
An Empirical Study of Function Pointers Using SPEC

Benchmarks

Ben-Chung Cheng� Wen-mei W. Hwuy

�Department of Computer Science

yDepartment of Electrical and Computer Engineering and

The Coordinated Science Laboratory

University of Illinois at Urbana-Champaign

May 10, 1999

Abstract

Since the C language imposes little restriction on the use of function pointers, the

task of call graph construction for a C program is far more di�cult than what the

algorithms designed for Fortran can handle. From the experience of implementing a

call graph extractor in the IMPACT compiler, we found the call graph construction

problem has evolved into an interprocedural pointer analysis problem. A complete and

precise call graph can be constructed from fully resolved function pointers. In this

paper, we report an empirical study of function pointers in the complete SPECint92

and SPECint95 benchmarks. We evaluate the resolution of function pointers and the

potential program transformations enabled by a complete call graph. We also examine

several real examples of function pointer manipulation found in these benchmarks.

They can be considered as critical issues in the design of a complete interprocedural

pointer analysis algorithm.

1

2

1 Introduction

With the rapid advancement in modern processor designs, exploiting parallelism within

the body of a single function cannot fully utilize the computation resources. Also, the

presence of function calls in a stream of instructions not only invokes run-time overhead, but

also hampers compile-time data-ow analysis, constraining code optimizations like register

allocation and global variable migration [1]. One way to break function boundaries is to inline

the callee function to the caller function so that the transfer of control and the barrier of

compilation are eliminated. Another way is to perform interprocedural data-ow analysis, so

that the potential side-e�ects of a function call can be safely modeled when making aggressive

code optimization decisions. Other optimization methods to overcome the performance

hazards incurred by function calls can be found in [2, 3, 4, 5, 6].

A fundamental requirement for performing interprocedural optimizations is a complete

call graph, which represents the dynamic invocation of functions for a program. For a pro-

gramming language which only allows functions to be invoked statically, the construction of

a complete call graph can be done in a single traversal of the program starting from the en-

try function, and the resultant call graph is precise. However, if the programming language

supports function variables, which defer the actual callee determination until run-time, the

construction of a complete call graph requires extra compile-time analysis. The least precise

but still valid call graph can be constructed by assuming that an indirect call site reaches

all functions in the program, including library functions. A straightforward improvement is

to rule out functions whose names are neither passed as parameters nor assigned to other

variables. However, for programs containing a signi�cant number of indirect call sites with

disjoint callees, the resulting call graph can be quite inaccurate, which can hurt potential op-

timization opportunities. Although a call graph is required for the interprocedural data-ow

3

analysis, the call graph construction itself requires an incremental interprocedural data-ow

analysis, since function variables may be de�ned interprocedurally. The �nal call graph is

resolved iteratively where existing function variables receive new function names propagated

from already exploited functions in the partial call graph, and newly added functions may

add more function variables [7, 8, 9].

Although algorithms for call graph construction have been widely studied in the litera-

ture, we �nd some characteristics of the SPEC benchmarks [10] cannot be handled by earlier

algorithms. The major reason comes from the underlying programming language, C, used

for these benchmarks. C allows functions to be invoked through function pointers, where

function pointers may be accessed through non-function pointers via multi-level pointers and

struct/union �elds, and function pointers may be manipulated as non-function pointers due

to type casting. Therefore earlier techniques geared towards Fortran will not su�ce [8, 9].

It is di�cult, if not impossible, to resolve function pointers separately from other general

pointers. In fact, for programs written in C, the call graph construction problem has evolved

into an interprocedural pointer analysis problem; once all pointers are resolved, all function

pointers are also resolved, and the call graph can be generated. Stated in another way, an

interprocedural pointer analysis is not complete if it cannot resolve all function pointers.

Due to either simpli�ed assumptions or high complexity in the algorithm, recent work in

interprocedural pointer analysis has not demonstrated the ability to construct the complete

call graph for signi�cant benchmarks like SPEC [11, 12, 13, 14, 15, 16].

In this paper, we provide a comprehensive study of function pointers using SPEC bench-

marks. SPEC benchmarks were selected for this study because of their size, wide acceptance,

and realistic function pointer manipulation. Benchmarks included in this paper are li, sc,

eqntott, espresso, m88ksim, perl, ijpeg, vortex, cc1 and gcc, whose details can be found in [10].

