&a; *ky:=1ly; ng:=*my;

}

The first line corresponds to the call site 1 in aa(). The
first three assignments are for parameter passing while the
last two are from the body of bb(). Note that the local vari-
ables of bb() have been specialized using 1 as a subscript.
The second line corresponds to the call site 2 in a similar
way. The spurious dataflow problem has been resolved nat-
urally since variable specialization prevents any interaction

between side effects across different call sites. Applying the
CS algorithm to the second example results in the following.

P2’: cc’ () {
p1:=%a; Qqi1:=&b; ri:=%pi; Si1:=%qi;
p2:=&b; qx:=&a; ro:=%py; S1:=%qz;

}

In this form, it is more apparent that *p and *q are not
aliases, since neither the pair (pi, 1) nor the pair (p2, q2)
point to the same variable.

3.3 Modular approach

Modularization [7, 8, 15] provides an alternative mech-
anism to regulate interprocedural dependencies. As men-
tioned in Section 1, modular points-to analysis consists of
two phases. The bottom-up process explicitly yet concisely
moves side-effect production from callees to callers, thus cut-
ting the upward interprocedural dependency between them.
We have previously proposed one such method [22]. The
top-down process then computes the concrete points-to in-
formation, by traversing modules in a topological order and
transferring points-to information downward. Since we are
primarily interested in computing a result valid across all
call paths, the following focuses on a path-unspecific ap-
proach.

In example P1 from Section 3.1, *k:=1 is the only side-
effect production in bb(). Therefore, to cut the dependency
from aa() to bb(), it is the only assignment that needs to
be inlined into aa().

The result of explicitly including these side-effects is shown
by the module aa’ () below. The consequence of the bottom-
up process is that the aa’ () is no longer dependent on bb' ()
because it contains specialized replicas of bb()’s side effect
production. Also note that the replicas of *k:=1 in aa’ ()
aref no longer side-effects but, instead, are purely local to
aa'().
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With the bottom-up process completed, the first step of
the top-down process is to derive the concrete points-to
information for aa'(). The side-effect specialization per-
formed by the bottom-up process allows the TA algorithm
to be applied to aa’ () in isolation. The only concrete points-
to results derived are a:=&b and b:=&d, thus, as expected,
no spurious dataflow occurs.

The second step is to derive the concrete points-to infor-
mation for bbf (). The necessary output-to-input transfer
from aa’ () to bbf() is depicted in the diagram?.

3 It corresponds to all the points-to relationships reachable from the
parameters of bb' ().



In bbf (), however, the assignment *k:=1 combined with
k:=&a and 1:=&d, again causes the variable a to point to d*,
eventually causing the spurious points-to information n:=&d4
at the assignment n:=*m.

This example shows that in modular points-to analysis,
spurious dataflow may corrupt points-to results not only
from the perspective of callers, but also from the callees.
In addition, since no path-specific information is available
from such a path-unspecific top-down process, it is appar-
ent that the context-loss problem, also mentioned Subsec-
tion 3.1, may still occur.

4. OVERVIEW

As made apparent in Section 3.3, the spurious dataflow
problem can occur during both the bottom-up and top-down
processes. The bottom-up process resolves this problem for
callers, however it does not aid callees much by itself.

A surprisingly simple remedy for the spurious dataflow
seen by callees can be found through the following observa-
tion: All callees’ side-effects have been replicated and exist
locally within callers. Since callers completely rely on their
local copies, they no longer depend on their callees. If callees
are permitted to consume the consequences of their callers’
side-effect copies, callees no longer require the original ver-
sion. This leaves the original side-effects entirely redundant
allowing their erasure. 7The clean-up of the (now redun-
dant) original side-effects eliminates all sources of spurious
dataflow from the program.

Keeping this in mind, we have revised the modularized
version of P1 as follows. The assignment *k:=1, which was
replicated into aa* (), has been erased from bb* ().

