
Technical Report IMPACT-98-01 1

A Novel Breakpoint Implementation Scheme for Debugging Optimized

Code

Le-Chun Wu� Wen-mei W. Hwuz

�Department of Computer Science
zDepartment of Electrical and Computer Engineering and

The Coordinated Science Laboratory

University of Illinois

Urbana, IL 61801

Email: flcwu, hwug@crhc.uiuc.edu

Technical Report IMPACT-98-01

January 1998

Abstract

Providing a clear and correct source-level debugger for

programmers to debug highly optimized code has be-

come a necessity with executable binaries increasingly

generated by compilers which incorporate advanced

optimization techniques. Implementing source break-

points is essential for providing such a debugger. In

this paper, a novel source breakpoint implementation

scheme for debugging optimized code is proposed. The

approach is aimed at solving the fundamental problem

su�ered by the traditional scheme. By taking over the

control early and executing instructions under a new

forward recovery model, the debugger can preserve and

gather the required program states. With this informa-

tion accumulated and the help of a data location track-

ing method, the expected values of user variables can be

recovered at source breakpoints. In order to facilitate

this new breakpoint implementation scheme, additional

information needs to be generated and maintained dur-

ing compilation. The compiler support for our approach

is also described.

1 Introduction

To fully utilize wide-issue processors, an increasing num-

ber of executable binaries are being generated by com-

pilers with advanced optimization techniques. With this

increase, it has become a necessity to provide a clear and

correct source-level debugger for programmers to debug

highly optimized code.

One of the most frequently used functionalities of a

source-level debugger is for the user to set breakpoints

and examine variables' values at these points. In order

to support these debugging activities while debugging

optimized code, implementing source breakpoints is es-

sential for providing a correct and clear solution to the

problem of debugging optimized code.

Traditionally, the debugger maps a breakpoint set at

a source statement to an object code location (called

object breakpoint [1]) and halt the execution when the

object breakpoint is reached. The debugger then uses

the program state at this point to answer user's re-

quests. However, compiler optimizations cause di�cul-

ties to the debuggers using the traditional approach.

For example, Figure 1 shows a C source program and

its assembly code optimized by scheduling and register

allocation. We assume that the debugger uses a map-

ping that would set the object breakpoint at I5 when

a source breakpoint is set at statement S2. When the

debugger halts the execution at I5, instructions from

statement S3 (I3 and I4) have been executed, which

causes variable y being updated prematurely. Also in-

struction I6 which should have been executed in order

to obtain the expected value of variable a has not been

executed at this point.

Even though there have been di�erent object break-

point mapping schemes proposed such as semantic

breakpoints [2], syntactic breakpoints [2], and statement

labels [3, 4], each of which maps a source breakpoint

to a di�erent place in the object code, the fundamen-

tal problem of this traditional scheme remains { only

the program state of a single point is available. There-

Technical Report IMPACT-98-01 2

breakpoint

source line #

S3: y = z * 3;
S2: x = 2;
S1: a = b + c; I1: ld r1, b <1>

(b)

I2: ld r2, c <1>
I3: ld r5, z <3>
I4: mul r6, r5, 3 <3>
I5: mov r4, 2 <2>
I6: add r3, r1, r2 <1>

(a)

Figure 1: An example program (a) C-style source code (b) Assembly code

fore the optimized code debuggers which adopt a tradi-

tional breakpoint implementation scheme usually have

problems reporting the expected values of the variables

which are updated either too early or too late [3, 4].

When the values of these variables are requested, the

user will be informed that the values are not available

at this point. The availability of the variable values

decreases when the code is optimized by increasingly

aggressive techniques which usually cause more code re-

organization.

In this paper, we propose a novel breakpoint imple-

mentation scheme which overcomes the problem of the

traditional method. Our approach is motivated by the

observation that in order for the debugger to provide the

expected variable values, the program states changed by

the out-of-original-source-order instructions have to be

tracked by the debugger. To do this for a breakpoint

at source statement S, the debugger suspends execu-

tion before executing any instruction that should hap-

pen after S. It then moves forward in the instruction

stream executing instructions using a new forward re-

covery technique which keeps track of program states.

When the debugger reaches the farthest extent of in-

structions which should happen before S, it begins to

answer user requests. When reporting the value of a

variable, it uses the preserved program states to recover

the expected values.

The basic idea of our approach can be illustrated by

the example in Figure 1. If the user sets a breakpoint

at source line S2, since instruction I3 originates from

source line S3, the debugger suspends execution at I3.

The debugger keeps executing instructions using the for-

ward recovery technique until instruction I6 is executed

because it originates from source line S1 which should

be executed before the breakpoint. The debugger can

hand over the control to the user and start taking user's

requests. During forward recovery execution, the origi-

nal contents of r5, r6, r4, and r3 will be preserved to

provide the user with the expected variable values at

S2.

Although the ultimate goal of our approach is trying

to make optimization e�ects as transparent as possible

to the debugger users, it is almost impossible to totally

recover the program behavior to what the user expects.

Sometimes there is no way to recover the expected value

of a variable because the value of the variable does not

exist at all after the debugger takes over the control [5].

Sometimes some practical limitations of our approach

make us take a conservative approach and therefore the

values of the variables can not be recovered. When the

expected value of a variable cannot be provided, the

debugger will make the users aware of the e�ects of op-

timization in the hope of not misleading them.

In order to facilitate our breakpoint implementation

scheme, some information must be created and main-

tained by the compiler and then propagated to the de-

bugger. In this paper, we will also discuss the compiler

support for our approach.

In Section 2 we describe the compiler support needed

for our approach. We elaborate our breakpoint imple-

mentation scheme in Section 3. Section 4 contains our

conclusions.

2 Compiler support

2.1 Execution order

Since the debugger in our approach needs to be able

to determine which instructions should be executed be-

fore a breakpoint and which should be executed after,

information about the original execution order of in-

structions has to be propagated to the debugger. We

propose an instruction execution-order tracking method

which determines the original execution order of all the

instructions and maintains this information during com-

pilation.

