
A Practical Interprocedural Pointer Analysis Framework

Ben-Chung Cheng� Wen-mei W. Hwuy

�Department of Computer Science
yDepartment of Electrical and Computer Engineering

The Coordinated Science Laboratory

University of Illinois

Urbana, IL 61801

Email:fbccheng, hwug@crhc.uiuc.edu

Tel: (217)244-1081

Fax: (217)333-5579

April 30, 1999

Abstract

In this paper we propose an e�cient and e�ective algorithm to perform ow-insensitive
interprocedural pointer analysis which can eliminate impossible paths. To make the algorithm
e�cient, we design a decoupled analysis framework where only the pointer information in each
function is extracted in the function-level analysis phase, and processed with other function's
pointer information in the interprocedural analysis phase. To be e�ective, our analysis can
disambiguate accesses to a single �eld in a structure and union, for both stack- and heap-
based storage. We have implemented the algorithm in the IMPACT compiler and evaluated its
feasibility for the complete suite of SPECint92 and SPECint95 benchmarks.

1 Introduction

To reduce a program's running time, promoting memory objects to registers and hiding load in-

struction latencies are e�ective mechanisms employed by an ILP compiler [1]. However, for pointer

intensive programs, determining the dependence among memory accesses is a hard problem since

a single memory location may be accessed under di�erent names, called the aliasing problem [2].

With the presence of subroutines, the aliasing problem gets even worse since a pointer may be

de�ned and dereferenced in di�erent functions. When multiple levels of pointers are supported, a

pointer itself may have aliases. Unless the compiler has the ability to conduct complete memory

1

disambiguation, conservative assumptions about memory dependence have to be made, leaving the

code optimized in a dissatis�ed way.

Many researchers have proposed various techniques for interprocedural pointer analysis to dis-

ambiguate memory accesses. The analysis result is represented either by alias pairs [3][4], which

specify the dependence of two memory accesses, or by points-to relations [5][6][7][8], which model

the storage shape graph [9]. When performing optimizations, what the compiler really needs is the

alias information, which can be derived from the points-to relations [5]. Besides the above distinc-

tion, the interprocedural pointer analysis can be further classi�ed by its ow and context sensitivity.

In a ow-sensitive analysis the relative orders of statements are considered, which provides the dis-

ambiguation information at every program point [3][4][5][6]. On the other hand, a ow-insensitive

analysis generates a single result containing all possible aliases for the whole program [7][10][11].

In a context-sensitive analysis, di�erent calling contexts to a function are separated so that the

alias information binded from one context will not be leaked into another one [3][4][5][6][12]. This

is called the impossible paths problem. Furthermore, alias information binded from di�erent con-

texts can be complete di�erentiated for individual pointers. Apparently, under additional cost the

ow- and context-sensitive analysis can provide better results when pointers are rede�ned often.

However, either because some algorithms can only handle a subset of the C language constructs, or

because some algorithms su�er from their high complexity, no work in this �eld has demonstrated

the capability of handling the complete suite of SPECint benchmarks, which play a pivotal role in

judging the value of modern computer system designs.

To close the gap between pointer analysis algorithms and ILP compilers, in this paper we

present a ow-insensitive algorithm which can disambiguate memory accesses for large C programs

e�ectively and e�ciently. Our method balances between resource requirements and analysis qual-

ity. To be e�cient, the algorithm analyzes each function's body once for all calling contexts by

decomposing the analysis into two phases. In the �rst phase, each function is analyzed individually

to resolve pointers de�ned locally. At the mean time, pointers that can be accessed interproce-

2

int g1, g2, g3;

f1()

{

int *pf1;

S1: pf1 = &g1;

S2: f3(&pf1);

S3: *pf1 = 0;

S4: g3 = g2 + 1;

}

f2()

{

int *pf2;

S5: pf2 = &g2;

S6: f3(&pf2);

S7: *pf2 = 0;

S8: g3 = g2 + 1;

}

f3(int **ppf3)

{

S9: f4(ppf3);

S10: **ppf3 = 100;

S11: g3 = g1 + g2;

}

f4(int **ppf4)

{

if (....)

S12: *ppf4 = &g3;

}

main()

{

S13: f1();

S14: f2();

}

f2f1

f3

f4

main

(a) (b)

Figure 1: Example for interprocedural pointer analysis: (a) code, (b) call graph.

durally are identi�ed for further process. In the second phase, these interprocedurally accessible

pointers exchange information through the call graph iteratively via a well-de�ned interface until a

�xed point is reached. To be e�ective, the algorithm is designed to disambiguate both stack- and

heap-based storage equally well. However, the proposed analysis does not di�erentiate individual

elements in an array, nor individual elements in a linked list. Although the proposed analysis cannot

provide context-sensitive information for each individual pointer in each function, it can provides

context-sensitive side-e�ects at function levels, thus prevent impossible paths from happening. The

proposed interprocedural pointer analysis has been implemented in the IMPACT compiler [13] and

tested on the complete suite of SPECint92 and SPECint95 benchmarks, together with benchmarks

used by other researchers.

The rest of this paper is organized as follows. In Section 2, we discuss issues of the function-level

pointer analysis. In Section 3, we demonstrate how interprocedural pointer analysis proceeds. The

empirical results are presented in Section 4. A comprehensive study of related work can be found

in Section 5, and conclusions and future work are given in Section 6.