I
- ‘k,:=8a 1,:=8b m, :=&a @ *k :=l _ ia:=gb
- Ha 1 m, : 1y :
B izee  1=8d mi=aivk,:=l, ici=sd
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172 S - aN=,
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= * P n:=*m
}

It is safe to remove *k:=1 if the derived points-to infor-
mation for both aa*() and bb*() will be unaffected. The
independence of aa' (), which is identical to aa (), has al-
ready been demonstrated in Section 3.3.

The module bb*(), even without (original) *k:=1 in its
body, consumes the exact consequences, a:=&b, now pro-
duced by #k;:=1; in aa* (), naturally through the parameter
passing mechanism m:=g&a and the assignment n:=+m. Now,
only the expected points-to information n:=&b is produced.

As demonstrated, to completely fix the spurious dataflow
problem, the clean-up step is the only extension needed by

4 Thus, it is required to protect the points-to information of a (and
also c), which is already complete at the level of aal ). Otherwise,
surprisingly, context-sensitivity is entirely lost. This is why we have
commented out the procedure calls in bb' () in the diagram on the
previous page. From this perspective, the representation in the dia-
gram must be understood as a topologically sorted modules with its
own output-input transfer mechanism, rather than an actual program
following the usual procedure-call semantics.

the compaction-based bottom-up process. We will refer to
the combination of the compaction-based bottom-up process
and the clean-up step collectively as the enhanced bottom-
up process. In fact, after the enhanced bottom-up process,
bb? ) truly does not affect aa*(). The following version of P1
is equivalent to the diagram above, thus, also equivalent to
the original program P1 (with respect to the CS algorithm).

P1*: aa*() {
ki:=&a; 1i:=&b; m;:=&a; *k;:=1;;
ko:=&c; 1lo:=&d; my:=&a; *ky:=1s;
bb*; (k1,11,m1); bb*2(ky,1z,mp);

}

bb* (k,1,m) {
n:=*xm; /* ¥k:=1; */
}

The enhanced bottom-up process transforms a program
into a side-effect-free program®, yet with the same points-to
information. Since side-effect productions move up to callers
until they becomes purely local in nature (thus, no longer
generating side effects), after the clean-up step, programs
no longer cause any side-effect productions. Sections 5 and
6 will present more details.

With this transformation, as it will be discussed in the fol-
lowing subsection, a simple holistic top-down process, con-
sisting of only a single run of the CI algorithm, is as effec-
tive as erhaustive runs of the path-specific top-down process
(once for each call path) yet with an exponential speed-up®.

4.1 Consequencesf clean-up

The reason that a path-specific top-down process provides
the highest level of precision is that it considers only indi-
vidual call paths in isolation from each other. It should be
evident that any derivation tree formed from assignments
along only a single call path is realizable. We generalize this
observation in the following definition.

Definition 1 Let D be a derivation tree formed by apply-
ing the CI algorithm to a program. Then, we say that the
derivation tree D matches a call path o when a call site c is
in « if and only if D contains a param-assignment from c.

For instance, among the three derivation trees shown in
Figure 2, the trees (a) and (b) have matching paths 1 and
2, respectively. Tree (c) does not match any single call path
since the param-assignments are from 1 and 2, both to pro-
cedure bb(). From the definition, it is apparent that D
matches a unique call path a. It is completely determined
by the set of param-assignments in D. This also implies that
any subtree of D matches a unique subpath of a.

Lemma 1 Let D be a derivation tree with a matching call
path . Then, it is interprocedurally realizable.

5Therefore7 the output-to-input transfer is realized purely following
the usual procedure-call semantics. (A modularized view of programs
is no longer required.) Note that in Subsection 3.3, without the clean-
up step, bb? () still contains the side-effect production, therefore, an
explicit separation from aa’ () was necessary.

6 A similar phenomenon (exponential speed-up) can be also found in
distributive dataflow analysis [1, 25] and type-based polymorphic low
analysis [24, 17]. However, in these cases, the cause of the speed-up is
inherent in the analysis problem itself. In ours, such an opportunity
is manufactured by transforming programs into a nice form.