In our scheme, we do not distinguish execution order

between instructions originating from the same source

statement. The reason for this is because we are focus-

ing on source-level breakpoints which can only be set at

statement boundaries. Therefore the execution order of

instructions is a partial ordering.

To determine the execution order of instructions, one

would intuitively think about using source line numbers

and column numbers, and annotating each instruction

with this information. Although the line number and

column number information can determine the execu-

tion order of the instructions in the same basic block,

it is not su�cient to track the execution order of the

instructions across basic blocks. As we can see from

Technical Report IMPACT-98-01 3

Figure 2, although statement L1 has a smaller line num-

ber (line 3) than statement L2 (line 5), L2 will always

be executed before L1 in the dynamic execution
ow as

shown in Figure 2(b). We need to incorporate control

ow information to the execution order information. In

our scheme, each basic block is assigned an integer num-

ber, called sequence number, which re
ects the dynamic

execution
ow. A basic block with a smaller sequence

number will not be executed after another basic block

with a larger sequence number without traversing back

edges.

 a = b + c
 goto L2

L3 w = u + v

L1: d = e + f 3

 a = b + c 1
 goto L2 2

 goto L3 4
L2: x = y + z 5
 goto L1 6
L3: w = u + v 7

line #

(b)(a)

L1 d = e + f
 goto L3

L2 x = y + z
 goto L1

Figure 2: Example program (a) Source program with

line numbers (b) Control
ow graph

To obtain the sequence number, the compiler �rst

builds a control
ow graph of the original program. For

example, Figure 3(a) shows a control
ow graph ex-

ample. All the back edges in the graph are removed

to make the graph acyclic. The compiler then assigns

a non-descending sequence number to each one of this

partially ordered set of nodes as shown in Figure 3(b)

via a topological sort of the graph.1 Although the se-

quence number assignment might not be unique, there

is only one relative execution order between two basic

blocks where the execution control can reach one from

the other.

Theorem 1 In a reducible acyclic control
ow graph,

there is always a well-de�ned execution order between

two basic blocks where execution control can reach one

from the other.

proof: Suppose there is a basic block A which can

be reached both before and after another basic block B
1There are some programs whose control
ow graphs are irre-

ducible and it's hard to determine the back edges. In this case, we

use tail duplication (node splitting) technique to convert an irre-

ducible graph to a reducible graph before we apply our sequence

number assigning algorithm.

(a) (b)

1

2 3

4

5

6

Figure 3: (a) Control
ow graph (b) Acyclic control
ow

graph with sequence numbers assigned to basic blocks

in the control
ow graph. There must be a path from

A to B and back to A, which makes the graph cyclic

and contradicts our assumption. Thus, there is only

one execution order between A and B.

Having the sequence number, line number, and col-

umn number information associated with each instruc-

tion, a simple comparison of the numbers can determine

the execution order of instructions.

Before any optimization is performed, sequence num-

bers will be assigned, along with the line number and

column number information, to each instruction. Dur-

ing an optimization phase, the execution order informa-

tion associated with each instruction remains the same

as long as there is no code duplication or code creation

optimization performed.

When code duplication optimization which duplicates

basic blocks is performed, maintaining the sequence

number information depends on if the duplicated code

is introduced to a new context. In optimizations such as

loop unrolling, function inlining, and loop peeling, the

duplicated basic blocks are introduced to a context dif-

ferent from their original one. Their original sequences

numbers may no longer be valid in the new context, so

we need to dynamically adjust the sequence numbers of

the duplicated code and the a�ected instructions in the

surrounding new context to re
ect the new execution

order. For optimizations such as tail duplication where

the duplicated code remains in the old context, we keep

the original sequence number information.

To show how the compiler adjusts the sequence num-

ber information, we use a function inlining example.

Figure 4(a) shows an example C program with two func-

tions, foo and bar, where bar calls foo. Each statement

is annotated with the execution order information (se-

quence number, line number, column number). After in-

lining, statement S8 is replaced with a set of statements

duplicated from function foo as shown in Figure 4(b).

Technical Report IMPACT-98-01 4

In order to maintain the correct relative execution order

among instructions originating from function foo and

function bar, we need to change the sequence numbers

of all the new statements coming from foo and the se-

quence numbers of the statements which should be exe-

cuted after S8. In Figure 4(b), we can see the sequence

numbers of the duplicated statements are all changed

to 2 (their original sequence number plus 1, the original

sequence number of the function call) and the sequence

number of S9 becomes 3.

 foo(int a, int b)
 {
 int t;
S3: t = a; (1, 4, 4)
S4: a = b + 4; (1, 5, 4)
S5: b = t; (1, 6, 4)
 }

 bar()
 {
 int x, y;

 }

S6: x = 2; (1, 12, 4)
S7: y = 3; (1, 13, 4)
S8: foo(x, y); (1, 14, 4)
S9: y = x + 1; (1, 15, 4)

(b)

 foo(int a, int b)
 {

(a)

 int t;

S9: y = x + 1; (3, 15, 4)

 }

 bar()
 {
 int x, y;

 {

 }

 }

S3: t = a; (1, 4, 4)
S4: a = b + 4; (1, 5, 4)
S5: b = t; (1, 6, 4)

S6: x = 2; (1, 12, 4)
S7: y = 3; (1, 13, 4)

S1’: a = x; (2, 1, 4)
 int a,b,t;

S2’: b = y; (2, 1, 4)
S3’: t = a; (2, 4, 4)
S4’: a = b + 4;(2, 5, 4)
S5’: b = t; (2, 6, 4)

Figure 4: Sequence number adjustment for function in-

lining (a) original C source code (b) functions after in-

lining. Each statement is annotated with (sequence #,

line #, column #).

Sequence number adjustment for loop unrolling and

loop peeling can be done in a similar fashion.