3

Production

Access Name = Variable_Name j
Variable_Name Field Segment j
Access Name Dereference Segment j
Access Name Dereference Segment F ield Segment

Dereference Segment = *

Field Segment = .so_eo

Table 1: Grammar of the access name.

2 Function-Level Points-to Analysis

In C programs, accessible objects in each function can be classi�ed as local variables, global vari-

ables, dynamically allocated objects, and invisible objects. An invisible object in one function

belongs to one of the previous four types in another function, with address being taken and passed.

In terms of access methods, only local and global variables can be directly accessed, while all four

classes of objects can be accessed through pointers. So the subject of conducting pointer analysis

is to identify objects whose addresses are taken, and identify pointers which receive the objects'

addresses. When the analysis is extended to be interprocedural, the implicit assignments between

actual/formal parameters and return values/recipients are considered so that invisible objects can

be disambiguated.

Consider the code example provided in Figure 1a, with the call graph depicted in Figure 1b.

Statement S12 in function f4 modi�es an invisible object, which is aliased with either pf1 in f1 or

pf2 in f2. Together with the e�ects of assignments S1 and S5, pf1 can point to either g1 or g3,

and pf2 can point to either g2 or g3. When the program is being optimized by the compiler, the

load of g2 in S4 can be scheduled before the store of *pf1 in S3. But the load of g2 in S8 cannot

be executed before the store of *pf2 in S7. And the loads of g1 and g2 in S11 cannot be executed

before the store of **ppf3, since pointer *ppf3 may contain the addresses of g1 or g2. Without

pointer analysis, all these memory operations have to be executed in order.

Instead of virtually inlining all acyclic function calls to identify the possible targets of pointers,

4

the decomposed analysis proposed in this paper can resolve them in a more economical way. In

the function-level phase, pointers de�ned locally are identi�ed, and invisible objects represented by

access names will be processed in the interprocedural phase.

2.1 Points-to relation

A points-to relation is a binary relation of the form (p, t) where p is a pointer and t is the target [5].

Points-to relations are created because of pointer assignments, where the pointers accessed from the

left-hand-side expression point to the targets pointed by the pointers accessed by right-hand-side

expression. For example, S1 in Figure 1a generates (pf1, g1). When a set of points-to relations

are considered collectively, they are called a points-to graph, or G.

2.2 Access name

For directly accessed local and global variables, the accessed region in the memory can be exactly

represented by their associated variable names. But for heap-based objects and invisible objects, the

only information leading to their actual location is how they are accessed. Therefore the sequence

of memory operations used to access the object is encoded as the destination region's name, called

the access name. As Table 1 shows, an access name starts from a variable name, followed by a

sequence of dereference or �eld segments. The dereference segment is added for operators '->'

and '*', and for operator '[]' if the array name is a formal parameter. With �eld segments,

individual �elds in a structure/union can be di�erentiated. The usage of the starting o�set (so)

and ending o�set (eo) can resolve the aliases caused by unions [6] and type casts. Using the access

name notation, the points-to relation added for S12 involving the invisible object is (ppf4*, g3).

The points-to graph and access names can be used together to disambiguate invisible objects, as

will be explained later.

5

2.3 Interface variable

The binding of an invisible object can be traced based on the access name and the one-by-one

mapping between the actual and formal parameters, and the function return value and recipient.

In this paper, we ease the mapping process by introducing four families of systematically de�ned in-

terface variables to replace the original function parameters and return values so that each interface

variable explicitly speci�es its class, rank, and origin as explained below.

� f_i_foo: the ith formal parameter of function foo.

� a_i_foo_bar_c: the ith actual parameter passed to function foo from function bar at the the

cth call site.

� or_foo: the return value of function foo.

� ir_foo_bar_c: the return value recipient of function foo's return value at the cth call site

called from function bar.

Interface variables are inserted to each function to participate in the points-to representation

by extra assignment statements, which assign the interface formal parameter (f_XX) to the original

formal parameter, assign the original actual parameter to the interface actual parameter (a_XX),

assign the original function return value to the interface outgoing function return value (or_XX), and

assign the interface incoming function return value (ir_XX) to the original return value recipient.

The class, rank, and origin �elds guarantee the uniqueness for each interface variable across the

whole program.

2.4 Algorithm for the function-level analysis

Once these assignments involving interface variables are in place, access names of invisible objects

will be represented by interface variables. Figure 2 lists the pseudo code for the algorithm of

function level pointer analysis. It starts by inserting the interface variables into a function. Then

6

Construct Function-Level Points-to Graph(function)
f

insert interface variables
do f

for (each statement LHS = RHS)
Add Points-to Relations(LHS, RHS)

g while (new points-to relation is added)
g

Add Points-to Relations(LHS, RHS)
f

lhs name = Access Name(LHS)
rhs name = Access Name(*RHS)
lhs objects = Find And Create Objects(lhs name)
rhs objects = Find And Create Objects(rhs name)
for (each object obj l in lhs objects) f

for (each object obj r in rhs objects) f
add (obj l, obj r) to the points-to graph G

g
g

g

Find And Create Objects(access name)
f

Break access name into segments by the grammar
Use the variable name in the �rst segment to �nd the
corresponding object obj init
Base S = obj init, Next S = ;
Enqueue the rest segments into queue Q
while (Q is not empty) f

segment = dequeue(Q)
for (each obj base in Base S) f

Assume the name of obj base is N
switch (segment) f

case "*":
if (obj base's points-to list is empty)