This paper does not present a new algorithm for interprocedural pointer analysis. Instead,

4

we examine several problematic code constructs we experienced while implementing a call

graph extractor integrated in the interprocedural pointer analysis framework in the IMPACT

compiler [17, 18]. From the point of view of interprocedural pointer analysis, treating func-

tion pointers should be no di�erent than general pointers, and the ways function pointers are

manipulated are completely applicable to general pointers. From the point of view of call

graph construction, an incomplete call graph indicates incompleteness in the interprocedural

pointer analysis. We believe these large benchmarks can provide more valuable insight to

both interprocedural pointer analysis and call graph construction than synthesized small

examples.

The rest of this paper is organized as follows: Section 2 reviews background informa-

tion. Section 3 shows the preliminary experimental results of call graph construction in the

IMPACT compiler, including the resolution of function pointers and potential code transfor-

mations enabled by a complete call graph. Section 4 presents a comprehensive case study of

four major types of function pointer manipulation found in the SPEC benchmarks. Finally,

conclusions are given in Section 5.

2 Background

Many algorithms have been designed to construct the complete call graph for languages

supporting limited forms of function or procedural variables [7, 8, 9, 19, 20, 21]. The basic

idea is to propagate the contents of parameters along the existing call graph. For example,

in the BoundTo analysis proposed by Hall and Kennedy [9], if a procedure variable passed

as a parameter is bound to a new procedure, the new procedure will be included in the call

graph.

Spillman [22] and Weihl [23] enable call graph construction in the presence of aliases.

5

The accuracy of such analysis is further improved by several ow- and context-sensitive

interprocedural pointer analysis algorithms [11, 12, 13, 14]. However, a complete solution

scalable to the class of SPEC programs has not been found in the literature.

Murphy et al. [24] evaluate nine call graph extractor tools using three software systems

(mapmaker, mosaic, and gcc). All of the tools generate false negative call graphs: calls that

can in fact take place in some execution of the program, but which are omitted from the call

graph. Although this is acceptable to some software engineering purposes, a compiler needs

a false positive call graph in order to perform correct optimizations.

3 Call Graph Construction in the IMPACT Compiler

3.1 Interprocedural pointer analysis

We constructed the complete call graphs of all SPECint92 and SPECint95 benchmarks with

function pointers using the IMPACT compiler. The interprocedural pointer analysis al-

gorithm in IMPACT performs a decomposed ow-insensitive analysis with limited context

sensitivity. Instead of virtually inlining all acyclic function calls to identify the possible tar-

gets of pointers, the interprocedural analysis is decomposed into the intraprocedural phase

and the interprocedural phase for lower complexity. In the intraprocedural phase, pointers

which can be accessed by other functions are identi�ed. In the interprocedural phase, these

interprocedurally accessible pointers exchange information with pointers in other functions

along the call graph. Newly resolved targets of function pointers will add more functions

into the call graph, causing more paths for information exchange. The analysis is conducted

iteratively until no more targets are resolved for any pointers. To be complete, the analysis

incorporate techniques to handle type casting and dynamically allocated objects. Due to

space restrictions, more details can be found in [17].

6

Benchmark Characteristics Interprocedural analysis
Lines Functions Dir. Call Ind. Call & Function Time (Sec) Memory (MB)

li 7597 357 1267 4 190 148.66 19.35
sc 8639 179 1459 2 20 4.07 4.30
eqntott 12053 62 358 11 5 1.09 2.50
espresso 14838 361 2674 15 12 29.59 10.62
m88ksim 19092 252 1496 3 57 3.63 5.05
perl 26874 276 4367 3 3 416.30 30.17
ijpeg 29290 477 1016 641 188 186.21 30.23
vortex 67205 923 8521 15 44 138.79 24.92
cc1 90857 1452 8332 67 588 298.97 45.22
gcc 205583 2019 19731 132 229 1201.66 99.42

Table 1: Benchmark characteristics.

