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CHAPTER 1

INTRODUCTION

Superscalar processors provide increased performance by allowing the simultaneous is-

sue of multiple instructions. To e�ectively support this enhanced execution rate, multiple

functional units are needed. In the case of memory instructions, aggressive superscalar

processors will require cache memory systems capable of handling multiple hits and misses

simultaneously. Current �rst-level cache designs support only a single memory request

at a time and are unsuitable for future aggressive superscalar processors.

There are two ways in which current �rst-level cache designs should be modi�ed

to support superscalar execution. First, they should provide multiple ports so that

multiple requests can be made and serviced in parallel. It is easy to see how a bottleneck

may emerge in some programs if an aggressive superscalar processor is implemented but

constrained by a single memory instruction issue rate.

The second modi�cation is to make caches nonblocking, thus allowing the handling

of further requests to be overlapped with the servicing of cache misses. The best perfor-

mance comes when a nonblocking cache is used with a split-transaction bus, and multiple

misses are overlapped inside the second-level memory system.

The subject of this thesis is to examine the design of a multiported nonblocking cache.

The design of each subcomponent is presented and discussed. Trace driven simulations

are performed to evaluate the cost e�ectiveness of certain design decisions.

This chapter describes a general model of an aggressive superscalar microproces-

sor and considers the needs of a cache for such a processor. The general design of a

multiported nonblocking cache is presented. Chapter 2 discusses the design of each sub-

component in detail and presents some design issues. Chapter 3 presents the simulation

environment and describes the features of the microprocessor and cache modeled in this

1
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Figure 1.1 Superscalar microprocessor with multiple cache ports

study. Chapter 4 presents the simulation results and discusses how they apply to the

design issues presented in Chapter 2. Finally, Chapter 5 presents concluding remarks.

1.1 Superscalar Microprocessors

In this section, the general model of a superscalar microprocessor is discussed. For this

model, an aggressive processor design is chosen, employing such performance enhancing

features as register renaming, out-of-order execution, and speculative execution. The

reason for this is that a processor capable of exercising the memory to a high degree

should be used so that the merits of the memory system design can be correctly evaluated.

Shown in Figure 1.1 is a diagram of a superscalar microprocessor based on [6]. Mul-

tiple instructions are fetched from the instruction cache into an instruction bu�er. Next,

the instruction bu�er is examined by an instruction scheduler which attempts to issue

instructions to the functional units. An instruction is issued to the proper functional

unit when all of its operands have been evaluated and a functional unit of the proper

type is available. Next, the functional unit performs the computation and returns the

2



result to a reorder bu�er where it awaits retirement into the register �le. To provide for

precise interrupts, an instruction is allowed to retire only if all other instructions ahead

of it have been retired or are retiring in the current cycle. Bypass paths exist so that

a computation's result may be used by a currently issuing instruction without waiting

for it to be written to the reorder bu�er. Since there is a one-to-one mapping between

instructions and results, the reorder bu�er and instruction bu�er are incorporated into

one unit as in [6] and [7].

Register renaming is performed by storing a result into space reserved in the instruc-

tion/reorder bu�er; these spaces are associatively searched by incoming instructions for

the latest value of the register. This removes any dependencies arising from register

storage conicts. Out-of-order execution is provided by allowing instructions in the rear

of the bu�er to issue despite unissued instructions ahead of them. Speculative execution

occurs by allowing instructions to issue although an unresolved branch is ahead of them.

This implies some type of branch prediction to tell what instructions to bring in to the

machine.

1.2 Caches for Superscalar Microprocessors

This section introduces the demands that superscalar processors put on �rst level mem-

ory systems. Solutions are introduced which meet these demands and lay the groundwork

for future discussions. The two main problems of concern are providing simultaneous

cache access for multiple hits and reducing the performance degradation caused by se-

quentializing cache misses.

1.2.1 Multiported caches

The data cache in Figure 1.1 is connected to the processor by three independent paths,

each capable of issuing a memory instruction during a given cycle. Assume that three

memory instructions are issued each cycle and that they are all hits in the cache. Ob-

viously, peak performance is obtained if all three of the memory requests are satis�ed

simultaneously each cycle.

3



4 X 8 CIRCUIT SWITCHED CROSSBAR

PortPortPortPort

Bank Bank Bank Bank Bank Bank BankBank

1 2 3 4 5 6 7 8

RESULT GATHERING LOGIC

DATA RETURN PATHS TO CPU

MEMORY REQUESTS FROM CPU 

1 2 3 4

Figure 1.2 Providing multiple cache ports with interleaved cache banks

To allow for this feature of simultaneous access, a way of providing multiple access

to the entire block of cache memory is needed. Sohi discusses ways this might be accom-

plished in [8]. Interleaved cache banks and duplication of cache memory are mentioned

as possible solutions. Interleaving is the better solution since duplication is wasteful

and allows for only one write at a time. Interleaving requires no duplication and allows

multiple writes provided they are to di�erent cache banks. When a bank conict occurs

among multiple accesses, only one of the accesses is allowed to access the bank and the

others are stalled. The exact interleaving scheme is an important problem and will be

discussed in detail later. Figure 1.2 shows how interleaving can be used to provide mul-

tiported cache access. Requests are placed on the cache ports by the cpu. A crossbar is

then used to route the request to the proper cache bank. The access is performed at the

cache bank and, in the case of a read, the results are gathered and returned to the cpu.

The cpu considers a write request to be completed after it is placed at the cache port.

4



1.2.2 Blocking and nonblocking caches

The above discussion assumed that all cache accesses were cache hits. When a cache

miss occurs, a request must be made to main memory to service the miss. This introduces

the problem of what to do with cache accesses that occur while a miss is being serviced.

In conventional systems, the processor is unable to issue a second memory instruction

during the handling of a cache miss, although other computations may be initiated. This

type of cache is referred to as a blocking cache. In a high-performance system, other

alternatives should be considered during a cache miss. For instance, one alternative is to

bu�er future misses and allow the cache to continue to service hits. A better alternative

is to allow multiple cache misses to be overlapped. This type of cache is referred to

as a nonblocking cache. In [8] Sohi shows that nonblocking caches can be potentially

instrumental in meeting the memory bandwidth needs of superscalar processors.

To see how a nonblocking cache can improve performance over a blocking cache,

consider the following sequence of memory accesses: f miss to cache block 1, miss to

cache block 2, hit to a cache block g. Assume that each access is a read and that the

leftmost miss is the �rst issued. Assume that the memory latency is 5 cycles and that it

takes one cycle to request the line and two cycles to receive the line from main memory.

Also assume that only a single path is provided from the cpu to the cache and from the

cache to the cpu. Thus, only one memory request can be made, and only one data item

can be returned at a time. Also assume that cache hits can be handled in a single cycle.

The sequence of events for a blocking cache handling the described reference stream is

shown in Figure 1.3. In this case, the cpu must wait for a memory request to be completely

serviced before issuing a subsequent memory request. The only overlap occurs when the

cpu issues a memory instruction because the cache has informed it that the cache will

be free the next cycle. In this case, the total time for the three operations is 18 cycles.

Notice that the �nal hit also completes execution on the 18th cycle.

The case for the nonblocking cache is shown in Figure 1.4. Unlike the blocking cache,

the nonblocking cache is allowed to continue processing memory requests after an initial

miss. Notice that the total sequence completes in 12 cycles and that the hit is serviced

on the fourth cycle.

5
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As can be seen from Figure 1.4, one of the main reasons for the speedup of the

nonblocking cache is the ability to overlap main memory access. This occurs during

cycles 4 through 8. It is assumed that the second-level memory system can handle

multiple requests, and that the cache line read operation is split into two parts, the

request of the line and the receiving of the line.

Another reason for the speedup of the nonblocking cache is the fact that future hits

are not blocked during a cache miss. In this case, the hit was completed at cycle 4 rather

than cycle 18 as in the previous case. It will be shown later that this type of speedup

accounts for only a small amount of performance increase in nonblocking caches.

The hardware requirements for a nonblocking cache are now introduced. Kroft pro-

posed a scheme in which special registers called MSHRs (miss-info, status-holding reg-

isters) are allocated for each missed cache line [5]. The MSHRs contain all of the in-

formation necessary to return the data to the proper cpu register when the cache line

returns from memory, and to write the line to the proper cache bu�er address, and to

handle any further accesses to the cache line prior to the line returning from memory.

The number of MSHRs sets an upper limit on the number of outstanding misses that

can be overlapped at a single time. This thesis will later introduce a scheme di�erent

from Kroft's, while still using the name MSHR to describe the basic element of the data

structure necessary for providing nonblocking cache access. The details of the scheme

are not considered here; instead, a diagram is presented to show the general hardware

requirements of a nonblocking cache.

Figure 1.5 shows a simple block diagram of a nonblocking cache. The MSHR queue

is a queue, in which each entry is a single MSHR. Each valid MSHR represents a cache

line that is currently being fetched from main memory. The MSHR queue is searched

in parallel with the conventional cache bu�er. A hit in the MSHR queue indicates a

currently outstanding miss to the same cache line. In this case the MSHR corresponding

to the correct line is modi�ed to indicate the e�ects of the current memory request.

This modi�cation is described in detail later. If the line is absent from both the cache

bu�er and MSHR queue, an MSHR is allocated and a request is made for the line to be

sent from memory. This new MSHR is now examined by future requests. There is also

circuitry to request and receive cache lines from memory. Requests should be made in

7
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the order in which the MSHRs were allocated. When a line is returned from memory, it

is transferred to the cache bu�er and the corresponding is MSHR cleared.

1.2.3 Multiported nonblocking caches

In this section, the multiported and nonblocking features are combined. Figure 1.6

shows a block diagram of a multiported nonblocking cache (MPNBC). The MPNBC

shown has two ports and four interleaved cache banks. Note that the MSHR queue

needs to be dual ported so that the two incoming requests can search the MSHR queue

simultaneously. The tag store for the cache bu�er also requires dual porting.

Also shown in Figure 1.6 is a replacement bu�er. This is used by a write-back cache

to hold lines before they are written back to main memory. Sometimes the data being

requested may be present in the replacement bu�er. In this case, it may be possible to

forward data directly from the replacement bu�er to the cpu. This thesis will examine

the use of the replacement bu�er as an auxiliary storage space. Of particular interest is

the frequency of requests which hit in the replacement bu�er and how that changes as

the cache's associativity changes. The replacement bu�er also requires dual porting.
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CHAPTER 2

DESIGN ISSUES

In this chapter, the operation and requirements of the subcomponents of the multi-

ported nonblocking cache (MPNBC) are examined in detail.

2.1 Cache Ports

The cache ports are a series of input latches to the MPNBC, each containing a memory

instruction. When the cpu issues a memory instruction, it is sent to a cache port and

latched in. Each cycle, the cache examines the cache ports and attempts to execute valid

memory instructions. When a memory instruction is executed, the port is vacated and

is ready to receive another request from the cpu.