To be interprocedurally spurious, two dataflows formed by
two different call paths leading to a single procedure must
participate in D. However, since each subtree of D matches
a subpath of «, such a case never arises. [

We will demonstrate that the CI algorithm applied to a
side-effect-free program only produces a derivation tree with
a matching call path. Since a program is already side-effect-
free after the enhanced bottom-up process, this directly jus-
tifies our simple top-down approach, implemented as a single
run of the CI algorithm.

Since we only consider acyclic ones, a call graph defines a
natural partial order C between procedures. We also extend
this partial order to work with variables defined in proce-
dures. For instance, if pp is some descendent of gq and they
define the variables u and v, respectively, then pp C gq im-
plies u £ v. In such a case, we also say that there is a call
path from v to u. In the following definition, e(u) denotes
some expression that contains a variable u.

Definition 2 A derivation tree of e(u) := ¢’(v) formed by
the CI algorithm is said to be a side-effect production if and
only if an assignment from a strict descendant” of the home
procedure of u (the procedure that declares u) appears in
the derivation tree. Moreover, a program is said to be side-
effect-free if the CI algorithm does not generate any side-
effect productions.

Lemma 2 If a program is side-effect-free, then any deriva-
tion tree D of e(u) := €'(v), produced by applying the CI
algorithm to the program, always has a matching call path
from v to u.

The proof is performed by applying structural induction
on the derivation tree D, whose inductive definition is from
Figure 1. In the following proof, A denotes the assignment
set resulting from a context-insensitive aggregation of the
program.

1. When the last small-step execution taken in D is rule
(1), then, e(u) := €'(v) is an element of A. If it is for
parameter passing, D trivially matches a call path that
consists of a single call site, from which the param-
assignment originates. Otherwise, since v and v are
from the same procedure, it matches an empty call
path.

2. When the last small-step execution taken in D is rule
(2) in the following form:

u=w w:=&v

u = &v

Let D1 and D2 be the derivation trees of u := w and
w = &w, respectively. Then, from the induction hy-
pothesis, D1 and Dy have their matching call paths,
namely, « from w to v and 3 from v to w, respectively.
Then, D matches 3 - a, a call path from v to u.

3. When the last small-step execution taken in D is rule
(4) in the following form:

(112) (4]5186)

P3: ee() {a:=&b; b:=&c; ffi(a); ffa.(a); ff3(b);}
£ (k) {gga(®); ggs(X); gge(l); l:=k; }
ggp) {q := *p;}

Figure 3: The derivation graph of the program P3
formed by the CI algorithm and the result of its re-
covered context. The accumulated context information
has been organized as regular expressions. The result
(112)(41516) at p:=&b denotes the six call paths along
which it is derivable.

The assignment *w := v is never derived and w, v must
be in the same procedure. Since w := &wu is derivable,
by the induction hypothesis, w C u. Also, since the
program is side-effect-free, from *w := v and u := v,
w must not be a strict descendent of u. Therefore, it
enforces w and u to be in the same procedure and D
matches an empty call path.

4. When the last small-step execution taken in D is rule
(3) in the following form:

u=xw w:= &

U :=v

Let D2 be the derivation tree of w := &wv. The assign-
ment v := %w is never derived. Thus, u,w must be in
the same procedure, Therefore, D matches the same
call path that D2 matches. [

Therefore, given a side-effect-free program, the CI algo-
rithm does not produce any spurious points-to information.
As a consequence, after the enhanced bottom-up process,
the simple top-down process (which consists of only a single,
full program sweep of the CI algorithm) does not produce
any spurious points-to information.

4.2 Contextrecovery

Among the two problems that we have raised against
a path-unspecific top-down process, the spurious dataflow
problem has been resolved by an additional clean-up step.
The remaining issue is the context-loss problem.

We will sketch the outline of an optional® algorithm, named
the context-recovery algorithm, which can efficiently con-

[ : pp C qq and pp # qq, then we say that pp is a strict descendent
of qq.