3.2 Results

Table 1 lists some characteristics of the SPEC benchmarks we tested. For each benchmark,

we measured its size in terms of function and line counts. They would directly a�ect the

applicability of some interprocedural analysis algorithms due to high complexity. We also

calculated the number of direct and indirect call sites found in each benchmark, together

with the number of functions whose names are assigned to function pointers. The product of

the latter two can provide a rough measurement of the di�erence between a conservatively

estimated call graph and a precisely calculated call graph. The analysis time and memory

requirement were gathered from an HP/9000/780 workstation running at 180 MHz with 256

MB of physical memory. We found that the complete call graphs for these SPEC bench-

marks can be generated within a reasonable amount of time given a complete and e�cient

interprocedural pointer analysis algorithm. Although benchmark like gcc takes around 20

minutes to �nish, we are not aware of any faster algorithms with comparable capabilities.

Table 2 lists the resolution of function pointers excluding those found in dead functions.

We classify function pointers into four categories with di�culty levels we ranked the easiest

to the hardest as follows:

1. Simple variables: Function pointers declared as local or global variables whose ad-

7

Simple Parameter Global Heap Dead functions
Benchmark 0 1 2 0 1 2 3 � 4 0 1 2 3 � 4 0 1 2 3 � 4 Total Dead

li 0 0 0 0 0 0 1 0 0 0 0 0 3 0 0 0 0 0 357 1
sc 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 179 8
eqntott 0 0 0 0 2 0 9 0 0 0 0 0 0 0 0 0 0 0 62 2
espresso 0 0 0 0 2 3 0 10 0 0 0 0 0 0 0 0 0 0 361 46
m88ksim 0 0 0 0 0 0 0 0 0 0 0 0 3 0 0 0 0 0 252 13
perl 0 0 0 0 0 0 0 0 0 0 0 0 0 3 0 0 0 0 276 13
ijpeg 0 0 0 0 0 0 0 0 0 0 0 0 0 4 381 16 11 15 477 179
vortex 0 0 0 0 1 0 1 0 0 0 0 0 0 1 1 2 0 2 923 295
cc1 0 0 15 0 0 0 0 19 0 0 0 0 32 0 3 0 0 0 1452 51
gcc 4 11 16 0 3 0 0 14 1 1 0 0 73 0 9 0 0 0 2019 187

Table 2: Resolution of function pointers.

dresses are never taken. That is, the de�nition and usage of such pointers can be

accurately identi�ed without the need to consider aliases.

2. Function parameters: Function pointers declared as parameters like those used in

Fortran.

3. Statically initialized global function pointers: Function pointers declared and initialized

in the global data section. Function pointers may be �elds in global structs/unions.

4. Heap objects: Function pointers allocated dynamically from the heap.

Function pointers used as simple variables can be resolved by traditional data-ow anal-

ysis, where function pointers passed as parameters can be handled by the BoundTo analysis

as proposed by Hall and Kennedy [9]. Function pointers initialized statically can be handled

properly as long as various forms of struct/union initialization can be processed. However,

heap-based function pointers cannot be resolved without using a general interprocedural

pointer analysis algorithm.

In Table 2, number n at cell (a, b) other than the dead-function columns represents that

in benchmark a, n function pointers are resolved to b callees. The ideal case is to resolve

a function pointer into one callee, since the indirect call site can be converted into a direct

8

Benchmark Uninitialized function pointers (�le/function/call-site)

perl stab.c/stab str/*uf!uf val
stab.c/stabset/*uf!uf set
doarg.c/do subr/*sub!usersub

ijpeg jcapi.c/jpeg write scanlines/*cinfo!progress!progress monitor
jdapi.c/jpeg read scanlines/*cinfo!progress!progress monitor
jcapi.c/jpeg �nish compress/*cinfo!progress!progress monitor
jdapi.c/jpeg start decompress/*cinfo!progress!progress monitor

vortex trans01.c/C CreateObject/*pmf1
gcc function.c/push function context/*save machine status

function.c/pop function context/*save machine status
sched.c/actual hazard this instance/function units[unit].blockage function

Table 3: Uninitialized indirect call sites of SPEC benchmarks found by interprocedural
pointer analysis.

one, so that the overhead associated with indirect function calls can be eliminated. If the

compiler supports inlining, the callee can even be inlined. As the table shows, benchmark

ijpeg would bene�t most from the converted calls: 381 out of 427 indirect call sites can be

transformed into direct ones 1. If the resolved callee number is small, the indirect callee can

be converted into a series of if-then-else statements or a switch statement predicated by

the function pointer's content. This transformation trades the indirect call overhead with

branch penalties. If code expansion is of less concern, function inlining is also applicable.

