
MACHINE INDEPENDENT REGISTER ALLOCATION
FOR THE IMPACT-I C COMPILER

BY

RICHARD EUGENE HANK

B.S, University of Illinois at Urbana-Champaign, 1990

THESIS

Submitted in partial ful�llment of the requirements
for the degree of Master of Science in Electrical Engineering

in the Graduate College of the
University of Illinois at Urbana-Champaign, 1995

Urbana, Illinois

iii

ACKNOWLEDGEMENTS

I would �rst like to thank my advisor, Professor Wen-mei Hwu, for his guidance and

support. I have learned a great deal from him over the past few years and I look forward

to working with him in the future.

I wish to extend my appreciation to Pohua Chang, Scott Mahlke, William Chen, and

Roger Bringmann. Pohua's many suggestions helped a great deal during the implemen-

tation of the current register allocator. William Chen and Scott Mahlke answered my

many questions and provided their sage advice during the development of both the HP

PA-RISC code generator and the register allocator. Roger Bringmann's help was instru-

mental in the design of the machine independent interface and its integration into the

IMPACT code generation template.

I also would like to thank my brother Je� and my many friends, especially Bill,

Jeremy, and Sabrina, for their friendship and moral support. They have all made my life

in graduate school very enjoyable.

Finally, and most importantly, I extend my heartfelt appreciation to my parents, for

without their love and guidance I would not be here today.

iv

TABLE OF CONTENTS

Page

1. INTRODUCTION : 1

2. BACKGROUND : 3
2.1 Chaitin's Register Allocator : 4

2.1.1 Live range construction : 5
2.1.2 Interference graph construction and coalescing : : : : : : : : : 6
2.1.3 Spill costs : 7
2.1.4 Coloring and spilling : 8
2.1.5 Spill code reduction : 9

2.2 Chow's Register Allocator : 12
2.2.1 Live ranges and interference : : : : : : : : : : : : : : : : : : : 13
2.2.2 Priorities : 14
2.2.3 Coloring, spilling, and splitting : : : : : : : : : : : : : : : : : 15
2.2.4 Extensions : 17

3. REGISTER ALLOCATION IN THE IMPACT-I C COMPILER : : : : : : 18
3.1 Allocation Environment : 18

3.1.1 Internal register �le representation : : : : : : : : : : : : : : : 20
3.1.2 Machine-independent interface : : : : : : : : : : : : : : : : : : 21

3.2 Live-Range Determination : 27
3.3 Interference Graph : 28
3.4 Class Preferences : 29
3.5 Priorities : 32
3.6 Coloring : 33

3.6.1 Free register selection : 34
3.6.2 Spilling : 36

3.7 Machine Register Assignment : 38
3.8 Spill Code Insertion : 39

v

3.9 Base Register Allocator Evaluation : : : : : : : : : : : : : : : : : : : 40
3.10 Macroregister Allocation : 43
3.11 Macroregister Allocation Evaluation : : : : : : : : : : : : : : : : : : : 45
3.12 Live-Range Splitting : 49

3.12.1 Loop splitting : 53
3.12.2 Correction code : 56
3.12.3 Loop splitting evaluation : 58

4. CONCLUSIONS AND FUTURE WORK : : : : : : : : : : : : : : : : : : : 62

REFERENCES : 64

APPENDIX A. PA-RISC 1.1 AND AM29000 REGISTER MAPS : : : : : 67

vi

LIST OF TABLES

Table Page

3.1: Register allocator internal data types : : : : : : : : : : : : : : : : : : 21
3.2: Register allocator saving conventions : : : : : : : : : : : : : : : : : : 21
3.3: Register �le of the PA-RISC 1.1 : 22
3.4: Register bank partition for PA-RISC 1.1 : : : : : : : : : : : : : : : : 23
3.5: Register �le of the Am29000 : 25
3.6: Register bank partition for Am29000 : : : : : : : : : : : : : : : : : : 26
3.7: Example caller/callee costs : 32
3.8: Base register allocation results : 42
3.9: Register bank classes : 45
3.10: Macroregister allocation results : 47
3.11: Bene�t of macroregister allocation : : : : : : : : : : : : : : : : : : : 48
3.12: Register allocation with renumbering : : : : : : : : : : : : : : : : : : 50
3.13: Bene�t of register allocation with renumbering : : : : : : : : : : : : 51
3.14: Allocation results with loop splitting : : : : : : : : : : : : : : : : : : 60
3.15: Bene�t of loop splitting : 61

vii

LIST OF FIGURES

Figure Page

2.1: Disjoint def-use chains : 5
2.2: Coalescing of live ranges : 7
2.3: 2-colorable graph : 10
2.4: Live range splitting example : 16
3.1: Mapping of the PA-RISC 1.1 register �le : : : : : : : : : : : : : : : : 23
3.2: Processor register bank de�nition function : : : : : : : : : : : : : : : 24
3.3: Register allocator interface for PA-RISC 1.1 : : : : : : : : : : : : : : 24
3.4: Mapping of the Am29000 register �le : : : : : : : : : : : : : : : : : : 26
3.5: Register allocator interface for Am29000 : : : : : : : : : : : : : : : : 26
3.6: Register bank de�nition structure : 27
3.7: Live-range determination : 28
3.8: Interference graph construction : 29
3.9: Caller/callee cost interface functions : : : : : : : : : : : : : : : : : : 31
3.10: Free register determination : 36
3.11: Example automatic spill register selection mapping : : : : : : : : : : 38
3.12: Instruction insertion interface functions : : : : : : : : : : : : : : : : 40
3.13: Code sequence containing macroregisters : : : : : : : : : : : : : : : : 44
3.14: Loop removal algorithm : 54
3.15: Loop removal example : 55
3.16: Loop reinsertion algorithm : 56
3.17: Loop splitting correction code : 57
A.1: PA-RISC 1.1 register maps : 67
A.2: Am29000 register maps : 69

1

1. INTRODUCTION

Reduced instruction set computers (RISC) depend upon compilers for performance.

Inherent in this dependence is a conict of interest between compiler optimizations and

register allocation. Compiler optimizations are done separately from register allocation

for simplicity, typically ignoring the register �le of the target processor and assuming the

availability of an in�nite number of registers. This assumption provides the optimizer

with the ability to generate as many new registers as required to hold temporary values

resulting from the various optimizations. Therein lies the conict. Current RISC proces-

sor architectures contain only a limited number of registers, usually on the order of 32

to 128. Coupling this with the constraint that instruction operands must reside within

these registers makes the processor's register �le an important yet scarce resource. The

register allocator must then attempt to make the most e�cient use of the limited number

of available registers so as to minimize the number of memory accesses required.

The numerous approaches to register allocation are typically divided into two classes.

The �rst is local register allocation, where the scope of allocation is a basic block. The

2

register allocator attempts to obtain an optimal allocation of temporaries found only

within segments of straight line code. In the second class, global register allocation, the

scope of allocation is enlarged to an entire function or possibly the entire program. Global

register allocators, utilizing global data ow analysis techniques, attempt to obtain an

optimal allocation of temporary variables, local function variables, and possibly even

global variables to registers, while minimizing the number of loads and stores required.

This thesis will present the implementation of a machine independent, graph coloring

register allocator within the framework of the IMPACT-I C compiler [1]. There has

been some work done in the area of machine independent register allocation by Sites

and Perkins [2]. Techniques for global register allocation have been extensively studied.

The most notable work in the area of function level global register allocation via graph

coloring has been done by Chaitin et al. [3], Chow and Hennessy [4], and more recently

by Briggs [5]. A slightly di�erent approach using hierarchical graph coloring has been

proposed by Callahan and Koblenz [6]. Although this thesis will focus on intraprocedural

allocation, several examples of work in the area of interprocedural or program level global

register allocation are work by Chow [7], Wall [8], and Santhanam and Odnert [9].

Chapter 2 describes the register allocation problem and provides a detailed discussion

of the graph coloring methods of Chaitin et al. [3] and Chow and Hennessy [4]. Chapter 3

presents the implementation details of the IMPACT register allocator. Finally, Chapter 4

contains conclusions and future work.

3

2. BACKGROUND

The register allocation problem involves �nding an optimal assignment of function

variables to the available processor registers within the constraints imposed by hardware

and/or software register usage conventions. Even without these constraints, the problem

is know to be NP-complete [10]. Numerous approaches have been proposed to solve this

problem. This thesis will focus on the reduction of register allocation to a graph coloring

problem.

The graph coloring problem is to determine the minimum number of colors needed

to color a graph G = (v; e), such that no two adjacent nodes have the same color. The

reduction of register allocation is as follows. Each vertex vi represents the portion of the

function f where the variable i is live, i.e., its live range. An edge eij connects vertices vi

and vj if variables i and j interfere, meaning that variables vi and vj are simultaneously

live. If we now assume that the target processor has n registers, the register allocation

problem is to obtain an n-coloring of the graph G. In the event that the graph G is not

n-colorable, some node(s) must be spilled. The proposed heuristic methods for graph

4

coloring based register allocation strive to minimize the number of spilled nodes and the

resulting spill code.

The following sections describe the work done by Chaitin et al., as well as work done

by Chow and Hennessy. In addition, several extensions proposed to improve the quality

of the register allocation and reduce spill code will be presented.

2.1 Chaitin's Register Allocator

Register allocation via graph coloring was �rst implemented by Chaitin et al. in the

PL.8 compiler [11], [3], [12]. Register allocation in the PL.8 compiler takes place after

code generation. Delaying allocation until after code generation eliminates the need to

reserve registers for usage convention reasons or as scratch registers for later stages of

code generation. We will see that both Chow's register allocator and the IMPACT-I

register allocator do not have this advantage. Prior to register allocation, local and

temporary function variables are assumed to be located in virtual registers. This has the

e�ect of excluding global variables as allocation candidates since spilled variables will be

placed into the local stack frame. The register allocation process consists of �ve phases:

live range construction, interference graph construction, coalescing, spill cost estimation,

and coloring.

5

r1 <- 1

r1 <- r1 + 1
r3 <- r1

r4 <- r1

r1 <- 1

r2 <- r1 + 1
r3 <- r1

r4 <- r2

(a) (b)

Figure 2.1: Disjoint def-use chains: (a) live range of r1 with two disjoint def-use chains,
(b) result of renumbering

2.1.1 Live range construction

Before register allocation can be performed, the live range of each virtual register must

be determined. Live ranges are constructed by �rst performing a def-use analysis on the

function. The live range of a virtual register consists of the instructions contained within

the connected components of def-use chains of that virtual register. A live range may,

at this point, contain disjoint def-use chains (see r1 in Figure 2.1(a)). These disjoint

def-use chains need not be allocated to the same register since they are independent.

Forcing this to happen may place unnecessary constraints on the coloring process which

may produce suboptimal results. Disjoint def-use chains within the same live range are

therefore renumbered to ensure that each has a unique name. A simple example is shown

in Figure 2.1(b), where the second def-use chain of r1 has been renumbered r2.

