
A MACHINE DESCRIPTION LANGUAGE
FOR COMPILATION

BY

JOHN CHRISTOPHER GYLLENHAAL

B.S, University of Arizona, 1991

THESIS

Submitted in partial ful�llment of the requirements
for the degree of Master of Science in Electrical Engineering

in the Graduate College of the
University of Illinois at Urbana-Champaign, 1994

Urbana, Illinois

iii

ACKNOWLEDGEMENTS

I would �rst like to thank my advisor, Professor Wen-mei Hwu, for his guidance and

support. I would also like to thank the IMPACT group, in general, and Rick Hank, Scott

Mahlke and Roger Bringmann, in particular, for their helpful discussions. Several peo-

ple in the Hewlett Packard Laboratories' FAST Group have provided valuable guidance

and feedback, especially Bob Rau, Vinod Kathail, and Michael Schlansker. For their

three years of �nancial support through a fellowship, I would like to thank the National

Science Foundation. I would like to express my appreciation to my parents for all the

encouragement and support throughout my college years. Finally, I wish to thank and

express my love for my �anc�ee Liesl Little who has encouraged me throughout graduate

school and who provided invaluable editing help as the deadline for this thesis loomed.

\It's a damn poor mind that can think of only one way to spell a word."
-Andrew Jackson

iv

TABLE OF CONTENTS

Page

1. INTRODUCTION : 1

2. HMDES SYNTAX : 4
2.1 Introduction : 4
2.2 HMDES Preprocessor : 4
2.3 Format Considerations : 6
2.4 Compiler Interface Considerations : 7
2.5 HMDES Section Delimiters : 10
2.6 HMDES Version : 10
2.7 De�ne : 11
2.8 Register Files : 12
2.9 IO Sets : 14
2.10 IO Items : 14
2.11 Resources : 16
2.12 ResTables : 17
2.13 Latencies : 18
2.14 Operation Class : 19
2.15 Operations : 20

3. TRANSLATING HMDES TO LMDES : 23

4. LMDES FILE FORMAT : 25
4.1 Introduction : 25
4.2 Total String Size : 26
4.3 Mask Width : 27
4.4 Internal IDs : 28
4.5 LMDES File Header : 28
4.6 LMDES Section Delimiters : 30

v

4.7 IO Sets : 30
4.8 IO Items : 32
4.9 Resources : 33
4.10 ResList : 34
4.11 Latencies : 37
4.12 Operations : 39

5. MDES INTERNAL REPRESENTATION : : : : : : : : : : : : : : : : : : 42
5.1 Introduction : 42
5.2 The Mdes Data Structure : 42
5.3 The Mdes IO Set Data Structure : 46
5.4 The Mdes IO Item Data Structure : : : : : : : : : : : : : : : : : : : 47
5.5 The Mdes Resource Data Structure : : : : : : : : : : : : : : : : : : : 48
5.6 The Mdes ResList Data Structure : 48
5.7 The Mdes Latency Data Structure : : : : : : : : : : : : : : : : : : : 50
5.8 The Mdes Operation Data Structure : : : : : : : : : : : : : : : : : : 51
5.9 The Mdes Info Data Structure : 53

6. MDES INTERFACE FUNCTIONS : 54
6.1 Introduction : 54
6.2 Quick Start : 56
6.3 Loading an LMDES : 57
6.4 Building Mdes Info Structures : 57
6.5 Building Mdes Info Structures in IMPACT : : : : : : : : : : : : : : : 59
6.6 Freeing Mdes Info Structures : 59
6.7 Opcode Speci�c Information : 61
6.8 General Model Information : 62
6.9 Scheduling Alternative IDs : 63
6.10 Operand Indexes : 64
6.11 Operand Use Times : 65

7. CONCLUSIONS : 67

REFERENCES : 69

APPENDIX A. FORM.HMDES : 70

APPENDIX B. IOFORM.H : 74

APPENDIX C. FLAGFORM.H : 76

APPENDIX D. OPCFORM.H : 78

APPENDIX E. FORM.LMDES : 80

1

1. INTRODUCTION

This document describes the various aspects of the machine description (MDES) lan-

guage. It was developed jointly by the IMPACT group at the University of Illinois and

the FAST group at Hewlett Packard Laboratories with the goal of describing a proces-

sor's resources, and how the processor's instruction set uses these resources, in enough

detail that a compiler could schedule for that processor using only this information. The

realization of this goal makes the MDES language a powerful tool for studying di�erent

processor architectures. The MDES language has been used to model the PA-RISC family

of processors [1], the AM29000 family of processors [2], the X86 family of processors [3],

and the Sparc family of processors [4] [5], as well as several architectual extensions to

these processors. The IMPACT compiler [6] has been successfully scheduling based on

MDES �les since the summer of 1993.

There were several design goals: 1) The language should be organized in a way

intuitive for the writer of the MDES with features designed to reduce the tedium of

designing and modifying the MDES; 2) The compiler should be able to quickly load and

2

use the MDES information without having to deal with syntax errors and typos; 3) The

MDES language should be compiler independent.

In order to meet the con
icting design goals of 1 and 2, the MDES was split into two

di�erent forms. To meet the �rst goal, the high-level machine description (HMDES) is

organized in an intuitive way for the writer, allowing comments, text substitution, and

exibility concerning indentation/formatting. To meet the second goal of e�ciency, the

HMDES �le is then translated into a low-level machine description (LMDES). During

this translation, powerful preprocessing algorithms are used and the HMDES grammar

is extensively checked for errors and typos. After a successful translation, the LMDES

�le is free of syntax errors and detectable typos. During compilation, the LMDES can be

quickly loaded into memory because minimal error checking is needed. The organization

of the MDES in memory is designed to facilitate e�cient retrieval of information by the

compiler.

The third goal is met by designing the MDES compiler interface functions with min-

imal assumptions about the compiler's underlying structure. The basic MDES interface

functions do not use data structures internal to the compiler. These basic functions may

then be used to construct more powerful compiler-speci�c functions.

Figure 1.1 shows a schematic overview of the path followed in translating an HMDES

�le to the MDES internal representation that the compiler interface functions can e�-

ciently access. The following chapters give a detailed description of the di�erent aspects

of the MDES and the translation process. Chapter 2 describes the syntax and purpose

3

LMDES
Reader

Compiler
Queries

LMDES
File

Internal
Representation

MDES Compiler
Iterface
Functions

HMDES
File

Lmdes_build
(Parsing\
Error Checking)

Figure 1.1: Schematic overview of the MDES translation path

of each of the HMDES language features. Chapter 3 describes the HMDES-to-LMDES

translator and its command line arguments. Chapter 4 describes the LMDES language,

including the format conventions, the representation of the HMDES information, and

LMDES reader issues. Chapter 5 outlines the internal data structures used to represent

the MDES. Chapter 6 describes the MDES interface functions to the compiler including

some more powerful IMPACT-speci�c interface functions.

The writing of this document has two main goals. The �rst of these is to provide a

detailed description of the MDES language so that a machine description for a processor

can be written and used (Chapters 2, 3, and 6). The second goal is to provide docu-

mentation of all the innerworkings of MDES so that it may be further enhanced to meet

the requirements of more complex processor models (Chapters 4 and 5). The following

chapters provide the information necessary to meet these goals.

4

2. HMDES SYNTAX

2.1 Introduction

The HMDES language was designed to be human readable and modi�able. As a

consequence, a machine description may contain syntax errors and it is fairly expensive

to parse. To prevent the compiler from having to deal with these problems, the HMDES

language is �rst converted into the LMDES language using a translation program. This

allows the HMDES writer to have a user-friendly syntax checker and the compiler to load

the machine description quickly using the LMDES �le. This chapter �rst describes some

general HMDES features and then explains the syntax of each HMDES section.

2.2 HMDES Preprocessor

The HMDES language includes two features normally associated with a preprocess-

ing step: line comments and text replacement directives. Both features may be used

5

anywhere within the HMDES �le and conceptually are handled before any HMDES to

LMDES translation takes place.

Line comments start with either a `#' or a `%' and terminate at the end of the line,

as shown in the following example.

Text # comment text

Text replacement directives (de�nitions) have the following form.

$de�ne name replacement text

Subsequent occurrences of $name$ will be replaced by the replacement text. The

name in the $de�ne has the same form as a C variable name and the replacement text

ends at the newline and has leading and trailing whitespace removed. For example, if

HEADER DIR is de�ned as

$de�ne HEADER DIR /home/polaris1/gyllen/mthesis # comment

then the line

C header �le \$HEADER DIR$/ioform.h"

will be replaced with

C header �le \/home/polaris1/gyllen/mthesis/ioform.h"

in the HMDES �le. The text replacement directive may use previous de�nitions, which

are evaluated when the directive is read in. Comments are removed before the directive

is processed, so it is safe to put a comment on the same line as a $de�ne as shown in

the example above. A name may be rede�ned with another text replacement directive.

6

Currently, a text replacement directive may not be split across more than one line and a

$ may only be used in the context of a $de�ne or $name$.

Text replacement directives may also be issued on the command line during the

translation from HMDES to LMDES, and in the user's environment. This will be covered

in Chapter 3, which deals with translating an HMDES �le into an LMDES �le.

2.3 Format Considerations

In HMDES, whitespace is de�ned to be one or more spaces, tabs, newlines or com-

mas. Indentation and newline conventions are left to the HMDES writer. Commas are

considered whitespace mainly to allow lists of numbers to be separated by commas, but

they may be used anywhere.

Keywords in HMDES are not case-sensitive. The HMDES keywords are: the version1

at the top of the �le, all the section names (such as De�ne and Register Files), the word

declaration that follows each section's name, the end that ends a section, the parameter

names in the de�ne section (such as C header �le and processor model), and capacity and

width in the Register Files section. Keywords are not reserved words, so they may be

used in other contexts.

All other identi�ers (those created by the HMDES writer) are case-sensitive. These

identi�ers must start with a letter of the alphabet or an underscore, and may contain

letters, numbers and underscores. Names must be unique within their HMDES section,

but can be de�ned in more than one section if desired. However, this is not recommended.