When the indirect call site is resolved to a large number of callees, the indirect-to-direct

transformation will not justify the overhead. For example, there are 4 indirect call sites

in li, with 190 functions whose addresses are taken. The resolved pointers indicate that 3

indirect call sites can invoke 187 possible callees, while the other indirect call site can invoke

3 possible callees. Even in this case, a more accurate estimate of the indirect call site's

side-e�ects can be obtained since only a subset of the functions in the whole program can

be reached.

Table 2 also indicates that heap-based indirect call sites tend to have a small number of

resolved callees, where parameter and statically initialized global call sites have more callees.

1There are 214 function pointers found in dead functions and excluded.

9

The situation for parameter call sites can be improved by performing function cloning or

inlining, at the cost of increased code size. Table 2 also shows that some benchmarks have

unresolved call sites. We veri�ed these function pointers by tracing the program and using

the system debugger. We found these pointers are indeed uninitialized and not exercised

with multiple pro�le inputs. Detailed locations for these pointers can be found in Table 3.

These benchmarks originally may contain more uninitialized function pointers which were

falsely resolved due to spurious aliases. However, it is di�cult to identify them but the

resultant call graph is still false positive.

Removing dead functions can speedup the compilation process and reduce the resultant

code size. Dead functions can be inherent in the program or resulted because of function

inlining. Once all the function pointers are resolved, the call graph starting from main can

be constructed. The unconnected functions are dead functions if they are not used as the

signal handling routines. These signal handling routines can be determined by applying the

BoundTo analysis for the second parameter of library functions signal and sigset. The

rightmost portion in Table 2 shows the number of dead functions found in each benchmark,

where the total number of functions is also listed for easy comparison. It indicates that some

SPEC benchmarks contain a signi�cant portion of dead functions.

It is hard to verify if the constructed call graph is false positive. Therefore we perform

aggressive code transformations to hopefully expose some errors. We converted all indirect

call sites with a single callee into direct ones. We also inserted guarding code around indi-

rect call sites which will terminate the execution of the program if an unexpected callee is

encountered. All dead functions were also deleted from the original benchmarks when we

built the binary for testing. We used several inputs to test each benchmark, and we found

they all produced correct results.

10

4 Code Examples of SPEC Benchmarks

In this section we present some code examples extracted from the SPEC benchmarks which

can provide insight to the manipulation of function pointers. The usual motivation for

programmers to use function pointers is to write concise code: using a single indirect call

site to invoke n similar callees instead of n individual static call sites. However, pointers

and type casting in C make the problem much harder than in Fortran. For each category of

function pointers discussed in Section 3, we provide one or two examples to better illustrate

the di�culties involved and potential solutions. For clarity and space reasons, we only extract

directly related code segments.

4.1 Function pointers as simple variables

Function pointers declared as simple variables without aliases are easy to resolve using tra-

ditional data-ow analysis. For example, in function emit_case_nodes of cc1, the following

code segment can be found:

gen_bgt_pat = unsignedp ? gen_bgtu : gen_bgt;

(*gen_bgt_pat)();

It is trivial to �nd functions gen_betu and gen_bgt as the potential callees of the indirect

call site. Another case is found in gcc, where global function pointer decl_printable_name

is assigned with decl_name in function main and used in many other functions. Surprisingly,

these simple cases only happen in these two largest benchmarks of SPEC.

4.2 Function pointers as parameters

Function pointers passed as parameters can also be handled with widely studied techniques.

For example, in benchmark espresso, function foreach_output_function can be called form

11

so_espresso()

 foreach_output_function(
 so_do_espresso,
 so_save);
 foreach_output_funtction(
 so_do_exact,
 so_save);
}

so_espresso so_both_espresso

foreach_output_function

so_both_do_exact

so_both_do_espresso

so_do_exact

so_do_espresso

so_save

so_both_save

so_both_espresso()
{{
 foreach_output_function(

*func1

 so_both_do_espresso,
 so_both_save);
 foreach_output_function(
 so_both_do_exact,
 so_both_save);
}

foreach_output_function(func, func1)
{
 (*func)();
 (*func1)();
}

*func

Figure 1: Partial call graph of espresso.

four call sites in two callers as shown in Figure 1. Throughout this paper, solid edges in

the call graph are direct call sites, while dashed edges are indirect call sites with the call-

site expression annotated. The functions invoked by the two indirect call sites in function

foreach_output_function depend on the actual binding of parameters func and func1,

which can be resolved using the BoundTo analysis [9]. If the interprocedural analysis is

context-sensitive [13], it can further assert that some components of the call graph are

mutually exclusive. For example, foreach_output_function never calls so_do_espresso

and so_both_save in the same invocation.