Create object N* and add (N, N*)
Next S = Next S [fT j9(N; T)g
break

case ".so eo":
If object N.so eo does not exist, create it
Next S = Next S [N.so eo

g
g
Base S = Next S, Next S = ;

g
return Base S

g

Figure 2: Algorithm of constructing the function-level points-to graph.

it analyzes each pointer assignment of the form LHS = RHS where LHS and RHS are arbitrary C

expressions. The analysis is done iteratively to discover new points-to relations until a �xed point

is reached. Access names for LHS and *RHS are constructed �rst 1, then both access names are used

to search existing points-to relations. The search process initiates by considering each access name

as a series of tokens of types var, dereference, and �eld, as de�ned by the grammar. These tokens

are consumed from left to right starting from the var node in the points-to graph. Given node N in

the current search result set and the next token being of dereference type, the search will advance

to T if (N, T) 2 G, otherwise node N* is added to G because N is a leaf node. Similarly, given node

N in the current search result set and the next token being of �eld type, node N.so_eo is created,

if not already existed, and included into the search result. Then bipartite points-to relations are

added between the pointer set and the target set.

Table 2 lists the points-to graphs of the functions in Figure 1, where the top portion contains

1Note that an extra dereference segment is added to RHS.

7

f1 f2 f3 f4

Resolved (pf1,g1) (pf2,g2)

For further (a_1_f3_f1_1,pf1) (a_1_f3_f2_1,pf2) (ppf3,f_1_f3*) (ppf4,f_1_f4*)

process (f_1_f3,f_1_f3*) (f_1_f4,f_1_f4*)

(a_1_f4_f3_1,f_1_f3*) (f_1_f4*,g3)

(f_1_f3*,f_1_f3**)

Table 2: Points-to relations for functions f1, f2, f3, and f4.

the points-to relations that are completely resolved by local statements, and the bottom portion

contains points-to relations involving invisible objects to be further processed in the interprocedural

phase.

3 Interprocedural Points-to Analysis

As briey mentioned in the previous section, the access name of a lexically invisible object speci�es

the path to the destination object. So the major task performed in the interprocedural phase is

to combine each function's points-to relations together, and use the access name to search for the

residence of lexically invisible objects.

Figure 3 shows various data-ow paths of how points-to relations can be propagated through

function boundaries. Figure 3a is the call graph, with fc being the center function, plus two callers

fa and fb, and two callees fd and fe. If a points-to relation is propagated to a function through

fd

fa fb

fc

fe fd

fa fb

fc

fe fd

fa fb

fc

fefe fd

fa fb

fc

fe

(a) (e)(b) (c) (d)

fd

fa fb

fc

fe

Figure 3: Propagation of points-to relations among function boundaries: (a) call graph, (b) path
for inherited relations, (c) path for side-e�ect relations, (d) hybrid path, (e) impossible path.

8

Interprocedural Alias Analysis()
f

points-to relation added = 1
call-graph changed = 1
while (points-to relation added or call-graph changed) f

points-to relation added = 0
if (call-graph changed) f

call-graph changed = 0
Rebuild the call graph from main

g
Traverse the call graph top-down and get inherited

points-to relations from callers
Traverse the call graph bottom-up and get side-e�ect

points-to relations from callees

Check all indirect call-sites for newly resolved callees
g

g

Are Aliases(EXP1, EXP2)
f

acc name1 = Access Name(EXP1)
acc name2 = Access Name(EXP2)
objects set1 = Find And Create Objects(acc name1)
objects set2 = Find And Create Objects(acc name2)
return objects set1 \ objects set2 6= ;

g

Figure 4: Outline of interprocedural pointer analysis.

its callers, as the arrows shown in Figure 3b, it is called an inherited points-to relation. Functions

fd and fe can inherit points-to relations originated from both fa and fb through fc. On the

contrary, if a points-to relation is propagated to a function through its callees, as the arrows shown

in Figure 3c, it is called a side-e�ect points-to relation. Similarly, fa and fb can be a�ected by fc

because of side-e�ect relations originated from fd and fe. Figure 3d shows the case where side-e�ect

points-to relations reported from one callee become inherited points-to relations for another callee.

Figure 3e shows the impossible path where inherited relations from one caller become side-e�ect

relations for another caller, which can be prevented by a context-sensitive algorithm.

Figure 4 highlights the algorithm used in the interprocedural phase. We will use Figure 1 as

the running example to explain it.

3.1 Inherited points-to relations

In Figure 1a, statement S10 writes 100 to the location accessed through two levels of indirection

from ppf3, and the access name is f_1_f3**. It would a�ect the compiler's optimization decisions

if a lexically invisible object is aliased with a global object, and if two lexically invisible objects

are aliases. Therefore, each intermediate pointer in an access name will be checked in all calling

contexts for potential targets. For example, in the calling context created by f1, f_1_f3** is

9

converted to a_1_f3_f1_1** �rst, then the �rst '*' leads to pf1, since a_1_f3_f1_1 points to

pf1. And because (pf1, g1) exists in f1's points-to relations, (f_1_f3*, g1) is added to f3 as

an inherited points-to relation. Similarly, (f_1_f3*, g2) will be added to f3 from context f2.