8 This additional step is optional since the points-to information after
the simple top-down process might be sufficient for many purposes.



u = &v A exposed(u)

initial(u := &v)

u = v A exposed(u)
*u :=v A hold(u)
initial(xu := v)

u := *v A exposed(u)

initial(u := *v)
Figure 4: Initial assignments.

struct the missing context information®. The following is
an oversimplified version of the context-recovery algorithm
without efficiency consideration (for instance, grouping parm-
assignments from the same call site, together). The input
to the algorithm is G, the derivation graph from the CI al-
gorithm performed within the simple top-down process.

1 For each parm-assign p in G

2 For each assign a reachable from p

3 Accumulate p’s call site into a.

4 For each assign a in G

5 Postprocess call sites accumulated in a.

Figure 3 depicts a run of the context recovery algorithm
for a sample program. After the first loop (lines 1-3) finishes,
the call sites accumulated in each assignment e(u) := e’(v)
form a subgraph G’ from v to u (from Lemma 2). Since
each derivation tree embedded in the derivation graph is
constructible, and also since each derivation tree is interpro-
cedurally realizable, each path from v to u in the subgraph
G’ is valid context information, from which e(u) := €’'(v) is
derived.

The postprocessing step at line 5 is application-specific.
For instance, to visualize along which call paths u points to
v, the raw information (which is simply a set of accumulated
call sites) would be sufficient. For alias queries between ex-
pressions it is desirable to process the raw information into
an appropriate form, such as regular DAGs [29, 30], which
can be formed in almost linear time for an acyclic graph,
so that the path-set intersection query can be answered ef-
ficiently'©.

5. SIDE-EFFECT EXTRACTION

This and the following section complete the description
of the enhanced bottom-up process introduced in Section
4. This section focuses on the side-effect extraction process,
or compaction [22], which is the central component in our
bottom-up process. The success of the top-down process
largely depends on the quality of this process. First, the
boundary of the extracted summary must be sharp enough
to make the side-effect production easily removable from

9 This algorithm, unfortunately, is not applicable to a derivation
graph for an arbitrary run of the CI algorithm: It only works with
a derivation graph without side effects. Therefore, it cannot be
used to construct missing context information for neither a context-
insensitive points-to analysis nor a modular points-to analysis without
the clean-up step.

10 The subscripts of variables, introduced by specialization during the
bottom-up process, are also a part of context-information and must
be considered together.

callees. Second, the extraction process should not blow up
and eventually overload the bottom-up process, otherwise
the effectiveness of our top-down process becomes irrelevant.

5.1 Initial assignments

To perform side-effect extraction, it is essential to under-
stand how side effects are actually produced. In our setting,
side effects are initiated by assignments!® of the form su := v
such that u points to variables non-local to the procedure
under consideration. Variable w is said to be holding and
assignment *u := v is said to be initial in the sense that all
back substitution is initiated from the assignment. Consider
the following example.

P4: ii() {... ...}
hh(k,1) {m:=k; n:=1; *m:=n; *m:=o;}

In this example, k and 1 are parameters and regarded as
holding addresses of non-local variables by default. Because
of the assignment m:=k, the variable m is also considered to
be holding. As a consequence, these assignments *m:=n and
#m:=o0 are initial. For the assignment *m:=o0, since o is never
updated anywhere, its has an empty effect. On the other
hand, by performing back substitution from *m:=n through
m:=k and n:=1, the extraction process produces its net effect
*k:=1. It is apparent that the external behavior of hh* (),
the summary of hh(), is identical to that of the original
procedure hh ().

hh* (k,1) {*k:=1;}

5.2 Exposedvariables

The extraction process is complicated by the appearance
of the address operator, particularly when the address of a
local variable is assigned into a non-local variable. Consider
the following example.

P5: jjO {kki (&a,&a); kko(&b,&c);}
kk(k,1) {*k:=&m; m:=1; **l:=k; n:=m;}

In this example, at the assignment *k:=&m, the address of
the local variable m is potentially assigned into a nonlocal
variable. We call such a variable exposed'? in the sense that
its address is exposed to nonlocal variables. (A variable
not exposed is called hidden.) To replicate this side effect
into callers, we promote local variable m so that the nonlocal
variables can point to it at the levels of callers, in this case
jj O, instead of kk(). (The details of such promotion will
be explained in Subsection 6.2.)