7

/*

* Subset of AMD specific MDES IO_set specifiers (renumbered),

* taken from machine/m_amd.h

*/

#define MDES_OPERAND_NULL 0

#define MDES_OPERAND_GPR 1

#define MDES_OPERAND_Lit8 2

#define MDES_OPERAND_Lit16 3

#define MDES_OPERAND_REG 4

#define MDES_OPERAND_NIL 5

Figure 2.1: #de�nes from ioform.h which are used by form.hmdes to de�ne IO Set spec-
i�ers

2.4 Compiler Interface Considerations

In C code, it is easier and more e�cient to identify items with an integer number

than with a string. By creating C header �les that contain \#de�ne" statements, names

can be used to represent integers in C programs with no loss of e�ciency. Similarly, at

the MDES compiler interface, it is more e�cient to to use integers than it is to use the

names de�ned in the HMDES �le. By using the same C header �les that were created

for the C program (i.e., the compiler), integers can be used at the compiler interface

to represent the names in the HMDES �le. These integers are referred to as external

IDs. The use of integer external IDs increases the e�ciency of the MDES interface and

saves work because the programmer does not need to write a name-to-integer mapping

�le for the MDES. The C header �les used by the sample HMDES �le, form.hmdes (see

Appendix A), used in this chapter are shown in Figures 2.1, 2.2, and 2.3. The C header

�les are also shown in their unaltered form in Appendices B, C, and D. It should be

8

/*

* Subset of standard Lcode MDES Operation flags (renumbered),

* taken from Lcode/l_flags.h

*/

#define OP_FLAG_CBR 0x00000001

#define OP_FLAG_RTS 0x00000002

#define OP_FLAG_JSR 0x00000004

#define OP_FLAG_LOAD 0x00000008

#define OP_FLAG_STORE 0x00000010

#define OP_FLAG_EXCEPT 0x00000020 /* Can cause exception */

#define OP_FLAG_NI 0x00000040 /* non-interlocking, has delay slot */

/*

* Subset of standard Lcode MDES Alternative flags (renumbered),

* taken from Lcode/l_flags.h

* Not used by form.hmdes, but included to show the name format.

*/

#define ALT_FLAG_SPEC 0x00000001 /* speculative form of instr */

Figure 2.2: #de�nes from
agform.h which are used by form.hmdes to de�ne operation
and alternative
ags

noted that the HMDES �le uses these C header �les di�erently than the C program does.

The di�erences are described below.

The �rst di�erence is that in C programs, the names are actually replaced by integers

by the C preprocessor. In HMDES to LMDES translation, the names are annotated with

the integer that stands for the name. The name used in the HMDES is not lost. This

allows HMDES names to be used in error messages by the compiler.

The second di�erence is that in C programs, the names de�ned in the \#de�ne"

statements are exactly what is used in the C program. In HMDES �les, the names

de�ned in the \#de�ne" statements sometimes have their pre�x removed when used in

9

/*

* Subset of standard Lcode opcodes (renumbered),

* taken from Lcode/l_opc.h

*/

#define Lop_BEQ 1

#define Lop_BNE 2

#define Lop_RTS 3

#define Lop_JSR 4

#define Lop_ADD 5

#define Lop_LD_I 6

#define Lop_ST_I 7

/*

* Subset of AMD processor specific opcode (renumbered),

* taken from Lcode/lamd_phase1.h.

*/

#define LAMDop_SUBR 500

Figure 2.3: #de�nes from opcform.h which are used by form.hmdes to de�ne opcodes

the HMDES �le. For example, the name \MDES OPERAND GPR" that is de�ned in

the C header �le shown in Figure 2.1 is referred to as \GPR" in the sample HMDES �le

form.hmdes. The pre�x \MDES OPERAND " is required in the C header �le to make

the name unique but is unwieldy to use in the HMDES �le.

The third di�erence is that in C programs, the C header �les can include other

C header �les. In HMDES header �les, the \#include" statements are ignored. This

means all of the C header �les have to be explicitly speci�ed (in the de�ne section, see

Section 2.7).

10

The last di�erence is that in C programs, enumeration commands can be used to

assign numbers to names. In HMDES �les, an error will occur if an enumeration is

encountered because the case is not currently handled.

2.5 HMDES Section Delimiters

There are nine sections in an HMDES �le. They all begin with

(section name declaration

and end with

end)

where section name is the section name. The section names and the keywords `declara-

tion' and `end' are not case sensitive.

All the sections described in this chapter must be present in the HMDES �le and they

must appear in the order described in this chapter. This ordering is required to allow all

the references to other sections to be resolved in one pass of the HMDES �le.

2.6 HMDES Version

In the HMDES �le, before any section declarations, the HMDES version is indicated.

The version, which for this document is version 1, is speci�ed in an HMDES �le by a

\Version1" before the De�nes section declaration.

11

(Define declaration

C_header_file "/home/polaris1/gyllen/mthesis/ioform.h"

C_header_file "/home/polaris1/gyllen/mthesis/opcform.h"

C_header_file "/home/polaris1/gyllen/mthesis/flagform.h"

predicates 0

dest_operands 2

dest_syncs 3 # Used to construct control/sync dependences

source_operands 4

src_syncs 3 # Used to construct control/sync dependences

processor_model superscalar

end)

Figure 2.4: Example De�ne section from the form.hmdes �le

2.7 De�ne

The De�ne section speci�es the number of predicate, destination, source and synchro-

nization operands that the processor's instruction set supports and the type of processor

(superscalar or VLIW) that is being modeled. Additionally, the complete path to one

or more C header �les are speci�ed. These C header �les are used by the HMDES to

LMDES translator to map register �les, IO sets, and operations to integer numbers. This

is an annotation step, not a preprocessing step since the names remain in the �le. An

example of an HMDES De�ne section is shown in Figure 2.4.

As can be seen in the example, each entry in the de�nition consists of a keyword

followed by a string or an integer. The keywords are not case sensitive and the order

of the entries does not matter. Quotes should be used around any string that contains

punctuation characters or spaces. The following must be de�ned in the De�ne section:

1. predicates is the number of predicate operands,

2. dest operands is the number of destination operands,

12

3. source operands is the number of source operands,

4. src sync is the number of incoming synchronization operands,

5. dest sync is the number of outgoing synchronization operands,

6. processor model is the processor model.

The current valid processor models are VLIW or superscalar.

Additionally, header �les to be used to annotate the LMDES �les may be speci�ed

using the C header �le keyword. This keyword may be used as many times as necessary

to specify all the desired header �les. The complete path to each header �le should be

speci�ed and the path should be quoted to prevent the punctuation marks such as \/"

and \." from being misinterpreted.

2.8 Register Files

The Register Files section was originally intended to de�ne the capacity and width

of the processor's register �les. At the present time, neither the capacity nor width is

being used by any IMPACT program. In fact, the capacity and width information is not

even stored in the LMDES �le. Instead, this section is used to de�ne the operand types

allowed in the processor's assembly language.

The entries in this section will be used to enumerate the legal register types and

constant sizes. These names will be used later in the HMDES �le to specify what the

operand types may be for the instructions in the processor's instruction set. These names

will also be used, with an \MDES OPERAND " pre�x, by the compiler to specify an

13

(Register_Files declaration

NULL ((capacity 0 0) (width 0))

GPR ((capacity 191 0) (width 32))

8 bit field for most arithmetic opcodes

Lit8 ((capacity 0 0) (width 8))

16 bit field for const and branch direct

Lit16 ((capacity 0 0) (width 16))

end)

Figure 2.5: Example Register Files section from the form.hmdes �le

instruction's operands. For more information on how the compiler will use these names

and the MDES OPERAND pre�x, please see Section 2.4.

An example Register Files section is shown in Figure 2.5. Although only the name is

currently used, the following is the o�cial format for each entry.

name ((capacity static size rotating size) (width width in bits))

where

1. name is the register �le's name or operand type's name,

2. static size is the number of static registers in the �le,

3. rotating size is the number of rotating registers in the �le,

4. width in bits is the register width in bits.

A required Register File entry is for the NULL register �le. This Register File entry

is implicitly used wherever no operand is expected.

14

(IO_Sets declaration

REG (GPR)

ANY (NULL GPR Lit8 Lit16)

LIT (Lit8 Lit16)

end)

Figure 2.6: Example IO Sets section from the form.hmdes �le

2.9 IO Sets

The entries in the IO Sets section give a name to a set of register �les. This name

may be used anywhere a Register Files entry name can be used in the IO Items section

(see Section 2.10) and indicates that any of the speci�ed register �les are valid as that

operand.

An example IO Sets section is shown in Figure 2.6. The example section shows how

IO Sets entries may be used to group register �les into more manageable groupings. For

example, the IO Sets entry \ANY" contains all the valid possible operand types and may

be used instead of a Register Files entry name to specify an operand type in an IO Item.

Although it is not illustrated in the example, IO Sets de�nitions may include previously

de�ned IO Sets entry names.

2.10 IO Items

The entries in this section give names to legal combinations of operands. For each

operand in an IO Items entry, a Register Files or IO Sets entry name is used to specify

what that operand may be. This information will be used later to bind an opcode with a

15

(IO_Items declaration

IOI_Store ([][REG ANY REG])

IOI_Load ([REG][REG ANY])

Standard operand format

IOI_Std ([REG][REG REG])

IOI_Stdi ([REG][REG Lit8])

IOI_ubri ([][REG]) # uncond indirect

IOI_cbr ([][REG Lit8 LIT]) # cond

IOI_cbri ([][REG Lit8 REG]) # cond indirect

IOI_call ([REG][LIT -]) # call direct

IOI_calli ([REG][REG]) # call indirect

end)

Figure 2.7: Example IO Items section from the form.hmdes �le

particular set of operands to the resources and latencies associated with that operation.

The format of an IO Items entry follows.

IO Item name (<pred0 pred1: : : > [dest0 dest1: : :][src0 src1: : :])

where

1. IO Item name is the entry's name,

2. pred0 pred1: : : are the predicate operands (the number speci�ed by
pred operands in the de�ne section),

3. dest0 dest1: : : are the destination operands (the number speci�ed by
dest operands in the de�ne section),

4. src0 src1: : : are the source operands (the number speci�ed by src operands in the
de�ne section).

Trailing operand types may be omitted. If omitted they default to the \NULL"

register �le, which is required to be de�ned in the Register Files section. If no predicate

16

(Resources declaration

slot[0]

ialu0

end)

Figure 2.8: Example Resources section from the form.hmdes �le

operands are speci�ed, the <> are not needed. An example IO Items section is shown

in Figure 2.7.

2.11 Resources

The entries in this section de�ne all the resources that are used in the HMDES to

model the processor. An example Resources section is shown in Figure 2.8. For a given

resource entry, either a single resource can be de�ned,

resource name or equivalently resource name[0],

or an array of resources.

resource name[0..3] or equivalently resource name[0, 1, 2, 3]

Arrays of resources are convenient when an operation may use one of a set of resources

interchangeably (i.e., register ports). The integers in the index list must be non-negative,

may be speci�ed in any order and may skip numbers, if desired.

resource name[3, 5, 1]

The order of the indexes speci�es the default order in which the instruction scheduler

will try to allocate the resources for an operation. This order may be overridden in the

ResTables section (see Section 2.12).

17

(ResTables declaration

RL_IBr (

(slot[0] 0)

)

RL_IAlu (

(slot[0] 0)

(ialu0 0)

)

end)

Figure 2.9: Example ResTables section from the form.hmdes �le

A required Resources entry is for the \slot" resource or array of resources. This

Resources entry de�nes the number of operations that may be scheduled in a cycle.

In the ResTables section, each operation is required to specify which slots it may be

scheduled in. This allows decoder restrictions to be modeled. To simplify scheduling

algorithms, all slot indexes between 0 and the max index must be de�ned.