It is assumed that the cpu sends the memory instructions to the ports in some type

of implied order. The memory system does not have to execute the instructions in this

implied order but the results must be the same as if they were. This implies that the

cache ports themselves must have some type of implied ordering or priority with respect

to the execution logic.

There are two ways in which priority can be given to the cache ports. The �rst way is

to have some type of sequential logic indicate the priority of the ports. For example, in

a system with two cache ports, a ip-op could be used to indicate which port currently

had priority. The execution logic would use this information to select which port to

execute. For example, in the case of a conict, the port with priority would be the one

chosen for execution. After the �rst request is sent for execution, the ip-op would then

be updated to indicate that the other port now had priority.

Another method is to apply a �xed priority to the ports themselves. For instance in

the case with two ports, port 1 would always have priority over port 2. If there were a

10



conict between the ports, the request at port 1 would be executed, and the contents of

port 2 would be shifted to port 1 so that an incoming request would be placed on port

2 (and have lower priority).

Fixed priority ports require a shifting network to shift the unexecuted instructions to

higher priority ports. However, the logic in the execution portion of the memory system

is simpler because there is no decision to be made based on which port has priority to

execute.

The data structure for a cache port is now considered. Each port must contain all

of the information needed to completely specify a memory request. This information is

described below:

1. A bit to indicate that the request it holds is valid.

2. A bit to indicate the type of operation, read or write.

3. A �eld to indicate the address to be written or read.

4. A �eld to indicate the data to be written in the case of a write.

5. A �eld to indicate the register or reorder bu�er entry that the result should be

returned to in the case of a read.

Note that �elds 4 and 5 are exclusive of each other; therefore, the same data space

can be used to accommodate both cases.

2.2 Cache Bu�er

To support multiported access, the conventional cache bu�er must have the ability to

handle multiple hits at a time. The handling of multiple misses is not considered here,

because additional bu�er space and data structures are required as touched upon in the

previous chapter. Multiple misses will be addressed in detail in the following section. In

this section, the modi�cations to the cache bu�er necessary to support multiple hits are

examined.
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2.2.1 Cache data storage

As mentioned in the previous chapter, the main modi�cation to the cache bu�er is

that the cache data storage must be interleaved to support multiple access. Interleaving

allows multiple words in the cache to be read or written simultaneously, provided they

are in separate cache banks. There are two issues that are of concern when considering

interleaving schemes.

The �rst issue is to avoid the performance degradation caused by bank conicts.

Conicts depend on the interleaving style of the cache memory and the access pattern of

the program. An interleaving scheme that minimizes conicts as much as possible for a

wide range of programs should be chosen, since it is expected that the MPNBC is to be

used as part of a general-purpose superscalar processor.

The second issue of concern when choosing an interleaving scheme is the e�ect that

the interleaving style has on the design of the cache bu�er itself and how that inuences

performance. A scheme that places an entire cache line in a single cache bank will have a

di�erent cache bu�er design from a scheme that spreads the line out across many banks.

Consider the situation in which a line is returning from main memory and needs to be

written into the cache banks. In the case in which a complete line is contained in a single

cache bank, the bank is stalled for some time to write the new line into the cache bank

and remove the replaced line if there is one. The number of cycles required to complete

this is determined by the width of the data paths into the cache bank and the cache line

size. During this time, this single bank will be unable to handle current memory requests

which will be stalled at the ports until the bank becomes available. Other cache banks

are still free to handle requests.

In the case in which a cache line is spread across multiple banks, the returning line can

be written to all cache banks in parallel. This will stall all cache banks simultaneously

for a time shorter than the case described above for a single cache bank. Below, four

types of interleaving schemes are described. These schemes are also discussed in [3].

The �rst type of interleaving introduced is low-order interleaving. In this type of

interleaving, the lowest B bits of the word address are used to determine the cache bank

where B is log2 of the number of cache banks. This has the e�ect of spreading the entire

cache line across all banks. If the number of words in a line is greater than the number of
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Figure 2.1 Location of block zero and address calculations for low-order interleaving
scheme

cache banks, multiple words from a cache line appear in a bank. Low-order interleaving

is appealing in the sense that sequential accesses reside in di�erent cache banks. Locality

suggests that a superscalar processor may, on occasion, request simultaneous access to

adjacent memory locations. With this type of scheme, adjacent locations will never

reside in the same cache bank. Figure 2.1 shows the word placement and bank number

calculation for block zero using low-order interleaving assuming a cache line size of 8

words and 8 interleaved cache banks. A number i appearing inside a bank numbered j

indicates that word i of block 0 with be located in bank j. This convention holds for the

following examples as well.

The drawback of low-order interleaving is that relative locations in di�erent cache

lines occupy the same cache bank (assuming that the number of cache banks is less than

or equal to the number of words in the cache line). To see how this can be hazardous,

consider a sequence of instructions which computes the sum of two vectors A and B.

Assume that the elements of A and B are arranged in sequential order, and that A[0] and

B[0] are positioned at the same relative position in the cache line. In this case, the loads

of A[i] and B[i] are independent and could be issued simultaneously. However, inside the

memory system, A[i] and B[i] would reside in the same cache bank, and their execution

must be sequentialized. The next type of interleaving will reduce this problem.
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Figure 2.2 Location of block zero and address calculations for block-level interleaving
scheme

The next type of interleaving scheme is block-level interleaving. In block-level inter-

leaving, the �rst B bits of the cache line number are used to determine the bank number.

This has the e�ect of placing an entire cache line in a separate bank. Adjacent cache lines

are placed in adjacent memory banks. This type of interleaving seems to be well-suited

for the above vector addition case, although there is still a small chance that A[i] and

B[i] will map to the same cache bank. Since no two elements of the same cache line

can be accessed concurrently, poor performance due to conicts is expected in programs

exhibiting great amounts of concurrent sequential access. Figure 2.2 shows the word

placement and bank number calculation using block-level interleaving.

The last type of interleaving is split-N interleaving which combines the best features of

the above two styles. In split-N interleaving, a cache line is basically low-order interleaved

across N cache banks where N is less than the total number of cache banks. The bank

number is determined by concatenating the lower (log2 N) bits of the word address with

the (B - log2 N) bits of the cache line number. Figures 2.3 and 2.4 show split-2 and

split-4, interleaving respectively.

Split-N interleaving is advantageous because it allows adjacent accesses to reside in

di�erent cache banks, thus reducing conicts for sequential accesses. However, accesses

in the same cache line may conict. Split-N interleaving is also advantageous because
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there is a chance that relative accesses in di�erent cache lines will not map to the same

cache bank.

Now, the repercussions each type of interleaving has on the overall system design

are considered. Low-order interleaving, by scattering the words across all cache banks,

causes the entire cache to stall at the time a line returns from memory. It will stall,

however, only for the time necessary to write the line to the cache banks, which should

be relatively short since all of the cache banks can be written in parallel. In this case,

the stall logic can be made very simple because either the whole cache is stalled or not

stalled. Recall, however, that current bus designs may require many cycles for the entire

line to be transferred from memory, and it would be wasteful to stall all the cache banks

for the entire transfer time. In this case, the words are bu�ered as they are returned from

the memory system, then simultaneously written into the cache banks. An alternative

to stalling the entire cache would be to have a scheme in which there are multiple valid

bits per cache line. As the words are forwarded directly from the memory system to the

cache bank, the individual valid bits are set to indicate the presence of the word in the

cache.

Block-level interleaving will cause only a single bank to lock up at the time the line

returns from memory. However, this bank will be locked up for a longer time than is the

whole cache in the low-order interleaving case. In this case, it may be possible for the

words to be forwarded to the cache directly as they arrive from main memory without

bu�ering.

Split-N level interleaving will cause N cache banks to be locked up for the time

necessary to write the cache line back. This time should be greater than for the low-

order interleaving case, and less than for the block-level interleaving case. This case may

or may not require bu�ering depending on the widths of the data paths involved. Again,

a multiple valid bit scheme may be used instead of bu�ering the line.

2.2.2 Cache tag storage.

The tag store must be accessed once per cycle by each port to see if the requested items

are present in the cache. Thus, the tag store needs to be multiported. Its needs, however,
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are very di�erent from the needs of the cache data storage memory itself because the tag

store memory is required to be read by many ports, but is written only once when a line

is written to the cache bu�er.

Interleaving the tag store memory as has been done for the cache data memory is not

a good idea because each tag store entry corresponds to a single cache line. Simultaneous

accesses to the same cache line would cause a conict in the tag store memory (because

they would map to the same tag store entry, hence the same tag store bank), and one of

them would be stalled. Thus, an interleaved tag store is incompatible with low-order data

interleaving because the bene�ts gained from low-order cache data interleaving would be

not allowed due to the conicts of the tag store entries. Block-level interleaving, however,

goes very well with tag store interleaving because the same interleaving used for the tag

store may be used for the cache data itself. Block-level interleaving, however, may impose

a performance penalty in some programs due to the extra conicts it incurs.

Another, better alternative for implementing the tag store memory is simply to add

multiple read ports and keep one write port. Multiple read ports allow tag access from

any port regardless of its address. Of course, the number of ports to the tag store will

be equal to the number of cache ports. This type of tag store design will also provide

for simpler stall logic since no stalls will be caused by conicts in the tag store memory.

If multiple read ports present implementation problems for the design of a portion of

memory as large as the tag store, replication, though wasteful, will yield the same results.

The tradeo� is that more space is required for the replicated tag store.

2.2.3 Dirty bits, valid bits, and LRU storage

The dirty bits indicate whether a cache line has been written and are used by a write-

back cache to determine if the cache line should be written back to main memory. Assume

that two writes to di�erent cache lines are to be executed simultaneously. In this case,

it must be ensured that the dirty bits for both cache lines are set or one of the requests

is stalled. Because of the possible need to mark multiple cache lines as dirty at the

same time, the solutions presented above for the tag store and cache data are inadequate

for handling the dirty bits. A solution is to provide multiple write ports to the dirty
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bit storage. Again, the number of ports to the dirty bit storage should be equal to

the number of input ports to the cache memory system. Also, in this situation, only

one output port is needed because only one dirty bit is examined by the replacement

circuitry.

The valid bits indicate that the block being accessed contains valid information in the

cache. Valid bits are read during each memory access by the tag compare logic for each

port to determine if a cache hit has occurred. They are also written when a new cache

line is being stored. Thus, the valid bit requirements are basically the same as the tag

store requirements and can be included in the tag store. When a line returns from main

memory, the valid bits are also examined to compute which line is to be replaced. Note

that some caching schemes may require multiple valid bits per line The requirements for

this case are the same as those listed above.