Subsection 5.1 explained that an assignment *u := v is
the only possible source of side effect production. However,
since we will promote exposed variables up to callers, a direct
write into an exposed variable is also a side effect (in a non-
standard way).

In the example P5, the only write into an exposed vari-
able is the assignment m:=1. Since **1:=k is also a side
effect production by itself, the extraction process can ex-
clude only n:=m from the summary of kk(). The following
is the resultant summary that will be promoted into jjO.

kk*(k,1) {*k:=&m; m:=1; *x1l:=k;}

11 the presence of global variables, a plain assignment can also cause
side effects. It can be easily and exactly handled by making global
variables exposed by default.

2 It is equivalent to the well-studied concept of escape, for instance,
in [2, 5, 6, 9, 16, 31].



u = &v A exposed(u)

exposed(v) ©
xu:=vAv:=&wA hold(u) (10)
exposed(w)
param(u) V exposed(u)
hold(u) an
u := v A hold(v)
hold(u) (12)
u = &v A exposed(v)
hold(u) (13)
w := *v A hold(v)
hold(u) 1)

Figure 5: Holding and exposed variables.

5.3 Overall process

With all of the key concepts in the extraction process hav-
ing been introduced, this section describes the overall pro-
cess. The extraction algorithm begins by making the proce-
dure of interest closed under the inference rules of Figure 1.
Closure simplifies the determination of the holding and ex-
posed properties easier by making all purely local dataflow
explicit.

After the closure is formed, the extraction algorithm runs
the inference rules in Figure 5 to determine any holding
and exposed local variables. For the detailed explanation of
these rules, we refer readers to [22]. Using this information,
it finds all the initial assignments, using the inference rules
in Figure 4, which are the sources of all the side effects.
Finally, back substitution is performed to prune unnecessary
assignments and to compacts side-effect productions'?.

The following is the most important invariant kept by
the extraction process: All writes into monlocal variables,
including exposed variables, will be reproduced by the resul-
tant summary. In certain cases, hidden variables may be
included in the summary as intermediates for multiple deref-
erences such as a:=+b, b:=*c.

6. ENHANCED BOTTOM-UP PROCESS

The enhanced bottom-up process transforms arbitrary pro-
grams into a side-effect-free form without altering any points-
to information. There are two steps. The first step is the
compaction-based bottom-up process, which replicates side
effects into callers. As long as the side effect extraction pro-
cess results in an exact summary of a procedure, this step
does not alter points-to information.

The second step is the clean-up process that removes all
the initial assignments from each procedure. Since, by def-
inition, all side-effect productions are initiated from initial
assignments, it is clear that this step will make the proce-
dures completely side-effect free. The only issue is whether
this process alters the points-to information.

6.1 Clean-upstep

13 Exposed variables directly affect the size of summaries. From ex-
perience, few local variables, including address-taken ones, are found
to be exposed. On the other hand, heap objects are more frequently
exposed. In the experiments, exhaustive heap-object specialization
was problematic for 4 benchmarks out of 19 tested. For those, spe-
cialization was limited by two generation (Figure 8).

After all side-effect productions have been replicated into
callers, the clean-up step removes all the initial assignments
thus completely converting a program into a side-effect-free
form. Among the cases in Figure 4, the rules (5), (6), and
(8) handle exposed variables and its implication will be ex-
plained in the following subsection.

All the remaining initial assignments are in the form of
*u = v, as identified by the inference rule (7). In this case,
since the callee is closed under the inference rules of Figure
1 (the side-effect extraction process needs it to determine
holding and exposed properties of variables), all its local ef-
fects have been replicated by other assignments. Therefore,
we can remove them from the callee without affecting the
final points-to set derived for the callee.