6

2.1.2 Interference graph construction and coalescing

The interference graph is the core data structure around which the entire register

allocation process takes place. The interference graph consists of one node for each live

range created during the previous renumbering step. The graph also contains the arcs

representing interferences between two di�erent live ranges. Simply put, two live ranges

are said to interfere if one is live at the de�nition point of the other. Since the interference

graph is the one that will be colored, an e�cient implementation of this data structure

is desirable. Within Chaitin's allocator, the interference graph is actually implemented

as two distinct data structures: a triangular bit matrix and adjacency vectors. The

triangular bit matrix allows for quick random access to the graph, whereas the adjacency

vectors provide quick sequential determination of all nodes interfering with another.

Once the interference graph has been built, a process known as coalescing is per-

formed. Coalescing involves locating noninterfering live ranges which are the source and

destination of copy instructions and then merging these two live ranges into one. An

example of this procedure is shown in Figure 2.2. The unnecessary copy r2 <- r1 in

Figure 2.2(a), may be removed by coalescing r1 and r3, since their live ranges do not

interfere. The result is shown in Figure 2.2(b). For the same reason, r3 and r6 in Fig-

ure 2.2(b) may be coalesced, resulting in Figure 2.2(c). One may notice from the �gure

that the result of coalescing is identical to applying copy propagation to the same code.

The coalescing of nodes provides an easy method of forcing two live ranges to be allocated

to the same register. Of course, once two live ranges have been coalesced, the interference

7

r1 <- 1

r3 <- r1
r2 <- r1

r4 <- r2 + 1
r5 <- r3 + 1

r6 <- 1

r3 <- r6

r4 <- r6 + 1
r5 <- r3 + 1

r7 <- 1

r4 <- r7 + 1
r5 <- r7 + 1

(a) (b) (c)

Figure 2.2: Coalescing of live ranges: (a) original live ranges, (b) coalescing of r1 and r2,
(c) coalescing of r3 and r6

graph is no longer correct and must be rebuilt. The interference graph construction and

coalescing steps are repeated until there are no more live ranges that may be coalesced.

In practice, it has been shown that this process will converge within 2 to 3 iterations

[3], [12], [5].

2.1.3 Spill costs

Now that the interference graph is stable, a spill weight is calculated for each re-

maining live range. Chaitin's register allocator assigns a weight to each live range that

represents the cost of spilling it, which is the cost of executing the loads and stores that

must be inserted if the live range were to be spilled. The execution cost of an instruction

is estimated to be 10d, where d is the loop nesting level of the instruction. The coloring

8

process to follow will invariably have to spill a node if a register is unavailable and these

estimates are used to select the live range to be spilled.

2.1.4 Coloring and spilling

The actual coloring process in Chaitin's allocator is relatively simple. If there exists a

node v, such that the deg(v) < n, assuming a target processor with n registers, it and all

of its interferences are removed from the graph and placed on a stack. Since deg(v) < n,

the coloring of the remaining graph is independent of the color that will be assigned

to this live range and it may be safely eliminated from the interference graph. If there

are no nodes with deg(v) < n, then a node is chosen to be spilled. The heuristic used

by Chaitin's allocator to select spill nodes attempts to minimize the spill instructions

inserted and maximize the number of interferences removed from the graph. Thus the

node with the minimum value of Eq. (2.1) is removed from the graph along with its

interference arcs.

cost(v)

deg(v)
(2.1)

The resulting spill code will alter the interference graph, but rather that rebuilding the

interference graph after each spill, Chaitin's allocator allows several nodes to be selected

for spilling. The interference graph is then rebuilt and the coloring process starts over.

As an alternative to spilling a live range, Chaitin introduces the idea of rematerial-

ization. That is, if a computation can be done in a single operation and its operands

are always available, such as the loading of integer constants or generating frame pointer

9

o�sets, the value can be rematerialized rather than stored and reloaded from memory.

There is one restriction, the use of the value being rematerialized must be reachable by

de�nitions of identical value. If the use is reached by multiple values, the live range must

be spilled.

These simpli�cation and spilling steps continue until the graph is empty. At this

point, the actual coloring is done. Nodes are popped o� the stack in the opposite order

in which they were removed from the graph and reinserted. Each node is assigned a color

di�erent from that already assigned to each of its neighbors within the graph. There will

be a color available since a node was removed from the graph and placed on the stack if

and only if a color was known to be available.

This method of graph coloring does not necessarily produce the best allocation in all

situations. There have been several enhancements proposed to improve the allocation

results of Chaitin-style register allocators. These are presented in the following section.

2.1.5 Spill code reduction

To illustrate a limitation of Chaitin's coloring method, consider the interference graph

in Figure 2.3(a) [13]. It is obvious to the observer that a 2-coloring of this graph exists.

One possible 2-coloring is shown in Figure 2.3(b). If, however, we apply Chaitin's coloring

heuristic to this graph, the heuristic will discover that there exists no node with deg(v) <

2. Thus at least one node of this graph will be unnecessarily spilled. Figure 2.3(c) shows

a possible result of applying Chaitin's allocator to this graph; a has been spilled and b,

10

a

b

c

d

(a) (b) (c)

a

b

c

d

a

b

c

d

Figure 2.3: 2-colorable graph: (a) uncolored graph, (b) valid 2-coloring, (c) result of
Chaitin's allocator, a was spilled

c, and d have been colored. An extension to Chaitin's method has been proposed by

Briggs et al. to solve this problem [13].

Instead of spilling as the Chaitin allocator will do when there are no nodes with

deg(v) < n, Briggs et al. select a node to place on the stack without spilling it. The

coloring algorithm is now assuming that there will be a color available when the node is

popped o� the stack. This leads to the second extension. When a node is popped o� the

stack, and there is no color available, the node is left uncolored and coloring continues.

If at the end of the coloring process, there are uncolored nodes, those nodes are spilled

and the necessary spill code is inserted. The interference graph is then reconstructed and

the coloring process starts over.

A 2-coloring of the graph in Figure 2.3(a) can be generated using this approach. Since

there is no node with deg(v) < 2, one node will be placed on the stack without spilling it,

for instance node a. The remaining nodes all have deg(v) < 2 and are placed on the stack

in some order. Once the graph is empty, the nodes are popped o� the stack and assigned

11

colors. When node a is popped o� the stack, it will be assigned the color assigned to

node c. The resulting 2-coloring is shown in Figure 2.3(b). Briggs' work shows that by

using this method, one may obtain an allocation as good as or better than that produced

by Chaitin's method.

Briggs et al. have also done work in the area of rematerialization [14]. As previously

mentioned, Chaitin's allocator will correctly perform rematerialization on a live range

that contains a single value. However, if the live range contains uses that are reached by

multiple de�nitions of di�erent values, Chaitin's allocator will simply spill the live range,

if there is no available register. Briggs' work allows for the application of rematerialization

to these multivalued live ranges.

A heuristic proposed by Bernstein et al. [15] seeks to reduce the spill code by improving

the selection of spill nodes. When Chaitin's method chooses to spill, it selects the graph

node with the minimum value of Eq. (2.1). Bernstein proposes the use of three di�erent

metrics:

cost(v)

deg(v)2
;

cost(v)

area(v)deg(v)
;

cost(v)

area(v)deg(v)2
(2.2)

where

area(v) =
X

i2lr

5depth(i) � width(i) (2.3)

The depth of an instruction, depth(i), is de�ned to be the loop nesting level of the

instruction, and the width of an instruction, width(i), is the number of variables live

during the execution of that instruction. The idea is to run Chaitin's algorithm with

each of the three new metrics and choose the best allocation of the three, that being the

12

allocation with the least amount of spill code. The use of this heuristic has been shown

to improve execution time by 2-3%.

2.2 Chow's Register Allocator

The register allocator implemented by Chow and Hennessy [16], [4], like Chaitin's

allocator, utilizes graph coloring, but the similarities stop there. In Chow's scheme, reg-

ister allocation is performed on an intermediate language prior to �nal code generation,

unlike Chaitin's allocator which performs allocation after code generation. This requires

that a certain number of registers be reserved as temporaries which may or may not be

required by the subsequent code generation phases. Chaitin's allocator assumes that all

variables reside in virtual registers. Chow's allocator, on the other hand, assumes all vari-

ables reside in some home memory location. This assumption has several rami�cations

for the register allocator. First, in addition to all local and temporary function variables,

global variables are now candidates for allocation, whereas in Chaitin's method, global

variables must be loaded into virtual registers before register allocation. Second, the

code is executable even without register allocation. Third, this assumption introduces

an aliasing problem, which will be discussed later. The following sections describe the

Chow's register allocation algorithm.

13

2.2.1 Live ranges and interference

Live ranges are determined by �rst performing live-variable and reaching-de�nition

analyses. From this information, the live range of a variable v is live(v) \ reach(v).

This live range consists of a set of basic blocks, rather than a set of instructions as in

Chaitin's allocator. Also, Chow's allocator makes no attempt to separate any disjoint

def-use chains into separate live ranges. They chose to let their splitting mechanism

achieve the same e�ect, though only when required. The larger granularity of the basic

block representation is not seen as a limitation due to its typically small size. This small

size is ensured by a compiler mechanism which breaks up large basic blocks.

Once live ranges have been constructed, the problem of aliases must be dealt with.

Since every variable is assumed to have a home location, the contents of the register to

which a variable is allocated may be inconsistent with its home location. If this location

is indirectly accessed, incorrect values may be read. To alleviate this problem, portions

of a live range where an alias may occur are removed, requiring that additional loads and

stores be inserted if the live range is allocated.

Using the live-range information, an interference graph is constructed. Conceptually,

there is one node for each live range and an arc is added between two nodes if they

interfere. Two live ranges are said to interfere if the intersection of their live ranges is

not empty. The interference graph itself is implemented by an adjacency list attached to

the live-range information data structure. No coalescing is done since register allocation

14

is done prior to code generation and previous global optimization phases perform copy

propagation which achieves the same result.

2.2.2 Priorities

In Chaitin's allocator, a cost function is used to select nodes to spill when the graph

contains nodes with deg(v) � n. Chow's allocator takes the opposite approach. A priority

function is used to select the next node to be assigned a color. Thus, the cost/priority

function used is an estimate of the execution time saved by the removal of the loads and

stores already present in the code when a live range is allocated. The priority function

is shown below:

P (lr) =
S(lr)

N
=

P
i2lr si � wi

N
(2.4)

where

si = (LODSAV E � usesi + STRSAV E � defsi �MOV COST � ni) (2.5)

The priority function sums the bene�t si�wi for each basic block i contained within the

live range divided by the number of basic blocks in the live range. The value wi is an

estimate of the execution frequency of basic block i. The value si is the time saved by

removing loads and stores minus the cost of any required moves added to basic block i.

Dividing the bene�t by the number of basic blocks, N , gives higher priority to shorter

live ranges which tie up valuable resources for shorter periods of time. The use of this

function is described in the following section.

15

2.2.3 Coloring, spilling, and splitting

Conceptually, the coloring algorithm in Chow's allocator is also relatively simple. The

coloring algorithm deals with two kinds of live ranges: constrained and unconstrained. A

live range is unconstrained if it has degree less than the available number of registers and

constrained otherwise. The �rst step of the process is to remove the unconstrained live

ranges from the interference graph. The priority function, Eq. (2.4), is then computed

for each of the remaining constrained live ranges. If the priority function is negative or

if the live range is uncolorable, meaning all available registers have been assigned, that

live range is removed from the graph. The live range of highest priority is selected and

assigned a color. If there is no available color, an attempt is made to split the live range.