2.12 ResTables

The entries in the ResTables section de�ne the ways operations can use resources

over time. An example ResTables section is shown in Figure 2.9. Each ResTable entry

is composed of the entry's name and a list of resource usage entries.

ResTable name (resource usage entry0: : :)

Each resource usage entry consists of a resource name with an optional set of indexes

and a resource usage start and stop time. Each index denotes a particular resource usage

option, where any one of these usage options may be selected.

18

(Latencies declaration

Lat1 (1 () (1 0) () () ())

Lat1m (2 () (1 0) () () (1)) # for stores

Lat2 (2 () (1 0) () (0 1) ()) # for control

Lat2m (2 () (2 0) () (1) ()) # for loads

end)

Figure 2.10: Example Latencies section from the form.hmdes �le

(resource name[index1: : : indexn] start..stop)

The order of the indexes speci�es the order the scheduler will try to allocate the

resource options. The [index1 : : : indexn] may be omitted if the resource name does not

refer to an array of resources or if any of the resources in the array may be used and

should be attempted to be scheduled in the default order (see Section 2.11).

The start and stop times are with respect to the cycle during which the instruction

leaves the decoder (cycle 0). The ..stop may be omitted if the stop time is the same as

the start time. The start time may not be negative and the stop time must be greater

than or equal to the start time.

Each ResTable entry must contain a resource usage entry that speci�es to which

\slots" the operation may be scheduled. The slot must be used only for cycle 0.

2.13 Latencies

An example Latencies section is shown in Figure 2.10. The entries in the Latencies

section specify the cycle during which each register operand is read (predicate, source,

or incoming sync operands) or written (destinations or outgoing sync operands). This

19

(Operation_class declaration

CL_cbr

(# conditional branches

(IOI_cbr RL_IBr Lat2)

)

CL_Std_IAlu

(# Standard one cycle IALU instructions

(IOI_Std RL_IAlu Lat1)

(IOI_Stdi RL_IAlu Lat1)

)

CL_Load

(# 2 Cycle load instructions

(IOI_Load RL_IAlu Lat2m)

)

CL_Store

(# 1 Cycle store instructions

(IOI_Store RL_IAlu Lat1m)

)

end)

Figure 2.11: Example Operation Class section from the form.hmdes �le

information is used to calculate dependence distances for
ow, anti, output, and control

dependencies. The entries also specify when exceptions are handled.

latency name (exception latency (pred0: : :) (dest0: : :) (src0: : :) (dest sync0: : :) (src sync0: : :))

The latencies that are not speci�ed are assumed to be used at cycle 0. Typically,

all of the source registers are read at cycle 0 (decode time) and all of the destination

registers are written when the instruction leaves the functional unit.

2.14 Operation Class

The entries in the Operation Class section are used to describe classes of instructions,

where instructions in a class all expect the same operands, use the same resources in the

20

processor and have the same operand latencies. The use of operation classes is optional

since all the same information can be also be placed directly in each Operations section

entry (see Section 2.15). Each entry contains a list of one or more alternatives, where

each alternative represents a di�erent way the instruction can behave.

Operation Class name (alternative1 : : :)

Each alternative is represented by

(IO Set name ResTable name Latency name)

The scheduler, when searching for an alternative to schedule, will test the alterna-

tives in the order that they are listed in the Operation Class entry. An example Opera-

tion Class section is shown in Figure 2.11.

2.15 Operations

The Operations section entries associate an operation's opcode with opcode
ags,

assembly name, assembly
ags and either an Operation Class name or direct speci�cation

of scheduling alternatives. An example Operations section is shown in Figure 2.12. The

two possible forms are:

opcode name<opcode flag0: : :> (assembly name<assembly flag0: : : > operation class)

or

opcode name<opcode flag0: : :> (assembly name<assembly flag0: : : > (alternative0: : :))

where each alternative has the form

(IO Set name ResTable name Latency name)

21

(Operations declaration

Lop_BEQ <CBR NI> (jmpt CL_cbr)

Lop_BNE <CBR NI> (jmpf CL_cbr)

Lop_RTS <RTS NI> (jmpi ((IOI_ubri RL_IBr Lat2)))

Lop_JSR <JSR NI> (call ((IOI_call RL_IBr Lat2)))

Lop_JSR <JSR NI> (calli ((IOI_calli RL_IBr Lat2)))

Lop_ADD (add CL_Std_IAlu)

LAMDop_SUBR (subr CL_Std_IAlu)

Lop_LD_I <EXCEPT LOAD> (load CL_Load)

Lop_ST_I <EXCEPT STORE> (store CL_Store)

end)

Figure 2.12: Example Operations section from the form.hmdes �le

The opcode name speci�es the opcode of the operation being described. An inte-

ger will be associated with this opcode name using the C header �les as speci�ed in

Section 2.4. No pre�x is attached to the opcode names during lookup since they are as-

sumed to be unique. Multiple entries with the same opcode name may be used to specify

di�erent assembly names and/or assembly
ags for di�erent scheduling alternatives.

The opcode
ags allow opcode speci�c information to be speci�ed in the HMDES.

These
ags must be de�ned in one of the C header �les (see Section 2.4) with an

`OP FLAG ' pre�x. The values for the opcode
ags are treated as bit
ags and are

ORed together to form a 32-bit wide bit �eld for that opcode. Possible uses of
ags in-

clude specifying the type of operation, whether the instruction can generate exceptions,

or whether a branch has a delay slot. Entries with the same opcode name must have the

same opcode
ags speci�ed and if no opcode
ags are speci�ed, the <> may be omitted.

22

The assembly name speci�es the assembly name for all the alternatives in that en-

try. Sometimes the operation's operand types and which function unit the operation

was scheduled for are encoded into the operation's assembly name, requiring di�erent

assembly names for the operation's alternatives. To handle this case, the HMDES writer

must create a separate Operations entry for each assembly name.

The assembly
ags allow alternative speci�c information to be speci�ed in the HMDES.

These
ags must be de�ned in one of the C header �les (see Section 2.4) with an

`ALT FLAG ' pre�x. Like opcode
ags, the values are treated as bit
ags and are ORed

together to form a 32-bit wide bit �eld for each alternative speci�ed in the Operations

entry. The only current use for these
ags is for specifying the alternatives that represent

the speculative form of the instruction. To specify di�erent
ags for di�erent alterna-

tives, the HMDES writer must create a separate Operations entry for each variation of

alternative
ags. If no alternative
ags are speci�ed, the <> may be omitted.

The operation class is the name of an Operation Class entry that contains a set of al-

ternatives to be associated with the opcode name, assembly name and assembly
ags. Al-

ternatively, the alternatives can be speci�ed directly in the operation entry. The method

that is more convenient may be used.

23

3. TRANSLATING HMDES TO LMDES

This chapter describes the use of the HMDES-to-LMDES translation program Lmdes build,

which checks the syntax of the HMDES �le, provides detailed error messages when nec-

essary, and produces an LMDES �le that can be quickly loaded into memory by the

compiler. The details of how the HMDES information is represented in LMDES is de-

scribed in Chapter 4. The command line syntax for Lmdes build is shown below.

Lmdes_build HMDES_file_name LMDES_file_name [-Dname=replacement_text]

where HMDES �le name is the name of the �le containing the HMDES description of

the processor, LMDES �le name is the name of the �le to write the LMDES into, and

the option argument -Dname=replacement text overrides any text replacement directives

in the HMDES. More than one -Dname=replace text argument may be speci�ed.

Text replacement directives may also be placed in the user's environment using the

unix C shell command

setenv name=replacement_text

24

where this directive will override the text replacement directives in the HMDES �le. This

feature is most commonly used to specify the directory where the compiler's header �les

are stored. This allows HMDES �les to be shared between sites with di�erent installations

of the same compiler. These environmental directives may be overridden by the command

line directives.

This translation program checks for syntax errors in the HMDES grammar and, when

syntax errors occur, indicates how the syntax deviated from the correct syntax. This pro-

gram also checks whether all the identi�ers used in the HMDES have been previously

de�ned, which helps detect typos in identi�ers. Lastly, during the step where C header

�les are used to annotate entries in the HMDES (see Section 2.4), if a critical annotation

cannot be found an error message is emitted. This helps detect operations that are unde-

�ned in the compiler as well as typos in the operation's names. This extensive checking

ensures that the LMDES �le produced is free of syntax errors and detectable typos,

allowing the compiler to e�ciently load the LMDES �le with minimal error checking.

25

4. LMDES FILE FORMAT

4.1 Introduction

This section describes the details of what is contained in the low-level machine

description (LMDES) �le. The information in this section is not necessary for using

the high-level machine description language and the compiler interface. However, it may

aid those wishing to modify the LMDES language; this section is aimed at this audience.

An LMDES �le is created directly from an HMDES �le and its sole purpose is to

allow quick building of the internal data structures representing the machine description.

To accomplish this, the LMDES �le represents the MDES information in a format as

close as possible to the �nal internal representation. An LMDES �le is not meant to be

user modi�able but some extra information is included in the LMDES �le to make it

somewhat user readable for debugging purposes.

The LMDES �le format was designed to allow the standard C language function

\fscanf()" to parse the �le. The \fscanf()" function is easy to use if the input �le's

26

format is predictable. To make the LMDES �le format predictable, a header is included

in each section and when required, in each entry (more details below), which contains all

the format information necessary to read the �le with fscanf(). In addition, the headers

also contain enough information to allocate the data structures for that section's internal

representation. This allows each section's data structures to be allocated before the

section is read and for the section's data to be read directly (if possible) into these data

structures.

The rest of this chapter �rst discusses how three design and implementation issues

were solved and then goes on to describe the LMDES �le format in detail. To facilitate

describing the LMDES �le format, it is broken up into seven logical components: a �le

header and six sections. To aid in the discussion of each of these components, examples

are pulled from the LMDES �le form.lmdes, which is included in Appendix E. This

LMDES �le was produced from the example HDMES �le form.hmdes that was used in

Chapter 2 (also in Appendix A).

4.2 Total String Size

One limitation of using fscanf() that must be dealt with is that reading a string �eld

into a bu�er that is too small will cause undetected memory corruption. A typical solution

is to read the string into a very large bu�er, determine the string's length, allocate an

appropriately sized bu�er for it, and copy it to this bu�er. This is an acceptable solution

but it was not the one taken by the LMDES reader (described in Chapter 5). The

27

LMDES reader made use of the total string size statistic that is present in each section's

header. This statistic allows the LMDES reader to allocate a block of memory for each

section's string data before the section's data are read in. The LMDES reader then reads

the section's strings directly into this block of memory with each string placed just after

the previous string's terminator. By using this total string size statistic, the LMDES

reader never has to be concerned about bu�er over
ow, and the reader's performance is

enhanced slightly because a string copy is not required.