For optimizations which involve creating new code

such as common subexpression elimination, we treat the

newly-inserted instructions as if they are from one of

the statements involved in the optimization and assign

them the same execution order information as the other

instructions of the statement. For example, Figure 5(b)

shows an optimized program after common subexpres-

sion elimination, where S3 is newly created code. We

assign the execution order information of S1 to S3 be-

cause we treat S3 as if it originates from S1.

2.2 Anchor point

Since the debugger has to suspend execution early to

be able to recover the expected program state, it may

do so whether the breakpoint should be allowed to take

e�ect or not. Consider Figure 6. Source statement S2 is

moved out of loop because variable a is loop-invariant.

If a breakpoint is set at source statement S1, the debug-

ger needs to suspend execution at S20. By associating

anchor point information with each source statement

 .
 .

S3: t = a + b (1, 3, 4)
S1: x = t (1, 3, 4)

S2: y = t (1, 8, 4)

 . .

(b)

 .
 .

S1: x = a + b (1, 3, 4)

S2: y = a + b (1, 8, 4)

(a)

Figure 5: Execution order information maintenance (a)

original C source code (b) program after common subex-

pression elimination. Each statement is annotated with

(sequence #, line #, column #).

instance,2 our approach enables the debugger either to

con�rm a breakpoint when control
ows through the

loop body, or to resume normal execution without re-

porting a breakpoint event to the user when the control

ows around the loop.

y = b + c

suspend execution

x = a + y

a = 5

S1

S3

S2’

a = 5

x = a + y

y = b + cS1

S2

S3

(a) (b)

breakpoint

Figure 6: (a) Original program (b) Optimized program

after loop-invariant removal

An anchor point of a source statement is a point in

the object �le. When it is reached during execution,

the breakpoint set at that source statement should take

e�ect. During the optimization, the anchor point of

a statement instance might be moved, duplicated or

might even become conditional. When a conditional

anchor point of a source statement instance is reached,

the breakpoint set at this source statement should take

e�ect only under a certain condition speci�ed by the

anchor point information.

Anchor point information for each source statement

instance is created and maintained by the compiler. Be-

fore discussing how the compiler maintains and updates

it, we would like to �rst de�ne some control equivalent

blocks:

De�nition 1 Basic block C is a Succeeding Equivalent

Block (SEB) of basic block B if C is a successor of B,

C post-dominates B, and C is dominated by B.

2A source statement might have more than one instance be-

cause of code duplication optimization

Technical Report IMPACT-98-01 5

if B has only one successor C

and C is a SEB of B

then

The first instruction of C becomes

the anchor point of S.

else

for each of B's predecessors P

if P is an UPB of B

then

the last instruction of P becomes

an anchor point of S.

else /* P is a CPB of B */

the last instruction (which is

a branch instruction) of P becomes

a conditional anchor point of S.

The branch condition under which

the branch will jump to B is

recorded.

endif

endif

Figure 7: An algorithm for maintaining the anchor point

information of statement S (assuming the basic block

being removed is B).

De�nition 2 Basic block C is an Unconditional Pre-

ceding Block (UPB) of basic block B if B is the only

immediate successor of C.

De�nition 3 Basic block C is a Conditional Preceding

Block (CPB) of basic block B if C is an immediate pre-

decessor of B but is not an unconditional preceding block

of B.

For example, in the control graph of Figure 8(a), basic

block C is a CPB of D and E, both basic block D and

E are UPBs of F, and basic block B is also a UPB of D.

Before any code movement or deletion is performed,

the anchor point of a source statement instance S is set

to the �rst instruction of S. When the �rst instruction

is moved or deleted, the anchor point is moved to the

next instruction in the same basic block. If the instruc-

tion being moved or deleted is the last instruction of the

basic block, the preceding instruction in the same basic

block becomes the anchor point of S. Therefore one in-

struction may be the anchor point of several statements

if the code for an entire statement instance has been

moved or deleted. If the instruction being moved or

deleted is the only one in the basic block (which means

the whole basic block is being removed), we will need to

�nd other control equivalent points to serve as the an-

chor points of S using the algorithm shown in Figure 7

(assuming the basic block being removed is B).

Note that the algorithm in Figure 7 is based on the

following assumption: (1) There is only one entry point

of a function. Therefore if B doesn't have a SEB, B

de�nitely has a predecessor.3 (2) A conditional branch

cannot be removed. Therefore we don't need to consider

the case where a conditional anchor point is removed.

If a branch is dead or the condition is a constant, the

branch will become unconditional and a conditional an-

chor point set at this branch instruction will be changed

to an unconditional one.

Figure 8(a) shows a control
ow graph example where

instruction I3 is the anchor point of statement instance

S and the only instruction in basic block D. If I3 is

removed due to optimization, the compiler needs to �nd

out the new anchor point(s) of S. Because basic block

D has no SEB, both instruction I1 and I2 become the

new anchor points of S. Since I2 is a conditional anchor

point, the compiler needs to record the condition r1 > 5.

bgt r1, 5, DI1

I3

I2

B C

D E

F

(b)(a)

I1 I2

B C

E

F

bgt r1, 5, F

Figure 8: A control
ow graph example (a) before re-

moving basic block D (b) after removing basic block D.

The anchor points of source statements are similar to

the statement labels mentioned in [3, 4]. We extend the

concept of the statement label into the anchor points

to indicate whether a breakpoint should be allowed to

take e�ect. We also provide a method to maintain the

anchor point information under its extended de�nition.

3 The breakpoint implementa-

tion scheme

3.1 Interception points and �nish points

The essence of our breakpoint implementation scheme

is that our debugger suspends execution before execut-

ing any instruction that should happen after the break-

point, and then moves forward in the instruction stream

executing instructions using a forward recovery tech-

nique to ensure that all instructions which should be

executed before the breakpoint are complete. There-

fore when the user sets a breakpoint, the �rst action by

3If B is an unreachable block, B might not have a SEB nor a

predecessor. However, the case is irrelevant because breakpoint

set inside this block would never take e�ect anyway.