6.2 Handling exposedvariable

An exposed variable is treated as an extra parameter of
its home procedure'?. During the side-effect replication (in-
lining) step, at each call site, a specialized version of the
exposed variable is introduced as a new local variable of the
caller. After the clean-up step, all updates made to the spe-
cialized versions of the exposed variable become available to
the original exposed variable in the callee through the usual
parameter-passing mechanism. This is the only update into
the original exposed variable after the clean-up step'®. The
following shows the results after applying this process to ex-
ample P5 in Subsection 5.2, where m was the only exposed
variable.

P5°: jji’0 {
ky:=&a; 1;i:=&a; *ky:=&m;; my:=1;; **1;:=k;;
ko:=&b; 1ly:=&c; *Kk:=&mgp; mp:=lg; **1y:=ks;
kk?y(ky,15,m); kk’5(ks,12,mp);

}

kk’ (k,1,m) {
n:=m; /* *k:=&m; m:=1; **x1l:=k; */
}

Note that the signature of kk’() now contains m as an
extra parameter. Also, all the initial assignments in kk(),
including m: =1, have been removed. Instead, since the sum-
mary kk* () is inlined in jj’ (), the side effect productions
were replicated in jj’> (). Therefore, the points-to informa-
tion of the exposed variable m is complete in jj’ () except
that they are distributed into m; and mo.

In Xk’ (), n:=m is still retained, even after the clean-up
step, since its effect is purely local to kk() (therefore, not
initial). In such a case, it is important that the points-to
information of m is complete at the level of kk’ (), too. In
the example above, it is realized solely through the usual
parameter-passing mechanism for the variable m. As a con-
sequence, the removal of initial assignments, originated from
the exposed variable m, does not affect any procedure.

14 On the other hand, the inlined hidden variables are completely dis-
connected from their home procedures; they are purely place holders.
In fact, [15] treats all the inlined variables, including exposed ones, in
this way. This treatment requires all updates into exposed variables
to remain at the level of their home procedures. In fact, it is a critical
difference between [15] and ours.

15 After the enhanced bottom-up process, the original exposed variable
is never visible to callers, neither directly nor indirectly, and this
update is not a side-effect production.



7. EXPERIMENTAL SETUP

While the focus of this paper is efficient, accurate compu-
tation of pointer values, it is important to overview aspects
of the complete experimental system used to generate the
empirical results.

7.1 Field Sensitvity

Many of the experiments make use of field information
because such information can greatly refine the analysis re-
sults. Despite these benefits, since the C language is not
type-safe, the analysis system must be somewhat distrustful
of the field information or else it may obtain unsafe results
for some programs. Our implementation of field sensitivity
tries to handle as many abuses of the C language as possible
in a safe and precise way.

For field sensitivity (FS), our analysis is offset-based, as
opposed to using field names as in [23]. Each variable is
composed of a size and accessed offsets. The size of named
variables are limited to the size of the defined type. The
size of heap objects are set to the size of the largest type
in the program'®. The accessed offsets for each variable
are initially set to empty, but are adjusted throughout the
analysis process as new updates are discovered. Thus the
analysis process may detect accessed offsets beyond those
explicit to the variable’s defined type. Finally, the analysis
system can disable field sensitivity for individual variables
and will exercise this ability to further improve safety or
speed (at the expense of precision).

Aside from improving safety, our mechanism for field-
sensitivity permits variable-sized assignments for object ac-
cesses. For example, direct or indirect structure-to-structure
copying is represented by a single large assignment instead
of being discretized into multiple pointer-sized ones.

7.2 Context Sensitvity

Heap object specialization can improve the precision of
a pointer analysis algorithm. To evaluate the benefit, two
different settings of context sensitivity are used in the ex-
periments, one with heap object specialization (HS) and the
other without (HI). In the first, the heap objects are treated
similar to local variables and become specialized to a cre-
ation call path. In the second, heap objects are treated as
global variables and only a fixed number exist, one for each
allocation routine!”.

Even in a context-sensitive algorithm, global variables
are not subject to variable specialization and retain the
same values across all possible call paths. Hence, in our
framework, they are handled through a separate context-
insensitive mechanism and excluded from the bottom-up
process. This isolates the global variables from the com-
paction process, allowing the summaries to capture only the
context-sensitive effects through specializable dataflow.