The LRU information indicates which block in a set is to be replaced in the event of

a conict with a line arriving from memory. The type of storage required by the LRU

information is dependent on the particular LRU scheme used. Consider a simple case for

a two-way set associative cache design in which one bit is kept per set to indicate the

least recently used cache block. Obviously, this memory will need to be N-write ported

to update LRU information for as many as N sets at once. In this case, the LRU logic

does not need the current LRU bit value to determine the new LRU value for a cache

line being accessed; it is the just the negation of the index of the block that matched

within the set. For this reason, the LRU information can be single-read ported.

Note that two of the structures described above require multiple write porting. These

are the dirty bits and the LRU information. This is fortunate because these structures

require only a relatively small portion of the overall cache area, and the overhead for

multiple write porting is large for large amounts of memory.

2.3 Handling Misses

In the last section, the modi�cations which should be made to a conventional cache

bu�er in order to support multiported access were discussed. Thus far, little has been

mentioned about the features necessary to support nonblocking cache access. In this
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section, a hardware data structure capable of providing nonblocking cache access is pre-

sented. Its operation is thoroughly described, and alternative designs are later presented

for a few of the subcomponents. The overall design is shown in Figure 2.5. The design

can be broken down into two main parts, the MSHR queue and the read queue. The

MSHR queue contains the MSHRs which contain the information about which words

have been written during the time the line has been requested from memory. In this

thesis, MSHR and MSHR queue entry are used interchangeably. The MSHR queue must

also contain the circuitry to request cache lines from memory and to handle their return.

It must also contain the associative logic to identify when a memory request has hit in

the MSHR queue.

The read queue handles requests to words in cache lines that are currently outstanding

misses. However, the read queue handles only read requests to words which have not been

written since the initial request that caused the cache miss was made. This means that

the read queue handles requests that can be satis�ed only by the data returning from

memory. The read queue temporarily stores these requests until the line returns from

memory, at which time the proper requests are serviced. When a cache line is returned

from memory the read queue is searched for read requests that are waiting for data from

the returning line. Each matching request is satis�ed with the incoming data and the

entry cleared.

2.3.1 MSHR queue

As stated above, the MSHR queue contains a set of MSHRs organized as a FIFO queue.

Each MSHR contains bu�er space to handle writes during the time the line is being

accessed from memory. Each time an access occurs, the MSHR queue is associatively

searched, looking for a valid MSHR entry whose line number matches the line number of

the memory request. This type of match is referred to as a \hit" in the MSHRs. Each

time a write hit in the MSHRs occurs, the word is written into proper data space in

the matching MSHR, and the V bit corresponding to the written word is set. When a

future read request hits in the MSHR queue, the V bit for the corresponding word in the

matching MSHR is checked. A V bit for an individual word in an MSHR will be referred

19



V1 V3S V Line number V0 Data 0 Data 1 V2 Data 2 Data 3

Return Pointer

Send Pointer

Allocate pointer

V MSHR number Register numberWord

Memory

Main

Buffer

Cache 

Line request logic

Line receive logic

CPU

MSHR queue

Replacement

Buffer

Read queue

MSHR allocation logic

Figure 2.5 Block diagram of the data structures necessary to handle nonblocking cache
access for a four-word cache line

to as Vi, as opposed to V which indicates the V bit for the MSHR itself. If the Vi bit

is a one, the value in the data space is returned to the cpu. If the Vi bit is a zero, the

read request is entered into the read queue and is satis�ed when the line returns from

memory. The action of the read queue will be discussed in the following subsection. The

number of data word entries in an MSHR is equal to the number of words in the cache

line. Figure 2.5 shows the MSHR queue for a 4-word cache line. The MSHR queue needs

to be N ported to handle the memory requests from N cache ports. The total number of

comparators needed is N * M where M is the number of MSHRs.

Note that the in-order return of cache lines is assumed here. In this case, the MSHR

queue can be managed as a simple FIFO. Aside from the MSHR queue itself, there exists

other logic consisting mainly of pointers which controls the allocation and removal of

items from the MSHR queue. This associated logic will be discussed later. The data

structure for the MSHR queue is summarized below. The design assumes a cache line

size of four words.

1. V bit. This bit indicates that this speci�c MSHR entry contains valid information.
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2. S bit. This bit indicates that this speci�c MSHR entry needs to request a line from

memory.

3. Line number. This is the address of the line that is being requested from main

memory.

4. Data 0 - Data 3. These entries are reserved as storage space to hold any writes to

the cache line which occur before the line has been returned from memory.

5. V0 - V3. These are the valid bits that indicate that data has been written into the

corresponding word.

2.3.2 Read queue

The read queue holds a list of entries that contains information about which words in

a returning line are needed by the cpu. When a line returns from main memory, the read

queue is associatively searched to �nd entries corresponding to the MSHR that originally

requested the line. The read queue can not be organized as a FIFO the way it stands

because there may be reads to one cache line interleaved with reads to another cache

line. When a line is returned and all of its entries deleted, there is now a queue with

blank spaces between entries. A simple counter cannot be used to point to the next free

entry in this case. The data structure of the read queue is described below.

1. V bit. This bit indicates that the corresponding read queue entry is valid and

should be serviced if the line corresponding to its current MSHR returns.

2. MSHR number. This �eld indicates which MSHR the corresponding read entry was

from. This �eld allows it to identify the returning line that has its information.

3. Word. This �eld identi�es exactly which word in the cache line is to be returned.

4. Register number. This is the register or instruction/reorder bu�er entry to which

the data is returned.
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2.3.3 Additional logic

This section describes the other logic used to implement a nonblocking cache. This

logic consists mainly of counters which act as pointers in the FIFO. The structures are

described below.

1. MSHR allocation logic. When a request is found that requires the allocation of an

MSHR, this logic will allocate an MSHR entry and store the pertinent information.

It also will enter the initial request into the read queue in the case of a read, or write

the appropriate entry in the allocated MSHR in the case of a write. The allocate

pointer is a simple counter which is pointing to the current available MSHR entry.

If the MSHRs are all being used, no more misses can be handled and a request that

causes a miss is stalled at the ports.

2. Line request logic. This logic continuously monitors the MSHR queue for valid

MSHR entries with the S bit set. When it �nds one, it arbitrates for the bus and

attempts to make a request from main memory for the cache line speci�ed in the

line number �eld of the MSHR entry. Again, since the requests are being made in

FIFO order, a simple counter can be used to track the unsent entries.

3. Line return logic. This logic is continuously monitoring the bus for returning cache

lines. When it recognizes a cache line returning from memory, it will load the

line into the cache bu�er while combining it with the data from previous writes to

the corresponding MSHR. Again, since the results are guaranteed to return from

memory in FIFO order, a simple counter points to the MSHR entry whose line will

be returning next. The read queue is associatively searched with this counter, and

all valid entries that match this number are returned to the cpu with the correct

data from memory.

2.3.4 System operation and hazards

In this section, the complete system operation is described and scenarios are considered

which may present hazards. It is explained how the system avoids the hazards to provide

correct execution of the program.
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Consider a memory access placed on a cache port. Simultaneously, the cache bu�er,

replacement bu�er, and MSHR queue are all searched for the corresponding line. If it is

a hit in the cache bu�er, the data is returned to the cpu in the case of a read, or written

to the cache bu�er in the case of a write. There is no need to notify the cpu that the

write has been completed. The case of a hit in the replacement bu�er will be described

later. If it is a miss in the cache bu�er, replacement bu�er, and MSHR queue, a new

MSHR must be allocated. If more than one entry on the current cache ports requires an

MSHR allocation, one of them must be stalled or the MSHR allocate logic must be made

capable of allocating multiple MSHRs at a time. Stalling the latter request is the better

idea, because individual parts of the memory request process can be sequentialized as

long as the second-level memory accesses are overlapped. This is true as long as the main

memory access time is much greater than the times of the sequential operations.

Once a request is assigned an MSHR, the line number of the requested item is copied

into the MSHR pointed to by the allocate pointer and the V bit set. At the same time,

a memory request for the cache line is attempted. If the memory request is successful,

the corresponding S bit is set to 0; otherwise the S bit is set to 1. The memory request

may be unsuccessful due to a busy bus.

If the access that caused the MSHR allocation is a read, an entry in the read queue

is allocated. At this time, an available read queue entry needs to be chosen. Note that

the read queue is not organized as a FIFO; therefore, more complicated logic is required

to select the free entry. At this time, the value of the allocate pointer is copied into the

MSHR number entry in the read queue, the corresponding V bit is set, and the word and

register number values are copied from the appropriate cache port. Note that it may be

impossible to allocate a read queue entry because the read queue may be full. On this

occasion, the request is stalled at the cache port and an MSHR is not allocated, even

though one may be available. Later a modi�cation will be presented which alleviates the

problem of stalling due to a lack of read queue entries even though an MSHR is available.

If the access that caused the MSHR allocation is a write, the corresponding data �eld

is written with the new data and the Vi bit is set.

Consider future requests that hit in the MSHR queue. If they are writes, the data is

written and Vi is bit set as described above. If they are reads, they will �rst examine
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the Vi bit corresponding to the accessed word. If the Vi is set, the desired word will be

forwarded from the MSHR back to the CPU. If the Vi bit is not set, the request will be

placed in the read queue and the data will be returned to the CPU at the time the cache

line returns from memory.

When the cache line returns from memory, it must be written to the proper address

in the cache bu�er. The line number �eld in the MSHR entry speci�es the exact index

and tag for the cache bu�er. If any words have been written into the data �elds of

the MSHR, they should be written to the cache instead of the stale data arriving from

memory. This is achieved by letting the Vi bits select either the data from the MSHR (if

Vi=1) or the data from the line returning from memory(Vi=0). This is shown in Figure

2.6. The dirty bit for the cache line is computed simply by taking the OR of all of the V

bits. The return pointer identi�es which MSHR entry is returning and is used to search

the read queue associatively. Valid entries in the read queue with matching tags forward

the incoming word (speci�ed by the word �eld of the read queue entry) to the cpu. Of

course, if the cache bu�er requires that an entry be replaced, it must be moved into the

replacement bu�er if it is dirty. Operation of the replacement bu�er is discussed in the

next section.

To further describe this scheme, one memory hazard and its handling are presented.

Consider a memory write followed by another memory write to the same address. Recall

from the preceding section that these requests are placed onto the cache ports in an order

corresponding to correct program execution Also recall that a cache bank conict will

occur because the requests access the same address. In the case of a conict, the request

with the higher priority will be executed �rst. There is no way in which the second access

can proceed until the �rst has begun execution. In this way, conicts actually help to

provide correct program execution. The situation is similar for RAW and WAR hazards.

2.3.5 Alternate implementations and limitations

In this section, alternate implementations of two of the above components are consid-

ered. First, it is shown how multiple distributed read queues instead of a large complex

one can simplify the associated logic and enhance performance. Next, it is shown what
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Figure 2.6 Logic which handles the return of lines to cache bu�er

modi�cations to the MSHR system are needed to support cache lines returning out of

order. Finally, the limitations of the design are discussed.