Technical Report IMPACT-98-01 6

the debugger is to identify the interception points where

the normal execution is suspended, and the �nish points

where the debugger begins to take user requests.

When the user sets a breakpoint P at source state-

ment S, all the instructions in the function can be di-

vided into two groups with regard to P :

pre-breakpoint instructions the instructions which

should be executed before P .

post-breakpoint instructions the instructions

which should be executed after P , including

instructions originating from S.

The debugger uses the execution order information

propagated from the compiler to decide if an instruction

is pre-breakpoint or post-breakpoint.

For a breakpoint set at source statement S, the de-

bugger needs to identify interception points on paths

which can lead to the anchor points of S. Assuming

all the loops in the optimized code are monotonic, 4 for

an anchor point A of statement S, the paths that the

debugger needs to consider include:

� paths from the function entry point to A without

traversing back edges, and

� paths starting from loop headers to A without

traversing back edges if A is inside a loop (or loops).

For each path mentioned above, moving forward

along the path from its starting point, the �rst post-

breakpoint instruction encountered is the interception

point on this path.

For example, in Figure 9, assuming the user sets a

breakpoint at S and the only anchor point of S is at

I1, there are two paths leading to I1 which the debug-

ger needs to consider: path P1 = < A;B;C;D(I1) >

and path P2 = < C;D(I1) >. If I2 is the earliest

post-breakpoint instruction along P1, I2 is an intercep-

tion point of the breakpoint. Also, if I3 is the earliest

post-breakpoint instruction along P2, I3 is another in-

terception point.

An algorithm using data-
ow analysis to �nd out the

interception points with regard to an anchor point is

presented in Appendix A.

To identify �nish points, we need to �rst address an

issue about function calls. If a post-breakpoint function

4A loop in the optimized code is called monotonic if all the

instructions in iteration i + 1 of the loop are supposed to be ex-

ecuted after any instruction in iteration i in terms of the original

program execution order. In this technical report we only base

the discussion of our approach on the assumption that all the

loops in the optimized code are monotonic loops (such as unrolled

loops). The approach presented here can be extended to handle

non-monotonic loops such as modulo scheduled loops [6, 7]. The

details about extending our approach will be presented in the full

version of the paper.

anchor point

Entry

I2

I3

I1

A

B

C

D E

F

Figure 9: A control
ow graph example.

call which performs some I/O operations such as print-

ing messages to the display screen is executed by the de-

bugger, the user can be confused because the breakpoint

was supposed to be set before the function call. There-

fore, we do not allow the debugger to execute those

post-breakpoint function calls while it does forward re-

covery. Instead, we will set the �nish point before any

of function call instructions. This way we might reduce

the ability of the debugger to recover the values of some

variables because the debugger does not always execute

all the pre-breakpoint instructions, but at least it does

not confuse the user. Since most compilers have very

limited abilities to move code across I/O function calls,

this won't be a serious practical issue.

Suppose A is an anchor point of a breakpoint. For

each di�erent path from A to the function exit point

without traversing back edges, the �nish point on this

path is either the earliest post-breakpoint function call

or the instruction immediately following the last pre-

breakpoint instruction, depending on which one is en-

countered �rst. An algorithm using data-
ow analysis

to �nd out �nish points with regard to an anchor point

is presented in Appendix B.

3.2 Escape points

Theoretically it is the anchor point which is used to de-

termine if the breakpoint should be allowed to take ef-

fect. In practice, the debugger uses escape points (which

are derived from the anchor point) to do so. When an

escape point is reached during the execution, its cor-

responding breakpoint should not be allowed to take

e�ect.

For an anchor point A of a breakpoint, the escape

points can be obtained using the following algorithm:

1. For each interception point of A, �nd out every dif-

ferent path from the interception point to A with-

out traversing back edges.

Technical Report IMPACT-98-01 7

2. For each path P =< B1; B2; B3; :::; Bi > found in

step 1 (where B1 is the basic block containing the

interception point and Bi is the basic block contain-

ing A), �nd out the immediate successors of nodes

B1, B2, ..., Bi�1 which are not on any path leading

to A without traversing back edges.

3. The �rst instruction of each of the basic blocks

found in the above step is one of the escape points

of A.

Figure 10 shows a control
ow graph of an exam-

ple program in which I2 is an anchor point of a source

breakpoint and I1 is the only interception point. We

can see that there is only one path from I1 to I2, which

is < A;B;D >. We �nd that basic blocks C and E are

the immediate successors of A and B, and they are not

on any path leading to D. Therefore the �rst instruc-

tions of C and E are the escape points of anchor point

I2.

interception

A

B C

D E

F

I1

I2anchor

Figure 10: A control
ow graph example.

There is another kind of escape points { conditional

anchor points. We know that when a conditional anchor

point is reached, the breakpoint should take e�ect only

when the condition is true. If the condition is false, the

anchor point itself becomes an escape point.

3.3 Forward recovery model

Two important data structures need to be maintained

by the debugger during the forward recovery. The �rst

one is the data history bu�er which keeps track of all

the old contents of the destinations of the instructions

executed between the interception point and the �nish

point. We need these old values to be able to recover

the expected values of the user variables. An entry in

the data history bu�er comprises a destination address,

which may be a register number or a memory address,

and one or more value information records. A value

information record of a destination includes the address

of the instruction which writes to the destination, the

old content of the destination, and the instruction type

(post-breakpoint or pre-breakpoint).

The other data structure is called instruction history

bu�er which contains the addresses of the instructions

executed between the interception point and the �nish

point in their dynamic execution order. Each address

in the bu�er might be annotated with some other infor-

mation.

The instructions of the debugged program will be ex-

ecuted in either normal mode or forward recovery mode.

The program starts running in normal mode. When

any interception point of a breakpoint set by the user

is reached during normal execution, the debugger takes

over the control of the execution and the forward recov-

ery mode is entered. From this point on, each instruc-

tion will be executed one by one under the debugger's

supervision until any one of the �nish points or the es-

cape points is reached.