4.3 Mask Width

The internal representation of MDES uses bit �elds in several places for e�ciency

reasons. Several of these bit �elds cannot be reasonably restricted to 32 bits, so an array

of 32 bit words is needed. The dimension of this array is referred to as the mask width

(because these bit �elds are often used in masking operations). A bit �eld is logically

considered a continuous block of bits and a bit may be addressed by an ID between zero

and n-1 (where n is the maximum number of bits allowed to be addressed). In the array

representation of this bit �eld, the 0th word of the array contains bits 0 through 31, the

1st word contains 32-63, and so on. The lowest numbered bit in each word is the least

signi�cant bit.

The LMDES �le representation of a bit �eld is the contents of each word in the

array printed in hex and separated by a space. The contents of the leftmost word in the

LMDES representation corresponds to the 0th word in the array.

28

4.4 Internal IDs

After the LMDES �le is read in, the MDES internal data structures use pointers

to represent the relationship between the various sections' entries. Since the value of a

pointer to a section's entry cannot be put into the LMDES �le, the pointer's value is

converted into the internal ID of the desired section's entry. Every entry has an internal

ID, which is set to 0 for the �rst entry in each section and is incremented by 1 for each

additional entry in that section. By design, the internal ID is also the entry's index in

each section's array of entries. Since internal IDs are only unique within a section, the

section referred to must always be implied by context. To make the LMDES �le more

readable by humans, these internal IDs are printed out as the �rst �eld of each entry.

4.5 LMDES File Header

The �le header speci�es the number of predicate, destination, source and synchro-

nization operands that the processor's instruction set supports. In addition, the type of

processor (superscalar or VLIW) is speci�ed. The �le starts with an identi�er string to

prevent parsing of non-LMDES �les. An example of an LMDES �le header is shown in

Figure 4.1. The rest of this section contains a line by line description of the LMDES �le

header, referencing lines from the example.

The �rst line of Figure 4.1 is an LMDES �le identi�er. It prevents parsing of non-

LMDES �les and LMDES �les using out-of-date formats. The number indicates the

format version and is incremented with every LMDES format change. If an unexpected

29

Lmdes Version 2

proc_model: 0

sizes: 0 2 4 3 3 0 1

Figure 4.1: Example header section from the form.lmdes �le

version is encountered, the LMDES reader routine exits and advises the user that either

the LMDES �le has to be regenerated from the HMDES �le or that the program has to

be linked to the new version of the LMDES reader. This version number di�ers from the

\Version" found in the HMDES �le in that it indicates the format of the LMDES �le,

not the HMDES �le.

The third line (counting the blank line) of Figure 4.1 speci�es a superscalar (0) or

VLIW (1) processor model. The last line of Figure 4.1 speci�es the number of each type

of operand and information about scheduling slots. The numbers, from left to right,

specify:

1. the number of predicate operands (predicates),

2. the number of destination operands (dest operands),

3. the number of source operands (source operands),

4. the number of incoming synchronization operands (src syncs),

5. the number of outgoing synchronization operands (dest syncs),

6. the maximum scheduling slot ID, and

7. the number of scheduling slots.

The names in the parenthesis indicate the names used in the HMDES De�ne section

(Section 2.7) to set these values.

30

4.6 LMDES Section Delimiters

There are six sections in an LMDES �le. They all begin with

section name begin parameters

and end with

section name end

where section name is the section name and parameters is one or more integers that

specify information about the section. All the six sections described in this chapter

must be present in the LMDES �le and they must appear in the order described in this

chapter. This ordering allows all references to other sections to be resolved in one pass

of the LMDES �le. The description of the six sections follow.

4.7 IO Sets

The information in the IO Sets section is used by the MDES compiler interface to

specify what operands a speci�c instruction has (using the external IDs) and by the

MDES data structures to specify what operands each scheduling alternative may have

(using the internal IDs which are described in Section 4.4). The external IDs were

speci�ed in the HMDES �le using C header �les as described in Section 2.4. Each ID

(external or internal) maps to a set of one or more operand types, which is represented

with a bit �eld. Each bit in this bit �eld corresponds to an operand type that was de�ned

in the HMDES Register �les section (see Section 4.3 for more details on bit �elds).

31

IO_Sets_begin 1 4 7 0 4 32

0 0 NULL 00000001

1 1 GPR 00000002

2 2 Lit8 00000004

3 3 Lit16 00000008

4 4 REG 00000002

5 -1 ANY 0000000f

6 -1 LIT 0000000c

IO_Sets_end

Figure 4.2: Example IO Sets speci�cation section from the form.lmdes �le

The information in the IO Sets section corresponds to a subset of the information

in the HMDES Register Files section and all the information in the HMDES IO Sets

section. Some of the information in the Register Files section (namely, register �le width

and capacity information) is not present in the LMDES �le because it contained too little

information to do MDES based register allocation.

An example IO Sets section is shown in Figure 4.2. Using lines from this example,

the IO Sets section header and the IO Sets section entries are described.

The �rst line of Figure 4.2 is the IO Sets section header. The numbers in the header,

from left to right, specify:

1. the IO set mask width (see Section 4.3 for details),

2. the number of bits used in IO set mask,

3. the total number of IO sets,

4. the external ID of the \NULL" IO set,

5. the maximum external IO set ID, and

6. the section's total string size (see Section 4.2 for details).

32

IO_Items_begin 9 81

0 IOI_Store 0 0 4 5 4 0

1 IOI_Load 4 0 4 5 0 0

2 IOI_Std 4 0 4 4 0 0

3 IOI_Stdi 4 0 4 2 0 0

4 IOI_ubri 0 0 4 0 0 0

5 IOI_cbr 0 0 4 2 6 0

6 IOI_cbri 0 0 4 2 4 0

7 IOI_call 4 0 6 0 0 0

8 IOI_calli 4 0 4 0 0 0

IO_Items_end

Figure 4.3: Example IO Items speci�cation section from the form.lmdes �le

After the header comes the IO Sets entries. Each entry consists of one line with four

�elds. The second line of Figure 4.2 is an example of an IO Sets entry. The entry's �elds,

from left to right, specify:

1. the internal ID (see Section 4.4 for details),

2. the external ID (-1 indicates none speci�ed),

3. the name of the IO set, and

4. the bit �eld representing a set of operand types.

4.8 IO Items

The entries in the IO Items section are operation operand templates, which specify

what operands may be used in each scheduling alternative. The entries use IO Sets entry

internal IDs, one for each possible operand in an operation, to indicate what operand

type may be used. An example IO Items section is shown in Figure 4.3. Using lines from

this example, the IO Items section header and the IO Items section entries are described.

33

The �rst line of Figure 4.3 is the IO Items section header. The numbers in the header,

from left to right, specify:

1. the number of IO items, and

2. the total string size (see Section 4.2 for details).

After the header comes the IO Items entries, each consisting of one line with a variable

number of �elds (depending on the number of operands an operation can have). The

second line of Figure 4.3 is an example IO Items entry. The �rst two �elds, from left to

right, specify:

1. the internal ID and

2. the IO item's name.

The remaining �elds are IO Sets entry internal IDs, one for each possible operand

that an operation can have. These �elds, from left to right, specify the internal IDs for

each:

1. predicate operand (none in the example),

2. destination operand (two in the example: dest0, dest1), and

3. source operand (four in the example: src0, src1, src2, src3).

4.9 Resources

The Resources section lists all the resources used to model the scheduling constraints

for the processor. Each Resources entry consists of an internal ID and a name. These

internal IDs are used as bit indices in the ResList section (see Section 4.10 for details).

An example Resources section is shown in Figure 4.4. Using lines from this example, the

34

Resources_begin 2 17

0 slot[0]

1 ialu0[0]

Resources_end

Figure 4.4: Example Resources section from the form.lmdes �le

Resources section header and the Resources section entries are described. The �rst line

of Figure 4.4 is the Resources section header. The numbers in the header, from left to

right, specify:

1. the number of resources, and

2. the total string size (see Section 4.2 for details).

After the header come the Resources entries, each consisting of one line with two

�elds. The second line of Figure 4.4 is an example Resources entry. The �elds, from left

to right, specify:

1. the internal ID (which is used as a bit index) and

2. the resource's name (which includes the square brackets and number).

4.10 ResList

ResList entries are used by the operations section (Section 4.12) to specify what

resources an operation requires as it executes. Each ResList entry consists of a list of

resource usage entries, where each resource usage entry speci�es a resource usage start

and stop time (resources may be used for multiple cycles) and a set of resource usage

options, where any one of the resource usage options may be selected (see Section 2.12).

35

The ability to specify more than one resource option is useful when, for example, there

are several scheduling slots that an operation may be scheduled into or there are several

functional units that support an operation. Each resource usage option may specify more

than one resource (a bit �eld is used, using the Resources entry internal ID as a bit ID)

but the HMDES-to-LMDES translator does not currently take advantage of this.

When scheduling an operation, there are often constraints on which scheduling slot

that operation may be placed in (usually due to control, anti, and output dependencies).

To allow the resource manager to determine which resource usage entry corresponds

to scheduling slot options, the ResList entries are organized so that all the scheduling

slot options are in the �rst resource usage entry of each ResList entry. To facilitate

determination of what slot option corresponds to which slot (since they are bit �elds),

an array of slot IDs (one for each slot option) is included in each ResList entry.

An example ResList section is shown in Figure 4.5. Using lines from this example, the

description of the components of the ResList section is given. The �rst line of Figure 4.5

is the ResList section header. The ResList header from the example is shown above. The

numbers in the header, from left to right, specify:

1. the number of ResList entries,

2. the total number of resource usage entries in all the ResList entriess,

3. the total number of scheduling slot options in all the ResList entries,

4. the total number of resource usage options in all the ResList entries,

5. the resource mask width (see Section 4.3 for more details), and

6. the total string size (see Section 4.2 for more details).

36

ResList_begin 2 3 2 3 1 15

0 RL_IBr 1 1 1

0

0 0 1

00000001 00000000

1 RL_IAlu 2 1 2

0

0 0 1

00000001 00000000

0 0 1

00000002 00000000

ResList_end

Figure 4.5: Example ResList section from the form.lmdes �le

The �rst line of each ResList entry is the entry header. The second line of Figure 4.5

is an example of a ResList entry header. The entry header's �elds, from left to right,

specify:

1. the ResList's internal ID,

2. the ResList's name,

3. the number of resource usage entries,

4. the number of slot options, and

5. the number of resource manager entries required.

The second line of each ResList entry gives the scheduling slots that an operation

with this ResList can use (see introduction of this section for more details). The third

line of Figure 4.5 is an example of a list of scheduling slots.

The remaining lines in the ResList entry are resource usage entries. Each resource

usage entry has a line for its header and then a line for each resource usage option. The

37

fourth line of Figure 4.5 is an example resource usage entry header. The header's �elds,

from left to right, specify:

1. the resource usage start time,

2. the resource usage end time, and

3. the number of resource usage options.

After the resource usage header there is one line for each resource usage option. The

�fth line of Figure 4.5 is the only resource option for the �rst resource usage entry in the

�rst ResList entry. The resource option �elds, from left to right, specify:

1. the unconditional resource usage mask (which is a bit �eld; see Section 4.3 for more
details),

2. the predicated resource usage mask.