The current design has a single read queue which is associatively searched using the

MSHR number of the returning line as a key. An alternative is is to subdivide the read

queue such that there is one read queue per MSHR queue entry. In this case, when

a line returns from memory, only the read queue associated with the MSHR indexed

by the return pointer is considered. The associative logic in the read queues can be

eliminated altogether since only the V bit of the entries within the proper read queue

now has to be examined. The design of the individual read queues can be implemented

as a simple counter-based FIFO queue. Each read queue is implemented with a counter

that represents a pointer to the next available read queue entry to be written. Each time

an entry is added, the counter is incremented. After the line returns from memory and

the outstanding read requests are handled, the counter is cleared. Figure 2.7 shows a

diagram of the distributed read queues for a system with two MSHRs. Note that the

MSHR number �eld has been eliminated from the read queues' data structures.
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Figure 2.7 Distributed read queue organization for system with two MSHRs

In this alternate design, exibility is traded for design simplicity. Consider the case of

an eight entry read queue compared with four separate read queues of two entries each.

Consider then a memory access sequence with four reads to the same cache line which

occur before the line returns from main memory. Assume that the locations read are not

written by any previous writes. In the distributed case, read requests to the line after

the second access will be stalled because the read queue will be unable to accommodate

any additional entries. These two requests will tie up two cache ports, thus limiting the

number of concurrent requests which can now be handled. The nondistributed case will

be able to continue accepting read requests to the same cache line. Note, however, that

the distributed read queue entries are cheaper because they do not require the associative

logic required by the centralized design. Because of this, the lack of exibility may be

compensated for by increasing the number of overall read queue entries in the distributed

case. Note also, that there is always an available read queue whenever an MSHR can be

allocated. There will never be a case in which an MSHR is available yet the request is

unable to be made because of an unavailable read queue entry.

Thus far it has been assumed that the second-level memory system always returns

cache lines in the order in which they were requested. Consider a case in which requests
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for 3 lines a, b, and c, are made to the memory system in that order. Assume that lines a

and b conict in the second-level memory system and can not be overlapped. In this case,

the second-level memory system will have to stall the return of line c because it needs to

wait for the access of line b to complete if it is to return the lines in order. Performance

may be gained if the cache lines are allowed to return out of order.

To provide for out-of-order return of cache lines, the current design must be modi�ed.

Instead of a data return pointer which identi�es the MSHR of the next line to return,

a tagging scheme is required so that it is possible to link each returning line with the

MSHR that requested it. There are two ways in which this can be done. One solution is

to add a tag �eld in the MSHR storage which is returned along with the cache line from

main memory. When a line returns, the MSHR queue is associatively searched with the

key returning from memory to identify the requesting MSHR. A second way is to use

the MSHR number as the tag so that the correct MSHR can be identi�ed when the line

returns without an associative search.

This tagging scheme further complicates the other logic. Note that MSHRs may be

cleared out of order, leaving emptyMSHRs interleaved between valid ones. This is similar

to the case of the centralized read queue. When an MSHR is to be allocated, logic is

required to look through all of the MSHRs and seek out an empty one. This replaces

the allocate pointer described previously. Note that it may be possible to have a scheme

that uses an allocate pointer and allocates MSHRs in order, though they may return out

of order. The only drawback is that there will be situations in which the next MSHR to

be allocated will be busy, while a free MSHR exists elsewhere in the queue. This scheme

will be unable to use the avaible MSHR and will pay a performance penalty waiting for

the proper MSHR to become available.

To issue line requests to main memory, a separate queue could be used to hold the

line requests and issue them in order. This replaces the send pointer. Obviously, the

return pointer is also omitted since the attached tag now identi�es the returning line. It

may be possible to implement the MSHR queue as a shiftable queue that is reorganized

each time an entry is removed out of order.

Next, the limitations of the design are discussed. It has been assumed that the small-

est addressable unit is a word. Some instruction sets allow operations to be performed
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on bytes. In this case, the design could be modi�ed such that multiple Vi bits exist

per word, indicating that the byte within the word has been written. Incoming requests

could examine these bits to see if the word, or portions of the word had been previously

written.

Also, it has been assumed thus far that the design has been for a write-back cache.

In the case of a write-through cache, a word being written into an MSHR would also be

written into the write bu�er.

2.4 Replacement Bu�er

In a conventional write-back cache, when dirty cache lines are removed from the cache

due to a conict with an incoming line, they are placed into the replacement bu�er to

be written back to main memory. After they are written, they are removed from the

replacement bu�er. There is a well known memory hazard that exists with a write-back

cache. Consider a cache miss to a line that is present in the replacement bu�er. If main

memory is accessed before the line is written back, incorrect results will occur. Some

solutions to this problem are presented below.

1. One low-performance solution is to ush the replacement bu�er every time an

MSHR is to be allocated. This is wasteful because time will be spent unnecessarily

ushing the replacement bu�er instead of �rst issuing the memory request which

may be the critical path of some computation.

2. A better solution is to ush the replacement bu�er only if the missed line is present

in the replacement bu�er. This requires an associative search of the replacement

bu�er. This method can be improved upon by ushing only the matching line.

3. An even higher performance solution is to forward the data directly from the re-

placement bu�er into the cache. This solution requires data paths from the replace-

ment bu�er back to the cache. This idea is similar to a victim cache as described

in [4].
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Figure 2.8 Replacement bu�er organization for a 4-word cache line

2.4.1 System operation

A solution is presented here that requires no forwarding of results from the replacement

bu�er to the cache bu�er and also allows valid cache lines to be present in the replacement

bu�er after they have been written. The data is accessed directly from the replacement

bu�er as long as it is still valid. It is not, however, transferred to the cache bu�er after

it has been accessed. This decision is based on the assumption that the replacement

bu�er can be made as fast as the cache. This makes good use of the replacement bu�er

space because it is now used to hold previously replaced lines which can be accessed by

the cache ports. A diagram of the replacement bu�er and its data structure is shown

in Figure 2.8. A description of the �elds in the data structure is provided below. A

four-word cache line is assumed.

1. S bit. This bit indicates that the cache line has been written to main memory.

2. V bit. This bit indicates that this particular replacement bu�er entry is valid and

can supply data in the case of a cache read.

3. Line number. This �eld holds the line number of the line being sent back.

4. Data 0 - Data 3. These entries hold the data for the cache line.

5. Allocate pointer. This points to the next available replacement bu�er entry. Each

time a line is placed in the replacement bu�er, the allocate pointer is incremented.

If the allocate pointer points to an entry which has its S bit set, the bu�er is full.
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Table 2.1 Possible states of a line in the replacement bu�er and the handling of hits

S V State Read hit Write hit
0 0 Invalid entry - -
0 1 Valid and sent return data to cpu invalidate and fetch from memory
1 0 can not occur - -
1 1 Valid but not sent return data to cpu write in new data

This indicates that the allocate pointer is pointing to an entry which has not yet

been sent, and the other entries after it have not been sent either.

6. Send pointer. This points to the next entry to be sent. Each time an entry is sent

back to main memory, the send pointer is incremented.

The replacement bu�er is organized as a FIFO queue. As entries are added to the

replacement bu�er, the S and V bits are set. Entries are sent to memory in the same

order in which they are allocated into the replacement bu�er. After an entry is sent to

the main memory, its S bit is cleared. Its V bit, however, remains set indicating that

this is a valid entry that may provide data to the cpu. The entry remains valid until

the V bit is cleared for a case described later, or until the entry is overwritten when the

allocate pointer wraps around.

2.4.2 Hits in the replacement bu�er

Each memory request placed on the cache ports associatively searches the replacement

bu�er as well as the MSHR queue and cache bu�er. A memory request is a hit in the

replacement bu�er if its line number matches the line number �eld of a replacement

bu�er entry whose V bit is set. Table 2.1 illustrates what situations have occurred and

how the hits are handled.

Initially, a line is placed into the replacement bu�er in the entry pointed to by the

allocate pointer, and the state (SV) is set to 11. If a read hit occurs to this entry, the data

can simply be returned from the replacement bu�er to the cpu. There is nothing to be

gained by keeping the cache line at this time because it is assumed that the replacement
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bu�er can service read requests at the same rate as the cache bu�er. Eventually, the line

will be overwritten in the replacement bu�er, and further accesses will cause an MSHR

allocation and the line to be brought in from memory and stored in the cache bu�er.

If a write hit to this entry occurs (SV=11), the data is written into the replacement

bu�er location, overwriting the current value. Since the line has not yet been sent, the

memory will receive the most up-to-date data. Circuitry must be provided to allow the

replacement bu�er to be written by the cache ports.

After a replacement bu�er entry is written to main memory, the S bit is cleared and

the state is now 01. If a read hit occurs in this state, the data can still be returned to the

cpu as above. If a write hit occurs at this point, there are two possible solutions. One

option (not shown above) is to write the value into the replacement bu�er and reset the

S bit so that the line can be sent again. This seems like a reasonable solution to avoid

the deallocation of a line. However, there are two reasons why this may not be a good

solution in a real system. First, multiple writes to the same replacement bu�er entry

could cause the same line to be resent many times, driving up the bus tra�c. Second,

because entries in the middle of the replacement bu�er could have their S bits reset, a

FIFO design for the sending logic would not be permissible. In this case, a separate

queue may be used to handle the sending of lines.

The second option is to invalidate the replacement bu�er entry and cause an MSHR

to be allocated and the line refetched from memory (i.e. set the state to SV = 00). The

line will then eventually be reentered into the cache bu�er. This method is compatible

with the a FIFO design because even though the line is invalidated, incoming lines are

still allocated in FIFO order.

2.5 Bus Arbitration and Priorities

For the purpose of this thesis, bus concerns are avoided, and the concentration is on

the cache design. However, there are parts of the bus design that are directly relevant to

the cache, and these are addressed here.

It has been assumed that three types of transactions can occur on the system bus:

the cache requesting a line from memory, the memory sending a line to the cache, and
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the writing of a line to memory from the replacement bu�er. The read transaction is

split into two parts. The write transaction is not. Consequently, at any given time, three

di�erent things may be contending for the bus. If a particular bus operation is currently

underway, all other competing operations must wait for the operation to complete, then

arbitrate for the bus. At this time, the arbitration logic must decide which operation is

allowed use of the bus.

Since misses are usually on the critical paths of programs, they should be given

priority over the writing back of lines. It is therefore clear that read requests and read

replies should be given priority over write-back requests. It is not clear exactly whether

miss replies should be given priority over read requests. If the read reply time is much

longer than the read request time, the read request should be given priority so that the

e�ective memory latency is only slightly increased.

One nontrivial point is what to do when the replacement bu�er �lls up with unserviced

replaceable lines (i.e., the allocate pointer points to a replacement bu�er entry with its

S bit sent). At this time, if any more replies from main memory are received, an entry

may be added to an already full replacement bu�er. A solution to this problem is to

have the replacement bu�er provide a signal indicating to the arbitration logic that it is

full. When this line is active, the arbitration logic would unconditionally give priority to

the replacement bu�er.