In the forward recovery mode, before an instruction

I is executed, the current content of I 's destination will

be saved in the data history bu�er, along with the ad-

dress and type of I . The address of I is also saved in

the instruction history bu�er. If I happens to be the in-

terception point of other breakpoint(s), I 's entry in the

instruction history bu�er will be annotated with this

information.

Figure 11(a) shows an optimized program example.

For simplicity, we use a single number as the execution

order information in this example. Assuming the an-

chor point of a source breakpoint set by the user is at

instruction I5. The interception point and the �nish

point will be set at I2 and I9 respectively. Once the de-

bugger takes over the control at I2, each instruction is

executed in forward recovery mode until I9 is reached.

Figure 11(b) and (c) show the resulting instruction his-

tory bu�er and the data history bu�er.

Because some instructions such as load and
oating-

point operations might cause exceptions during execu-

tion, handling the exceptions so that they behave in the

way the user expects is very important. If an exception

is caused by a post-breakpoint instruction and is posted

immediately, the users might be confused because the

exception should have occurred after the breakpoint.

In order not to confuse the user, the debugger should

suppress the exceptions caused by post-breakpoint in-

structions while executing them, and post the excep-

tions to the user later on. One way to achieve this

is for the debugger to provide its own exception han-

dling routine. When an exception occurs in the forward

recovery mode, the handling routine provided by the

debugger takes over. If the exception is caused by a

post-breakpoint instruction, it will be suppressed and

the debugger will annotate the entry of the instruction

in the instruction history bu�er with the exception in-

formation so that the exception can be signaled later

Technical Report IMPACT-98-01 8

address execution order

(a)

interception

anchor

finish

2008 I2: r4 = r3 - r1 5
2004 I1: r1 = r2 * 2 1

2012 I3: r2 = ld x 6
2016 I4: f6 = f2 / 3.0 2
2020 I5: y = st r5 4
2024 I6: r4 = r2 - 7 6
2028 I7: r2 = 9 8
2032 I8: r7 = r3 + 1 3
2036 I9: ... 9

(b) (c)

 r4 8 2008 post-breakpoint

 f6 2.5 2016 pre-breakpoint

 7 2028 post-breakpoint

 r2 -2 2012 post-breakpoint

 6 2024 post-breakpoint

Data History Buffer

destination old value instr. addr instr. type

 r7 -5 2032 pre-breakpoint

 M(y) 0 2020 post-breakpoint

2008
2012
2016
2020
2024
2028
2032

address annotation

Instruction History Buffer

Figure 11: (a) Optimized code example (b) Instruction history bu�er (c) Data history bu�er (the old values in the

data history bu�er are given arbitrarily in the example).

on. Referring back to the example in Figure 11, if an

exception occurs at instruction I3, since it is a post-

breakpoint instruction, the exception will be suppressed

and the entry corresponding to I3 in instruction history

bu�er will be annotated as show in Figure 12. For some

advanced architectures which support non-trapping ver-

sions of instructions [8], the problem can be solved by

replacing the post-breakpoint instructions with the non-

trapping version of them.

2008
2012
2016
2020
2024

exception

2028
2032

address annotation

Instruction History Buffer

Figure 12: Instruction history bu�er.

When a �nish point is reached, the debugger stops

to answer the user's requests. With the information

preserved, our approach can work with a data location

tracking method to provide the expected variable values.

Although the data location problem is not the focus of

this paper, an introduction to an existing data location

tracking method and how our approach works with it

are provided in Appendix C.

Once the user resumes execution, the debugger will go

through the instruction history bu�er to check if there

is any annotated information and will update both the

instruction history bu�er and data history bu�er. Until

an instruction denoted as the interception point of an-

other breakpoint (or other breakpoints) is encountered

or the whole instruction history bu�er has been gone

through, the debugger will visit each instruction I in the

bu�er with the following actions : (1) If the instruction

is annotated with exception information, the debugger

will signal the exception. (2) The value information

record of this instruction's destination is removed from

the data history bu�er. (3) The entry of this instruction

in the instruction history bu�er is removed.

If the debugger has visited every instruction in the in-

struction history bu�er without running into another in-

terception point, the normal execution will resume from

the �nish point.

If an instruction visited is an interception point of

another breakpoint, the debugger will continue going

through the instruction history bu�er in the following

way:

1. If the instruction is annotated with exception in-

formation, the debugger will �rst determine the

new type of the instruction with regard to the

new breakpoint (because a post-breakpoint instruc-

tion for the old breakpoint might become a pre-

breakpoint instruction for the new breakpoint). If

it has become a pre-breakpoint instruction, the de-

bugger signals the exception and removes the an-

notation. Otherwise, the exception remains sup-

pressed.

2. If the type of the instruction is changed, the type

information of the corresponding value information

record is changed.

Since the �nish points of the new breakpoint might be

di�erent from those of the old breakpoint, after having

gone through the instruction history bu�er, the debug-

ger might need to execute more instructions in forward

recovery mode until a �nish point or an escape point is

hit.

To show how the visiting process is working, refer to

the example in Figure 11 again. If I3 is an interception

point of another outstanding breakpoint (whose anchor

point is at I6), its entry in the instruction history bu�er

will be annotated with this information as shown in Fig-

ure 13(a). When the user wants to resume execution

from the current breakpoint, the debugger goes through

the instruction history bu�er. Since the instruction at

address 2008 is not annotated with anything, the de-

bugger deletes this entry and its corresponding entry

in data history bu�er as shown in Figure 13. The de-

bugger visits the next entry in the instruction history

bu�er and �nds out the instruction is an interception

point of another breakpoint. The debugger will keep

going through the rest of the instruction history bu�er

Technical Report IMPACT-98-01 9

interception point
2008
2012
2016
2020

(b)

2024
2028
2032

address annotation

Instruction History Buffer

 r4 8 2008 post-breakpoint

 f6 2.5 2016 pre-breakpoint

 7 2028 post-breakpoint

 r2 -2 2012 post-breakpoint

 6 2024 post-breakpoint

Data History Buffer

destination old value instr. addr instr. type

 r7 -5 2032 pre-breakpoint

 M(y) 0 2020 pre-breakpoint

(a)

Figure 13: (a)Instruction history bu�er (b)Data history bu�er (the old values in the data history bu�er are given

arbitrarily in the example).

without deleting any entry and updating the type of the

instructions in the data history bu�er. In our example,

I5 becomes a pre-breakpoint instruction with regard to

the new breakpoint.