3.2 Side-e�ect points-to relations

Side-e�ect points-to relations are discovered by checking each function's points-to relations for

pointers made of interface formal parameters or outgoing return values with non-trivial targets. A

points-to relation (p, t) is non-trivial if t 6= p*. If the non-trivial target is not made of interface

formal parameters nor global variables, it can be named trivially in the caller since the object is not

pertinent in the caller's name space. For example, relation (f_1_f4*, g3) is a side-e�ect points-to

relation in f4 since the target is not trivial. When this relation is reported to f3, the new relation

added is (f_1_f3*, g3), since f_1_f4* is �rst converted to a_1_f4_f3_1*, and f_1_f3* is the

target of a_1_f4_f3_1. Now f3 has a new side-e�ect relation (f_1_f3*, g3), which will be further

propagated to f1 and f2 as (pf1, g3) and (pf2, g3), respectively.

3.3 Preventing impossible paths

The inherited and side-e�ect points-to relations discovered so far are included in Table 3a; however,

spurious points-to will be added in the current con�guration. Since f3 is the center function in the

call graph, it receives both inherited and side-e�ect relations. If they cannot be di�erentiated, as

in the current case, inherited relation (f_1_f3*, g1) will be reported to f2 as (pf2, g1), and

(f_1_f3*, g2) will be reported to f1 as (pf1, g2). These spurious relations will disable some

optimization opportunities, like scheduling the load of *pf1 before the store of g2 in f1 since they

are now considered as aliases.

This problem can be resolved by making a slight extension to the interface variables by splitting

an interface formal parameter into a transient formal parameter (tf_XX) and a persistent formal

parameter (pf_XX). Each original formal parameter is assigned by both transient and persistent

10

f1 f2 f3 f4

Resolved (pf1,g1) (pf2,g2)

For further (a_1_f3_f1_1,pf1) (a_1_f3_f2_1,pf2) (ppf3,f_1_f3*) (ppf4,f_1_f4*)

process (f_1_f3,f_1_f3*) (f_1_f4,f_1_f4*)

(a_1_f4_f3_1,f_1_f3*) (f_1_f4*,g3)

(f_1_f3*,f_1_f3**)

Inherited (f_1_f3*,g1) (f_1_f4*,g1)

(f_1_f3*,g2) (f_1_f4*,g2)

Side-e�ect (pf1,g3) (pf2,g3) (f_1_f3*,g3)

(a)

f1 f2 f3 f4

Resolved (pf1,g1) (pf2,g2)

For further (a_1_f3_f1_1,pf1) (a_1_f3_f2_1,pf2) (ppf3,tf_1_f3*) (ppf4,tf_1_f4*)

process (ppf3,pf_1_f3*) (ppf4,pf_1_f4*)

(tf_1_f3,tf_1_f3*) (tf_1_f4,tf_1_f4*)

(pf_1_f3,pf_1_f3*) (pf_1_f4,pf_1_f4*)

(tf_1_f3*,tf_1_f3**) (tf_1_f4*,tf_1_f4**)

(pf_1_f3*,pf_1_f3**) (pf_1_f4*,pf_1_f4**)

(a_1_f4_f3_1,pf_1_f3*) (pf_1_f4*,g3)

(a_1_f4_f3_1,tf_1_f3*)

Inherited (tf_1_f3*,g1) (tf_1_f4*,g1)

(tf_1_f3*,g2) (tf_1_f4*,g2)

Side-e�ect (pf1,g3) (pf2,g3) (pf_1_f3*,g3)

(b)

Table 3: Points-to relations after performing interprocedural analysis: (a) context-insensitive anal-
ysis, (b) context-sensitive analysis with transient and persistent formal parameters.

interface formal parameters, but pointers made of transient formal variables will only carry the

inherited points-to relations, and pointers made of persistent formal variables will only carry the

side-e�ect relations. In this way, impossible paths can be prevented since inherited and side-

e�ect points-to relations can be di�erentiated. The key di�erence between our method and other

context-sensitive algorithms [3][5][6] is that instead of analyzing a function and its subsequent

callees multiple times under di�erent calling contexts, we only maintain one set of side-e�ect points-

to relations to be propagated for all calling contexts. However, we cannot di�erentiate inherited

points-to relations from di�erent context-sensitive. This is the trade-o� we made in order to handle

larger programs. The fully resolved points-to relations employing transient and persistent interface

formal parameters are shown in Table 3b.

11

typedef struct {

int (*func)();

} s1;

typedef struct {

s1 s;

int *p1, *p2, *p3;

} s2;

int foo();

f5()

{

s2 s;

S15: s.p3 = f6(&s);

S16: (*s.s.func)();

S17: (*((s1 *) &s)->func)();

}

int *f6(s2 *sp)

{

S18: sp->p1 = malloc(sizeof(int));

S19: sp->p2 = malloc(sizeof(int));

S20: sp->s.func = foo;

S21: return sp->p2;

}

(a)

f5 f6

Resolved
For further (a_1_f6_f5_1,s) (tf_1_f6,tf_1_f6*)

(ir_f6_f5_1,ir_f6_f5_1*) (pf_1_f6,pf_1_f6*)

(s.12_15,ir_f6_f5_1*) (sp,tf_1_f6*)

(sp,pf_1_f6*)

(ir_malloc_f6_1,ir_malloc_f6_1*)

(pf_1_f6*.4_7,ir_malloc_f6_1*)y

(ir_malloc_f6_2,ir_malloc_f6_2*)

(pf_1_f6*.8_11,ir_malloc_f6_2*)y

(pf_1_f6*.0_3,foo)]

(or_f6,pf_1_f6*.8_11*)z

inherited
side-e�ect (s.0_3,foo)

(s.4_7,s.4_7*)�

(s.8_11,s.8_11*)�

(s.12_15,s.8_11*)

(b)

Figure 5: Advanced code example with heap-allocated objects, structure �elds, and function point-
ers: (a) code, (b) analysis results.