The processes of calculating needed priority functions and selecting the node of highest

priority are repeated until the graph is empty. Note that this coloring algorithm, as

presented, will obtain a 2-coloring of the interference graph in Figure 2.3.

When there is no available register for the selected live range, the register allocator

attempts to split it. The basic idea behind live-range splitting in Chow's allocator is

to �nd the largest allocatable portion of an unallocatable live range. The �rst task in

generating the new live range is to locate a starting point. The algorithm selects a basic

block where the live range begins with a de�nition; if this is not possible the �rst basic

block containing a use is selected. Next, a breadth-�rst traversal of the original live

range is performed and basic blocks are added to the new live range until it is no longer

allocatable. Once the two live ranges have been determined, the interference graph must

16

a

b

c

a1

a2

b1

b2

b3

c

Register 1

Register 2

(a) (b)

Figure 2.4: Live range splitting example: (a) live ranges a, b, and c prior to allocation,
(b) live ranges a, b, and c after live range splitting, b2 is spilled

be updated to correct the interference lists of those live ranges that interfered with the

original live range. In addition, spill code must be inserted along the split boundary

to ensure correctness. Finally, since the two new live ranges and/or unconstrained live

ranges interfering with them may become constrained, the unconstrained and constrained

live-range sets must be updated. Figure 2.4(a) contains a set of three live ranges. If the

target processor has only two registers, Figure 2.4(b) shows one possible result of Chow's

splitting algorithm. Live range a has been split between registers 1 and 2, while most of

b has been allocated to register 2, but a portion of it, b2, was spilled. The are numerous

other possibilities depending upon the relative priorities of each of the live ranges.

17

2.2.4 Extensions

The above coloring algorithm may also be applied to registers with di�erent saving

conventions, i.e., caller-saved and callee-saved registers. This is accomplished by provid-

ing two functions for each live range: a priority value if allocated to a caller-saved register

and a priority value if allocated to a callee-saved register. The priority value used in the

above algorithm is then the maximum of the two. Further work has been done by Chow

to extend this method to interprocedural register allocation [7]. The idea is to minimize

the amount of caller-saved code at procedure calls and callee-saved code upon entry, by

making available to the register allocator the register usage of all functions called by the

function being allocated. This is accomplished by allocating the functions of a program in

a bottom-up traversal of the program's call graph. The chief drawback to this approach

is that all functions must be made available to the compiler at compilation time.

A Chow-style register allocator has also been implemented in the SPUR Lisp Compiler

by Larus and Hil�nger [17]. The SPUR allocator di�ers in that all temporaries are

assumed to be in virtual registers similar to a Chaitin-style allocator and spill code must

be inserted if such a live range is spilled. Also, register allocation takes place after code

generation on SPUR assembly code. Neither of these di�erences is particularly signi�cant

from a register allocation standpoint.

18

3. REGISTER ALLOCATION IN THE IMPACT-I C COMPILER

3.1 Allocation Environment

The compilation framework of the IMPACT-I C compiler consists of numerous in-

dependent programs, each of which performs a distinct function in the transformation

of a C program into the assembly language of one of several target processor architec-

tures. The �nal stage of the compilation process is, of course, code generation for the

target processor. Currently, code generators have been built for the Am29000TM , HP

PA-RISCTM , Sun SparcTM , and MIPS R2000TM processors. It is during this stage of

compilation that register allocation is performed.

A detailed description of the IMPACT code generation template may be found in R.

A. Bringmann's thesis [18]. A brief description is provided here to present an overview

of the environment in which register allocation takes place and to illustrate one of the

primary requirements the current register allocator had to ful�ll, that being machine in-

dependence. The intermediate language of the IMPACT-I C compiler is Lcode, which is

19

a machine independent, RISC-like assembly code similar to that of the MIPS R2000. The

task of the code generator is to translate Lcode to the assembly language of the target

processor. Code generation is performed in three phases. In phase 1, Lcode is translated

to Mcode (or machine speci�c Lcode). The goal here is to annotate Lcode into a one-

to-one mapping with the �nal assembly code using the architectural constraints of the

target processor. Phase 2 involves a pass of local optimizations: common subexpression

elimination, copy propagation, and dead code removal; prepass code scheduling; register

allocation; machine speci�c peephole optimizations; and postpass code scheduling. Fi-

nally, phase 3 takes as input the results of phase 2 and emits assembly code of the target

processor.

The register allocator interface allows the same allocator to be utilized by all of the

code generators. This makes the job of the code generator writer easier and at the same

time allows us to evaluate the performance of the register allocator across a wide variety of

processor architectures. The register allocator takes as input Lcode/Mcode, assuming all

local variables and temporaries are located in virtual registers, as in Chaitin's allocator,

and returns an allocated Lcode/Mcode function including any required spill code.

The following sections describe the register allocation interface and present the im-

plementation details of the current IMPACT register allocator.

20

3.1.1 Internal register �le representation

The IMPACT register allocator like the aforementioned allocators attempts to obtain

an n-coloring of some arbitrary interference graph. For Chaitin's allocator, n represents

16 [3] or 32 [12] general purpose processor registers, and for Chow's allocator, n represents

the register �le of the MIPS R2000 processor [4]. For our purposes, n is an array of an

arbitrary number of typeless, unit-sized general purpose registers. Allocation of registers

from this array allows the register allocator to be completely independent of the processor

for which allocation is being done. By partitioning this array into various con�gurations,

the register allocator may e�ectively handle instances of type overlap, where for example

integer and oating-point data may reside within the same registers as in the Am29000, as

well as handle di�erent register saving conventions, such as caller-saved and callee-saved

registers. Allocation for virtually any RISC processor architecture may be accomplished

by simply mapping the register �le of the target processor to the internal array used by

the allocator.

This mapping is achieved by partitioning the target processor's register �le into a

number of \register banks." Each register bank is uniquely de�ned by two attributes.

The �rst and most obvious is the register data type which may be, but is not limited

to, one of those shown in Table 3.1. The second is the register saving convention as in

Table 3.2.

Since each bank is uniquely de�ned by these two attributes, there can be at most

one bank for each combination. Current RISC implementations have at most one bank

21

Table 3.1: Register allocator internal data types

Internal Type Data Type

R INT integer
R FLOAT single-precision oating-point
R DOUBLE double-precision oating-point
R PREDICATE predicate

Table 3.2: Register allocator saving conventions

Internal Type Saving Convention

R CALLER caller-saved registers
R CALLEE callee-saved registers

of registers for each data type so this constraint is not as limiting as it may seem. The

implementation details for multiple banks of the same attribute, for example, two integer

caller-saved banks, involve changes to instruction scheduling as well as register allocation

and are beyond the scope of the current implementations of both the scheduler and the

register allocator.

3.1.2 Machine-independent interface

The register �le of the Hewlett-Packard PA-RISC 1.1 [19], [20] processor will serve

as an example to better illustrate how to map a processor register �le to the register

allocator array. The PA-RISC 1.1 register �le is shown in Table 3.3. The register �le

will be divided into six banks, one for each available data type and calling convention

combination. For example, let Bank 1 consist of the integer caller-saved registers; there

are four of them (gr1,gr19-gr22 in Table 3.3). The next bank, Bank 2, will comprise the

integer callee-saved registers; there are 16 of them (gr3-gr18 in Table 3.3). The complete

22

Table 3.3: Register �le of the PA-RISC 1.1

PA-RISC 1.1 Register File

Register Usage
gr0 Zero value register
gr3-gr18 Callee saved registers
gr1,gr19-gr22 Caller saved registers
gr23-gr26 Parameter registers
gr2,gr27-gr31 $sp, $dp, return value, etc.
fr0-fr3 Coprocessor status, exception registers
fr4-fr7 Parameter registers
fr8-fr11 Caller saved registers
fr12-fr21 Callee saved registers
fr22-fr31 Caller saved registers

set of bank de�nitions is shown in Table 3.4. The contents of the Class, Type, and

Num rows are easily determinable from Table 3.3. The Size attributes are architecture

dependent and for the PA-RISC the integer and oating-point banks have size 1, since

an integer or oating-point register requires one element of the array, but the double

banks, on the other hand, are given size 2. This is due to the fact that a double-precision

register in the PA-RISC 1.1 may hold one double-precision value or two single-precision

values; thus, each double-precision register requires two elements of the array. The value

provided for the O�set attribute serves only to separate disjoint register banks or merge

overlapping banks. The mapping created by the o�set values in Table 3.4 is given in

Figure 3.1. Note that the o�sets given to Bank 1 and Bank 3 serve to separate them in

the mapping in Figure 3.1, and the o�sets of Bank 2 and Bank 3 are identical, because

they are in reality the same registers.

23

Table 3.4: Register bank partition for PA-RISC 1.1

Attribute Bank 1 Bank 2 Bank 3
Class R CALLER R CALLER R CALLER
Type R INT R FLOAT R DOUBLE
O�set 0 20 20
Num 4 28 14
Size 1 1 2

Attribute Bank 4 Bank 5 Bank 6
Class R CALLEE R CALLEE R CALLEE
Type R INT R FLOAT R DOUBLE
O�set 4 48 48
Num 16 20 10
Size 1 1 2

Internal Array

Bank 1 Bank 2

Bank 4 Bank 5 Bank 6

0 3

0 15........ 0 9........0 19........

Bank 3

0 13........0 27........

4 19........0 3 20 47........ 48 67........

Figure 3.1: Mapping of the PA-RISC 1.1 register �le

24

R de�ne physical bank(int class, int type, int o�set,
int num, int size, int *map)

Figure 3.2: Processor register bank de�nition function

R de�ne physical bank(R CALLER, R INT, 0, 4, 1, caller int map);

R de�ne physical bank(R CALLEE, R INT, 4, 16, 1, callee int map);

R de�ne physical bank(R CALLER, R FLOAT, 20, 28, 1, caller double map);

R de�ne physical bank(R CALLEE, R FLOAT, 48, 20, 1, callee double map);

R de�ne physical bank(R CALLER, R DOUBLE, 20, 14, 2, caller double map);

R de�ne physical bank(R CALLEE, R DOUBLE, 48, 10, 2, callee double map);

Figure 3.3: Register allocator interface for PA-RISC 1.1

The information for each register bank is provided to the register allocator through the

functionR de�ne physical bank whose prototype is shown in Figure 3.2. The parameters

correspond exactly to each of the �ve attributes in Table 3.4 except for the last one which

is an array of names. This \map" allows the register allocator to associate a name with

each register in a register bank. These are the names placed in the Lcode/Mcode function

once allocation is complete. The complete series of function calls required to describe

the register �le of the PA-RISC 1.1 processor are provided in Figure 3.3. The register

maps referenced by this series of function calls are provided in Appendix A.