The predicated resource usage mask will be all zeros until the HMDES language is ex-

tended to handle predicated resource usage.

4.11 Latencies

The Latencies section entries are used by the Operations section (see Section 4.12)

to specify when all operation's operands are read (predicate, source, or incoming sync

operands) or written (destination or outgoing sync operands). This information can

then be used to calculate dependence distances for
ow, anti, output, and control depen-

dencies. The Latencies section entries also indicate when exceptions are handled. An

example Latencies section is shown in Figure 4.6. Using lines from this example, the

Latencies section header and the Latencies section entries are described.

38

Latencies_begin 4 22

0 Lat1 1 1 0 0 0 0 0 0 0 0 0 0 0

1 Lat1m 2 1 0 0 0 0 0 1 0 0 0 0 0

2 Lat2 2 1 0 0 0 0 0 0 0 0 0 1 0

3 Lat2m 2 2 0 0 0 0 0 0 0 0 1 0 0

Latencies_end

Figure 4.6: Example Latencies section from the form.lmdes �le

The �rst line in Figure 4.6 is the Latencies section header. The numbers in the header,

from left to right, specify:

1. the number of Latencies section entries and

2. the total string size (see Section 4.2 for details).

After the header comes the Latencies section entries. Each entry consists of one line

and has a variable number of �elds (depending on the number of operands and syncs that

an operation can have). The second line of Figure 4.6 is an example Latencies section

entry. The �rst three �elds, from left to right, specify:

1. the entry's internal ID,

2. the entry's name, and

3. the exception latency.

The remaining �elds, from left to right, specify the latency for each:

1. predicate operand (none in the example),

2. destination operand (two in the example: dest0, dest1),

3. source operand (four in the example: src0, src1, src2, src3),

4. incoming sync operand (three in the example: sync in0, sync in1, sync in2), and

5. outgoing sync operand (three in the example: sync out0, sync out1, sync out2).

39

4.12 Operations

Each Operations section entry consists of an opcode, the opcode's name, a set of

opcode
ags (used to indicate branches, memory operations, etc.), and a set of alterna-

tives. The set of alternatives speci�es the di�erent ways that an instruction with this

opcode can use the resources of the processor. Not all alternatives for an opcode are the

same. Each alternative can specify what type of operands it expects (using an IO set

ID), the time at which it reads and writes each operand (using a latency entry ID), what

resources it requires (using a ResList entry ID), what special properties (such as being

nontrapping) that it may have (using the alternative's
ags), and the assembly language

name for it. Using this information, the compiler can model how instructions use the

processor's resources.

An example Operations section is shown in Figure 4.7. Using lines from this example,

the contents of the Operations section are described. The �rst line of Figure 4.7 is an

Operations section header. The numbers in the header, from left to right, specify:

1. the number of Operations section entries,

2. the total number of alternatives,

3. the maximum opcode de�ned, and

4. the total string size (see Section 4.2 for more details).

After the section header comes the operation entries, each containing a list of alterna-

tive entries. The �rst line of each operation entry is an operation header. The second line

of Figure 4.7 is an example of an operation header. The �elds in the operation header,

from left to right, specify:

40

1. The operation's opcode,

2. the opcode's external name,

3. the number of alternatives for this opcode,

4. the opcode's
ags in hex.

After the operation header is a list of alternative entries, one per line. The third line

of Figure 4.7 is the only alternative entry for the �rst operation entry. The �elds, from

left to right, specify:

1. the assembly language name for this alternative,

2. the alternative's
ags in hex,

3. the internal ID of an IO item,

4. the internal ID of a ResList entry, and

5. the internal ID of a latency entry.

41

Operations_begin 8 11 500 125

1 Lop_BEQ 1 00000041

jmpt 00000000 5 0 2

2 Lop_BNE 1 00000041

jmpf 00000000 5 0 2

3 Lop_RTS 1 00000042

jmpi 00000000 4 0 2

4 Lop_JSR 2 00000044

call 00000000 7 0 2

calli 00000000 8 0 2

5 Lop_ADD 2 00000000

add 00000000 2 1 0

add 00000000 3 1 0

500 LAMDop_SUBR 2 00000000

subr 00000000 2 1 0

subr 00000000 3 1 0

6 Lop_LD_I 1 00000028

load 00000000 1 1 3

7 Lop_ST_I 1 00000030

store 00000000 0 1 1

Operations_end

Figure 4.7: Example Operations section from the form.lmdes �le

42

5. MDES INTERNAL REPRESENTATION

5.1 Introduction

This section describes the internal representation of the MDES. Ten data structures

are used to hold the information contained in the LMDES �le described in Chapter 4.

These structures are used by the MDES interface functions described in Chapter 6 and

by the resource usage (RU) manager (which is not described in this thesis). In addition,

the Mdes Info structures, which are built using the functions described in Section 6.4,

are also brie
y described.

5.2 The Mdes Data Structure

The Mdes structure is the \root" data structure for the MDES internal representation

and is shown in Figure 5.1. In IMPACT, after the MDES is loaded, the pointer \lmdes"

points at an initialized structure of this type.

43

typedef struct mdes_st

{

char *file_name;

int processor_model; /* MDES_SUPERSCALAR, MDES_VLIW */

int number[5]; /* Number of each operand/sync type */

int offset[5];

/* Offset for each operand/sync type */

char *name[5]; /* Name of each operand/sync type */

int operand_count;

int latency_count;

int num_slots;

int max_slot;

int IOmask_width;

int num_reg_files;

int max_IO_set_id;

int null_external_id;

Mdes_IO_Set **IO_set_table; /* Indexed by external id */

int num_IO_sets;

Mdes_IO_Set *IO_set;

int num_IO_items;

Mdes_IO_Item *IO_item;

int num_resources;

Mdes_Resource *resource;

int num_reslists;

int Rmask_width;

Mdes_ResList *reslist;

int num_latencies;

Mdes_Latency *latency;

int num_operations;

Mdes_Operation *operation;

int max_opcode;

Mdes_Operation **op_table; /* Indexed by opcode */

Mdes_IO_Set **operand_type_buf; /* Used by Build_Mdes_Info */

} Mdes;

Figure 5.1: MDES internal representation: Mdes structure

44

The Mdes structure's main purpose is to provide size information for all the arrays

used to hold the MDES information and to provide pointers to those arrays. This in-

formation was put into the Mdes structure instead of storing it in global variables to

prevent naming con
icts and to allow for the possibility of loading more than one MDES

at a time.

The Mdes structure also contains the relevant information for the HMDES De�ne

section (see Section 2.7), some information useful when printing error messages, and

some summary �elds for values that are used as array dimensions.

The �elds that contain the HMDES De�ne section information are processor model

and number[5]. The processor model contains either MDES SUPERSCALAR or MDES VLIW

and is accessed with the interface function mdes processor model() (see Section 6.8).

The number[5] array contains the number of each type of operand (pred, dest, src,

sync in, and sync out) and is indexed by MDES PRED, MDES DEST, MDES SRC,

MDES SYNC IN, and MDES SYNC OUT. The array is accessed by the interface func-

tion mdes num operands() (see Section 6.4).

The �elds used for error messages are �le name and name[5]. The LMDES �le name

that was read to create the MDES is stored in �le name. The name[5] array contains

the string name of each type of operand (accessed using the same constants as number[5]

above). These �elds and the �elds that store each MDES section entry's name are used

extensively to make error messages readable and useful.

45

The �elds that contain summary information used as array dimensions are operand count,

latency count, num slots, and the obsoletemax slot. The �eld operand count contains the

sum of the number of pred, dest, and src operands. The �eld latency count contains the

sum of the number of pred, dest, src, sync in, and sync out operands. These two �elds are

used internally by the Mdes IO Item and Mdes Latency structures respectively to deter-

mine array sizes. They are also used when calling the interface functions build mdes info()

(Section 6.4) and mdes calc min ready time() (Section 6.11) respectively to determine the

size of an array argument.

The �eld num slots speci�es the number of scheduling slots the MDES supports and

max slot speci�es the max scheduling slot ID. The early versions of MDES allowed non-

contiguous numbering of slots (i.e., 1, 3, 5) and required both numbers. The MDES

described in this document requires slot IDs to be contiguous numbers starting with 0

(i.e., 0, 1, 2, 3). This makes max slot unneeded since it is always num slots - 1. The

num slots �eld is used by the resource usage manager to allocate the space for each cycle's

instructions. It is accessed with the interface function mdes total slots() (see Section 6.8).

The �elds IO set, IO item, resource, reslist, latency, and operation are pointers to ar-

rays of structures. Each element in these arrays represents section entries in the LMDES

and are indexed by the entry's internal ids (see Section 4.4). The length of each ar-

ray is speci�ed in the �elds num IO sets, num IO items, num resources, num reslists,

num latencies, and num operations. The remaining �elds specify more information about

IO sets and operations.

46

The �eld num reg �les speci�es the number of entries in the HMDES Register Files

section. This number also corresponds to the number of distinct operand types speci�ed

in the MDES (see Section 2.8). The IO set structure contains a set of these operand

types which is represented as a bit �eld and the �eld IOmask width speci�es the length

of this bit �eld, in terms of 32 bit words (see Section 4.3 for more details). Similarly, the

Rmask width �eld speci�es the width of the resource bit �eld.

In addition to accessing the IO Set and Operation structures with internal ids, these

structures also can be accessed using external (user de�ned) ids (see Section 2.4). The

arrays IO set table and op table are indexed by external ids instead of internal ids and

contain pointers to the entries stored in IO Set and Operation structures. These arrays

may have NULL pointers in them if external ids are not contiguous and the lengths of

the arrays are max IO set id + 1 and max opcode + 1. Negative external ids are not

allowed. The �eld null external id contains the external id for the NULL register �le and

is used by the initialization section of the build mdes info() routine.

5.3 The Mdes IO Set Data Structure

The Mdes IO Set structure (Figure 5.2) holds the IO Sets entry information. An

array of these structures is allocated, one for each LMDES IO Sets entry. This array

is accessed using the IO set pointer and the IO set table array of pointers in the Mdes

structure. As described in Section 4.7, each LMDES IO Set entry associates an external id

given in the external id �eld, with a set of operand types given in the bit �eld pointed

47

typedef struct mdes_IO_set_st

{

int id;

int external_id;

char *name;

int *mask;

} Mdes_IO_Set;

Figure 5.2: MDES internal representation: Mdes IO Set structure

typedef struct mdes_IO_item_st

{

int id;

char *name;

Mdes_IO_Set **operand_type;

} Mdes_IO_Item;

Figure 5.3: MDES internal representation: Mdes IO Item structure

to by mask. This bit �eld is actually an integer array whose length is given by the Mdes

structure's �eld IOmask width. The name �eld is used for error messages (mainly in

build mdes info()) and the id �eld contains the internal id (or array index) for this entry

which simpli�es debugging.