3.4 Dynamically allocated objects and structure �elds

We have used the example in Figure 1 to demonstrate how inherited and side-e�ect points-to re-

lations are propagated along the call graph. But what lacks from the intuitive example is how to

disambiguate dynamically allocated objects and indirect accesses through structure �elds. There-

fore an advanced example is designed here to show the full strength of the proposed analysis.

In the example shown in Figure 5a, structure s2 contains four accessible �elds: a function pointer

func, and three integer pointers p1, p2, and p3, where func is enclosed in a nested structure s1.

One of function f6's side e�ect is to set the function pointer �eld func with function foo's address,

as the points-to relation annotated by ']' in Figure 5b. Since func is the �rst �eld in the s2

structure, the starting o�set of func is 0, and the ending o�set of func is 3, therefore the access

12

name for the pointer is pf_1_f6*.0_32. Using the o�sets instead of the symbolic name for structure

�elds eliminates the aliases caused by type casts and unions, leaving pointer assignments as the sole

means for creating aliases. For example, statements S16 and S17 access the same function pointer

�eld, but have di�erent access names as s.s.func and s.func when the symbolic name is used for

�elds; but they are regulated into s.0_3 if the o�sets are used instead. An indirect function call

can be resolved by using the call site's access name to search the points-to graph, as used in the

function-level analysis. For example, once (s.0_3, foo) is propagated to f5's points-to graph,

foo will be included in the search result for s.0_3*, which is the access name for indirect calls at

S16 and S17. The newly resolved callee will be added to the call graph, whose points-to graph will

be included and analyzed in the next iteration.

Another side-e�ect of f6 is that it allocates two integer objects from the heap and stores their

addresses into the p1 and p2 �elds, as represented by the two relations annotated with 'y'. It

also returns the address of the second allocated object to the caller, as represented by the relation

annotated with 'z'. Since the two dynamically allocated objects are not made of pertinent interface

variables of the caller's name space, they can be named trivially in f5, as shown by the two relations

annotated with '�'. When side-e�ect relation (or_f6, pf_1_f6*.8_11*) is reported to f5, it will

result in relation (s.12_15, s.8_11*), since s.12_15 points to wherever ir_f6_f5_1 points to,

which points to wherever or_f6 points to, which points to pf_1_f6*.8_11*, whose corresponding

object in f5 is s.8_11*. When the interprocedural pointer analysis �nishes, if there are memory

accesses involving s.p1*, s.p2* and s.p3* in f5, the compiler can perform optimizations based on

the knowledge that s.p1* and s.p2* are independent while s.p2* and s.p3* are dependent.

2We assume the conventional sizes for generic types. But they can be assumed di�erently as long as their sizes

are consistent for the whole program.

13

3.5 Behavior of library functions

Some C library functions have side-e�ects that are equivalent as pointer assignments. For example,

calling "memcpy(dest, src, 4)" is equivalent as doing "*(char **)dest = *(char **)src". We

can model this type of side-e�ects for library functions by creating a points-to graph using interface

variables. For example, memcpy's points-to graph is built by (pf_1_memcpy*, pf_2_memcpy**). It

is a safe approximation since we treat a whole array as a single object.

3.6 Disambiguating pointer targets

The top-down and bottom-up order of call graph traversal is not strictly enforced but just to reduce

the number of iterations. Once the interprocedural analysis �nishes, each function's points-to graph

is composed of local, side-e�ect, and inherited points-to relations. To determine if two C expressions

are aliases or not, their access names are constructed and processed by the Find And Create Objects

routine as shown in Figure 2. If the resultant search results are disjoint, they are de�nitely indepen-

dent. Otherwise they are possible aliases. Due to the limit of ow insensitivity in our algorithm,

the attribute of de�nite aliases cannot be generated without extra data-ow analysis. And the

cardinality of each set will be used in Section 4 to measure the precision of the interprocedural

pointer analysis algorithm.

4 Experimental Results

We have implemented our algorithm in the IMPACT compiler as part of the source-level analysis

modules. In this section, we present the preliminary results of applying our algorithm on a number

C benchmarks, including the benchmarks used by Landi and Ryder [3], and all of the SPECint92

and SPECint95 benchmarks. The experiments are setup on an HP/9000/780 workstation running

at 180 MHz with 256 MB of physical memory. Our compiler modules were compiled by the HP cc

compiler with the -O option.