The register �le of the Advanced Micro Devices Am29000 [21] (provided in Table 3.5)

is described to the register allocator in essentially the same way. There are a few di�er-

ences due to the fact that the Am29000 uses variable-sized register windows, and that the

Am29000 register �le is truly general, that is, a register may contain an integer, single-

precision oating point, or half of a double-precision oating-point value. The di�erences

are apparent in the bank de�nitions in Table 3.6. The o�sets are identical for each of

25

Table 3.5: Register �le of the Am29000

Am29000 Register File

Register Usage
gr1 Reserved
gr2-gr63 Unimplemented
gr64-gr95 Reserved for OS
gr96-gr97 Return value, pointer
gr98-gr111 Caller-saved Registers
gr116-gr120
gr112-gr115 Reserved
gr121-gr127
1r0-1r1 Return address, frame pointer
fr2-fr128 Callee-saved registers (# varies)

the three caller-saved banks and for each of the three callee-saved banks, indicating that

integer, single-precision, and double-precision values may reside in the same registers.

Also, note that the Num attributes for the callee-saved banks are variable; these are

the registers in the variable-sized register window. Each function has available to it 126

registers minus the number of incoming (I) and outgoing (O) parameters. The resultant

mapping is shown in Figure 3.4, the required function calls are shown in Figure 3.5,

and the register maps referenced by these calls are provided in Appendix A. Since the

number of registers available in the window varies for each function with the number of

incoming and outgoing parameters, the last three function calls in Figure 3.5 must be

repeated prior to allocation of each function to update the register allocator's register

�le description.

As implemented, the internal array used by the allocator is in e�ect a virtual array,

it does not exist. Instead, there is an array of structures which describe the mapping

of the target processor register �le onto the virtual array. This structure is shown in

26

Table 3.6: Register bank partition for Am29000

Attribute Bank 1 Bank 2 Bank 3
Class R CALLER R CALLER R CALLER
Type R INT R FLOAT R DOUBLE
O�set 0 0 0
Num 19 19 9
Size 1 1 2

Attribute Bank 4 Bank 5 Bank 6
Class R CALLEE R CALLEE R CALLEE
Type R INT R FLOAT R DOUBLE
O�set 19 19 19
Num 126-I-O 126-I-O (126-I-O)/2
Size 1 1 2

Internal Array

Bank 1 Bank 2

Bank 3

Bank 4

Bank 5 Bank 6

0 0

0

0

0

0

18 18 x

x8

18 19 N

x/20

........

....

........

....

........

Figure 3.4: Mapping of the Am29000 register �le

R de�ne physical bank(R CALLER, R INT, 0, 19, 1, caller reg map);

R de�ne physical bank(R CALLEE, R INT, 0, 19, 1, callee reg map);

R de�ne physical bank(R CALLER, R FLOAT, 0, 9, 1, caller reg map);

R de�ne physical bank(R CALLEE, R FLOAT, 19, x, 1, callee reg map);

R de�ne physical bank(R CALLER, R DOUBLE, 19, x, 2, caller reg map);

R de�ne physical bank(R CALLEE, R DOUBLE, 19, x/2, 2, callee reg map);

Figure 3.5: Register allocator interface for Am29000

27

typedef struct R Physical Bank f
short de�ned;

short class;

short type;

short base index;

short num reg;

short reg size;

g R Physical Bank;

Figure 3.6: Register bank de�nition structure

Figure 3.6 and the �elds correspond to the �ve previously de�ned attributes. Each call

to R de�ne physical bank initializes one of these structures. Exactly how these are used

during the graph coloring process will be described later.

3.2 Live-Range Determination

Live ranges are constructed by performing live variable analysis and reaching de�-

nition analysis like Chow's algorithm. The live range of a variable v is then live(v) \

reach(v), but the live range is represented as a set of instructions as in Chaitin's al-

locator. The actual algorithm for live-range determination is given in Figure 3.7. The

larger granularity of a basic block representation is insu�cient when allocation is being

performed on superblocks [22] or hyperblocks [23], where the typical block size is not

small. There is no attempt to renumber disjoint def-use chains as our work has shown

the bene�ts to be negligible. These results will be presented in Section 3.11. The algo-

rithms used to perform dataow analysis are the basic algorithms found in Aho, Sethi

and Ullman [24]. Although not necessarily the most time e�cient method for dataow

analysis, these algorithms are exact and are easily implemented. Improving our methods

28

for (each instruction i) f
live var = i->def [i->in

for (each v 2 live var)

Set add(live(v),i)

reach def = instr->reach def

for (each instr j 2 reach def)

Set add(reach(j->def),i)

g
for (each virtual register v)

live range(v) = live(v) \ reach(v)

Figure 3.7: Live-range determination

of dataow analysis is slated for the future, but this will simply serve to speed up the

allocation, not improve the allocation results.

3.3 Interference Graph

The interference graph consists of a group of nodes linked together as both a red/black

tree and a linked list. The red/black tree provides random access in a reasonable amount

of time, O(log2n) in the size of the graph, while the linked list provides fast sequential

access. Each graph node consists of the name of the virtual register it represents, the

priority value of its live range, which will be discussed later, and an adjacency list of

pointers to graph nodes of interfering live ranges.

The interferences themselves are generated by comparing pairs of virtual registers.

If the intersection of their live ranges is not empty, an interference arc is added to the

adjacency list of each graph node. The algorithm for constructing the interference graph

is given in Figure 3.8 and works as follows. A graph node is created for each live range

29

for (each live range) f
node = NewNode()

< initialize graph node >

AddNode(i graph,node)

g
for (n1 = each graph node)

for (n2 = each graph node after n1)

if (live range(n1) [live range(n2) 6= ;) f
Connect Nodes(n1,n2)

Connect Nodes(n2,n1)

g

Figure 3.8: Interference graph construction

and inserted into the graph by AddNode which inserts the new node into the linked list

and the red/black tree. Then, each pair of live ranges is compared and if they interfere,

graph arcs are added to the graph nodes via Connect Nodes.

The interference graph as implemented is currently not as memory e�cient as it could

be, but it is extremely exible. With this implementation, it is very easy to expand the

graph when new live ranges are created; there is no need to worry about overowing a

bit matrix.

3.4 Class Preferences

Procedure call penalties can be minimized by the use of caller-saved and callee-saved

registers. Typically, the register set of the processor is divided by software convention

into these two classes of registers. This method may reduce procedure call penalty, but

it makes the register allocator's task more di�cult. Now the register allocator can not

30

simply assign a register to a live range, it must assign a register of the appropriate

convention.

The register allocator determines the preferred convention by examining the live range

of each virtual register for procedure calls. Live ranges containing few or no procedure

calls should be placed in caller-saved registers since little or no spill code will be required

to save and restore the value around the call. Live ranges with a large number of pro-

cedure calls should be placed in callee-saved registers; thus spill code is only required

if the callee uses that register. Two bene�ts are calculated for each live range. Each

bene�t represents the amount of execution time saved by allocating to a caller-saved or

callee-saved register over simply spilling the virtual register. The cost of spilling a virtual

register is the time required to execute the required spill code at each de�nition and use

point within the live range. The spill cost function is

spill cost(lr) =
X

i2lr

(defi + usei)� wi (3.1)

where defi = 1 i� instruction i de�nes the variable and usei = 1 i� instruction i refer-

ences the variable; otherwise, it is 0. The value wi is the estimated execution frequency

of instruction i, which may be determined statically as in Chaitin's allocator or from

available dynamic pro�le information.

The bene�t of allocating a virtual register to a caller-saved register is the spill cost

minus the cost of inserting spill code around any procedure calls contained in the live

range.

caller benefit(lr) = spill cost(lr)� jsr weight� caller cost (3.2)

31

O callee cost(int leaf, int callee allocated)
O caller cost(int leaf)

Figure 3.9: Caller/callee cost interface functions

The jsr weight is the sum of the execution frequencies of any procedure calls in the

live range. The caller cost is a processor-dependent value that determines the cost of

saving and restoring a value around a procedure call. This information is provided to the

register allocator via the function O caller cost, which is provided by the code generator.

The prototype for this function is shown in Figure 3.9.

The bene�t of allocating a virtual register to a callee-saved register is the spill cost

minus the cost of inserting spill code at the entry and exit points of the function.

callee benefit(lr) = spill cost(lr)� (fn weight+ 1)� callee cost (3.3)

The fn weight is the estimated execution frequency of the function being allocated,

which is obtained from pro�le information. The callee cost is also a processor-dependent

value that determines the cost of saving and restoring a callee-saved register. This in-

formation is provided to the register allocator via the function O callee cost, which is

also provided by the code generator. The prototype for this function may be found in

Figure 3.9.

Table 3.7 shows the values returned by the interface functions for all possible combi-

nations of their parameters for the PA-RISC 1.1 and the Am29000. The �rst 2 columns

represent the parameters of the interface functions. The parameter leaf is 1 if the current

function contains no subroutine calls and is 0 otherwise. The parameter callee allocated is

32

Table 3.7: Example caller/callee costs

PA-RISC 1.1 Am29000
leaf callee allocated caller callee caller callee

0 0 2 2 2 0
0 1 2 2 2 0
1 0 0 2 0 4
1 1 0 2 0 0

1 if a virtual register has been allocated to a callee-saved register and is 0 until that point.

These costs, the remaining 4 columns, may be interpreted as a number of instructions.

For example, for both processors, the caller cost of a nonleaf function is 2. This is rather

intuitive since a store and a load are required to save and restore a value around each

subroutine call. The callee-cost column for the Am29000 is a bit more interesting. A

penalty of four instructions is incurred for the use of any number of callee-saved registers

in a leaf function. This is the cost of setting up the register window, which is not required

for a leaf function, whereas in the other three cases, the window is required and the use

of a callee-saved register is essentially free. The one cost not requested by the allocator is

the cost of using a callee-saved register that has already been used, which is, of course, 0.

3.5 Priorities

During the graph coloring process, a priority function is used to determine the virtual

register that is to be assigned next. An extension to Chow's allocator allows the use

of registers having di�erent saving conventions. The priority value used to select the

next virtual register to allocate is the maximum of the caller and callee priorities; see

Section 2.2.4. The function used by the IMPACT register allocator, shown below, was

33

found, by experimentation, to be a very e�ective metric.

P (lr) =
spill cost(lr)3

N
(3.4)

The spill cost above is the value generated by Eq. 3.1 and N is the number of instructions

within the live range of a virtual register. Dividing the function by N, serves the same

purpose it does in Chow's allocator, to give priority to smaller live ranges. The priority

function is actually calculated for each virtual register during the interference graph

construction phase.

3.6 Coloring

The coloring process begins by removing all unconstrained virtual registers from the

interference graph, i.e., those virtual registers having a number of interferences that

are less than the number of available registers of that data type. The remaining virtual

registers are sorted by their priority function using a heap. The use of a heap to maintain

the sorted list of virtual registers has several advantages. First, heap sorts are very

e�cient. Second and most important, any new virtual registers generated may be added

to the sorted list by simply inserting them into the heap. Maintaining the sorted list in

the array would require much more time to resort the list when new virtual registers are

added.

Coloring proceeds by repeatedly selecting the virtual register of highest priority, the

one at the top of the heap, and attempting to assign a free register to each. As the virtual

register is removed from the heap, it is placed into a list of visited virtual registers. The

34

reason for this will be clear shortly. The internal register �le is then scanned for a free

register to assign to the current virtual register. The free register selection process is

described in more detail in Section 3.6.1. If a free register is available, that register is

assigned and a new virtual register is selected. When no free register is available, the

virtual register will be spilled. The �rst spilled virtual register will cause the register

allocator to examine the number of registers provided for spilling. If none are provided

by the code generator, they are acquired as described in Section 3.6.2 and the coloring

process starts over. The virtual registers in the visited list are reinserted into the heap

and the coloring process starts over.