Note that in the design of an MPNBC, the replacement bu�er and the line request

logic will probably be present on the same chip. It is therefore possible that the arbi-

tration between them takes place internally and only one request is sent to the external

arbitration logic. Obviously, some signal is necessary to tell the arbitration logic the ex-

act type of request the MPNBC is making. This external arbitration logic must therefore

select between the request from the MPNBC and the main memory.

2.6 Example Using a Real Design

The design of a real MPNBC may not be able to implement all of the features as

elegantly as described in the previous sections. For instance, a real system design may

allow only one MSHR and read queue entry to be allocated per cycle. This section
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presents an example of a short memory request sequence being executed on an MPNBC

partially designed and simulated using Mentor Graphics schematic capture software. Due

to time constraints, the design was not fully completed.

Shown in Figure 2.9 is the root design of a system with an MPNBC. Shown are the

cpu, memory, MPNBC, and arbitration logic. A complete cpu was not designed. Instead,

the cpu was built as a counter which indexed a lookup table (ROM). By programming

the lookup table, any sequence of memory instructions could be sent to the MPNBC.

The second-level memory was essentially a normal memory with a simple FIFO added

to the output. This simulates the e�ects of overlapping requests in a conict-free second-

level memory system. Three cycles after the requests come in, the memory system

attempts to arbitrate for the bus to send the line back. The arbitration logic shown

in the �gure gives priority to the line coming back from main memory instead of the

requests being made.

Details of the MPNBC are listed below:

� The system has 8 bit words and 20 bit addresses. A word is the only addressable

unit in this system. The MPNBC designed here is a write-back cache.

� The MPNBC was implemented with 2 �xed priority cache ports and 4 interleaved

cache banks. There are 2 return paths to the cpu. This is similar to the organization

shown in Figure 1.6.

� The MPNBC contains 2 MSHRs each having its own read queue of 2 entries.

Figures 2.10 and 2.11 show a simulation of a sequence of memory requests being

handled by the MPNBC. The signals and busses shown in the �gures are described

below.

port1(37:0) and port2(37:0) These are the internal signals directly from the latches

themselves. They are displayed because they show exactly what memory instruc-

tions are currently being processed. Bits 19 through 0 give the address of the

request. Bits 27 through 20 give the word to be written in the case of a write. Bits
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Figure 2.9 Schematic diagram of MPNBC root design
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35 through 28 give the tag to be returned to the cpu in the case of a read. Bit 36

speci�es either a read or write (write = 1). Bit 37 indicates that the request is a

valid request (valid = 1).

reply1(16:0) and reply2(16:0) These are the busses that return data to the cpu in

the case of read requests. Bits 7 through 0 are the data itself. Bits 15 through 8

indicate the tag. Bit 16 indicates that the reply is valid (valid = 1).

data bus(31:0) and address bus(19:0) The data bus can accommodate one-half of

a cache line. It therefore takes two cycles to complete a transaction involving the

sending or receiving of a cache line. The address bus holds the address of the

line being requested from memory. The address bus does not have to indicate the

address of the line returning from memory because the requests are returning in

order.

op(1:0) This indicates the bus transaction that is occurring. The bus is 0 for a line

request and 2 to indicate the return of a cache line. A value of 1 indicates the

writing back of a line (not shown here).

bus request and bus grant The bus request signal is signal generated by the MPNBC

to indicate that it needs the bus for a line request or write-back. The bus grant

line indicates that the MPNBC has been awarded use of the bus.

br mem and bg mem The br mem signal is generated by the memorywhen it is ready

to return a line to the MPNBC. The bg mem line indicates that the memory has

been awarded use of the bus.

A cycle-by-cycle description is given for a sequence of memory operations handled by

the MPNBC. Generic, delayless components were used in the design. The example below

is not intended to show an exhaustive test of the MPNBC as proof of design correctness;

rather it is used to illustrate some of the MPNBC concepts described in this chapter.

Time 0-10 During this time, the system is initialized. The MSHRs and the read queues

are cleared.
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Time 10-30 Two requests are latched into the memory ports, a write followed by a read

to the same address. Only the �rst access is allowed to proceed. In this cycle, an

MSHR is allocated, and the request is made to memory.

Time 30-50 Next, it is seen that the request originally in port 2 has been shifted into

port 1 and now has priority over an incoming request. The request in port 1 hits

in a previously written word in the MSHRs and returns the value to the cpu. This

can be veri�ed by observing the reply1 bus. Concurrently, a miss to a new line

is encountered in port 2. This miss causes a second MSHR to be allocated, and

because it is a read miss, an entry is made into the read queue of MSHR 2 while a

second line is requested from memory.

Time 50-70 Next, two more requests are latched in. They are both read misses to

MSHR 1. Because only one read queue entry can be written per cycle, only the

�rst is removed from the ports.

Time 70-90 The previous port 2 has been shifted to port 1 and an entry is made into

the read queue for the request. Port 2 also contains a read request which needs

to allocate a read queue entry for MSHR 2. Again, it must be stalled because the

read queues can be written only once per cycle.

Time 90-110 The previous port 2 request has been shifted to port 1. The cpu is not

making any requests at this time, thus an invalid request is latched into port 2. At

this time, requests on the ports are not handled because the MPNBC is stalled due

to a line returning from memory. In this cycle, the �rst portion of the returned line

is written into the cache banks. At this time, the read queue entries from MSHR

1 supply the values from the returning cache line to the cpu. This can be veri�ed

from the reply busses.

Time 110-130 During this time, the second half of the cache line is transferred from the

main memory to the cpu while the request(s) at the memory ports remain stalled.

Time 130-150 The �rst portion of the line corresponding to MSHR 2 is returned. The

read queue also returns the correct value to satisfy the initial miss request. The

cache remains stalled.
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Time 150-170 Here the second portion of the line corresponding to MSHR 2 is returned

while the cache remains stalled.

Time 170-190 Now the read request to the line originally requested by MSHR 2 is

serviced and is a cache hit. The value is returned to the cpu.

Time 190-210 At this time two new requests are latched in. Both requests hit the

cache and both items are returned to the cpu.
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CHAPTER 3

SIMULATION METHODOLOGY

A simulation model was developed to analyze some of the tradeo�s involved in the

design of a multi-ported non-blocking cache as described in the previous chapter. This

chapter describes the simulation methodology and gives a detailed description of the

processor and cache designs simulated.

3.1 Simulation Methodology

The simulation process is diagrammed in Figure 3.1. A SPARC executable was traced

by a ptrace based tracing program producing a trace �le containing dependency and

address information for 5 million instructions. This procedure was performed for the eight

benchmarks compress, espresso, fpppp, matrix300, sort, tbl, tomcatv, and yacc. Because

of its short running time, a trace of approximately 1 million instructions was produced for

sort. System executables were used for compress, tbl, sort, and yacc. Espresso, fpppp,

matrix300, and tomcatv were compiled with the Sun compiler with all optimizations

turned on.

Next, the trace �le was read by an architecture simulator that completely modeled

a processor, bus, and cache on a cycle-by-cycle basis. The architecture simulator also

read in an architectural description which speci�ed exact parameters for the various

components. The output from the architecture simulator was a detailed �le containing

execution and memory access statistics. The architecture simulator was composed of two

modules, a processor simulator and a cache simulator. The models of each are described

below.
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Figure 3.1 Block diagram of the simulation process

Table 3.1 Functional unit classes, multiplicities, and latencies for the simulated cpu

Class Number Latency

Integer 4 1
Load variable 2
Store variable 1
Branch 2 1
FP Add 1 3
FP Mult. 1 3
FP Div. 1 8

FP Conversion 1 8

3.1.1 Processor model

The processor simulated in this thesis was based on the SPARC instruction set and

corresponds to the general model of an aggressive superscalar processor presented in the

introduction. The instructions were divided into nine instruction classes. The latencies

of each and the number of functional units of each type are shown in Table 3.1. The

functional units are fully pipelined meaning that they can accept a new computation

every cycle.
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The processor is equipped with an instruction bu�er whose size can be varied as part

of the experiments. Instructions are read from the trace �le and placed in the instruction

bu�er until instruction fetch is blocked. Instruction fetch may be blocked for the following

reasons:

1. Full bu�er. If there is no more room in the instruction bu�er, further instructions

cannot be loaded in.

2. Discontinuity in instruction stream. This indicates some type of control transfer in

the instruction stream and the processor must wait until the next cycle to begin

fetching from the new location.

3. Fetch limit. Only a maximum of 8 instructions can be brought in per cycle. This

models a �nite data path between the instruction cache and the cpu. A 100%

instruction cache hit rate is assumed.

4. Mispredicted branch. An in�nitely sized BTB is simulated here. If an incorrectly

predicted branch is encountered, instructions after it are not brought into the ma-

chine until the branch is resolved.

Next, the instruction bu�er is examined by an instruction scheduler. This scheduler

will issue instructions all of whose operands have been written back to the reorder bu�er,

or are being written back this cycle if a functional unit of the desired type is free. This

models a reorder bu�er with bypass.

There is a special case for memory instructions. Memory instructions must stall if

there is an earlier memory instruction that has not computed its address, or an ealier

memory instruction that operates on the same address that has not issued and is not

issuing this cycle. This constraint does not apply if both memory instructions are reads.

No forwarding between instructions that operate on the same address is assumed. Mem-

ory instructions are allowed to issue out of order. Address computations are made in

zero time at the issue stage. Double loads and double stores are split into two separate

load or store instructions by the trace generator.

After instructions are issued, they enter a functional unit of the desired type, and

the results appear on the output latches of the functional unit after a time speci�ed by
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the latency of the functional unit. Memory instructions are given special treatment and

are sent to a cache simulator which is responsible for simulating the completion of the

memory instruction.

Next, as results return to the instruction/reorder bu�er, they are saved and accessed

by future instructions. Retirement occurs in order, which frees up the instruction/reorder

bu�er entries to be used for instructions currently being fetched.

3.1.2 Cache model

In this section, the model of the cache is described. Deviations from the model pre-

sented here will be described in the next section as they occur.

Memory requests are initially placed on the cache ports by the cpu according to the

order in which they are issued. If the ports are all busy, the cpu is unable to issue futher

memory instructions.

The memory system examines the memory requests starting from the memory port

with the highest priority. If the instruction is not in conict with any instructions cur-

rently being issued, it examines the MSHR queue, the replacement bu�er, and the cache

tag store to see if it is a hit in any of them. For all of the experiments performed here

except those involving interleaving, the cache banks are low-order interleaved and divided

into 32 cache banks. If there is a hit in the cache bu�er, the result is returned to the

cpu 2 cycles later. The memory instruction is also removed from the port to simulate

the e�ects of pipelining the cache access for hits.