14

Benchmark Characteristics Function-level analysis Interprocedural analysis Total time
Lines Functions Time Memory Time Memory

clinpack 1218 11 0.17 1.86 0.01 1.61 0.18
sim 1434 14 0.39 2.06 0.05 1.68 0.44
loader 1451 29 0.34 1.81 0.14 1.89 0.48
026.compress 1503 16 0.24 1.88 0.05 1.74 0.29
129.compress 1934 24 0.13 1.77 0.03 1.65 0.16
football 2261 57 1.16 1.96 0.20 2.15 1.36
compiler 2368 40 0.27 1.77 0.03 1.80 0.30
assembler 3178 51 0.72 1.93 0.44 2.37 1.16
simulator 4508 110 0.74 1.83 0.17 2.32 0.91
130.li 7597 357 3.56 2.49 30.30 10.82 33.86
022.li 7741 357 3.61 1.91 32.81 10.83 36.42
072.sc 8639 179 2.91 1.97 1.36 3.57 4.27
023.eqntott 12053 62 0.87 1.85 0.35 2.23 1.22
008.espresso 14838 361 9.30 2.12 9.19 9.49 18.49
124.m88ksim 19092 252 3.62 2.36 1.19 4.10 4.81
134.perl 26874 276 23.65 2.31 362.47 42.10 386.12
099.go 29246 372 3.36 2.17 0.37 3.99 3.73
132.ijpeg 29290 477 11.11 2.37 126.02 22.05 137.13
147.vortex 67205 923 21.20 3.14 30.13 18.02 51.33
085.cc1 90857 1452 43.20 2.79 116.23 33.16 159.43
126.gcc 205583 2019 100.90 3.41 241.37 73.86 342.27

Table 4: Benchmark characteristics and time/size requirements.

Table 4 lists the general characteristics and time/size measurements of our algorithm for each

benchmark. As shown in the �rst group of columns, each benchmark has at least 1,000 lines of code.

The larger benchmarks have never been handled by related work: 147.vortex (923 functions/67,205

lines), 085.cc1 (1,452 functions/90,857 lines), and 126.gcc (2,019 functions/205,583 lines). And due

to the extensive use of type casts and complex structure declarations in 132.ijpeg and 134.perl,

they have not been handled by related work either. In the second group of columns, the average

memory usage for analyzing each function and the total analysis time of the whole program are

listed. The memory usage in mega bytes (MB) accounts for the internal representation of function

bodies and points-to relations; and the analysis time in seconds include the process of scanning

through the function body to add points-to relations for pointer assignments. The third group of

columns include the total memory usage and time spent in the interprocedural analysis phase. In

this phase only points-to relations of the program need to be maintained so the memory usage is

reasonable. The analysis time includes the process of constructing the call graph and propagating

15

Targets per indirect access Indirect accesses per target Callees per indirect call
Benchmark 1 2 3 � 4 Avg. 1 2 3 � 4 Avg. 0 1 2 3 � 4

clinpack 18 0 0 0 1.00 18 0 0 0 1.00 0 0 0 0 0
sim 124 8 0 0 1.06 56 5 3 7 1.97 0 0 0 0 0
loader 62 2 0 0 1.03 66 0 0 0 1.00 0 0 0 0 0
026.compress 42 2 0 0 1.05 5 4 2 5 2.88 0 0 0 0 0
129.compress 27 0 0 0 1.00 15 1 2 1 1.42 0 0 0 0 0
football 61 0 1 0 1.03 61 0 1 0 1.03 0 0 0 0 0
compiler 17 0 0 0 1.00 8 0 1 1 1.70 0 0 0 0 0
assembler 108 2 0 0 1.02 104 4 0 0 1.04 0 0 0 0 0
simulator 112 2 0 0 1.02 114 1 0 0 1.01 0 0 0 0 0
130.li 613 20 8 0 1.06 443 71 20 6 1.25 0 0 0 1 3
022.li 613 20 8 0 1.06 443 71 20 6 1.25 0 0 0 1 3
072.sc 448 6 0 0 1.01 332 40 6 6 1.20 0 0 0 1 1
023.eqntott 229 7 15 0 1.15 145 27 16 7 1.48 0 2 0 2 0
008.espresso 2378 61 5 10 1.07 1881 173 42 55 1.22 0 2 3 0 2
124.m88ksim 470 39 1 3 1.11 471 27 8 4 1.11 0 0 0 0 3
134.perl 2593 62 77 128 1.51 1917 232 70 87 1.87 3 0 1 0 0
099.go 22 0 0 0 1.00 22 0 0 0 1.00 0 0 0 0 0
132.ijpeg 4317 0 0 0 1.00 3911 47 42 28 1.07 8 232 13 9 15
147.vortex 4545 231 21 3 1.06 4733 93 17 20 1.05 1 2 2 1 2
085.cc1 5217 339 92 106 1.26 4292 561 189 219 1.38 0 2 5 0 28
126.gcc 9960 946 305 148 1.34 7585 1136 536 599 1.54 0 6 10 0 49

Table 5: Accuracy of the analysis result.

the points-to relations along the call graph.

Table 4 demonstrates that our algorithm is truly a feasible solution to the interprocedural

pointer analysis problem under today's computational power. Analyzing 126.gcc consumes the

most memory space due to its large number of functions. And analyzing 134.perl takes the longest

time since it contains 16 extremely intricate and large structure declarations. Each structure

contains multiple pointer �elds which can potentially point to all other structures, including the

structure itself, causing very dense points-to relations.