3.6.1 Free register selection

The register allocator may have a number of register banks to chose from when se-

lecting a register for the current virtual register. The choice comes from the availability

of caller-saved and/or callee-saved register banks and from the availability of macroregis-

ters, which will be discussed in Section 3.10. There are also those registers the allocator

may not use when selecting a register for the current virtual register. Those registers are

any that may be reserved for other purposes, i.e., spilling, and those already allocated

to interfering live ranges. The registers that are unavailable, termed reserved registers,

are determined by examining each neighbor of the current live range in the graph and

placing in a set those registers that have already been used. This set is then unioned

with the set of registers reserved for spilling, if any.

35

Given the set of reserved registers, the register allocator must now determine if there

is a register available for the current virtual register. The register allocator selects a

register from both the caller-saved, rr, and the callee-saved, re, register banks. The

algorithm to select a free register from a particular register bank with a given set of

reserved registers is shown in Figure 3.10. The selected registers are then examined and

the register allocator chooses one to assign to the virtual register.

If both registers are -1, there is no choice and the register allocator spills the virtual

register. If only one of the registers is -1 and the class bene�t of the nonnegative register

is positive, that register is assigned to the live range; otherwise, the virtual register

is spilled. For example, if rr = -1 and re > 0, re will be assigned to the virtual

register if the callee bene�t of the virtual register is greater than zero. When both rr

and re contain valid registers, the choice is made based on the previously computed

preferences. If a callee-saved register is preferred, then re is assigned to the virtual

register. Also, if a caller-register is preferred but the selected callee-saved register has

been used before making the callee-bene�t greater than the caller-bene�t, re is assigned.

This may happen because once a callee-saved register has been used, it may be reused

without penalty thereby raising the callee-saved bene�t. Otherwise, the caller-saved

register rr is assigned.

36

for (r = 0; r < reg bank->num reg; r++) f
base = r � reg bank->reg size + reg bank->base index;

free = 1;

for (s = 0; s < reg bank->reg size; s++)

if (Set in(reserved registers,s)) f
free = 0;

break;

g
if (free)

return(base);

g
return(-1);

Figure 3.10: Free register determination

3.6.2 Spilling

Eventually, a virtual register will be spilled and when this occurs the register allocator

has to reserve a register for saving and restoring the values of this virtual register, i.e.,

a spill register. The actual user of the register allocator has two options. The �rst is

to specify the registers that the register allocator is to use for spilling. This is done by

providing a new register bank class, R SPILL. Using this class it is possible to specify the

processor registers the allocator is to use for the spilling of each data type. The number

of registers provided for this purpose is completely arbitrary; if it is insu�cient, the user

will be informed.

The second option is to allow the register allocator to appropriate registers for this

purpose. The �rst time a virtual register is spilled, the register allocator will examine the

available spill register banks, i.e., banks with class R SPILL. If the needed register banks

are not de�ned, they are generated from the available caller-saved register banks. Under

37

the current implementation, the register allocator will remove three registers from each

caller-saved bank to form spill register banks. As an example, recall the PA-RISC 1.1

register �le mapping in Figure 3.1. If a function requires the spilling of both integer and

double-precision data, three registers will be removed from both the integer, caller-saved

bank (BANK 1) and the double-precision, caller-saved bank (Bank 3). A side e�ect of

this is that six registers are moved from the single-precision, caller-saved bank (Bank 2).

The new mapping is shown in Figure 3.11. If a number of caller-saved banks overlap, the

allocator will use the same registers in the overlapping banks to minimize the number

of registers lost to spilling. Thus, if single-precision spill registers were required above,

they would have been selected from the same registers chosen for spilling double-precision

data.

It is worth mentioning that the reservation of spill registers in this manner may

produce a suboptimal allocation in some cases. This method will not a�ect the quality

of allocation for functions where no spilling is done, and the e�ect on functions with

extremely high register pressure will also be minimal. However, for functions that would

require only a moderate number of live ranges to be spilled, the appropriation of three

registers may induce more spill code than necessary. The solution is to eliminate the

necessity of reserving spill registers and deal with spilling as is done in Chaitin's allocator.

The bene�t will be a better allocation at the cost of longer register allocation time, since

coloring would be done more than once.

38

Internal Array

Bank 1 Bank 2

Bank 4 Bank 5 Bank 6

0 15........ 0 9........0 19........

Bank 3

6 13........6 27........

4 19........0 3 20 47........ 48 67........

0 2

0
Integer
Spill Bank

0 5....

25 26 46

Double
Spill Bank

Figure 3.11: Example automatic spill register selection mapping

3.7 Machine Register Assignment

The registers assigned to virtual registers during the allocation process are simply

indices into the internal array of the allocator. These numbers have no meaning to

the code generator so they must be somehow mapped to the actual register �le of the

target processor. During the de�nition of each register bank, the register allocator was

provided an array through the map parameter of the R de�ne physical bank function

(see Figure 3.2). This array or map contains the processor registers corresponding to a

particular bank. The allocator uses the index assigned to a virtual register to determine

the proper index into the register and then replaces every occurrence of that virtual

register with the contents of the register map location.

39

3.8 Spill Code Insertion

Once allocation and register assignment are complete, the register allocator may have

to insert a number of load and store instructions into the function for correctness. These

instructions are needed in two cases: a virtual register was spilled or a virtual register

was allocated to a caller-saved register. In the case of a spilled virtual register, a store

is needed after each de�nition and a load is needed prior to each reference within its live

range, though some of these loads can be easily optimized out. When a virtual register

is allocated to a caller-saved register and store is required before and a load is required

after each subroutine call within the virtual register's live range.

The selection of the spill register to be used in a particular spill code instruction can

greatly a�ect any code scheduling done subsequent to register allocation. If the same

spill register is used repeatedly, the code motion available to the inserted instructions

will be minimal. This can adversely a�ect superscalar/VLIW machines with high issue

rate, 4 or 8. Obviously, post-pass scheduling will perform better if a large number of spill

registers are available to the register allocator. However, reserving too many registers

for spilling may induce even more spill code and further reduce the performance of the

resulting code. This problem illustrates one reason to integrate register allocation and

scheduling, which is not easy to accomplish [25].

Since register allocation takes place during phase 2 of code generation, the register

allocator cannot simply insert the required load and store instructions. The code has

been placed in an explicit format by phase 1 of code generation and the insertion of

40

O spill reg(int reg, int type, int o�set)
O �ll reg(int reg, int type, int o�set)
O mov reg(int dest, int src, int type)
O gen branch(int opcode, int dest)

Figure 3.12: Instruction insertion interface functions

incorrect code may adversely a�ect later phases. This problem is eliminated through

the same method as the caller/callee costs, via interface functions provided by the code

generator. The register allocator obtains properly formatted spill code with the functions

shown in Figure 3.12.

The function O spill reg returns the sequence of instructions required to spill register

reg of type type to location o�set. The opposite holds true for O �ll reg. The remaining

function calls are not needed unless live-range splitting is performed; they are provided

here for completeness.

3.9 Base Register Allocator Evaluation

Evaluation of the quality of register allocation within the IMPACT C compiler frame-

work is not trivial to do without another global register allocator for comparison. For

this reason, the numbers presented in this section will chiey be used as a baseline to

evaluate successive techniques applied to improve the quality of the allocation achieved

with the previously described coloring algorithm. The test suite used to produce these

base numbers is a collection of 50 of the most frequently executed functions from a se-

ries of 12 integer and oating-point benchmark programs. Ten of the functions are from

�ve integer programs: cccp (2 functions, eqntott (1 function), espresso (3 functions),

41

lex (1 function), and li (3 functions). The other 40 functions are from seven members

of the SPEC benchmark suite: doduc (14 functions), ear (1 function), fpppp (3 func-

tions), matrix300 (2 functions), nasa7 (8 functions), spice (11 functions), and tomcatv

(1 function).

The target architecture for these experiments is the Hewlett Packard PA-RISC 1.1

processor. The test suite was compiled to Lcode by the IMPACT C compiler at optimiza-

tion level 4. The resulting Lcode is then passed to the PA-RISC code generator, which

performs Lcode to Mcode annotation during phase 1 followed by machine dependent

optimizations, prepass scheduling, and register allocation during phase 2. During the

register allocation process, all weights and priority functions are calculated using pro�le

information provided by the IMPACT C compiler.

The base register allocation results are shown in Table 3.8. The �rst two columns

of this table contain the benchmark and function names. The Load column contains

the static number of load instructions inserted by the register allocator for spilling. The

column labeled % immediately to the right of the Load column contains the percentage

of all dynamically executed instructions within the function that are loads inserted as

spill code. The next two columns, Store and %, provide the same information for stores

inserted by the allocator. The Caller % column provides the dynamic percentage of the

spill code inserted for saving and restoring registers around subroutine calls. Finally, the

Total % column provides the total percentage of all dynamically executed instructions

that are spill code. For example, for the function do de�ne, there were 23 loads and 87

42

Table 3.8: Base register allocation results
Benchmark Function Loads % Stores % Caller % Total %
cccp do de�ne 23 1.07 87 4.91 0.23 5.99

rescan 53 0.51 101 0.76 0.00 1.27
doduc debu 149 1.00 239 0.84 0.00 1.84

debico 61 10.14 61 1.09 0.00 11.23
deseco 495 5.98 497 2.09 0.00 8.07
drepvi 14 1.70 27 3.28 0.00 4.98
ihbtr 17 0.65 31 2.60 0.00 3.26
lissag 5 0.01 12 0.01 0.00 0.02
orgpar 110 0.04 100 1.94 0.00 1.98
paroi 101 3.92 126 0.54 0.00 4.46
pastem 51 0.01 104 0.06 0.01 0.07
prophy 411 15.72 285 9.36 0.00 25.08
repvid 22 5.04 17 1.09 0.00 6.13
sortie 4 0.00 16 4.70 0.00 4.71
subb 135 14.33 84 8.92 0.00 23.25
supp 154 13.03 102 8.63 0.00 21.66

ear EARSTEP 17 0.17 25 0.17 0.34 0.34
eqntott read ones 6 0.01 28 0.04 0.00 0.05
espresso scofactor 10 0.41 28 2.04 0.00 2.45

sccc 29 0.61 68 1.52 0.00 2.13
tautology 14 0.39 35 1.24 0.00 1.63

fpppp fmtgen 13 1.12 28 3.53 1.97 4.65
fpppp 2495 33.98 974 13.27 0.00 47.25
twldrv 805 12.86 466 5.23 0.00 18.08

lex packtrans 11 0.02 42 0.13 0.00 0.15
li evform 49 0.97 60 2.83 0.48 3.80

xlevlist 22 0.96 27 2.07 0.92 3.02
xlevarg 21 0.84 27 2.85 0.00 3.69

matrix300 sgemm 16 0.08 5 0.07 0.00 0.15
sgemv 14 0.04 11 0.00 0.00 0.04

nasa7 c�t2d1 32 0.03 24 0.01 0.00 0.04
c�t2d2 28 0.05 18 0.01 0.00 0.06
cholsky 80 0.17 41 0.02 0.00 0.19
btrix 140 7.34 91 1.12 0.00 8.46
gmtry 13 0.00 11 0.00 0.00 0.00
emit 25 0.00 15 0.00 0.00 0.00
vpenta 110 8.99 82 0.39 0.00 9.38
mxm 29 0.06 22 0.00 0.00 0.06

spice extmem 6 1.71 21 1.77 3.41 3.47
memadj 9 0.01 13 0.01 0.00 0.01
�nd 10 0.06 60 0.46 0.00 0.51
indxx 2 0.01 11 7.71 0.00 7.73
reserv 6 0.57 46 4.03 0.38 4.59
swapij 18 0.01 40 0.02 0.00 0.03
load 149 0.00 332 0.02 0.00 0.02
trunc 4 0.00 59 0.00 0.00 0.00
bjt 374 9.37 538 6.19 1.14 15.56
mcopy 1 0.00 14 0.09 0.00 0.09
dcdcmp 8 0.00 43 0.00 0.00 0.00

tomcatv MAIN 82 7.61 68 0.12 0.00 7.73

43

stores inserted for spilling, and the last column indicates that these 110 instructions ac-

count for 5.99% of the dynamically executed instructions each time this function is called.