Hits in the MSHR queue are treated as speci�ed in the previous chapter. The simu-

lated design assumes a centralized read queue of in�nite size based on the premise that

read queue entries are much cheaper than MSHRs. There is also no contraint on the

number of MSHR operations that are allowed to be performed in a single cycle. For

instance, assuming that the ports contained four complete misses to four di�erent cache

lines and that there were four available MSHRS, four MSHRs would be allocated in a

single cycle.

Read hits in the replacement bu�er (4 entries) return the data directly to the cpu.

Write hits to an unsent line cause the data to be overwritten, while write hits to a sent
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line cause the line to be resent. If the line that is hit is currently being sent, the request

is stalled until the transaction completes. The entire cache is also stalled for two cycles

when a line is returning from memory.

A cycle-by-cycle modeling of the system bus is performed. Cache line requests take 1

cycle. The return of a cache line from the memory system and the writeback of a line to

the memory system are assumed to lock the bus for two cycles. Returning lines are given

priority over requesting lines in this simulation. Conicts in the second-level memory

system were not simulated.
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CHAPTER 4

SIMULATION RESULTS

In this chapter, the simulation results are presented. As a measure of performance,

IPC (instructions per cycle) is used instead of simply reporting hit rates. This is because

IPC shows how design changes inuence overall program completion time, rather than

the performance of a single component.

The �rst step is to characterize the benchmarks in terms of their parallelism, locality,

and instruction class division. This information will help explain later results and relative

di�erences among benchmarks.

Next, simulation results and discussions are presented for a variety of experiments.

Issues such as the interleaving scheme, cache size versus memory latency, number of

MSHRs versus number of cache ports, number of MSHRs versus cache size, and bus

tra�c are explored. The e�ectiveness of the replacement bu�er scheme described here

under varying associativity is also examined.

Attention is given to the breakdown of the memory references and what sections of

the cache they access. This information is particularly relevant to the implementation of

a MPNBC. Sections of the MPNBC that receive heavy usage may represent a bottleneck

and require an aggressive implementation. For less frequently accessed sections, a less

aggressive design may be acceptable to cut down the system cost.

4.1 Characterizing the Benchmarks

In this section, benchmarks are characterized based on their instruction-level paral-

lelism, memory reference locality, and instruction class division.

An architecture with no memory system constraints is used to achieve an upper limit

on performance and an idea of the instruction-level parallelism of each benchmark. Each
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Figure 4.1 Performance with a perfect memory system

benchmark is simulated with a perfect memory system. The perfect memory system has

an in�nite number of cache ports and every access is a cache hit. Figure 4.1 shows the

performance of the previously described processor with varying bu�er sizes.

The dynamically scheduledmachine is able to exploit signi�cant amounts of instruction-

level parallelism. The relative results are approximately the same as those presented in

[2] for the benchmarks common to both.

It also can be seen from Figure 4.1 that compress and matrix300 have large amounts of

instruction level parallelism. In the case of matrix300, a large instruction bu�er is needed

to exploit this parallelism due to the in-order retirement restriction imposed here. Many

instructions are waiting in the bu�er but cannot retire because a long latency arithmetic

instruction ahead of them has yet to �nish execution. The integer programs sort, espresso,

tbl, and yacc all have similar, moderate amounts of instruction-level parallelism. The

benchmark fpppp has the worst results of all of the benchmarks. Most of the benchmarks
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Table 4.1 Hit rates and memory instruction frequencies for a 32K cache and 10-cycle
memory latency. The instructions not accounted for are nonmemory instructions.

Memory instruction breakdown by class
benchmark hit rate load store double load double store
compress .881 .18 .10 .00 .00
espresso .990 .18 .05 .00 .00
fpppp .978 .36 .10 .05 .02

matrix300 .547 .29 .24 .00 .00
sort .944 .19 .05 .00 .00
tbl .988 .24 .14 .00 .00

tomcatv .848 .28 .12 .07 .01
yacc .988 .15 .04 .00 .00

typically level o� around 3 or 4 IPC for large bu�er sizes. Values between 2 or 3 are

common for realistic bu�er sizes.

Aside from instruction-level parallelism, memory reference locality and memory usage

are important issues in the study of a memory system's e�ect on a program's performance.

For instance, on a real system a program with excellent instruction-level parallelism

(e.g., compress) may execute more slowly than a program with poorer instruction-level

parallelism but superior cache performance (e.g., espresso). Table 4.1 shows the hit

rate and instruction class frequencies for each benchmark for a 32K 2-way set-associative

nonblocking cache with a main memory latency of 10 cycles. The Figure shown for the

hit rate is the ratio of all memory references that hit in the cache bu�er to the number of

memory instructions issued. Because of nonblocking cache access, values shown here are

lower than those obtained with a blocking cache. Recall that some requests may hit in

the replacement bu�er or MSHRs. This value is still a good indicator of program locality.

It can be seen that in general the oating-point benchmarks have more demanding

memory requirements than the integer benchmarks. Matrix300 is the most demanding of

the benchmarks; over 50% of its instructions are memory instructions. The oating-point

benchmarks contain 28% to 36% loads and 10% to 24% stores. The integer benchmarks
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contain 15% to 24% loads and 5% to 14% stores. The benchmark tbl has the highest

memory usage of the integer benchmarks with 24% loads and 14% stores.

Most of the integer benchmarks have reasonable cache performance. Espresso, tbl,

and yacc have hit rates approaching unity for a 32K cache. Compress performs relatively

poorly. In the case of the oating point benchmarks, only fpppp performs well while

tomcatv and matrix300 perform poorly.

4.2 Memory Interleaving

In this section, the performance of various interleaving schemes is analyzed. Here, a

perfect memory system is assumed except for the performance degradation caused by

conicts in the interleaved cache banks. If two or more memory requests are placed on

the cache ports and wish to access the same cache bank, the higher priority one is serviced

�rst, and the remaining ones are tried the next cycle. The simulation performed here

does not consider the additional factors related to an interleaving scheme (e.g., block

write-back time) as discussed in Section 2.2.1. IPCp is used to represent the system

performance without conicts, while IPCc is used to represent the system performance

with conicts. Results are shown as the ratio of IPCc to IPCp so that the relative

amount of performance degradation can be observed. The four interleaving schemes

simulated were low-order interleaving, split-2 interleaving, split-4 interleaving, and block-

level interleaving. Each benchmark was simulated with each scheme for 4, 8, 32 and 128

cache banks. An instruction bu�er size of 32 instructions and a block size of 32 bytes

was assumed. The results are shown in Figures 4.2 and 4.3.

The performance degradation due to conicts varied between the oating-point and

integer programs. With 32 cache banks, the oating point programs su�ered a perfor-

mance decrease of 6% to 8% for all types of interleaving except block-level interleaving.

The block-level interleaving scheme degraded performance by 10% to 12%.

The integer programs were more immune to the e�ects of block-level interleaving,

but were more susceptible to the e�ects of bank conicts in general. The performance

degradation varied among the integer programs. Compress su�ered a 15% performance

degradation while espresso, sort, tbl, and yacc varied from 10% to 14%. Overall block-
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Figure 4.2 Performance degradation with various interleaving schemes for compress,
espresso, fpppp, and matrix300
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Figure 4.3 Performance degradation with various interleaving schemes for sort, tbl,
tomcatv, and yacc
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level interleaving was usually about 1% slower than the other types of interleaving for

the integer programs.

It is interesting to note that although the oating-point programs access memory

more frequently than the integer programs, the performance degradation due to conicts

is less severe as long as block-level interleaving is not used. This may be explained by the

fact that many oating-point programs are dominated by sequential accesses, rather than

access to random program variables. Sequential accesses are guaranteed not to collide

in the cache banks as long as block-level interleaving is avoided. Random variables may

or may not collide in the cache. Another possible explanation is that critical paths

in oating-point programs are the long execution delays of the arithmetic instructions.

There is plenty of \spare time" to do a second memory operation in the case of a conict.

Integer programs have shorter instruction latencies, thus getting the result back quickly

from the memory is more crucial, especially if the memory instruction is on a critical

path.

Low-order, split-2 and split-4 interleaving all show similar performance. Split-4 does

seem to perform the best in the benchmarks shown here, but only by fractions of a

percentage in most cases. Notice also that increasing the number of cache banks above

32 does not seem to help performance much in most cases.

4.3 Cache Size Versus Memory Latency

In this section a real cache is introduced. The cache is two-way set-associative with a

block size of 32 bytes. In this experiment, the memory latency and cache size are varied.

Memory latencies of 5, 10, 20, and 30 cycles and cache sizes of 4K, 8K, 32K, and 128K are

used. Four MSHRs are assumed as well as low-order interleaving with 32 cache banks.

Results are shown in Figures 4.4 and 4.5. This experiment is similar to that performed

in [1] and the �gures are similar for the benchmarks in common.

It can be seen that for small cache sizes, the memory latency plays a large role in

determining the overall performance, because the miss rate is higher and many of the

requests are forced to wait for results from main memory. As the cache size increases, the

hit rate increases and the dependence on the memory latency is less. The benchmarks
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with very high hit rates such as fpppp, espresso, and yacc show relatively less dependence

on main memory, even for small cache sizes.

On the other side of the spectrum are programs with very poor cache performance

that show little performance gain even as the cache size is increased. Both compress and

matrix300 are highly dependent on the main memory access time even for large cache

sizes. Matrix300 shows no increase in performance as the cache size is increased. This

may be because it constantly requires new data from memory and the cached entries are

not reused. Compress shows great dependence on memory latency for a large cache size.

However, compress' performance increases as the cache size increases, and the relative

uctuation due to memory latency decreases. Compress is therefore able to �t more and

more of its working set into the cache as the cache size increases.

4.4 MPNBC Usage

The purpose of this section is to identify the frequency with which parts of the MPNBC

are used. As previously stated, this may be helpful in seeing which parts should be aggres-

sively designed and which parts may be less aggressively designed in favor of decreasing

system cost.

The �rst time an access is placed on a memory port, one of �ve possibilities can occur.

1. It may hit in the cache itself.

2. It may hit in the MSHR queue.

3. It may hit in the replacement bu�er.

4. It may cause a new MSHR to be allocated.

5. It may stall due to a conict or an unavailable MSHR.

Table 4.2 shows the percentages of memory accesses falling into each of these categories

for the 8 benchmarks. This breakdown corresponds to the experiments presented in the

previous section where the cache size is 32K and the memory latency is 10 cycles. This

table represents what happens to an access the �rst time it is tried. For instance, an
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Table 4.2 First-time access results for a cache size of 32K and memory latency of 10
cycles

benchmark CB hit MSHR hit RB hit allocate MSHR stall
compress .818 .0265 .00062 .0639 .091
espresso .946 .0045 .00212 .0033 .044
fpppp .908 .0063 .00948 .0050 .071

matrix300 .535 .3322 .00696 .0411 .084
sort .827 .0361 .00135 .0151 .120
tbl .882 .0050 .00038 .0036 .109

tomcatv .763 .0422 .07222 .0235 .099
yacc .856 .0042 .00235 .0039 .133

access that stalls �rst due to a conict and later hits in the cache, is counted as a stall

by this scheme.