In Table 5 we measure the accuracy of the points-to information generated by the proposed

algorithm. When measuring the accuracy, side-e�ect points-to relations are considered but inherited

points-to relations are ignored. This is because only one calling context is alive at a time, and the

trivial points-to relations made of interface transient formal parameters can model the default

context. But all inherited points-to relations need to be merged when the compiler optimizes

memory instructions. The accuracy of the analysis is measured by two metrics: 1) the number of

16

objects that an indirect memory access reaches, and 2) the number of indirect memory accesses

that a object is reached by. And the general way to judge the accuracy is that the closer both

metrics are to 1, the better the analysis result is. However, the standard is not absolute since

pointers may be used di�erently in di�erent programs. As the table shows, our analysis is accurate

even though the analysis is ow insensitive.

The last group of columns in Table 5 indicate the resolution of function pointers. Resolving

function pointers is a subset of resolving all pointers in a program, but tremendous bene�t can

be obtained since indirect call sites can be converted into direct ones thus get inlined, and the

side-e�ects of indirect function calls can be acquired. In theory, all function pointers should be

resolved if the analysis and the program is correct. But we found that 132.ijpeg, 134.perl, and

147.vortex contain unresolved indirect call sites. The best explanation we can o�er is that they

are dead code but not removed when the benchmark was released. We used various inputs to test

these benchmarks and found that these unresolved call sites are never exercised.

Due to various distinctions in generality (e.g. excluding type casts or structures/unions or

function pointers), specialty (e.g. disambiguating either stack-based or heap-based storage only),

and capability (e.g. size of benchmarks), it is di�cult, if not impossible, to conduct a comprehen-

sive comparison between our result with others. However, by comparing the results at the high

level, we observed that the largest benchmark handled by our algorithm, 126.gcc, is at least 3

times larger than the largest benchmark handled by other interprocedural pointer analysis algo-

rithms [3][5][14][15]. And although not as fast as the almost-linear ow- and context-insensitive

algorithm [10][14], the analysis time of our algorithm is in line with other ow-insensitive algo-

rithms [7][11]. Most importantly, our algorithm is the �rst one which demonstrates the ability

to resolve both data and function pointers in all SPECint benchmarks. As for the accuracy, the

average numbers of targets for indirect accesses range from 1.00 to 1.51, also in line with other

work [3][5][7][11][15][16].

17

5 Related Work

Landi et al. [3] use the may-alias representation to perform a ow- and context-sensitive analysis to

compute the MOD problem. This is the pioneer work in improving the accuracy of pointer analysis,

but it simpli�es the analysis by ignoring C constructs like type casts and unions, which will a�ect

the correctness of the result. The algorithm analyzes a program by starting from the main function

following the interprocedural control ow graph. Since there is a speci�c order for functions to be

analyzed in their algorithm, the bindings of lexically invisible objects are known before a function

is entered. But this may cause a function to be re-analyzed multiple times. By contrast, our

proposed algorithm analyzes each function once in a arbitrary order in the �rst phase, and only

requires the points-to relations of each function to be maintained. Instead of providing complete

context sensitivity, our algorithm prevents impossible paths from happening. As the experiment

results show, we can analyze programs of much larger sizes as a trade-o� between complexity and

accuracy. Choi et al. [4] propose a sparse representation for the alias pairs, and they use the

invocation path to call sites like malloc() to name dynamically allocated objects, again requiring

the functions to be analyzed in a speci�c order. In our algorithm, dynamically allocated objects

are represented by access names.

Emami et al. [5] propose the points-to representation to model the storage shape graph. Since

their analysis is ow sensitive, their points-to relations can be classi�ed as de�nite or possible. Since

the bindings of lexically invisible objects are also available in advance, the syntax of pointer and

target names do not contain '*' like ours. Since all dynamically allocated objects are modeled

by a single name, these objects cannot be aggressively disambiguated. And context sensitivity is

preserved in an expensive way by virtually inlining all acyclic functions, su�ering from a exponential

time complexity. Wilson et al. [6][15] propose the idea of partial transfer function to reduce the

number that a function is re-analyzed. The usage of o�sets for naming structure/union �elds is

also used in their work.

18

Steensgaard [10] uses type inference to collectively represent several objects in the program as a

single node in the points-to representation. Because of the sharing, almost-linear time complexity

is achieved, but a great deal of accuracy is also sacri�ced. He extends the work to handle structure

�elds and type casts in [14]. The ow-insensitive analysis proposed by Anderson [11] has cubic

worse-case running time, and Shapiro et. al [7] propose a hybrid method with con�gurable com-

plexity between Steensgaard's and Anderson's algorithms. However, Shapiro's work only handles

stack-based storage. Hasti et al. [8] propose the idea of iteratively improving the accuracy of pointer

analysis in SSA form [17]. However, empirical results are not available.

Ruf [12] assesses the necessity of performing context-sensitive pointer analysis. For the bench-

marks he tested, little or no precision bene�t is found. What we learned from his paper is that

the improvement from context-sensitive analysis may not justify the high cost if context sensitivity

is obtained through virtual inlining; therefore in our algorithm partial context sensitivity can be

maintained through adopting transient and persistent formal parameters, which have little e�ect to

the analysis cost. Hind et al. [16] assess the impact of adding ow sensitivity to the analysis. The

results indicate that ow-sensitive analysis provides identical precision as ow-insensitive analysis

for 12 out of 21 benchmarks tested, but both are signi�cantly better than the trivial address-taken

analysis.