The percentage of spill code for the usage of callee-saved registers is not presented as it

is a machine dependent property and therefore not calculated by the register allocator.

3.10 Macroregister Allocation

The procedure-calling convention of a particular processor architecture not only spec-

i�es the registers to be used as caller-saved and callee-saved, it also speci�es the registers

to be used for passing parameters during procedure calls as well as the registers used for

procedure return values. These conventions must be observed when the original Lcode is

being generated by the IMPACT compiler. Thus, the Lcode and subsequent Mcode will

contain what is known as macroregisters. Unlike virtual registers, macroregisters have

a one-to-one mapping with their corresponding registers in the register �le of the target

processor. In e�ect, we have an additional set of registers that are unavailable to the

register allocator. Making these available for allocation could signi�cantly improve the

quality of the allocation.

The dataow analysis procedure presented in Section 3.2 determines the live range

for every virtual register within the function; macroregisters are ignored. It is possible

to simply add these registers to the register bank de�nitions of the target processor, but

there is a problem with this. The register allocator knows nothing of these macroregisters

and blindly allocating the macroregisters to virtual registers may result in an incorrect

44

.

.
r1 <- r2 + r3
M0 <- r4
M1 <- r1
jsr multiply

.

.

Figure 3.13: Code sequence containing macroregisters

code sequence. To illustrate the problem, letM0 andM1 be macroregisters for the target

processor. Examine the short code sequence shown in Figure 3.13. If the register allocator

were to assign macroregister M0 to virtual register r1, which is certainly possible, the

resulting code would be incorrect.

The solution is to enable the register allocator to determine live ranges for these

macroregisters. The one obstacle to this is that the names of the macroregisters are

di�erent for each processor's code generator. The answer is to provide more register

bank classes to provide the register allocator with the names of any macroregisters that

may be allocated to virtual registers. The new classes are R MACRO CALLER and

R MACRO CALLEE; a complete set of register bank classes is provided in Table 3.9. We

have to di�erentiate between caller-saved and callee-saved macros, because a processor

architecture may conceivably have either or both. The macroregisters of the PA-RISC

would be de�ned as caller-saved macros, whereas the macroregisters of the Am29000 are

callee-saved since they are located within a register window. Macroregisters are described

to the register allocator the same way as the other registers with one small di�erence, the

45

Table 3.9: Register bank classes

Internal Type Class Description

R CALLER caller-saved registers
R CALLEE callee-saved registers
R SPILL spill registers
R CALLER MACRO caller-saved macroregisters
R CALLEE MACRO callee-saved macroregisters

provided register map contains the names of the macroregisters rather than the register

name in the target processor register �le.

Prior to live-range determination, any de�ned macroregister banks are scanned to

determine the macroregisters that are available for allocation. Each of the available

macroregisters is assigned a virtual register number. Then each subroutine call within

the function is made to rede�ne all available caller-saved macroregisters and we perform

reaching-de�nition analysis. Each subroutine call then uses only those macroregisters

whose de�nitions actually reach that subroutine call. Now, live-variable analysis is per-

formed as before and live ranges are constructed for the virtual registers as well as for the

available macroregisters. Once a live range has been determined for each macroregister,

it is simply treated during the coloring process as a virtual register that has already been

assigned that particular macroregister. Thus, the only phase of register allocation that

must be modi�ed to allow macroregister allocation is the dataow analysis phase.

3.11 Macroregister Allocation Evaluation

Performing macroregister allocation produces a better allocation, especially in the

case of the PA-RISC 1.1. This is to be expected since we are increasing the number

46

of registers available to the register allocator, and in the case of the PA-RISC 1.1 we

increase the number of available caller-saved registers by seven. Thus, instead of the

four caller-saved registers available to the base allocator, we now have 11. The results of

macroregister allocation are provided in Table 3.10. Table 3.11 summarizes the bene�ts

of utilizing macroregisters during allocation. In this table the Loads and Stores columns

provide the change in the number of loads and stores, respectively, when macroregisters

are utilized. The % columns following the Loads and Stores provide an estimate of the

change in execution time due to the corresponding change in the number of loads and

stores inserted. The �nal column, Total %, contains an estimate of the overall change in

execution time of the function.

As a result of macroallocation, the register allocator inserts an average of 23 fewer

loads and 36 fewer stores into each function, although the numbers are as high as 240 fewer

loads and 311 fewer stores for the doduc function deseco. More importantly, however,

is the fact that the average execution time of these functions is decreased by 1.48% (see

the last row of Table 3.11). The largest performance improvement of 7.73% occurred for

the spice function indxx which resulted from a savings of only 13 total spill instructions.

This indicates that the amount of inserted spill code is not necessarily as important as

the location of that spill code. This result is important for live-range splitting, discussed

in Section 3.12, because the splitting of a live range may actually introduce more spill

code than would have been inserted if the live range was spilled. As long as that spill

code is less frequently executed, the splitting of the live range is bene�cial.

47

Table 3.10: Macroregister allocation results
Benchmark Function Loads % Stores % Caller % Total %
cccp do de�ne 18 1.16 20 1.45 0.66 2.61

rescan 40 0.43 56 0.25 0.01 0.69
doduc debu 116 0.99 147 0.83 0.00 1.83

debico 37 7.34 24 0.89 0.00 8.22
deseco 255 3.31 186 1.19 0.25 4.49
drepvi 5 0.63 8 1.01 0.00 1.64
ihbtr 7 0.66 14 1.94 0.00 2.60
lissag 0 0.00 0 0.00 0.00 0.00
orgpar 34 0.01 31 1.93 0.00 1.93
paroi 51 1.37 33 0.33 0.09 1.70
pastem 38 0.00 74 0.02 0.01 0.03
prophy 359 14.08 229 8.33 0.01 22.41
repvid 11 1.54 8 0.32 0.00 1.86
sortie 4 0.00 6 4.68 0.00 4.68
subb 127 13.66 80 8.60 0.00 22.26
supp 138 11.94 92 7.96 0.00 19.90

ear EARSTEP 19 0.17 16 0.17 0.34 0.34
eqntott read ones 6 0.01 11 0.01 0.00 0.02
espresso scofactor 9 0.41 16 1.17 0.00 1.58

sccc 9 0.21 9 0.27 0.00 0.49
tautology 11 0.32 12 0.53 0.11 0.85

fppp fmtgen 10 1.12 13 1.46 2.01 2.57
fpppp 2327 32.85 884 12.48 0.00 45.33
twldrv 707 10.92 426 4.72 0.00 15.64

lex packtrans 5 0.01 13 0.04 0.00 0.05
li evform 51 1.27 35 2.37 1.37 3.64

xlevlist 25 1.02 17 2.00 0.94 3.02
xlevarg 24 0.86 16 2.03 0.02 2.89

matrix300 sgemm 2 0.04 2 0.04 0.09 0.09
sgemv 10 0.00 10 0.00 0.00 0.00

nasa7 c�t2d1 28 0.03 19 0.00 0.00 0.03
c�t2d2 26 0.05 16 0.00 0.00 0.05
cholsky 56 0.11 32 0.01 0.00 0.12
btrix 63 2.01 50 0.22 0.00 2.23
gmtry 13 0.00 11 0.00 0.00 0.00
emit 16 0.00 13 0.00 0.00 0.00
vpenta 83 1.80 56 0.21 0.00 2.01
mxm 14 0.00 11 0.00 0.00 0.01

spice extmem 3 1.70 3 1.70 3.41 3.41
memadj 4 0.00 4 0.00 0.00 0.00
�nd 6 0.04 6 0.06 0.04 0.10
indxx 0 0.00 0 0.00 0.00 0.00
reserv 5 0.49 5 0.49 0.98 0.98
swapij 0 0.00 0 0.00 0.00 0.00
load 54 0.00 89 0.00 0.00 0.00
trunc 4 0.00 41 0.00 0.00 0.00
bjt 367 8.57 540 5.69 1.16 14.27
mcopy 0 0.00 0 0.00 0.00 0.00
dcdcmp 4 0.00 4 0.00 0.00 0.00

tomcatv MAIN 55 3.69 42 0.06 0.00 3.75

48

Table 3.11: Bene�t of macroregister allocation
Benchmark Function Loads % Stores % Total %
cccp do de�ne -5 0.09 -67 -3.52 -3.47

rescan -13 -0.08 -45 -0.51 -0.59
doduc debu -33 0.00 -92 -0.01 -0.01

debico -24 -3.02 -37 -0.21 -3.28
deseco -240 -2.76 -311 -0.91 -3.74
drepvi -9 -1.08 -19 -2.30 -3.40
ihbtr -10 0.00 -17 -0.67 -0.67
lissag -5 -0.01 -12 -0.01 -0.02
orgpar -76 -0.03 -69 -0.02 -0.05
paroi -50 -2.59 -93 -0.21 -2.81
pastem -13 0.00 -30 -0.04 -0.04
prophy -52 -1.91 -56 -1.13 -3.44
repvid -11 -3.55 -9 -0.76 -4.34
sortie 0 0.00 -10 -0.03 -0.03
subb -8 -0.78 -4 -0.34 -1.27
supp -16 -1.24 -10 -0.73 -2.20

ear EARSTEP 2 0.00 -9 0.00 0.00
eqntott read ones 0 0.00 -17 -0.03 -0.03
espresso scofactor -1 0.00 -12 -0.88 -0.88

sccc -20 -0.40 -59 -1.25 -1.65
tautology -3 -0.07 -23 -0.72 -0.79

fppp fmtgen -3 -0.01 -15 -2.10 -2.13
fpppp -168 -1.69 -90 -0.90 -3.51
twldrv -98 -2.17 -40 -0.53 -2.89