Similarly, when an escape point is reached in forward

recovery mode, which means the breakpoint should not

take e�ect, the debugger will go through the instruction

history bu�er in the same way described above.

4 Conclusions

In this paper, a novel breakpoint implementation

scheme for debugging optimized code is described. The

approach is aimed at solving the fundamental problem

of the traditional breakpoint implementation scheme so

that the expected values of the user variables can be

recovered at source breakpoints. The problem with the

traditional scheme is that only the program state of a

single point is available, which makes reporting the ex-

pected values of user variables very di�cult when the

program is heavily optimized. In our approach, the de-

bugger takes over the control of execution early to make

sure the information required for the recovery won't

be destroyed permanently. It then moves forward ex-

ecuting instructions under our forward recovery scheme

which maintains some data structures to keep track of

the program states changed during the forward recov-

ery. Once the debugger has executed all the instructions

required, it stops to answer the user's requests. Our

scheme can work with a data location tracking method

to provide the expected values of the variables.

With our approach, the behavior of the source break-

points meets what the user expects. Exceptions will be

reported in the order that the user expects even though

they may be caused out of order internally.

In order to support our novel breakpoint implementa-

tion scheme, some information has to be maintained and

propagated to the debugger by the compiler. In this pa-

per we also elaborate the compiler support required for

our scheme. A new instruction execution order tracking

method is proposed and an algorithm for maintaining

anchor point information is described.

Due to some practical issues, it is not always feasi-

ble to execute all the pre-breakpoint instructions or to

suspend the normal execution early enough to preserve

all the required information.5 Sometimes we have to

limit our scheme to be conservative in order to make

our approach more feasible and e�cient. The ability of

our scheme to recover the expected values of variables

might decrease in some cases because of the conserva-

tive approaches. The problem can be alleviated if we

can incorporate to our scheme a more advanced data

location tracking method which can recover the value

of a variable by using the values of other variables.

References

[1] A. Adl-Tabatabai and T. Gross, \Detection and re-

covery of endangered variables caused by instruction

scheduling," in Proceedings of the ACM SIGPLAN

'93 Conference on Programming Language Design

and Implementation, pp. 13{25, June 1993.

[2] P. T. Zellweger, Interactive Source-Level Debugging

of Optimized Programs. PhD thesis, Electrical Engi-

neering and Computer Sciences, University of Cali-

fornia, Berkeley, CA 94720, 1984.

[3] A. Adl-Tabatabai, Source-Level Debugging of Glob-

ally Optimized Code. PhD thesis, School of Com-

puter Science, Carnegie Mellon University, Pitts-

burgh, PA 15213, 1996.

[4] D. Coutant, S. Meloy, and M. Ruscetta, \Doc: A

practical approach to source-level debugging of glob-

ally optimized code," in Proceedings of the ACM

SIGPLAN '88 Conference on Programming Lan-

guage Design and Implementation, pp. 125{134,

June 1988.

[5] A. Adl-Tabatabai and T. Gross, \Evicted variables

and the interation of global register allocation and

symbolic debugging," in Conference Record of the

5Two practical issues are discussed in detail in Appendix D.

Technical Report IMPACT-98-01 10

20th Annual ACM Symposium on Principles of Pro-

gramming Languages, pp. 371{383, January 1993.

[6] D. M. Lavery and W. W. Hwu, \Unrolling-based op-

timizations for modulo scheduling," in Proceedings

of the 28th International Symposium on Microarchi-

tecture, pp. 327{337, November 1995.

[7] D. M. Lavery and W. W. Hwu, \Modulo scheduling

of loops in control-intensive non-numeric programs,"

in Proceedings of the 29th International Symposium

on Microarchitecture, pp. 126{141, December 1996.

[8] S. A. Mahlke, W. Y. Chen, W. W. Hwu, B. R.

Rau, and M. S. Schlansker, \Sentinel scheduling for

VLIW and supercalar processors," in Proceedings

of the 5th International Conference on Architectural

Support for Programming Languages and Operating

Systems, pp. 238{247, October 1992.

A A data-
ow algorithm for �nd-

ing interception points

In the control
ow graph G of the function, suppose

anchor point A is in basic block D and the function

entry block is E. To �nd out the interception points

with regard to A, we need to �rst split D into two basic

blocks D1 and D2, where

1. D1 is the top portion of D including instructions

from the �rst instruction of D up to the one at A.

2. D2 contains the bottom portion of D including in-

structions from the one immediately following A to

the last one.

3. All the D's predecessors become D1's predecessors.

4. All the D's successors become D2's successors.

5. There is no edge directly from D1 to D2.

Let V be the set of basic blocks which are on the

paths leading to D1 in graph G (including D1).6 For

each basic block B in V , let us de�ne

gen[B] = A one-element set containing the �rst post-

breakpoint instruction in basic block B, if there is any.

An empty set, otherwise.

kill[B] =

�
out[B] if gen[B] 6= �

� otherwise
The data-
ow equations for in and out sets of B are:

out[B] =
[

S is a successor of B

in[S]

in[B] = gen[B] [(out[B]� kill[B])

We can use the iterative algorithm shown in Figure 14

to �nd out the in[B] for each basic block B in V . The

union of in[E] and in[D2] is the set of all the intercep-

tion points with regard to A.