4.3 Function pointers as statically initialized global arrays

An alternative way to achieve call-site reuse is to initialize a global table containing function

pointers which can be retrieved later through indices. It is a common technique used by

language-processing programs like li, m88ksim, cc1, and gcc.

In Figure 2 which is extracted from m88ksim, the instruction struct is de�ned as

the data structure to store information regarding each assembly instruction's mnemonic

12

{
 char *name;
 struct
 {
 unsigned imm:6, imm10: 6, rrr:11;
 } opc;
 int (*funct)();
};

struct instruction mnemonics[] =
{

 {"jmp", {0, 0, 0x600}, xfra},

 :
 {"fxcr", {0, 0, 0x640}, a_ctl},
 {"word", {0, 0, 0}, mkwrd},

}

 {"jsr", {0, 0, 0x640}, xfra},

 {"bgr", {0x32, 0, 0}, xfrr1},
 {"br", {0x30, 0, 0}, xfrr1},

 {0, {0}, 0},

assembler

a_choice

xfrr1

xfra

mkwrd

struct instruction

 {

a_ctl

cmd->funct

assembler(buffer, ptr, addr)
{
 struct instruction *cmd;

 cmd = a_choice(mnemonics, cmdptrs[0]);
 (cmd->funct)(cmd, ptr);
}

struct instruction *a_choice(cmdptr, cmdbuf)
{
 while (cmdptr->name)

 }

 if (strcmp(cmdbuf, cmdptr->name) == 0)
 return cmdptr;
 cmdptr++;

}

Figure 2: Partial call graph of m88ksim.

name, opcode, and the native function's address. Variable mnemonics is declared as an

instruction array, and is initialized in the data section of �le asmcmdstr.c. Function

assembler has an indirect call site using the statically initialized mnemonics table. But

instead of directly indexing the table, an indexing function a_choice is used. To handle

this case right, the interprocedural pointer analysis algorithm has to handle global variable

initializations including struct �elds. Also, the original BoundTo analysis has to be extended

to analyze the binding for function return values as well. Therefore variable cmd in assembler

can be identi�ed as holding the address of array mnemonics, indicating cmd->funct and

mnemonics[x].funct to be aliases 2. Thus the function names stored in the mnemonics

array are resolved to be the possible callees of cmd->funct 3.

2Assume the whole array is treated as a single object.
3The dereference operator before a function pointer is optional at the indirect call site.

13

BoundToR

jpeg_create_compress

jinit_memory_mgr jinit_master_compress prepare_for_pass

start_pass_main

jpeg_start_compress
BoundTo

process_data_simple_main

master_selection

jinit_c_main_controller

jinit_c_main_controller(cinfo)
{
 struct my_main_controller *main;

 main = (*cinfo->mem->alloc_small)();
 cinfo->main = (struct jpeg_c_main_controller *) main;
 main->pub.start_pass = start_pass_main;
}

start_pass_main(cinfo)
{
 struct my_main_controller *main;

 main = (struct my_main_controller *) cinfo->main;
 main->pub.process_data = process_data_simple_main;
}

jinit_master_compress(cinfo)
{
 struct my_comp_master *master;

 master = (*cinfo->mem->alloc_small)();
 cinfo->master = (struct jpeg_comp_master *) master;
 master->pub.prepare_for_pass = prepare_for_pass;
}

jinit_memory_mgr(cinfo)
{
 struct my_memory_mgr *mem;

 mem = jpeg_get_small();
 mem->pub.alloc_small = alloc_small;
 cinfo->mem = &mam->pub;
}

compress()
{
 struct jpeg_compress_struct cinfo;

 jpeg_create_compress(&cinfo);
 jpeg_start_compress(&cinfo);
 jpeg_write_scanlines(&cinfo);
}

struct jpeg_comp_master {
 void * (*prepare_for_pass)();
 :