lex packtrans -6 -0.02 -29 -0.09 -0.11
li evform 2 0.30 -25 -0.47 -0.17

xlevlist 3 0.06 -10 -0.06 0.00
xlevarg 3 0.02 -11 -0.83 -0.82

matrix300 sgemm -14 -0.03 -3 -0.03 -0.06
sgemv -4 -0.04 -1 0.00 -0.04

nasa7 c�t2d1 -4 -0.01 -5 0.00 -0.01
c�t2d2 -2 -0.01 -2 0.00 -0.01
cholsky -24 -0.06 -9 -0.01 -0.07
btrix -77 -5.44 -41 -0.90 -6.38
gmtry 0 0.00 0 0.00 0.00
emit -9 0.00 -2 0.00 0.00
vpenta -27 -7.32 -26 -0.18 -7.52
mxm -15 -0.05 -11 0.00 -0.05

spice extmem -3 0.00 -18 -0.06 -0.07
memadj -5 -0.01 -9 -0.01 -0.01
�nd -4 -0.02 -54 -0.40 -0.42
indxx -2 -0.01 -11 -7.71 -7.73
reserv -1 -0.08 -41 -3.56 -3.65
swapij -18 -0.01 -40 -0.02 -0.03
load -95 0.00 -243 -0.02 -0.02
trunc 0 0.00 -18 0.00 0.00
bjt -7 -0.86 2 -0.53 -1.51
mcopy -1 0.00 -14 -0.09 -0.09
dcdcmp -4 0.00 -39 0.00 0.00

tomcatv MAIN -27 -4.07 -26 -0.06 -4.13
AVERAGE -23 -0.78 -36 -0.66 -1.48

49

In the previous discussion of live-range determination in Section 3.2, the statement

was made that renumbering is not performed due to negligible bene�ts. Table 3.12

presents the results of applying renumbering during live range determination and Ta-

ble 3.13 contains the bene�ts of renumbering over the bene�ts of macroregister allocation.

Renumbering results in a performance improvement in only 6 of the 50 functions and

all of the improvements are below 0.2% except for the doduc function debico (0.56%).

For the remaining 44 functions, half of them su�ered a performance degradation and

the others were unchanged. Overall, renumbering resulted in an average increase in spill

code of two loads and three stores for each function and an average increase in execution

time of 0.50%. These results do not necessarily place in question the use of renumbering

within other allocators, instead they serve to indicate that renumbering provides little

bene�t under the current implementation of the IMPACT register allocator.

3.12 Live-Range Splitting

The register allocation algorithm as presented performs well, but there are instances in

which a great deal of spill code is introduced. When compiling for a superscalar/VLIW

processor, the goal is to achieve a high degree of instruction-level parallelism (ILP).

Methods used to achieve this, such as the superblock and hyperblock scheduling models,

seek to increase ILP by increasing the amount of code available to the scheduler in each

control block. Certain superscalar optimizations, speci�cally loop unrolling, also have

this goal in mind. The net result of these ILP optimizations is a dramatic increase

50

Table 3.12: Register allocation with renumbering
Benchmark Function Loads % Stores % Caller % Total %
cccp do de�ne 35 2.09 30 2.32 0.65 4.41

rescan 50 0.61 64 0.62 0.01 1.23
doduc debu 116 1.05 178 0.88 0.00 1.93

debico 36 6.85 23 0.85 0.00 7.70
deseco 260 3.13 184 1.24 0.25 4.38
drepvi 8 0.99 19 2.35 0.00 3.34
ihbtr 7 0.66 14 1.94 0.00 2.60
lissag 0 0.00 0 0.00 0.00 0.00
orgpar 38 0.01 33 1.93 0.00 1.93
paroi 53 1.37 35 0.33 0.09 1.70
pastem 30 0.00 81 0.02 0.00 0.03
prophy 359 14.08 228 8.29 0.01 22.37
repvid 11 1.54 8 0.32 0.00 1.86
sortie 4 0.00 6 4.68 0.00 4.68
subb 127 13.66 80 8.60 0.00 22.26
supp 140 12.08 93 8.02 0.00 20.10

ear EARSTEP 15 0.17 16 0.17 0.34 0.34
eqntott read ones 7 0.02 12 0.01 0.01 0.03
espresso scofactor 16 0.41 22 1.10 0.00 1.51

sccc 12 0.31 12 0.43 0.00 0.74
tautology 9 0.22 11 0.44 0.00 0.66

fpppp fmtgen 10 1.12 13 1.46 2.01 2.57
fpppp 2340 32.93 892 12.55 0.00 45.49
twldrv 691 11.95 410 4.80 0.00 16.74

lex packtrans 9 0.02 17 0.06 0.00 0.08
li evform 47 1.55 36 3.10 1.62 4.65

xlevlist 24 1.22 18 2.23 1.45 3.45
xlevarg 21 1.66 17 3.67 0.02 5.32

matrix300 sgemm 9 0.06 2 0.04 0.00 0.10
sgemv 10 0.00 10 0.00 0.00 0.00

nasa7 c�t2d1 32 0.04 20 0.00 0.00 0.04
c�t2d2 30 0.07 17 0.00 0.00 0.07
cholsky 60 8.00 31 0.01 0.00 8.01
btrix 83 3.81 82 2.76 0.00 6.57
gmtry 17 0.04 12 0.00 0.00 0.04
emit 15 0.00 12 0.00 0.00 0.00
vpenta 80 1.77 54 0.19 0.00 1.97
mxm 10 0.00 8 0.00 0.00 0.00

spice extmem 3 1.70 3 1.70 3.41 3.41
memadj 4 0.00 4 0.00 0.00 0.00
�nd 6 0.04 6 0.06 0.04 0.10
indxx 0 0.00 0 0.00 0.00 0.00
reserv 7 0.68 7 0.68 1.37 1.37
swapij 0 0.00 0 0.00 0.00 0.00
load 82 0.00 138 0.00 0.00 0.00
trunc 11 0.00 57 0.00 0.00 0.00
bjt 368 10.34 533 5.60 0.32 15.94
mcopy 0 0.00 0 0.00 0.00 0.00
dcdcmp 6 0.00 6 0.00 0.00 0.00

tomcatv MAIN 54 3.69 41 0.06 0.00 3.75

51

Table 3.13: Bene�t of register allocation with renumbering
Benchmark Function Loads % Stores % Total %
cccp do de�ne 17 0.94 10 0.89 1.88

rescan 10 0.18 8 0.37 0.55
doduc debu 0 0.06 31 0.05 0.11

debico -1 -0.52 -1 -0.04 -0.56
deseco 5 -0.18 -2 0.06 -0.12
drepvi 3 0.36 11 1.37 1.76
ihbtr 0 0.00 0 0.00 0.00
lissag 0 0.00 0 0.00 0.00
orgpar 4 0.00 2 0.00 0.00
paroi 2 0.00 2 0.00 0.00
pastem -8 0.00 7 0.00 0.00
prophy 0 0.01 -1 -0.04 -0.04
repvid 0 0.00 0 0.00 0.00
sortie 0 0.00 0 0.00 0.00
subb 0 0.00 0 0.00 0.00
supp 2 0.16 1 0.07 0.26

ear EARSTEP -4 0.00 0 0.00 0.00
eqntott read ones 1 0.00 1 0.00 0.01
espresso scofactor 7 0.00 6 -0.07 -0.07

sccc 3 0.10 3 0.16 0.25
tautology -2 -0.10 -1 -0.09 -0.19

fpppp fmtgen 0 0.00 0 0.00 0.00
fpppp 13 0.13 8 0.09 0.30
twldrv -16 1.16 -16 0.08 1.32

lex packtrans 4 0.02 4 0.02 0.03
li evform -4 0.29 1 0.76 1.06

xlevlist -1 0.20 1 0.23 0.44
xlevarg -3 0.81 1 1.70 2.57

matrix300 sgemm 7 0.02 0 0.00 0.02
sgemv 0 0.00 0 0.00 0.00

nasa7 c�t2d1 4 0.01 1 0.00 0.01
c�t2d2 4 0.02 1 0.00 0.02
cholsky 4 8.58 -1 0.00 8.58
btrix 20 1.88 32 2.62 4.65
gmtry 4 0.03 1 0.00 0.03
emit -1 0.00 -1 0.00 0.00
vpenta -3 -0.03 -2 -0.02 -0.04
mxm -4 0.00 -3 0.00 0.00

spice extmem 0 0.00 0 0.00 0.00
memadj 0 0.00 0 0.00 0.00
�nd 0 0.00 0 0.00 0.00
indxx 0 0.00 0 0.00 0.00
reserv 2 0.19 2 0.19 0.39
swapij 0 0.00 0 0.00 0.00
load 28 0.00 49 0.00 0.00
trunc 7 0.00 16 0.00 0.00
bjt 1 1.97 -7 -0.10 1.99
mcopy 0 0.00 0 0.00 0.00
dcdcmp 2 0.00 2 0.00 0.00

tomcatv MAIN -1 0.00 -1 0.00 0.00
AVERAGE 2 0.33 3 0.17 0.50

52

in register pressure. The higher register pressure results in more spill code. In some

cases, the spill code may be more than can be absorbed by the high issue rate of the

processor, degrading the performance of the code, possibly negating any bene�t gained

by application of the optimization in the �rst place.

One method to reduce the amount spill code is to break up the live range of an

unallocatable virtual register and allocate as much of it as possible. Ideally, breaking

up the live range and allocating portions of it will result in less spill code. Chow and

Hennessy [4] were the �rst to propose their approach, termed live range splitting. A brief

description of their method was presented in Section 2.2.3. The many problems involved

in live-range splitting, including the selection of live ranges to split and selecting the split

points within the live range, are not trivial. An excellent discussion of these problems

and the many issues involved as well as several methods of live-range splitting, may

be found in P. Briggs' thesis [5]. One of these, loop-level live-range splitting, has been

implemented within the IMPACT register allocator.

If loop-level splitting fails to produce an allocatable live range, the register allocator

may attempt instruction-level splitting. The instruction-level splitting algorithm cur-

rently being implemented within the IMPACT register allocator is very similar to the

method proposed by Chow and Hennessy [4]. As the implementation is not yet complete

and the algorithm is still evolving as implementation proceeds, it will not be discussed

further.

53

3.12.1 Loop splitting

Since the register pressure problem is severe within loops, loop-level live-range split-

ting is a good starting point on the path to instruction-level live-range splitting. The

goal of loop-level splitting is to relieve the register pressure within loops by removing

interferences caused by live ranges that are inactive within the loop. Also, loop-level

splitting may be used to reduce the number of interferences of live range containing a

loop with high register pressure, by removing that loop from the live range and making

the live range allocatable in the process.

Accommodating live-range splitting within the existing register allocation algorithm is

relatively straightforward. Rather than simply spilling an unallocatable virtual register,

the allocator attempts loop-level live-range splitting in an e�ort to allocate some portion

of the virtual register's live range. The obvious �rst step is to examine the live range to

locate and remove any loops contained therein. If a live range is found to contain one

or more loops, the live-range instructions contained within those loops and the loops'

preheader blocks are removed from the original live range. If on the other hand, the live

range contains no loops, the virtual register is spilled. The loop removal algorithm is

shown in Figure 3.14.