8. EMPIRICAL RESULTS

To demonstrate the usefulness of our approach, we evalu-
ated the presented techniques on all the C benchmarks from

16 For heap objects, since the C language is not type-safe, it may be a
cause of unsoundness. It can be remedied by mapping all the offsets
larger than the maximum type size into a single symbolic offset at
the end.

17In most context-insensitive algorithms, a distinct variable is assigned
for each use of an allocation routine. However, within our framework,
it is naturally realized through the mechanism of context-sensitivity.

the SPEC92, SPEC95, and SPEC2000 suites except redun-
dant ones. This breadth of benchmarks shows a wide range
of analysis characteristics. The analyzer, compiled with de-
bug information and no optimization, was run on a 2.8 GHz
Pentium 4 computer with 1GB memory.

8.1 Scalability

One major concern in terms of scalability is the prob-
lem size growth caused by summary replication. Figure 6
demonstrates the effectiveness of our bottom-up process by
comparing the theoretical growth of a full inlining process
(upper graph) against empirical results using our compaction
algorithm (lower graph). In the figure, procedure main() is
always at a depth of one while leaf procedures are at the far
right of a particular line spanning depths from 11 to 39. The
y-axis is a logarithmic scale; thus, the upper graph extends
to 10 trillion while the lower graph extends only to 100K.

It is apparent that the growth in our bottom-up process
is no longer explosive. An interesting aspect of the lower
graph is that the size of summaries does not grow mono-
tonically as it approaches main(), instead, it varies almost
independently of depth, increasing and decreasing according
to compaction opportunities.

Figure 7 shows three sets of data. The height of each bar
is a logarithmic plot of the run times of the CS-FS pointer
analysis. The fraction of time spent performing the top-
down process is shown by the fraction of each bar colored
red (dark). Finally, the solid line plots each benchmark’s size
on a logarithmic scale centered at 10k lines of code (LOC).
It is apparent that the top-down process is a light-weight
part of the analysis process, as it rarely surpasses 10% of
the analysis time.

253.perlbmk stands out as having both the longest total
run time (12 minutes) and the most time consuming top-
down process. The problem is that it has a number of large,
identical pointed-to-by sets which substantially burdens the
entire analysis process. We believe that it can be resolved
by employing simplification [28, 26], in addition to those
already selectively applied [20] and [13], or an alternative
set representation [4].

8.2 Precision

The results of a series of analysis runs are shown in Ta-
ble 8. Columns 1 and 2 show the total CS-F'S analysis times
without and with HS. Overall, the times are quite small
given our chosen design point and HS does not always dra-
matically increase the analysis times.

Column 3 shows the reduction in the points-to set size
observed when going from CI-FI to CI-FS. Column 4 shows
the additional points-to set size reduction observed when
moving from CI-FS to CS-FS. FS provides a noticeable, if
not significant, benefit for most benchmarks. With respect
to F'S, CS is more inconsistent but clearly helps.

Columns 5, 6, and 7 are for the evaluation of heap object
specialization. HS tries to use calling contexts to distinguish
heap objects. In some cases a large number of heap objects
can result, so four benchmarks (*) were limited to 2 gener-
ations of heap objects. A single generation means one step
upward from the original allocation routine.

Column 5 lists the number of heap objects created. Col-
umn 6 shows the percentage of those heap objects whose
points-to set is less than half that obtained by the HI al-
gorithm. For 132.ijpeg, 99% of the specialized heap objects
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Figure 7: Log graph of total analysis time and benchmark size. Bar divisions show fractional (not logarithmic) split

between top-down and bottom-up times.

had their points-to sets reduced by more than half. Column
7 shows a similar percentage, but instead for the number of
objects that each heap object has pointing to it. For ex-
ample, 124.m88ksim creates 10 heap objects, 70% of which
have half as many objects pointing to them when compared
to the HI result. (The higher the percentages in Columns 6
and 7, the more the heap specialization helped.)