5.4 The Mdes IO Item Data Structure

The Mdes IO Item structure shown in Figure 5.3 holds the IO Item entry information

described in Section 4.8. An array of these structures is allocated, one for each LMDES

IO Item entry. This array is accessed using the IO Item pointer in the Mdes structure.

To summarize, these entries are operand templates for operations where the template

48

typedef struct mdes_resource_st

{

int id;

char *name;

} Mdes_Resource;

Figure 5.4: MDES internal representation: Mdes Resource structure

is stored in operand type. This template is an array of Mdes IO Set pointers of length

(Mdes's) operand count. Operand indexes, described in Section 6.10, are used to index

this array. The internal id and name of the IO Item entry are preserved in the �elds id

and name for debugging purposes.

5.5 The Mdes Resource Data Structure

The Mdes Resource structure (Figure 5.4) contains a resource's name and internal id

(see Section 4.9). Although not directly needed by any scheduling functions, it is kept to

allow resource names to be used in debugging/informational messages.

5.6 The Mdes ResList Data Structure

The Mdes ResList structure (Figure 5.5) holds the LMDES ResList entry information

described in Section 4.10, with one structure for each ResList entry. This array of struc-

tures is accessed using the Mdes structure's reslist pointer. The resource usage entries

that made up part of each ResList entry are represented by the Mdes Rused structure

(Figure 5.6). The resource usage options that made up part of each resource usage entry

are represented by the Mdes Rmask structure (Figure 5.7).

49

typedef struct mdes_reslist_st

{

int id;

char *name;

int num_used;

Mdes_Rused *used;

int num_slot_options; /* Number of slot options for this ResList*/

int *slot_options; /* slot numbers, in mdes order (not sorted)*/

int num_RU_entries_required;

} Mdes_ResList;

Figure 5.5: MDES internal representation: Mdes ResList structure

typedef struct mdes_Rused

{

int start_usage;

int end_usage;

int num_options;

Mdes_Rmask *option;

} Mdes_Rused;

Figure 5.6: MDES internal representation: Mdes Rused structure

typedef struct mdes_rmask_st

{

int *uncond;

int *pred;

} Mdes_Rmask;

Figure 5.7: MDES internal representation: Mdes Rmask structure

50

The root data structure, Mdes ResList, contains a pointer to an array (used) of

Mdes Rused structures, with length num used, that describes the resources used by the

operation. For each resource used (such as an ALU), the structure Mdes Rused speci�es

the start usage and end usage times and a pointer to an array (option) of Mdes Rmask

structures, with length num options, that describes the scheduling options for that re-

source usage entry. The structure Mdes Rmask represents each of these scheduling op-

tions where uncond is a pointer to a bit �eld representing a set of resources used un-

conditionally and pred is a pointer to a bit �eld representing a set of resources used if

operation is predicated and the predicate is true. Currently, uncond will only specify one

resource (such as ALU1) and pred will specify zero resources. IMPACT's resource usage

manager (not described in this document) was written to use both uncond and pred but

the current HMDES speci�cation does not allow predicated resources to be speci�ed.

To facilitate determining the valid scheduling slots, the valid scheduling slots are

listed in an array of length num slot options accessed using slot options. The use of

this array is described in detail in Section 6.10. Also to make allocating memory more

e�cient, the number of resource usage entries required for this resource list is indicated

by num RU entries used. The id and name �eld are kept for use during debugging.

5.7 The Mdes Latency Data Structure

The Mdes Latency structure in Figure 5.8 is the internal representation of an LMDES

Latency entry described in Section 4.11. The operand latency �eld points to an array

51

typedef struct mdes_latency_st

{

int id;

char *name;

int exception;

int *operand_latency;

} Mdes_Latency;

Figure 5.8: MDES internal representation: Mdes Latency structure

typedef struct mdes_operation_st

{

int id;

int opcode;

char *external_name;

int num_alts;

Mdes_Alt *alt;

int op_flags;

int heuristic_alt; /* Used for heuristics */

} Mdes_Operation;

Figure 5.9: MDES internal representation: Mdes Operation structure

of length latency count (from the Mdes structure), containing the use time for all of an

operation's operands. Operand indexes, described in Section 6.10, are used to index this

array. The exception �eld stores the time an exception is reported if it occurs. The id

and name �elds are preserved for debugging purposes.

5.8 The Mdes Operation Data Structure

The Mdes Operation structure, shown in Figure 5.9, associates an opcode with an

array of scheduling alternatives (alt) of length num alts and to a set of
ags (op
ags)

52

typedef struct mdes_alt_st

{

int id;

char *asm_name;

int alt_flags;

struct mdes_operation_st *operation;

Mdes_IO_Item *IO_item;

Mdes_ResList *reslist;

Mdes_Latency *latency;

} Mdes_Alt;

Figure 5.10: MDES internal representation: Mdes Alt structure

that are used to characterize the operation. The
ags are accessed using the op
ag set()

function described in Section 6.7. To aid in debugging, the opcode �eld is the numerical

opcode associated with this operation by the external name in the HMDES �le and id is

this operation's internal id.

For each scheduling alternative, the structure Mdes Alt (Figure 5.10) speci�es the

operand template (IO item), the resources used (reslist), the operand use times (la-

tency), the assembly name to emit for this alternative (asm name), and the alternative's

ag settings (alt
ags). The alt
ags are accessed using the routines alt
ags set() and

any alt
ags set() described in Section 6.7. The IO item, reslist, and latency �elds are

just pointers to the structures indicated in the �gure and described in earlier sections.

The id �eld is the entry's internal id and the operation �eld is a pointer back to the

operation the alternative is associated with.

53

typedef struct mdes_info_st

{

int opcode;

int num_compatible_alts;

Mdes_Compatible_Alt *compatible_alts; /* Linked list */

} Mdes_Info;

Figure 5.11: MDES internal representation: Mdes Info structure

typedef struct mdes_compatible_alt_st

{

Mdes_Alt *alt;

struct mdes_compatible_alt_st *next;

} Mdes_Compatible_Alt;

Figure 5.12: MDES internal representation: Mdes Compatible Alt structure

5.9 The Mdes Info Data Structure

The Mdes Info structure shown in Figure 5.11 is returned by the function build mdes info()

described in Section 6.4. It serves as a header to a linked list of valid scheduling alter-

natives compatible alts of length num compatible alts for an operation. The opcode �eld

is used for error messages in functions that take an Mdes Info structure instead of an

opcode.

The linked list is made of up of the Mdes Compatible Alt structures shown in Fig-

ure 5.12. The alt �eld points to an alternative structure in the MDES data structure.

The alternative structure is not a copy, so it may not be modi�ed in any way. The next

�eld is used to form the linked list.

54

6. MDES INTERFACE FUNCTIONS

6.1 Introduction

This chapter explains how to use all of the machine description (MDES) compiler

interface functions; most of themwere designed for use by code schedulers and dependence

graph builders. There are relatively few functions because the MDES resource usage

information may only be accessed by the resource usage (RU) manager, and the RU

manager (which is not described in this document) uses the MDES data structures (which

are described in Chapter 5) directly. The RU manager's interface consists mainly of two

functions, one to determine if an operation can be scheduled in a certain cycle, and one

to schedule it in a cycle.

The MDES information available through these interface functions includes operation

classi�cation (load, store, jump, etc.), operation latencies, processor model, and number

of scheduling slots. Other functions create and free MDES data structures needed by

55

void L_init_lmdes (char *mdes_file_name);

int lmdes_initialized (void);

/* Use IMPACT interfaces instead of the generic, if possible */

Mdes_Info *build_mdes_info (int opcode, /* Generic interface */

int *io_list);

void L_build_oper_mdes_info (L_Oper *op); /* IMPACT interface */

void L_build_cb_mdes_info (L_Cb *cb); /* IMPACT interface */

void free_mdes_info (Mdes_Info *info); /* Generic interface */

L_free_oper_mdes_info (L_Oper *op); /* IMPACT interface */

L_free_cb_mdes_info (L_Cb *cb); /* IMPACT interface */

int op_flag_set (int opcode, int mask);

int alt_flag_set (int opcode, int alt_no, int mask);

int any_alt_flag_set (Mdes_Info *mdes_info, int mask);

int mdes_defined_opcode (int opcode);

int mdes_heuristic_alt_id (int opcode);

int mdes_max_opcode (void);

int mdes_operand_count (void);

int mdes_latency_count (void);

int mdes_num_operands (int operand_type);

int mdes_processor_model(void);

int mdes_total_slots(void);

int operand_index (int operand_type, int operand_number);

int max_operand_time (Mdes_Info *mdes_info, int operand_index);

int min_operand_time (Mdes_Info *mdes_info, int operand_index);

int mdes_operand_latency (int opcode, int alt_no, int operand_index);

int mdes_calc_min_ready_time (Mdes_Info *mdes_info, int *ready_times);

int mdes_max_completion_time (int opcode, int alt_no);

Figure 6.1: MDES interface function prototypes

56

the RU manager. The function prototypes for all the interface functions are shown in

Figure 6.1.

6.2 Quick Start

The following is a brief summary of the functions used to initialize the MDES so

that the MDES interface functions may be called. This summary assumes the use of

the IMPACT compiler and references IMPACT speci�c data structures which are not

described in this document.

Use L init lmdes() to initialize the MDES internal data structures using the LMDES

�le name passed as an argument. For e�ciency reasons, this function should be called

only once. After this function is called, the MDES interface functions that do not have an

mdes info argument may be used. These functions include returning the machine model,

returning the number of each type of operand, and determining opcode
ags.

To use the remaining functions, which are mainly necessary for scheduling, the Mdes Info

structure must be built for each op. In the IMPACT compiler, this can be done using

either:

void L build oper mdes info (L Oper *op); or

void L build cb mdes info (L Cb *cb); .

The function L build oper mdes info is an IMPACT interface function that uses IM-

PACT's Mspec to build an io list (an encoding of the operands that the MDES can

understand) for the op. It then uses the io list to call the build mdes info() function

57

(described in Section 6.4), which scans the MDES and creates a linked list of all the valid

alternatives for the operation based on its opcode and its operands. This information is

stored in the Mdes Info structure (Section 5.9) and is placed in the mdes info �eld of the

op. The L build cb mdes info() function calls L build oper mdes info() for each op in the

cb.

6.3 Loading an LMDES

The L init lmdes() function is used to load an LMDES �le into memory. This

must be done before any MDES interface functions are called. For e�ciency reasons,

L init lmdes() should be called only once unless it is necessary to load a di�erent LMDES

�le and the function lmdes initialized() can be used to determine if an LMDES �le has

been loaded (returns 1 if loaded, 0 otherwise). In IMPACT, the LMDES �le name spec-

i�ed in the parameter �le is stored in the global variable L lmdes �le name. A typical

IMPACT code sequence is shown below.

if (!lmdes_initialized())

L_init_lmdes (L_lmdes_file_name);

6.4 Building Mdes Info Structures

The Mdes Info structure (Section 5.9) contains a list of valid scheduling alternatives

for a particular operation. Several MDES interface functions use this structure to narrow

the scope of the information they provide to only these alternatives and thus provide

58

more accurate information. Therefore, the Mdes Info structure must be built before

these functions can be used.