*cinfo->master->prepare_for_pass

};

struct jpeg_memory_mgr {
 void * (*alloc_small)();
 :
};

struct my_memory_mgr {
 struct jpeg_memory_mgr pub;
 :
};

struct my_comp_master {
 struct jpeg_comp_master pub;
 :
};

struct jpeg_c_main_controller {
 void * (*start_pass)();
 void * (*process_data)();

};
 :

struct my_main_controller {
 struct jpeg_c_main_controller pub;
 :
};

struct jpeg_compress_struct {
 struct jpeg_memory_mgr *mem;
 struct jpeg_comp_master *master;
 struct jpeg_c_main_controller *main;
};

*cinfo->main->start_pass

*cinfo->main->process_data

1 1
1

1 1
2

3

4

1

1

*cinfo->mem->alloc_small
2

alloc_small

*cinfo->mem->alloc_small
2

compress

jpeg_write_scanlines

Figure 3: Partial call graph of ijpeg.

4.4 Function pointers as anonymous objects

Benchmark ijpeg uses function pointers to maintain the program's portability. As an image-

processing program, function pointers are initialized at the program entry point to use a

platform-speci�c set of intrinsic functions. When studying the benchmark, we �nd several

important characteristics as discussed below.

14

The �rst characteristic is dynamically allocated function pointers. Once a heap-object

is allocated by the callee and attached to the formal parameter, the original BoundTo anal-

ysis needs to be extended as a two-way analysis. That is, not only values from the caller

will be bound to the callee, values will need to be bound from the callee to the caller as

well. Assume the extension is called a BoundToR analysis and consider the call graph path

marked with BoundToR in Figure 3. In function compress, cinfo is a local variable of type

jpeg_compress_struct as listed in the top portion of Figure 3. The address of variable

cinfo is passed as a formal parameter named as cinfo also to all subsequent callees 4.

In function jinit_memory_mgr, it allocates a struct object of type my_memory_mgr, which

is a superset of struct jpeg_memory_mgr. Then it initializes cinfo->memory->alloc_small,

which is a function pointer for dynamic memory allocation, as alloc_small. When function

jinit_memory_mgr returns, the location accessed via cinfo->mem->alloc_small is still

alive, so its content needs to be bound back to the caller, function jpeg_create_compress.

Eventually, the BoundToR analysis will report the binding of (cinfo.mem->alloc_small =

alloc_small) to function compress. If the heap objects is reachable from the callee's return

value, it needs to be handled by the BoundToR analysis as well.

The second characteristic will also result in extensions related to the BoundTo analy-

sis: not only the parameters and return values themselves need to be bound, but also their

reachable locations. This is because passing a pointer parameter allows not only the pa-

rameter itself but also all locations accessible from the pointer to be visible to the callee.

Following the BoundTo paths in Figure 3, the function pointer cinfo->mem->alloc_small

in jinit_master_compress and jinit_c_main_controller can be found to be bound to

alloc_small, thus the indirect call sites can be resolved.

4The type of cinfo in compress is "struct jpeg compress struct" but is "struct jpeg compress struct *" in
all other functions.

15

Ut_MoveBytes

memcpy

ShellLoadTokenCode ShellGetTokenCode

Mem_GetFuncPtrMem_PutFuncPtr

Env_LoadGetTknCode

Point_InitClass
{

}
 Env_LoadGetTknCode(Point_GetToken);

C_RefToTkn()
{
 tokentype (*pmf1)();

 ShellGetTokenCode(&pmf1);
 (*pmf1)();
}

{
 Mem_GetFuncPtr(CodeAddr);
}

ShellGetTokenCode(void * (** CodeAddr)())

{
 Ut_MoveBytes(&FuncPtr, Theory);
}

Mem_PutFuncPtr(void * (* FuncPtr)())

{
 Ut_MoveBytes(Theory, FuncPtr);
}

Mem_GetFuncPtr(void * (** FuncPtr)())

 memcpy(Target, Source, 4);

}

{
 ShellLoadTokenCode(CodePtr);

Env_LoadGetTknCode(void * (*CodePtr)())

{
 Mem_PutFuncPtr(CodeAddr);
}

ShellLoadTokenCode(void * (* CodeAddr)())

Point_InitClass

C_FefToTkn

Point_GetToken

*pmf1

{

}

Ut_MoveBytes(void * Source, void * Target)

Figure 4: Partial call graph of vortex.