The �rst observation is that the percentage of requests that hit in the cache on the

�rst try is somewhat smaller than the overall hit rate given. This is due to conicts in

the cache banks. It will later be seen that conicts are of major importance in integer

programs with high hit rates.

Consider the occasion that permits an MSHR hit. Obviously, an initial miss must

have occurred to originally allocate the MSHR. Next, an independent access to the same

cache line must occur. Thus, to achieve a high number of MSHR hits, a program requires

parallelism among memory accesses and poor locality. Compress and tomcatv have 2.6%

and 4.2% of total memory accesses hitting in the MSHRs, respectively. Sort also has a

relatively high amount of MSHR hits (3.6%). For other programs with better hit rates

such as espresso, fpppp, and tbl, MSHR hits occur less than 1% of the time over the

5 million instructions simulated. It can be seen that matrix300 has a large amount of

MSHR hits (33%). Again, this is due to the very poor hit rate and high instruction-level

parallelism.

Table 4.3 shows the breakdown of MSHR hits. An MSHR hit can be a write, a read

to a word that was previously written, or a read to a word not previously written. It can

be seen that reads of previously written information occur vary rarely. This makes sense
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Table 4.3 Breakdown of MSHR hits and stalls

MSHR hit stall
benchmark write read written read unwritten conicts MSHR unavailable
compress .0250 .00003 .0015 .0785 .0124
espresso .0025 .00005 .0019 .0440 .0000
fpppp .0027 .00014 .0034 .0709 .0000

matrix300 .1241 .00000 .2081 .0396 .0446
sort .0232 .00017 .0127 .1202 .0000
tbl .0019 .00006 .0029 .1080 .0011

tomcatv .0368 .00004 .0053 .0991 .0001
yacc .0016 .00013 .0024 .1332 .0000

because a compiler is expected to remove many redundant reads to an address that was

just written. This fact presents an interesting tradeo�. It may be possible to have an

MSHR queue that does not contain data paths to the cpu nor the associated logic for

handling hits to previously written words in an MSHR. When MSHR read hits to written

words are encountered, they can be stalled at the cache ports and serviced by the cache

when the line returns from memory.

Reads to unwritten MSHRs account for less than 1% of all memory accesses in most

of the benchmarks shown. Again, this is because dependencies may not allow future

access to a cache line until the initial miss is returned. Matrix300 is an exception to this

with roughly 20% of all accesses being read hits in the MSHRs.

The amount of write hits in the MSHRs varies from program to program. Matrix300

is as high as 12% MSHR write hits while compress, sort, and tomcatv contain 2% to 3%.

Programs with good hit rates like fpppp, yacc, and espresso have less than 1% MSHR

write hits.

Hits in the replacement bu�er are rarer than hits in the MSHR queue in most cases.

Tomcatv, however, shows an exception to this, and approximately 7% of all of its ac-

cesses hit in the replacement bu�er. This may indicate that tomcatv su�ers from an

abundance of cache lines conicting for the same cache storage space. All other pro-

grams have less than 1% of their accesses hit in the replacement bu�er. A breakdown of
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replacement bu�er accesses will be described later when replacement bu�er performance

with decreasing cache associativity is analyzed.

Allocation of an MSHR occurs during access to a cache line not present in the MSHRs,

cache bu�er, or replacement bu�er as long as there is no conicting instruction of higher

priority beginning execution simultaneously. Obviously programs with high hit rates are

going to have little MSHR allocation since the working set is contained in the cache.

For the programs with high hit rates, MSHRs are allocated for less than 1% of the

requests. For compress, matrix300, and tomcatv, MSHRs are allocated for 2% to 7%

of the requests. Notice that although compress has a higher hit rate than matrix300, it

allocates MSHRs more frequently. This is because matrix300 has many of its requests

hitting in the MSHRs, which are not counted as hits.

Next, the case of stalling is examined. Requests are stalled when there is a bank

conict with a request of higher priority or when they need to allocate an MSHR and

there is none available. Note that this stalling may be unneccessary in some cases. For

instance, two memory instructions may conict for the same cache bank, but one is a

cache hit and the other is an MSHR hit. It may be possible to design a system which

recognizes this case and allows both to proceed. However, this may not be possible if the

cache access and MSHR tag search are to be done in parallel. It can be seen that most

�rst-time accesses are stalled from 4% to 13% of the time.

Table 4.3 shows a breakdown of the stalls. In most cases, stalls are caused by conicts

rather than unavailable MSHRs. Stalling in programs with high hit rates is due mainly to

conicts and seldom to unavailable MSHRs. In fact, stalls due to conicts are the major

causes of performance degradation in integer programs with high hit rates. In programs

with poor hit rates and high parallelism, conicts are still a problem, but unavailable

MSHRs also come into play. Compress must stall 1% of the requests due to unavailable

MSHRs and matrix300 4%.

4.5 MSHR Usage

There is particular concern with the number of MSHRs used because each MSHR

greatly inuences system cost. Recall that in this model, each MSHR represents an
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Table 4.4 Average MSHR usage for 4 MSHRs over 5 million instructions

MSHR usage
benchmark 0 1 2 3 4
compress .561 .300 .114 .017 .007
espresso .973 .024 .002 .000 .000
fpppp .941 .044 .012 .002 .000

matrix300 .486 .402 .025 .030 .056
sort .864 .125 .011 .000 .000
tbl .959 .028 .005 .002 .006

tomcatv .684 .206 .108 .001 .001
yacc .970 .028 .002 .000 .000

additional memory request that can be overlapped in the main memory. Therefore,

the phrase \adding an extra MSHR" implies increased complexity in many parts of the

memory system, particularly the main memory. Note that an MPNBC may be designed

with multiple MSHRs, each contending for a main memory system that supports only a

single outstanding request, but this is not considered here.

In this section, MSHR usage is examined both as an average over the 5 million

instructions executed, and dynamically, looking at how the instantaneous MSHR usage

changes with time. Table 4.4 shows the frequency of usage for varying numbers of MSHRs.

For instance, Table 4.4 shows that compress has 2 valid MSHRs 11.4% of the time.

All four MSHRs are rarely used except by matrix300. For programs with high hit

rates, 1 MSHR is used less than 5% of the time, and 2 or more MSHRs are used less than

1% of the time. For programs with poor hit rates, MSHR usage is higher. Compress,

matrix300, and tomcatv use one MSHR 20% to 40% of the time. Two or more MSHRs

are used 10% to 15% percent of the time. Note that these values are highly dependent on

cache size and memory latency which are �xed in this experiment at 32K and 10 cycles

respectively. The results obtained for MSHR usage may vary greatly if di�erent cache

sizes and memory latencies are assumed.

Next, the dynamic usage of MSHRs is considered. Figures 4.6 and 4.7 show the dy-

namic usage of the MSHRs. Each point shown is the average number of rctiveMSHRs per
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Figure 4.6 Timewise MSHR usage for compress, espresso, fpppp, and matrix300
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cycle within a 100,000 instruction window. This gives a good indication of instantaneous

MSHR usage.

The behavior of benchmarks with high hit rates is easily explained from these �gures.

In espresso, fpppp, and yacc there is an initial amount of MSHR usage. After the cache

�lls up with usable data, the number of active MSHRs per cycle drops to near zero for

the remainder of the execution time. It can be seen that the programs with poor hit rates

(e.g., compress, matrix300, sort, and tomcatv) are constantly using MSHRs to request

data throughout the program's execution.

4.6 MSHRs Versus Cache Ports

Both the MSHRs and cache ports are highly inuential in determining the cost of the

memory system. The purpose of this section is to see how tradeo�s between MSHRs

and cache ports a�ect the system's overall performance for large and small cache sizes.

Simulations were performed for each benchmark with the number of ports equal to 1,

2, 4, and 8. The number of MSHRs was varied from 1 to 4. A blocking cache was

also simulated. The blocking cache is similar to the case with 1 MSHR except that the

blocking cache is unable to handle any other memory requests, even hits, during the time

in which the MSHR is valid. For this and the next two sections, the assumed memory

latency is 25 processor cycles.

Figures 4.8 and 4.9 show the performance of the benchmarks with a 32K cache. For

the benchmarks with moderate and poor hit rates, increasing the number of MSHRs from

1 to 2 demonstrates a notable performance increase. Typically, the worse the hit rate,

the more performance is gained by adding an extra MSHR. Notice, however, that the

performance gain quickly drops o� after a second MSHR is added. Matrix300, compress,

and tbl are the only programs which show performance increase when going from 2 to 3

MSHRs, and even so, this gain is slight. The programs with very high hit rates such as

espresso, yacc, and fpppp show little performance gain at all by going beyond a single

MSHR.

Going from one memory port to two increases performance substantially for most

programs. However, matrix300 shows little performance gain when going beyond one
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Figure 4.8 Performance with varying MSHRs and cache ports for compress, espresso,
fpppp, matrix300 with a 32K cache
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Figure 4.9 Performance with varying MSHRs and cache ports for sort, tbl, tomcatv,
yacc with a 32K cache
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memory port. Perhaps this is due to the fact that the extra cycles caused by a lack of

cache ports are insigni�cant compared to the time taken to constantly load in new data

from memory. Time spent waiting for data to arrive from memory can be used to service

requests that were stalled due to unavailable ports. Only tomcatv shows a performance

increase when the number of memory ports is increased above two.

The blocking cache performance is similar to the performance of the one MSHR case,

only slightly degraded because hits cannot be serviced during the time in which any

MSHR is valid. The benchmark tomcatv encounters signi�cant performance degradation

with the blocking cache. This may be due to large amounts of cache hits and MSHR

hits which are on critical paths. The MPNBC case can service these while a miss is

outstanding. A blocking cache can not.

Shown in Figures 4.10 and 4.11 are the results of the previous experiment performed

with a 4K cache. For a small cache size, increasing the number MSHRs becomes much

more important than increasing the number of cache ports. All benchmarks, even the

ones with good hit rates, show a signi�cant performance increase as the number of MSHRs

is increased from 1 to 2. Many benchmarks experience further performance increase as

the number of MSHRs is increased from 2 to 3. This can be explained by the fact that

as the miss rate of the cache increases, more misses are now simultaneously occurring.

The more the misses can be overlapped, the better the overall system performance.

Cache ports are not as important for programs which are constrained by a lack of

MSHRs. The extra cycles spent waiting for results to return from memory can be used

to issue the memory instructions which were stalled due to unavailable ports. Most of

the 1 MSHR plots are relatively at with respect to the number of cache ports for most

benchmarks. As more MSHRs are added, the e�ect of additional cache ports becomes

slightly more pronounced.

The blocking cache case showed a slightly worse performance than the 1 MSHR case

for all benchmarks. Unlike the case for the 32K cache, the blocking case for tomcatv is

only slightly worse than the case for 1 MSHR. This may be due to the small cache size.