A valid scheduling alternative for an operation is an alternative that is compatible with

the operation's operands. The MDES function shown below will return an Mdes Info

structure with a list of valid scheduling alternatives.

Mdes Info *build mdes info (int opcode, int *io list);

The opcode is the operation's opcode, and the io list is an integer array that speci�es

what each source, destination and predicate operand is. The expected size of the array

is determined by

int mdes operand count();

and the array index of each operand is determined with the function operand index() (see

Section 6.10 for a description of this function). The number of each type of operand can

be determined with the following function.

int mdes num operands (int operand type);

The type of each operand is speci�ed in the io list using an IO set speci�er of the

form

MDES OPERAND name

where name is the name of an HMDES register �le or IO set entry. For example, if all

instructions have one destination, two sources and no predicate operands, the io list for

the operation \mov r1, 1" might be:

io_list[operand_index(MDES_DEST, 0)] = MDES_OPERAND_REG;

io_list[operand_index(MDES_SRC, 0)] = MDES_OPERAND_Lit8;

io_list[operand_index(MDES_SRC, 1)] = MDES_OPERAND_NULL;

59

where MDES OPERAND REG, etc. have been #de�ned to be integers in a C header

�le and that C header �le was used by the HMDES-to-LMDES translator to map the

names to the assigned numbers (see Section 2.4 for more details).

6.5 Building Mdes Info Structures in IMPACT

In IMPACT, building the Mdes Info structure is done with the two functions shown

below.

void L build oper mdes info (L Oper *op);

void L build cb mdes info (L Cb *cb);

These functions build an Mdes Info structure for each op and places the pointers to

these Mdes Info structures in each op's mdes info �eld. The above functions call the

following Mspec function to obtain a function that takes an Lcode operand and returns

the appropriate integer ID for the operand:

IFPTR M mdes operand type();

The function that would be returned for the architecture described by form.hmdes is

shown in Figure 6.2.

6.6 Freeing Mdes Info Structures

The function that frees the memory allocated for the Mdes Info structure is shown

below.

void free mdes info (Mdes Info *info);

60

int M_operand_type_sample (operand)

L_Operand *operand;

{

/* If NULL operand pointer, then return MDES_OPERAND_NULL */

if (operand == NULL)

return MDES_OPERAND_NULL;

switch (operand->type)

{

case L_OPERAND_INT:

if (operand->value.i<256)

return MDES_OPERAND_Lit8;

else

return MDES_OPERAND_Lit16;

case L_OPERAND_MACRO:

case L_OPERAND_REGISTER:

return MDES_OPERAND_GPR;

case L_OPERAND_CB:

case L_OPERAND_LABEL:

case L_OPERAND_FLOAT:

case L_OPERAND_DOUBLE:

case L_OPERAND_STRING:

return MDES_OPERAND_Lit16;

default:

M_assert(0,"M_operand_type_sample : Unknown type");

}

}

Figure 6.2: Sample Mspec function for determining MDES operand type

61

The IMPACT interface also provides the following two functions.

void L free oper mdes info (L Oper *op);

void L free cb mdes info (L Cb *cb);

6.7 Opcode Speci�c Information

In the HMDES �le,
ags may be speci�ed for each opcode. These
ags in IMPACT

are used to specify types of instructions such as loads, stores, branches and function calls.

Other information also may be speci�ed, such as whether the instruction could cause an

exception. These
ags are #de�ned to be an integer that has one bit set, and they have

the form OP FLAG name. The op
ags used by form.hmdes in Section 2.15 are shown

again in Figure 6.3.

To determine if a
ag is set, use the function

int op
ag set (int opcode, int mask);

where mask is one or more
ags ORed together. The function returns 1 if any of the

ags in the mask are set, 0 otherwise. For example, the following call will return 1 if the

op is a memory operation:

op_flag_set (op->proc_opc, OP_FLAG_LOAD | OP_FLAG_STORE)

Flags may also be speci�ed for individual scheduling alternatives. In IMPACT, these

ags are used mainly to specify speculative versions of instructions. The alt
ags used

by form.hmdes in Section 2.15 are shown in Figure 6.4.

The following two functions are used to determine if alt
ags are set

62

#define OP_FLAG_CBR 0x00000001

#define OP_FLAG_RTS 0x00000002

#define OP_FLAG_JSR 0x00000004

#define OP_FLAG_LOAD 0x00000008

#define OP_FLAG_STORE 0x00000010

#define OP_FLAG_EXCEPT 0x00000020 /* Can cause exception */

#define OP_FLAG_NI 0x00000040 /* non-interlocking, has delay slot */

Figure 6.3: Sample op
ags used in form.hmdes

#define ALT_FLAG_SPEC 0x00000001 /* speculative form of instr */

Figure 6.4: Sample Alt Flags used in form.hmdes

int alt
ags set (int opcode, int alt no, int mask);

int any alt
ag set (Mdes info *mdes info, int mask);

The �rst function works similarly to the op
ags function, except a speci�c alternative

number must be speci�ed. This number is usually returned by the resource manager

to identify the alternative scheduled. The second function returns 1 if any of the valid

scheduling alternatives in Mdes info have the
ag set. In IMPACT, this function is used

to determine if there is a speculative version of the instruction that can be scheduled.

6.8 General Model Information

This section describes the functions for obtaining information and parameters about

the processor and machine description. To obtain the maximum opcode de�ned in the

MDES call the following function.

int mdes max opcode (void);

63

To determine if an opcode is de�ned (not all opcodes between 1 and the maximum need

to be de�ned) call the function shown below.

int mdes de�ned opcode (int opcode);

These last two functions are useful for building data structures that are indexed by

opcode. The processor model (MDES SUPERSCALAR or MDES VLIW) can be deter-

mined with the function shown below.

int mdes processor model (void);

The total number of scheduling slots (issue width) (from 0 to number - 1) is returned by

the function shown below.

int mdes total slots (void);

6.9 Scheduling Alternative IDs

For each opcode, one or more scheduling alternatives may be de�ned in the MDES.

The scheduling alternatives may di�er in the number and types of operands they expect

(see Section 6.4), the resources they use, the alternative
ags they have set (see Sec-

tion 6.7), and in the operand use times (see Section 6.11). For ease of identi�cation, each

of these scheduling alternatives is assigned a number from 0 to the number of alternatives

- 1. In functions with an alt no parameter are expecting a scheduling alternative ID.

The alternative used for each operation is determined when it is scheduled, and the

alternative's ID should be used if it is available. However, sometimes an alt no is needed

before scheduling and a heuristically chosen alternative must be used. In IMPACT, this

64

occurs in the �rst pass of the scheduler when a dependence graph is built to help calculate

each operation's initial scheduling priority. The heuristic to pick alternatives in this case

should be an optimistic one, so the function below chooses the alternative that produces

its results the earliest and, in the case of ties, chooses the lowest numbered alternative.

int mdes heuristic alt id(int opcode);

An opcode/alt no pair speci�es a single scheduling alternative for an instruction which

in turn speci�es the exact operand use times and alternative
ags for the operation. The

operands and resources used cannot be determined exactly from this information due

to the
exibility introduced by IO Items (Section 2.10) and scheduling options (Sec-

tion 2.14). This information can only be determined by calls to the resource usage

manager (which is not described in this document).

6.10 Operand Indexes

For ease of use, each possible operand position (such as dest[0] or src[2]) is assigned a

unique number called its operand index. These numbers range from 0 to the total number

of operand positions - 1. In addition to being passed directly to several MDES functions,

they are also used as array indexes when information about all of an operation's values are

passed to a function in array form. The array index of an operand position is determined

with

int operand index (int operand type, int operand number);

where the possible values for operand type are

1. MDES DEST for destination operands,

65

2. MDES SRC for source operands,

3. MDES PRED for predicate source operands,

4. MDES SYNC IN for incoming synchronization operands (dependencies), or

5. MDES SYNC OUT for outgoing synchronization operands,

and the operand number starts at 0, and enumerates the possible operands of each type.

For example, the operand index for src[0] would be determined with the function call

below.

operand_index(MDES_SRC, 0)

6.11 Operand Use Times

In the Latencies section of the HMDES, the read time of each src, pred and sync in

operands and the write time of each dest and sync out operands are speci�ed. These times

are used in IMPACT to determine dependence (
ow, anti, output, control) distances

between instructions. For example, to calculate a
ow dependence distance, subtract the

source's read time (say 0 cycles after initiation) from the destination's write time (say 1

cycle after initiation) to get a
ow dependence distance of 1. To obtain these times from

the MDES for each operand use the function

int mdes operand latency (int opcode, int alt no, int operand index);

where opcode is the operation's opcode, alt no is a scheduling alternative ID (see Sec-

tion 6.9), and operand index speci�es the operand of interest (see Section 6.10).

To �nd the maximumdestination latency for a scheduling alternative when the MDES

supports multiple destinations, use the following function:

66

int mdes max completion time (int opcode, int alt no);

To determine the earliest valid scheduling alternative which may be scheduled, given the

times all the operands are available, use

int mdes calc min ready time (Mdes Info *mdes info, int *ready times);

where the mdes info is described in Section 6.4 and ready times is an array containing

the ready time for each src, dest, and pred operand and is indexed using operand index()

(see Section 6.10). The expected length of the ready times array can be determined with

the function mdes latency count().

The ready times for dest operands indicate the �rst cycle each operand is available

for writing into the destination. The ready times for src and pred operands specify the

�rst cycle that those operands are available for reading. Please note that this function

does not prevent the ready time returned from being earlier than some of the sources are

available. This is legal in VLIW models, but can cause problems for superscalar models.

Therefore for superscalar models, the ready time returned may have to be increased to

the earliest valid cycle it may be scheduled.

67

7. CONCLUSIONS

This document has described the syntax and features of the HMDES language (Chap-

ter 2), how to use the HMDES-to-LMDES translator (Chapter 3), the format and rep-

resentation of the MDES information in the LMDES language (Chapter 4), the internal

representation of the MDES information in the compiler (Chapter 5), and the use of

the MDES interface functions (Chapter 6). Throughout this document, a small MDES

form.hmdes and supporting C header �les have been used to illustrate the concepts (Ap-

pendices).

All compilers, in order to produce good code, require a processor description to base

code generator and scheduling on. The MDES was designed as a tool to �ll this need.

It provides a
exible way for a wide variety of processor models to be speci�ed. The use

of the MDES tools would eliminate the need for compilers for new processor models to

design their own speci�cation language with the added bene�t of having more
exibility

than traditional, hard coded processor descriptions allow.

68

The MDES described in this document has been successfully used by the IMPACT

compiler since the Summer of 1993. It has been used to model both production RISC

and CISC processors, as well as several theoretical processor models. This has allowed

the accurate study of many new hardware features without the high implementation time

that such studies have taken in the past.