The third feature is that the interprocedural pointer analysis needs to be aware of type

casting. As explained in [25], struct pointers can be used interchangeably if their target

structs share a common initial sequence of �elds. In the ijpeg example listed in Figure 3,

pointer mem->pub.alloc_small is an alias of cinfo->mem->alloc_small, since the structs

pointed by mem and cinfo->mem share the same initial sequence of �elds. Unless BoundTo

and BoundToR handle type casting, pointers of these types cannot be resolved.

One �nal feature we want to discuss in the ijpeg benchmark is that it exempli�es the

iterative nature of interprocedural pointer analysis. The number associated with each in-

direct call edge indicates the order of the callee being added to the call graph. Function

start_pass_main initializes the function pointer used in jpeg_write_scanlines. But it

cannot be discovered until the indirect call site in prepare_for_pass is resolved, which is

initialized in jinit_c_main_controller. And prepare_for_pass is not connected to the

call graph until the initialization in jinit_master_compress is discovered. That is, the con-

16

struction of the partial call graph requires at least four iterations. And whether the optimal

number of iterations can be achieved depends on if the BoundTo analysis is performed in

the top-down traversal and the BoundToR analysis is performed in the bottom-up traversal

of the currently resolved call graph.

Benchmark vortex basically shares the same features as ijpeg. In addition, instead of using

explicit assignments to propagate function addresses, vortex uses library call memcpy as an

alternative approach. For example, calling "memcpy(dest, src, 4)" is equivalent to per-

forming "*(char **)dest = *(char **)src". In Figure 4, function Point_InitClass 5

passes the address of function Point_GetToken as a parameter all the way down to func-

tion Ut_MoveBytes, which invokes memcpy to store Point_GetToken into an anonymous

object retrievable from global variable Theory. In function C_RefToTkn which contains

an indirect call site, function pointer pmf1 is initialized by passing its address to function

ShellGetTokenCode, which eventually invokes memcpy to retrieve the address of function

Point_GetToken. Once parameters of library functions are included in the BoundTo and

BoundToR analysis, the case represented by vortex can be handled properly.

5 Conclusions

We presented a comprehensive case study for SPEC benchmarks to illustrate why the call

graph construction problem has evolved into the interprocedural pointer analysis problem.

Using detailed analysis of several real examples extracted from large benchmarks, we demon-

strated that in order to design a false positive call graph extractor integrated within an

interprocedural pointer analysis, the algorithm needs to handle all aspects of C including

extended parameter binding analysis from caller to callee and vice versa, statically initialized

5These function names are extracted after macro expansions.

17

global tables, dynamically allocated objects, type casting, and library function side-e�ects.

We also demonstrated that it is possible to construct a complete call graph for the SPEC

benchmarks using an e�cient interprocedural pointer analysis algorithm. The statistics of

resolved indirect call sites indicated that substantial code transformations can be enabled

by the resolved call graph for some SPEC benchmarks, including indirect-direct call-site

conversion, function inlining, and dead code removal.

This paper's results suggest several areas for future research. One possible research area

is the study of real programs written in object-oriented languages like C++ or Java. In such

cases the call graph construction is even more di�cult because of object inheritance and

function overloading. Another possible research area is the study of how to formally validate

the correctness of a statically constructed call graph.

References

[1] A. Aho, R. Sethi, and J. Ullman, Compilers: Principles, Techniques, and Tools. Read-
ing, MA: Addison-Wesley, 1986.

[2] F. E. Allen and J. Cocke, \A program data ow analysis procedure," Communications
of the ACM, vol. 19, pp. 137{147, March 1976.

[3] J. Banning, \An e�cient way to �nd the side e�ects of procedure calls and the aliases
of variables," in Proceedings of the 6th ACM Symposium on Principles of Programming
Languages, pp. 29{41, January 1979.

[4] T. Way and L. L. Pollock, \Using path spectra to direct function cloning," in Proceedings
of the 1998 Workshop on Pro�le and Feedback-directed Compilation, October 1998.

[5] R. Bodik, R. Gupta, and M. L. So�a, \Interprocedural conditional branch elimination,"
in Proceedings of the ACM SIGPLAN 1997 Conference on Programming Language De-
sign and Implementation, pp. 146{158, June 1997.