B A data-
ow algorithm for �nd-

ing �nish points

In the control
ow graph G of the function, suppose

anchor point A is in basic block D and the function exit

block is E (we assume there is a unique exit block for

each function). To �nd out the �nish points with regard

to A, we need to �rst split D into two basic blocks D1

and D2 in the same manner as we do in Appendix A.

Let V be the set of basic blocks which are on the

paths from D2 to E (including D2 and E).7 For each

basic block B in V , let us de�ne

6
V can be obtained through the backward depth-�rst search

from D1
7V can be obtained through a depth-�rst search from D2.

Technical Report IMPACT-98-01 11

for each block B in graph G do

if B is in V then

in[B] = gen[B];

else

in[B] = �;

endif

end for

while changes to any of the in sets occur do

for each block B in V do

out[B] =
S

S is a successor of B in[S];

in[B] = gen[B] [(out[B]� kill[B]);

end for

end while

Figure 14: An iterative algorithm for interception point

determination

gen[B] = A one-element set containing the instruc-

tion which is either the earliest post-breakpoint function

call or the instruction immediately following the last

pre-breakpoint instruction (depending on which one is

encountered �rst) in basic block B, if there is any. An

empty set, otherwise.

kill[B] =

�
in[B] if gen[B] 6= �

� otherwise
The data-
ow equations for in and out sets of B are:

in[B] =
[

P is a predecessor of B

out[P]

out[B] = gen[B] [(in[B]� kill[B])

We can use the iterative algorithm shown in Figure 15

to �nd out the out[B] for each basic block B in V .

out[E] is the set of all the �nish points with regard to

A.

C Working with a data-location

tracking method

In this section we would like to show how our breakpoint

implementation scheme can work with a data location

tracking method to provide the expected variable values

at source breakpoints.

C.1 Data location tracking method

The run-time location of user variables may be altered

by optimization. The variable value may be in di�erent

places (constant, register, or memory) at di�erent points

of execution. Or it may not exist at all. To allow the

user to access the value of a variable at breakpoints,

the debugger has to know what location holds the value

for each block B in graph G do

if B is in V then

out[B] = gen[B];

else

out[B] = �;

endif

end for

while changes to any of the out sets occur do

for each block B in V do

in[B] =
S
P is a predecessor of B out[P];

out[B] = gen[B] [(in[B]� kill[B]);

end for

end while

Figure 15: An iterative algorithm for �nish point deter-

mination

of the variable. Although the data location problem

is not the focus of this paper, we use a data location

tracking method similar to the approach proposed and

implemented by Coutant, Meloy and Ruscetta at HP

[4] to show how our breakpoint implementation scheme

can recover the expected values of user variables.

In their DOC project, Coutant et al. used a data

structure called range to track the location information

of variables in di�erent ranges of the binary program.

For example, in Figure 16(a), variable a lives in three

di�erent locations during the execution.

2004 r8 = 3 + r2 x = a + b

2012 r7 = r1 - 6 y = a - 6
2008 r1 = 3 - r2 a = a - b

2016 r3 = r1 + r8 c = a + x
2020 r2 = r2 + 5 b = b + 5
2024 r5 = r2 + r3 a = b + c
2028 r8 = r7 + r5 x = y + a

2028 2028 r5 register

2000 a = 3
source codeaddress

(a)

Low Addr High Addr Location Type

2004 2008 3 constant

2012 2016 r1 register

(b)

Figure 16: An example code segment and the range

structure for variable a

The range structure for variable a is shown in Fig-

ure 16(b). By comparing the program counter with the

Low Address and High Address of each range, the de-

bugger can decide where to get the variable value. If

the program counter is not in any one of the ranges,

which means the variable value is not available at this

point, the debugger has to inform the user of this fact.

Technical Report IMPACT-98-01 12

Range information is calculated based on the live

ranges of variables at compile-time. It is considered

conservative because the fact that a variable is not live

doesn't mean its value is not available. For example,

in the program shown in Figure 16, variable a is not

live from address 2020 to 2024, but its value is still

in register r1. Actually Adl-Tabatabai and Gross have

proposed a framework using data-
ow analysis to pro-

vide more accurate data location information[5]. In this

paper we still use the range structure to represent the

run-time locations of variables but extend the range of a

value location to the point where the value is killed. The

extended range structure of variable a for the example

in Figure 16 is shown in Figure 17.

Low Addr

2028 2028 r5 register

High Addr Location Type

2004 2008 3 constant

2012 2024 r1 register

Figure 17: Extended range structure for variable a

C.2 Variable values

We would like to use an example to illustrate how

our breakpoint implementation scheme works with the

range structure to �nd out variable values.

Figure 18(a) shows a sequence of defs and uses of reg-

isters along with their corresponding source code. In

this example we use a single number as the execution

order information. The extended range data structures

for variable a and b are shown in Figure 18(b). When

the user sets a breakpoint and its anchor point is at

I5, the debugger takes over the control of the execution

at I4 and executes the instructions using the forward

recovery technique. Once instruction I9 is reached, it

stops executing to answer the user's requests. The re-

sulting instruction history bu�er and data history bu�er

when I9 is reached are shown in Figure 19.

When the user requests for the value of a variable,

the debugger will go to the range data structure to �nd

out where the variable value is. It needs to decide what

address to use to compare to the address ranges in the

range structures. When there is no code re-ordering,

the debugger can use the address of the anchor point

for every variable. However, when code has been moved

around, there doesn't seem to be an address which is

right for every variable. In our example, if the user

wants to know the value of a, we know address 2032 is a

right choice because the assignment which computes the

expected value of a is done at address 2028. If the user

wants the value of variable b, we have to use the address

at or before 2012 because the instruction at 2012 is a

post-breakpoint instruction which prematurely updates

Low Addr High Addr Location Type

2032 2036 r1 register

address

(a)

anchor
interception

(b)

execution order

Low Addr High Addr Location Type

2004 2012 r2 register

2016 2024 r3 register

variable a

variable b

source code
2000 I1: def r2 b = 1
2004 I2: ... 2
2008 I3: use r2 = b 3
2012 I4: def r3 b = 6
2016 I5: ... 5
2020 I6: use r3 = b 7
2024 I7: def r3 c = 8
2028 I8: def r1 a = 4
2032 I9: ... 9
2036 I10: use r1 = a 10

finish

Figure 18: (a)Sample program (b) the extended range

structures for variable a and b.

the value of b.