6 Conclusions and Future Work

This paper has described an e�ective ow-insensitive interprocedural pointer analysis framework

which can exclude impossible paths. We have found that by decomposing the analysis into two

phases, much larger benchmarks can be analyzed due to the reduced resource requirements. The

capability of disambiguating memory accesses for the complete SPECint92 and SPECint95 bench-

marks with resolutions down to a single �eld in a structure and union closes the gap between

interprocedural pointer analysis algorithms and ILP compilers.

19

In the future work we will quantify the importance of memory disambiguation information to

the code quality optimized by an aggressive ILP compiler. We will also incorporate advanced array

disambiguation techniques like the Omega test [18] to improve array level dependence analysis.

Since the uncertainty which prevents aggressive code optimizations can be cleared by the proposed

pointer analysis, we are also looking into optimization routines like inlining indirect function calls,

aggressive memory instruction scheduling, and wide-range global variable migration in the presence

of function calls. The above potential optimizations will be implemented in the IMPACT compiler,

and their resultant performance improvements will also be studied.

References

[1] D. M. Gallagher,Memory Disambiguation to Facilitate Instruction-Level Parallelism Compilation. PhD
thesis, Department of Electrical and Computer Engineering, University of Illinois, Urbana, IL, 1995.

[2] W. E. Weihl, \Interprocedural data ow analysis in the presence of pointers, procedure variables and
label variables," in Proceedings of the 7th ACM Symposium on Principles of Programming Languages,
pp. 83{94, January 1980.

[3] W. Landi and B. G. Ryder, \A safe approximate algorithm for interprocedural pointer aliasing," in Pro-

ceedings of the ACM SIGPLAN '92 Conference on Programming Language Design and Implementation,
pp. 235{248, June 1992.

[4] J. D. Choi, M. G. Burke, and P. Carini, \E�cient ow-sensitive interprocedural computation of pointer-
induced aliases and side e�ects," in Proceedings of the 20th ACM Symposium on Principles of Program-

ming Languages, pp. 232{245, January 1993.

[5] M. Emami, R. Ghiya, and L. J. Hendren, \Context-sensitive interprocedural points-to analysis in the
presence of function pointers," in Proceedings of the ACM SIGPLAN '94 Conference on Programming

Language Design and Implementation, pp. 242{256, June 1994.

[6] R. P. Wilson and M. S. Lam, \E�ective context-sensitive pointer analysis for c programs," in Proceedings
of the ACM SIGPLAN '95 Conference on Programming Language Design and Implementation, pp. 1{12,
June 1995.

[7] M. Shapiro and S. Horwitz, \Fast and accurate ow-insensitive points-to analysis," in Proceedings of

the ACM Symposium on Principles of Programming Languages, pp. 1{14, January 1997.

[8] R. Hasti and S. Horwitz, \Using static single assignment form to improve ow-insensitive pointer anal-
ysis," in Proceedings of the ACM SIGPLAN '98 Conference on Programming Language Design and

Implementation, pp. 97{105, June 1998.

[9] D. R. Chase, M. Wegman, and F. K. Zadeck, \Analysis of pointers and structures," in Proceedings of the

ACM SIGPLAN '90 Conference on Programming Language Design and Implementation, pp. 296{310,
June 1990.

[10] B. Steensgaard, \Points-to analysis in almost linear time," in Proceedings of the ACM Symposium on

Principles of Programming Languages, pp. 32{41, January 1996.

20

[11] L. O. Andersen, Program Analysis and Specialization for the C Programming Language. PhD thesis,
DIKU, University of Copenhagen, May 1994.

[12] E. Ruf, \Context-insensitive alias analysis reconsidered," in Proceedings of the ACM SIGPLAN 95

Conference on Programming Language Design and Implementation, pp. 13{22, June 1995.

[13] P. P. Chang, S. A. Mahlke, W. Y. Chen, N. J. Warter, and W. W. Hwu, \IMPACT: An architectural
framework for multiple-instruction-issue processors," in Proceedings of the 18th International Sympo-

sium on Computer Architecture, pp. 266{275, May 1991.

[14] B. Steensgaard, \Points-to analysis by type inference in programs with structures and unions," in Lecture
Notes in Computer Science, 1060 (T. Gyimothy, ed.), pp. 136{150, Springer-Verlag, 1996. Proceedings
from the International Conference on Compiler Construction.

[15] R. P. Wilson, E�cient Context-Sensitive Pointer Analysis For C Programs. PhD thesis, Computer
Systems Laboratory, Stanford University, Stanford, CA, 1997.

[16] M. Hind and A. Pioli, \Assessing the e�ects of ow-sensitivity on pointer alias analyses," in Lecture Notes
in Computer Science, Springer-Verlag, 1998. Proceedings from the 5th International Static Analysis
Symposium.

[17] R. Cytron, J. Ferrante, B. K. Rosen, M. N. Wegman, and F. K. Zadeck, \E�ciently computing static
single assignment form and the control dependence graph," ACM Transactions on Programming Lan-

guages and Systems, vol. 13, pp. 451{490, October 1991.

[18] W. Pugh, \The omega test: a fast and practical integer programming algorithm for dependence analy-
sis," in Proceedings of Supercomputing 1991, pp. 4{13, November 1991.

21