[6] J. P. Hoeinger, Interprocedural Parallelization Using Memory Classi�cation Analysis.
PhD thesis, Department of Computer Science, University of Illinois, Urbana, IL, 1998.

[7] B. G. Ryder, \Constructing the call graph of a program," IEEE Transactions on Soft-
ware Engineering, SE-5, 3, pp. 216{226, May 1979.

18

[8] A. Lakhotia, \Constructing call multigraphs using dependence graphs," in Conference
Record of the 20th Annual ACM Symposium on Principles of Programming Languages,
January 1993.

[9] M. W. Hall and K. Kennedy, \E�cient call graph analysis," ACM Letters on Program-
ming Languages and Systems, vol. 1, pp. 227{242, September 1992.

[10] \Spec newsletter." http://www.spec.org.

[11] W. Landi and B. G. Ryder, \A safe approximate algorithm for interprocedural pointer
aliasing," in Proceedings of the ACM SIGPLAN '92 Conference on Programming Lan-
guage Design and Implementation, pp. 235{248, June 1992.

[12] J. D. Choi, M. G. Burke, and P. Carini, \E�cient ow-sensitive interprocedural com-
putation of pointer-induced aliases and side e�ects," in Proceedings of the 20th ACM
Symposium on Principles of Programming Languages, pp. 232{245, January 1993.

[13] M. Emami, R. Ghiya, and L. J. Hendren, \Context-sensitive interprocedural points-to
analysis in the presence of function pointers," in Proceedings of the ACM SIGPLAN '94
Conference on Programming Language Design and Implementation, pp. 242{256, June
1994.

[14] R. P. Wilson and M. S. Lam, \E�ective context-sensitive pointer analysis for c pro-
grams," in Proceedings of the ACM SIGPLAN '95 Conference on Programming Lan-
guage Design and Implementation, pp. 1{12, June 1995.

[15] B. Steensgaard, \Points-to analysis in almost linear time," in Proceedings of the ACM
Symposium on Principles of Programming Languages, pp. 32{41, January 1996.

[16] M. Shapiro and S. Horwitz, \Fast and accurate ow-insensitive points-to analysis," in
Proceedings of the ACM Symposium on Principles of Programming Languages, pp. 1{14,
January 1997.

[17] B. Cheng and W. W. Hwu, \A practical interprocedural pointer analysis framework,"
Tech. Rep. CRHC-99-01, Center for Reliable and High-Performance Computing, Uni-
versity of Illinois, Urbana, IL, April 1999.

[18] P. P. Chang, S. A. Mahlke, W. Y. Chen, N. J. Warter, and W. W. Hwu, \IMPACT:
An architectural framework for multiple-instruction-issue processors," in Proceedings of
the 18th International Symposium on Computer Architecture, pp. 266{275, May 1991.

[19] K. Walter, \Recursion analysis for compiler optimization," Communications of the
ACM, vol. 19, pp. 511{516, September 1976.

[20] D. Callahan, \The program summary graph and ow-sensitive interprocedural data
ow analysis," in Proceedings of the ACM SIGPLAN '88 Conference on Programming
Language Design and Implementation, pp. 47{55, June 1988.

19

[21] O. Shivers, Control-ow Analysis of Higher-Order Languages. PhD thesis, Carnegie
Mellon University, Pittsburg, PA, 1991.

[22] T. C. Spillman, \Exposing side-e�ects in a pl/i optimizing compiler," in Proceedings of
IFIP Conference, pp. 56{60, 1971.

[23] W. E. Weihl, \Interprocedural data ow analysis in the presence of pointers, procedure
variables and label variables," in Proceedings of the 7th ACM Symposium on Principles
of Programming Languages, pp. 83{94, January 1980.

[24] G. C. Murphy, D. Notkin, W. G. Griswold, and E. S. Lan, \An empirical study of static
call graph extractors," ACM Transactions on Software Engineering and Methodolody,
vol. 7, pp. 158{191, April 1998.

[25] S. Yong, S. Horwitz, and T. Reps, \Pointer analysis for programs with structures and
casting," in Proceedings of the ACM SIGPLAN '99 Conference on Programming Lan-
guage Design and Implementation, pp. 91{103, May 1999.