Heap cloning was particularly beneficial to 132.ijpeg be-
cause it makes many indirect function calls through heap-
allocated objects. Additionally, much of the heap allocation
itself occurs through indirect function calls. Heap special-
ization permitted the construction of a far more accurate
call graph. 254.gap shows a very limited amount of heap
specialization. 254.gap uses NewBag to perform custom allo-
cation and garbage collection through a global pool. We feel
that, with some additional information, heap specialization
can treat these custom allocation routines in a way similar
to malloc.

9. RELATED WORK

Points-to analysis has been extensively studied in litera-
ture. We refer readers to [19] for extensive lists of previ-
ous work. In particular, context-sensitive points-to analyses
have been studied in [23, 12, 32, 7, 8, 14, 11, 15]. Among
them, [7, 8, 15] takes a modular approach. However, none of
their top-down processes are both scalable and precise when
the points-to information across all (or many) call paths is
required. The algorithm in [15] is most similar to ours. It is
based on the same inclusion-based intraprocedural setting.
Procedures are summarized and compacted yet in the form
of constraints (equivalent to our assignments). The major
difference lies in the top-down process. They employ a path-
unspecific top-down approach which causes precision degra-

dation. Also, in many benchmarks, their top-down process
takes longer than the bottom-up process.

For the programs with structural types and no implicit
dataflow formed by alias, type-based polymorphic flow anal-
yses in [24, 17] provide an elegant solution to the spurious
interprocedural dataflow problem. An interesting aspect
of these works is that even recursive procedures are han-
dled polymorphically (by let-polymorphism). The context-
sensitive points-to analysis in [14] has applied these ap-
proach to the C language, which does allow nonstructural
types and implicit dataflow, by employing an equivalence-
based intraprocedural setting [27].

10. CONCLUSION

We have proposed a fully context-sensitive yet very effi-
cient holistic top-down process. When combined with our
previously proposed, efficient and exact bottom-up process,
it results in a scalable and precise modular points-to anal-
ysis. The key mechanism leverages the exactness of our
bottom-up process to convert a program into a side effect
free form. Empirical results support the scalability of our
modular points-to analysis, in particular, that of the pro-
posed top-down process. The benefit from context sensitiv-
ity and heap-object specialization has been demonstrated by
an extensive study across a large set of benchmarks.

In the near future we plan to perform more detailed ex-
periments, including a measurement of the benefit that the
context-recovery algorithm provides for alias queries. Also,
there is much interest in delineating exactly where and how
context sensitivity benefits real programs. Once we are able
to generalize the mechanism behind them, by exploiting the
flexibility of the implemented framework, we plan to develop
an adaptive balancing between precision and scalability.



1 2 3 4 5 | 6 | 7
CS-FS | CS-FS FS CS-HI Heap Object Spec.
Benchmark HI HS | PtsTo | PtsTo [ oy <z <2
Red. Red. | Count | PtsTo | PtsBy
(sec) | (sec) | (%) | (%) (%) (%)
008.espresso | 1 ‘6 7 39 633 | 10 85
023.eqntott 1 1 13 - 9 66 44
099.go 1 1 - - 0 - -
124.m88ksim 1 1 80 3 10 - 70
129.compress| 1 1 - - 0 - -
130.1i 6 2 23 - 9 33 44
132.ijpeg 32 2 91 9 655 | 99 100
134.perl 14 205 83 11 52 - 12
164.gzip 1 1 45 2 9 - 55
175.vpr 1 1 9 39 319 | &1 57
176.gcc 89 160 88 2 52 71 75
181.mcf 1 1 85 - 7 83 86
186.crafty 1 1 8 33 13 - 93
197.parser 1 1 90 - 2 50 50
253.perlbmk 738 912 32 3 64 - 2
254.gap 229 | 232 25 - 4 - 50
255.vortex 1 1 56 - 73 - 100
256.bzip2 1 1 13 - 1 - 91
300.twolf 1 1 - - 183 - 94

* Heap specialization limited to 2 heap generations.

Figure 8: Analysis times, points-to set size reduction,
and heap objects that benefit from specialization across
SPEC92, SPEC95, and SPEC2000 integer benchmark
suites
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