 6 2024 post-breakpoint

Data History Buffer

destination old value instr. addr instr. type

 r3 2 2012 post-breakpoint

 r1 5 2028 pre-breakpoint

2012
2016

(b)

2020
2024
2028

address annotation

Instruction History Buffer

(a)

Figure 19: (a) Instruction history bu�er (b) data history

bu�er (the old values in the data history bu�er are given

arbitrarily in the example).

In general, the address used for �nding the correct

run-time location of variable v can be obtained using

the following algorithm:

1. Between the interception point and the �nish point,

if there is any pre-breakpoint instruction whose des-

tination holds the value of v, �nd out the latest one

of such instructions, say I . We use the address of

the instruction following I to �nd out the run-time

location of v. If there is no such instruction, go on

to step 2.

2. Between the interception point and the anchor

point, if there is any post-breakpoint instruction

Technical Report IMPACT-98-01 13

whose destination holds the value of v, we use the

address of the earliest one of such instructions.

3. If none of the conditions in previous steps exists,

we use the address of the anchor point.

After the debugger �nds out what location holds the

variable value, it will �rst check if there is an entry of

the location in the data history bu�er. If there isn't,

the debugger goes directly to the location to retrieve the

value. If there is, the debugger uses the same address

used for comparing range data structure to check if the

value is stored in the data history bu�er or not. In our

example, we know a's value is in register r1 by looking

at the range structure. Even though there is an entry

of r1 in the data history bu�er, after doing the address

comparison, we know the value of a is not in the history

bu�er but in the actual register.

D Some practical issues regard-

ing our approach

D.1 Beyond the function scope

We have so far limited the discussion of our approach to

within a function. When instructions are moved across

a function call, things become a bit complicated. Fig-

ure 20(a) shows an example with two functions where

function bar calls function foo. Figure 20(b) shows the

program after the optimizer hoists the statement S2

above statement S1. If a breakpoint is set at statement

S3 and we only apply our approach within function foo,

the user won't be able to get the correct value of vari-

able y. Apparently the debugger will have to take over

the control of execution as early as at S2 in the opti-

mized code in order to solve this problem. To do so,

the debugger has to keep track of all the call sites for

each function. When the user sets a breakpoint in func-

tion foo, the debugger will need to go to every caller of

foo and see if there are instructions moved across the

call site. If so, the debugger will have to set the inter-

ception points, �nish points, and escape points in caller

function as if there is a breakpoint set immediately af-

ter the call site. If there are multiple layers of functions

calls where F1 calls F2, F2 calls F3, ..., and Fi calls

foo, the interception points and �nish points should set

in the outer-most level of functions where there are in-

structions moved across the call site.

The problem with this solution is that the instruc-

tion history bu�er and data history bu�er might explode

when there is a long chain of function calls. Also the

time it takes to run to the breakpoint may be extremely

long because lots of the instructions are executed in the

forward recovery mode.

 {
 .
S3: .
 .
 }

 bar()
 {
 .
S1: foo();
S2: y = 3;
 .
 .
 }

 foo() foo()
 {

(b)

 .
S3: .
 .
 }

 bar()
 {
 .

 .
 .
 }

S2: y = 3;
S1: foo();

(a)

Figure 20: (a)Original program (b)Optimized program.

Therefore, another more practical but less aggressive

solution to this problem is to still use the forward recov-

ery technique within a function. As for those variables

whose values are updated either too early or too late due

to the code movement in the caller functions, we don't

try to recover them but just inform the user that the

values of those variables are not available at this point

because of the optimization. By using this approach,

we trade the availability of some variable values for the

e�ciency and feasibility of the method.

D.2 Loop issues

Another problem occurs when the debugger has to ex-

ecute all the iterations of a loop in forward recovery

mode before it reaches a �nish point or an escape point.

There are two cases where this problem will happen:

1. There is a loop lying between the interception point

and the anchor point. The interception point may

or may not be in this loop, but the anchor point is

not in the loop. Figure 21(a) shows an example of

this case. After taking over the control of execution

at I1, the debugger has to execute every iteration

of the loop in the forward recovery mode before it

can reach I3.

2. There is a loop lying between the anchor point and

the �nish point. The anchor point may or may not

be in the loop, but the �nish point is not in the

loop. Figure 22(a) shows an example of this case.

After taking over the control of execution at I1, the

debugger has to execute every iteration of the loop

in the forward recovery mode before it can reach

I3.

Since the number of loop iterations is non-

deterministic, the instruction history bu�er and data

history bu�er might potentially explode.

To solve this problem, we can again adopt a less ag-

gressive approach which trades the availability of the

Technical Report IMPACT-98-01 14

A

B

C

I1

I3

I2anchor

finish

interception

(a) (b)

A

B

C

I1

I3

I2anchor

finish

interceptionnew

Figure 21: A control
ow graph with (a) old interception

point (b) new interception point.

values of some variables for the feasibility of our scheme.

Our algorithm for �nding the interception points and

�nish points can be modi�ed to avoid these cases. For

example, in the case shown in Figure 21(a), the inter-

ception point can be set at the beginning of block C as

shown in Figure 21(b). Similarly, in the case shown in

Figure 22(a), the �nish point can be set at the end of

block B as shown in Figure 22(a). Some of the variable

values might be unavailable at the breakpoint because

of this modi�cation.

A

B

C

interception

(b)

I1

anchor I2

I3

finishnew

A

B

C

interception I1

anchor I2

finish I3

(a)

Figure 22: A control
ow graph with (a) old �nish point

(b) new �nish point.