69

REFERENCES

[1] Hewlett-Packard Co., PA-RISC 1.1 Architecture and Instruction Set Reference Man-

ual. Cupertino, CA: Hewlett-Packard Co., 1990.

[2] M. Johnson, Am29000 User's Manual. Sunnyvale, CA: Advanced Micro Devices,
Inc., 1990.

[3] Intel Co., Intel486 Microprocessor Family Programmer's Reference Manual. Mt.
Prospect, IL: Intel Co., 1992.

[4] SPARC International, Inc., The SPARC Architecture Manual Version 8. Englewood
Cli�s, NJ: Prentice-Hall, Inc., 1992.

[5] SPARC International, Inc., The SPARC Architecture Manual Version 9. Englewood
Cli�s, NJ: Prentice-Hall, Inc., 1994.

[6] P. P. Chang, S. A. Mahlke, W. Y. Chen, N. J. Warter, and W. W. Hwu, \IMPACT:
An architectural framework for multiple-instruction-issue processors," in Proceedings

of the 18th International Symposium on Computer Architecture, pp. 266{275, May
1991.

70

APPENDIX A. FORM.HMDES

The HMDES �le used in some of the examples in this document, form.hmdes, is

shown below. This �le is syntactically correct and was translated to form.lmdes, shown

in Appendix E, using Lmdes build (described in Chapter 3). The processor modeled in

this �le is a single issue processor with a selected subset of the instructions found in a

typical RISC processor.

Sample format for hmdes files

by John Gyllenhaal

#

Sample processor model used based on:

AMD-29050 High-Level Machine Description by Roger A. Bringmann

#

Version1

Text replacement directive

$define HEADER_DIR /home/polaris1/gyllen/mthesis

(Define declaration

C_header_file "$HEADER_DIR$/ioform.h"

C_header_file "$HEADER_DIR$/opcform.h"

C_header_file "$HEADER_DIR$/flagform.h"

71

predicates 0

dest_operands 2

dest_syncs 3 # Used to construct control/sync dependences

source_operands 4

src_syncs 3 # Used to construct control/sync dependences

processor_model superscalar

end)

#

name ((capacity "static" "rotating") (width "size in bits"))

#

(Register_Files declaration

NULL ((capacity 0 0) (width 0))

GPR ((capacity 191 0) (width 32))

8 bit field for most arithmetic opcodes

Lit8 ((capacity 0 0) (width 8))

16 bit field for const and branch direct

Lit16 ((capacity 0 0) (width 16))

end)

#

name (reg_file1 ...)

#

(IO_Sets declaration

REG (GPR)

ANY (NULL GPR Lit8 Lit16)

LIT (Lit8 Lit16)

end)

#

name (<predicate0 ...>[dest0 ...][src0 ...])

(IO_Items declaration

IOI_Store ([][REG ANY REG])

IOI_Load ([REG][REG ANY])

Standard operand format

IOI_Std ([REG][REG REG])

IOI_Stdi ([REG][REG Lit8])

72

IOI_ubri ([][REG]) # uncond indirect

IOI_cbr ([][REG Lit8 LIT]) # cond

IOI_cbri ([][REG Lit8 REG]) # cond indirect

IOI_call ([REG][LIT -]) # call direct

IOI_calli ([REG][REG]) # call indirect

end)

Enumerate resources

If no explicit subscript is declared, it defaults to 0

(Resources declaration

slot[0]

ialu0

end)

If no explicit subscript is specified, it defaults to 0

#

This model defaults to the keyword slot if none are specified. Slot is

the issue slot.

(ResTables declaration

RL_IBr (

(slot[0] 0)

)

RL_IAlu (

(slot[0] 0)

(ialu0 0)

)

end)

name (exception_latency (pred0...) (dest0...) (src0...) (dest_sync0...)

(src_sync0...)

#

Defaults to zero if not present

(Latencies declaration

Lat1 (1 () (1 0) () () ())

Lat1m (2 () (1 0) () () (1))# for stores

Lat2 (2 () (1 0) () (0 1) ()) # for control

Lat2m (2 () (2 0) () (1) ()) # for loads

end)

73

name ((io_list, resource_list, latency) ...())

(Operation_class declaration

CL_cbr

(# conditional branches

(IOI_cbr RL_IBr Lat2)

)

CL_Std_IAlu

(# Standard one cycle IALU instructions

(IOI_Std RL_IAlu Lat1)

(IOI_Stdi RL_IAlu Lat1)

)

CL_Load

(# 2 Cycle load instructions

(IOI_Load RL_IAlu Lat2m)

)

CL_Store

(# 1 Cycle store instructions

(IOI_Store RL_IAlu Lat1m)

)

end)

#

op_name <opc_flags> (assembly_name <asm_flags> operation_class)

#

(Operations declaration

Lop_BEQ <CBR NI> (jmpt CL_cbr)

Lop_BNE <CBR NI> (jmpf CL_cbr)

Lop_RTS <RTS NI> (jmpi ((IOI_ubri RL_IBr Lat2)))

Lop_JSR <JSR NI> (call ((IOI_call RL_IBr Lat2)))

Lop_JSR <JSR NI> (calli ((IOI_calli RL_IBr Lat2)))

Lop_ADD (add CL_Std_IAlu)

LAMDop_SUBR (subr CL_Std_IAlu)

Lop_LD_I <EXCEPT LOAD> (load CL_Load)

Lop_ST_I <EXCEPT STORE> (store CL_Store)

end)

74

APPENDIX B. IOFORM.H

One of the C header �les used by form.hmdes (Appendix A), ioform.h, is shown below.

This header �le speci�es the external IDs for all of the Register Files section entries and

some of the IO Sets section entries found in form.hmdes.

/**

*

* File : ioform.h

* Description : Sample format for processor specific Register_File and

* IO_Set specifiers

* Date : November 1993

* Author : John Gyllenhaal

*

**/

/*

* Subset of AMD specific MDES Register_File and IO_Set

* specifiers (renumbered), taken from machine/m_amd.h

*/

#define MDES_OPERAND_NULL 0

#define MDES_OPERAND_GPR 1

#define MDES_OPERAND_Lit8 2

#define MDES_OPERAND_Lit16 3

75

#define MDES_OPERAND_REG 4

#define MDES_OPERAND_NIL 5

76

APPENDIX C. FLAGFORM.H

One of the C header �les used by form.hmdes (Appendix A),
agform.h, is shown

below. This header �le speci�es the operation and alternative
ags that may appear in

the Operations section entries in form.hmdes. The header �le also speci�es the bit set

for each of these
ags.

/**

*

* File : flagform.h

* Description : Sample format for MDES operation flags and

* MDES alternative flags.

* Date : November 1993

* Author : John Gyllenhaal

*

**/

/*

* Subset of standard Lcode MDES Operation flags (renumbered), taken from

* Lcode/l_flags.h

*/

#define OP_FLAG_CBR 0x00000001

#define OP_FLAG_RTS 0x00000002

#define OP_FLAG_JSR 0x00000004

77

#define OP_FLAG_LOAD 0x00000008

#define OP_FLAG_STORE 0x00000010

#define OP_FLAG_EXCEPT 0x00000020 /* Can cause exception */

#define OP_FLAG_NI 0x00000040 /* non-interlocking, has delay slot */

/*

* Subset of standard Lcode MDES Alternative flags (renumbered), taken from

* Lcode/l_flags.h

* Not used by form.hmdes, but included to show the name format.

*/

#define ALT_FLAG_SPEC 0x00000001 /* speculative form of instr */

78

APPENDIX D. OPCFORM.H

One of the C header �les used by form.hmdes (Appendix A), opcform.h, is shown

below. This header �le speci�es the opcode names that may appear in the Operations

section entries in form.hmdes. The header �le also speci�es the integer number that

represents each opcode in the compiler.

/**

*

* File : opcform.h

* Description : Sample format for standard Lcode opcode definitions

* and processor specific opcodes

* Date : November 1993

* Author: John Gyllenhaal

*

**/

/* Subset of standard Lcode opcodes (renumbered), taken from Lcode/l_opc.h */

#define Lop_BEQ 1

#define Lop_BNE 2

#define Lop_RTS 3

#define Lop_JSR 4

#define Lop_ADD 5

#define Lop_LD_I 6

79

#define Lop_ST_I 7

/*

* Subset of AMD processor specific opcodes (renumbered), taken from

* Lcode/lamd_phase1.h.

*/

#define LAMDop_SUBR 500

80

APPENDIX E. FORM.LMDES

The LMDES �le used in some of the examples in this document, form.lmdes, is

shown below. This �le was generated from form.hmdes (Appendix A) using Lmdes build

(described in Chapter 3).

Lmdes Version 2

proc_model: 0

sizes: 0 2 4 3 3 0 1

IO_Sets_begin 1 4 7 0 4 32

0 0 NULL 00000001

1 1 GPR 00000002

2 2 Lit8 00000004

3 3 Lit16 00000008

4 4 REG 00000002

5 -1 ANY 0000000f

6 -1 LIT 0000000c

IO_Sets_end

IO_Items_begin 9 81

0 IOI_Store 0 0 4 5 4 0

1 IOI_Load 4 0 4 5 0 0

2 IOI_Std 4 0 4 4 0 0

81

3 IOI_Stdi 4 0 4 2 0 0

4 IOI_ubri 0 0 4 0 0 0

5 IOI_cbr 0 0 4 2 6 0

6 IOI_cbri 0 0 4 2 4 0

7 IOI_call 4 0 6 0 0 0

8 IOI_calli 4 0 4 0 0 0

IO_Items_end

Resources_begin 2 17

0 slot[0]

1 ialu0[0]

Resources_end

ResList_begin 2 3 2 3 1 15

0 RL_IBr 1 1 1

0

0 0 1

00000001 00000000

1 RL_IAlu 2 1 2

0

0 0 1

00000001 00000000

0 0 1

00000002 00000000

ResList_end

Latencies_begin 4 22

0 Lat1 1 1 0 0 0 0 0 0 0 0 0 0 0

1 Lat1m 2 1 0 0 0 0 0 1 0 0 0 0 0

2 Lat2 2 1 0 0 0 0 0 0 0 0 0 1 0

3 Lat2m 2 2 0 0 0 0 0 0 0 0 1 0 0

Latencies_end

Operations_begin 8 11 500 125

1 Lop_BEQ 1 00000041

jmpt 00000000 5 0 2

2 Lop_BNE 1 00000041

jmpf 00000000 5 0 2

3 Lop_RTS 1 00000042

jmpi 00000000 4 0 2

4 Lop_JSR 2 00000044

call 00000000 7 0 2

82

calli 00000000 8 0 2

5 Lop_ADD 2 00000000

add 00000000 2 1 0

add 00000000 3 1 0

500 LAMDop_SUBR 2 00000000

subr 00000000 2 1 0

subr 00000000 3 1 0

6 Lop_LD_I 1 00000028

load 00000000 1 1 3

7 Lop_ST_I 1 00000030

store 00000000 0 1 1

Operations_end