With a small cache, the accesses made during a miss will be misses and will not improve

performance anyway.
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Figure 4.10 Performance with varying MSHRs and cache ports for compress, espresso,
fpppp, matrix300 with a 4K cache
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Figure 4.11 Performance with varying MSHRs and cache ports for sort, tbl, tomcatv,
yacc with a 4K cache
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4.7 MSHRs Versus Cache Size

From the above section, it can be seen that as the cache size is made large, the in-

cremental value of the MSHRs becomes smaller because the hit rate has increased. In

this case, the cache ports are an important factor in determining system performance

for many of the benchmarks. For smaller caches, it is seen that the ability to overlap

misses becomes the dominating factor and the number of MSHRs plays a more important

role. However, some programs such as matrix300 make poor use of the cache, and it is

expected that cache size will not a�ect performance.

Figures 4.12 and 4.13 expand on this by providing results with varying cache size and

MSHRs. The number of cache ports is �xed at four. The cache size is varied from 4K to

128K, and the number of MSHRs is varied from 1 to 4.

4.8 MSHRs Versus Memory Latency

This section investigates the design of the second-level memory system. The interest is

in whether it is more bene�cial to allow for more overlapping in the second-level memory

system (i.e., more MSHRs), or to provide for faster access. The number of MSHRs and

the memory latency are varied from 1 to 4 and from 5 cycles to 30 cycles, respectively. It

has been seen that, for some programs, using a cache size of 32K shows little about the

second-level memory system since the cache hit rate is high. Therefore, this experiment

uses a reduced cache size for the benchmarks with high hit rates. This experiment uses

cache sizes of 1K and 4K for the benchmarks espresso, fpppp, tbl, and yacc. Cache sizes

of 4K and 32K are used for compress matrix300, sort, and espresso.

Figures 4.14 and 4.15 show the simulation results for small cache sizes and Figures 4.16

and 4.17 show results for large cache sizes. It can be seen that there is de�nite tradeo�

between extra MSHRs and decreasing memory latency. For instance, tomcatv and fpppp

bene�t more going from one to two MSHRs than from reducing the memory latency by

15 to 20 cycles. Additional MSHRs provide bene�ts as well. Other programs such as

sort and yacc depend more on memory latency, though increasing the number of MSHRs

does provide a notable increase in performance.
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Figure 4.12 Performance with varying MSHRs and cache size for compress, espresso,
fpppp, matrix300
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Figure 4.13 Performance with varying MSHRs and cache size for sort, tbl, tomcatv,
yacc
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Figure 4.14 Performance with varying MSHRs and memory latency for compress, ma-
trix300, sort, tomcatv with a 4K cache
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Figure 4.15 Performance with varying MSHRs and memory latency for espresso, fpppp,
tbl, yacc with a 1K cache
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Figure 4.16 Performance with varying MSHRs and memory latency for compress, ma-
trix300, sort, tomcatv with a 32K cache
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Figure 4.17 Performance with varying MSHRs and memory latency for espresso, fpppp,
tbl, yacc with a 4K cache
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For a small cache, the bene�ts provided by extra MSHRs seem relatively stable with

respect to memory latency. In other words, increasing the number of MSHRs provides

performance increase even when the memory latency is small. For large cache sizes,

the importance of additional MSHRs is relatively small for small memory latencies and

increases as the memory latency is increased. Overlapping will always be a win when

either the cache size is small or the memory latency is large.

4.9 Replacement Bu�er Performance

In this section, the breakdown of requests that hit in the replacement bu�er is exam-

ined. Also considered is the e�ect of lowering the associativity of the cache. It is expected

that lowering the associativity will increase the cache line conicts, thus increasing the

relative number of accesses which hit in the replacement bu�er.

Hits in the replacement bu�er can be broken down into three categories.

1. Read hits. A read request has hit a valid cache line and the results are returned to

the cpu.

2. Write hit unsent. The write request has hit a line which has yet to be sent to main

memory. In this case, the data is written to the line.

3. Write hit sent. In this case the hit has been sent to the memory. In this experiment

the value is written to the cache line and the S bit is set so that the line will be

resent.

Table 4.5 shows the breakdown of the replacement bu�er accesses for a direct mapped

and a two-way set-associative cache design. This is for the case of a 32K cache with a

memory latency of 10 cycles.

There is a wide variation among benchmarks for the distribution of hits in the replace-

ment bu�er. Reads are more common than writes. Writes to lines which have been sent

are more common than writes to lines that have not been sent except for the benchmarks

that tend to constantly request lines from memory. This is easily explained by the fact

that in an unbusy system, the cache lines can be sent as soon as they are placed in the
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replacement bu�er whereas in a busy system they will have to wait until the bus is free

or the replacement bu�er is full. This concurs with the programs having a high hit rate

having many more hits to sent lines than unsent ones.

Notice that as the set associativity is decreased, the number of references that hit

in the replacement bu�er increases dramatically. With a two-way set-associative cache,

less than 1% of all requests were hitting in the replacement bu�er (except for tomcatv).

With a direct-mapped cache, the values are between 2% to 10%. Notice that the IPC

remains relatively stable when the cache organization is changed to direct mapped (except

tomcatv).

This shows that the scheme may be able to compensate for the performance loss the

direct mapped cache can impose due to conicts occurring from the loss of associativity.

However, it cannot compensate for tomcatv. Tomcatv had conicts occurring in the set-

associative case and was simply overwhelmedwhen the organization was changed to direct

mapped. This caused a signi�cant performance drop relative to the other programs.

4.10 Increasing Bus Operation Times

In this section, the e�ects of increasing the bus operation times are examined for a

32K cache with a memory latency of 10 cycles. Recall that current times are 1 cycle for a

line request, 2 cycles to receive the line, and 2 cycles to write a line back to the memory.

This section is concerned with the increase in bus tra�c and the decrease in performance

associated with increasing the bus operation times. Simulations are performed for the

above bus times multiplied by two, and multiplied by four. The base results are given as

a basis for comparison. The results are shown in Table 4.6.

As can be expected, increasing the bus operation times has little e�ect on the per-

formance for programs with high hit rates such as espresso, yacc, and fpppp. Note that

the bus tra�c is increased nearly linearly though. This is because the overall execution

time remains the same, while the amount of time used for bus transactions is increased

by some factor.

Note that programs with poor hit rates are greatly a�ected by the bus transaction

times. Compress, matrix300, and tomcatv all experience severe performance degradation
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Table 4.5 Breakdown of replacement bu�er access with varying associativity

RB breakdown
benchmark associativity IPC read hits write hits unsent write hits sent
compress 2 2.696 .0004 .0000 .0001

1 2.600 .0719 .0217 .0498
espresso 2 3.182 .0019 .0001 .0001

1 3.135 .0178 .0020 .0045
fpppp 2 2.297 .0067 .0016 .0011

1 2.246 .0232 .0046 .0057
matrix300 2 1.834 .0035 .0024 .0010

1 1.814 .0113 .0079 .0033
sort 2 3.379 .0012 .0000 .0001

1 3.247 .0409 .0074 .0090
tbl 2 3.677 .0002 .0001 .0001

1 3.610 .0242 .0376 .0258
tomcatv 2 2.659 .0382 .0161 .0178

1 2.384 .0321 .0149 .0184
yacc 2 3.510 .0020 .0001 .0002

1 3.465 .0084 .0012 .0046

Table 4.6 E�ects of increasing bus operation times

IPC bus tra�c
benchmark 1xBus 2xBus 4xBus 1xBus 2xBus 4xBus
compress 2.696 2.401 1.937 .186 .332 .535
espresso 3.182 3.163 3.125 .008 .017 .032
fpppp 2.297 2.266 2.201 .025 .049 .094

matrix300 1.834 1.508 1.102 .227 .374 .546
sort 3.379 3.281 3.094 .042 .080 .152
tbl 3.677 3.624 3.507 .020 .038 .074

tomcatv 2.659 2.446 2.194 .202 .368 .600
yacc 3.510 3.489 3.442 .010 .019 .037
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as the bus operation times are increased. The bus tra�c, however, does not increase

linearly as in the other cases, because the execution time is also increased as well as the

bus operation times.
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CHAPTER 5

CONCLUSIONS

This thesis has presented the issues involved in designing a multiported nonblocking

cache. A scheme was presented which is capable of handling requests to outstanding

cache misses and supervising the return of the cache lines to the cache bu�er. Another

scheme was presented to allow hits in the replacement bu�er to be directly returned to the

cache. Some of these concepts were illustrated with an example directly from an actual

design. Trace driven simulations using 5 million SPARC instructions were performed to

evaluate the cost e�ectiveness of design decisions based on those schemes.

The following are the highlights of the simulation results.

� It has been shown that performance degradation due to cache bank conicts is an

important issue in the design of a MPNBC. Cache memory should be interleaved

using an interleaving scheme that allows simultaneous sequential access to prevent

serious degradation in oating-point programs. Further research needs to be carried

out to evaluate the e�ects of stalling various cache banks upon the return of a line

as called for by the di�erent interleaving schemes.

� There is a de�nite tradeo� between cache size and main memory latency. For small

caches, the program completion time is highly dependent on the main memory

latency. As cache size increases, programs with good locality are immune from

the e�ects of a memory latency. However, programs that make poor use of the

cache (eg., matrix 300) exist; they are a�ected little by increases in cache size and

primarily by memory latency.

� It is shown that most of the requests hit in the cache bu�er, though some programs

have a large portion of requests hitting in the MSHR queue. Reads to unwritten
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words are the most common type of MSHR hits, followed by writes. Read hits to

previously written words are rare as wisdom dictates and may allow for a simpler

design without data paths from the MSHR to the cpu. Hits to the replacement

bu�er are rare in a two-way set-associative cache. Many integer programs have

requests that stall due to cache bank conicts, while programs with poor hit rates

and poor cache usage will stall from unavailable MSHRs.

� It has been shown that programs with high hit rates are generally more dependent

on additional memory ports for achieving good performance rather than MSHRs.

For smaller hit rates, MSHRs inuence performance more than memory ports.

In most cases, increasing the number of ports above two does not provide much

performance increase. Increasing the number of MSHRs above two does provide

performance increase for small cache sizes.

� It has been shown that using the replacement bu�er to service some cache accesses

is an e�ective way to reduce the performance degradation caused by lowering the

associativity. A thorough examination of this topic has not been undertaken making

it a good candidate for future research.

� The tradeo� between overlapping main memory access and decreasing access la-

tency has been shown. Some programs bene�t greatly from overlap (e.g., tomcatv

and fpppp), while others bene�t more from decreasing access latency (e.g., yacc and

tbl). It has also been shown that for small cache sizes, overlapping the memory ac-

cesses provides a notable performance increase across all memory access latencies.

For larger cache sizes, overlapping the memory accesses helps for large memory late-

cies but not as much for smaller ones. Overlapping provides the best performance

increase when either the cache size is small or the memory latency is large.
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