Consider the live range in Figure 3.15(a) which contains three loops, A, B, C. The

blocks labeled Ap, Bp, and Cp represent the preheader block of each loop. Performing

loop removal on these live ranges results in the live range in Figure 3.15(b). The uncolored

54

base = lowest nesting level of live range

for (i = base+1; i <= base+2; i++)

for (each loop at nesting level i)

if (live range instr \ loop instr 6= ;) f
live range instr = live range instr - loop instr

live range instr = live range instr - preheader instr

g

Figure 3.14: Loop removal algorithm

blocks are those blocks no longer contained within the live range. Figure 3.15(c) contains

the three removed loops which themselves may become individual live ranges.

Once all loops have been removed from the current live range, the live-range's inter-

ferences are updated and the register allocator checks for available free registers. In the

event that no register is available, the unallocatable portion of the live range is spilled.

In our example, the portion of the live range in Figure 3.15(b) would be spilled. The

removed loops become new live ranges and are added to the heap for future considera-

tion. If a free register is available, the register allocator attempts to reinsert the loops in

order to allocate as much of the live range as possible. Each removed loop is assigned a

priority value, calculated from Eq. (3.5), and reinsertion is attempted starting with the

loop of highest priority.

LP (loop) =

P
i2loop(defi + usei)� wi

N
(3.5)

After a loop has been reinserted, the live-range's allocatability is checked again. If the

live range is allocatable, the next loop is reinserted and the allocatability of the live range

is reexamined. Any loop that causes the live range to become no longer allocatable is

55

Ap

Bp

Cp

Loop
A

Loop
B

Loop
C

Ap

Bp

Cp

Loop
A

Loop
B

Loop
C

Ap

Loop
A

Bp

Loop
B

Cp

Loop
C

(a) (b) (c)

Figure 3.15: Loop removal example: (a) original live range, (b) live range after removal,
(c) new loop live ranges

56

for (each removed loop)

< calculate loop priority function >

< sort loops by priority >

for (each removed loop in priority order)

live range instr = live range instr [loop instr

if (live range unallocatable)

live range instr = live range instr - loop instr

Figure 3.16: Loop reinsertion algorithm

removed once again. This process continues until an attempt has been made to reinsert

each loop. The loop reinsertion algorithm is shown in Figure 3.16.

For example, assume that the loops of Figure 3.15(c) have a priority order of B, C,A,

loop B is reinserted into the live range of Figure 3.15(b), and the live range is found to be

allocatable, resulting in Figure 3.17(a). Subsequent attempts to reinsert C and then A

both result in unallocatability and those loops become candidates for future allocation.

Thus in this example, the portion of the live range that is �nally allocated is shown in

Figure 3.17(a).

3.12.2 Correction code

An allocated live range that has been split in this manner is no longer a valid live

range and additional instructions are required for correctness. Something must be done

about the gaps in the allocated live range in Figure 3.17(a). However, no correction code

is inserted at the time this live range is allocated. The reason is that the �nal form of the

required correction code depends upon the allocation results of any removed loops. The

57

Ap

Bp

Cp

Loop
A

Loop
B

Loop
C

(a) (b)

Ap

Bp

Cp

Loop
A

Loop
B

Loop
C

move

move

(c)

Ap

Bp

Cp

Loop
A

Loop
B

Loop
C

store

load

move

move

Figure 3.17: Loop splitting correction code: (a) Loop B is reinserted, (b) Loop C is
allocated requiring the indicated mov instructions, (c) Loop A is spilled
requiring the indicated load and store instructions

58

four possible cases are described below. For the purposes of this discussion, the original

live range from which a loop was extracted is termed the parent of that loop.

In the case in which the parent live range is allocated, as in our previous example,

the removed loops may be either allocated or spilled. The preferred case is allocation of

the removed loop. In this event, move instructions are required at the entry and exit

blocks of the loop to place the value in the proper register. If we assume that this is the

case for loop C in our running example, move instructions are required as indicated in

Figure 3.17(b). There are two instances where these instructions are unnecessary: when

the �rst reference in the loop live range is a de�nition and when the value is not live

upon exit from the loop. Spilling a removed loop requires insertion of store and load

instructions to save the value upon entry and restore it upon exit. If we assume that loop

A is spilled, store and load instructions are required as shown in Figure 3.17(c). These

instructions may also be unnecessary for the same reasons mentioned earlier. The third

case involves the spilling of the parent live range and the allocation of a removed loop.

Here a load is required upon entry and a store is required upon exit. The �nal case in

which both are spilled obviously does not require additional instructions for correctness.

3.12.3 Loop splitting evaluation

The allocation results for loop-level live-range splitting are provided in Table 3.14

and the bene�t of loop-level splitting over macroregister allocation is provided in Ta-

ble 3.15. The results show a minimal amount of performance improvement. Although

59

loop-level splitting was able to achieve a decrease in the amount of spill code for all cases

in which a change occurred, the percent improvement in execution time in those cases

is rather small. There are a number of possible explanations for these results. First, in

the cases in which there was a large decrease in the static spill code count, the dynamic

spill percentages are about 2-3% after macroregister allocation, and thus so is the max-

imum achievable performance improvement. Furthermore, a number of the functions in

which no improvement was realized simply contained a limited number of loops. Also,

the granularity of splitting at the loop level may be too large to exploit all of the poten-

tial gains that may be achieved from live-range splitting. Overall, loop-level live-range

splitting was consistently able to reduce the amount of spill code inserted by the register

allocator, and since the increase in allocation time is minimal, loop-level splitting may

become a viable method for reducing spill code.

60

Table 3.14: Allocation results with loop splitting
Benchmark Function Loads % Stores % Caller % Total %
cccp do de�ne 13 0.76 20 1.28 0.66 2.04

rescan 21 0.20 58 0.22 0.01 0.42
doduc debu 94 0.67 145 0.52 0.00 1.20

debico 35 7.34 23 0.89 0.00 8.22
deseco 249 3.30 184 1.18 0.25 4.48
drepvi 5 0.63 8 1.01 0.00 1.64
ihbtr 3 0.21 11 0.94 0.00 1.15
lissag 0 0.00 0 0.00 0.00 0.00
orgpar 34 0.01 31 1.93 0.00 1.93
paroi 31 0.05 24 0.15 0.10 0.20
pastem 38 0.00 74 0.02 0.01 0.03
prophy 331 13.31 213 8.32 0.01 21.63
repvid 11 1.54 8 0.32 0.00 1.86
sortie 4 0.00 6 4.68 0.00 4.68
subb 127 13.66 80 8.60 0.00 22.26
supp 138 11.94 92 7.96 0.00 19.90

ear EARSTEP 19 0.17 16 0.17 0.34 0.34
eqntott read ones 6 0.01 11 0.01 0.00 0.02
espresso scofactor 6 0.41 15 1.17 0.00 1.58

sccc 9 0.21 9 0.27 0.00 0.49
tautology 11 0.32 12 0.53 0.11 0.85

fpppp fmtgen 10 1.12 13 1.46 2.01 2.57
fpppp 2327 32.85 884 12.48 0.00 45.33
twldrv 571 10.88 301 4.70 0.03 15.65

lex packtrans 4 0.00 12 0.04 0.00 0.04
li evform 30 1.03 26 1.62 1.39 2.65

xlevlist 14 0.49 12 1.01 0.96 1.50
xlevarg 14 0.86 12 1.46 0.02 2.32

matrix300 sgemm 2 0.04 2 0.04 0.09 0.09
sgemv 10 0.00 10 0.00 0.00 0.00

nasa7 c�t2d1 9 0.00 10 0.00 0.00 0.00
c�t2d2 6 0.00 6 0.00 0.00 0.00
cholsky 31 0.03 24 0.00 0.00 0.03
btrix 24 1.33 32 0.20 0.00 1.54
gmtry 0 0.00 0 0.00 0.00 0.00
emit 3 0.00 3 0.00 0.00 0.00
vpenta 28 0.21 25 0.13 0.00 0.34
mxm 0 0.00 0 0.00 0.00 0.00

spice extmem 3 1.70 3 1.70 3.41 3.41
memadj 4 0.00 4 0.00 0.00 0.00
�nd 6 0.04 6 0.06 0.04 0.10
indxx 0 0.00 0 0.00 0.00 0.00
reserv 5 0.49 5 0.49 0.98 0.98
swapij 0 0.00 0 0.00 0.00 0.00
load 54 0.00 89 0.00 0.00 0.00
trunc 4 0.00 41 0.00 0.00 0.00
bjt 367 8.57 540 5.69 1.16 14.27
mcopy 0 0.00 0 0.00 0.00 0.00
dcdcmp 4 0.00 4 0.00 0.00 0.00

tomcatv MAIN 23 1.28 19 0.04 0.00 1.32

61

Table 3.15: Bene�t of loop splitting
Benchmark Function Loads % Stores % Total %
cccp do de�ne -5 -0.41 0 -0.17 -0.58

rescan -19 -0.24 2 -0.03 -0.27
doduc debu -22 -0.32 -2 -0.31 -0.64

debico -2 0.00 -1 0.00 0.00
deseco -6 0.00 -2 -0.01 -0.01
drepvi 0 0.00 0 0.00 0.00
ihbtr -4 -0.44 -3 -1.01 -1.46
lissag 0 0.00 0 0.00 0.00
orgpar 0 0.00 0 0.00 0.00
paroi -20 -1.31 -9 -0.19 -1.50
pastem 0 0.00 0 0.00 0.00
prophy -28 -0.88 -16 -0.01 -0.98
repvid 0 0.00 0 0.00 0.00
sortie 0 0.00 0 0.00 0.00
subb 0 0.00 0 0.00 0.00
supp 0 0.00 0 0.00 0.00

ear EARSTEP 0 0.00 0 0.00 0.00
eqntott read ones 0 0.00 0 0.00 0.00
espresso scofactor -3 0.00 -1 0.00 0.00

sccc 0 0.00 0 0.00 0.00
tautology 0 0.00 0 0.00 0.00

fpppp fmtgen 0 0.00 0 0.00 0.00
fpppp 0 0.00 0 0.00 0.00
twldrv -136 -0.05 -125 -0.03 0.01

lex packtrans -1 0.00 -1 0.00 0.00
li evform -21 -0.23 -9 -0.77 -1.01

xlevlist -11 -0.53 -5 -1.00 -1.55
xlevarg -10 0.00 -4 -0.58 -0.58

matrix300 sgemm 0 0.00 0 0.00 0.00
sgemv 0 0.00 0 0.00 0.00

nasa7 c�t2d1 -19 -0.02 -9 0.00 -0.03
c�t2d2 -20 -0.04 -10 0.00 -0.05
cholsky -25 -0.08 -8 -0.01 -0.09
btrix -39 -0.69 -18 -0.01 -0.70
gmtry -13 0.00 -11 0.00 0.00
emit -13 0.00 -10 0.00 0.00
vpenta -55 -1.59 -31 -0.08 -1.67
mxm -14 0.00 -11 0.00 -0.01

spice extmem 0 0.00 0 0.00 0.00
memadj 0 0.00 0 0.00 0.00
�nd 0 0.00 0 0.00 0.00
indxx 0 0.00 0 0.00 0.00
reserv 0 0.00 0 0.00 0.00
swapij 0 0.00 0 0.00 0.00
load 0 0.00 0 0.00 0.00
trunc 0 0.00 0 0.00 0.00
bjt 0 0.00 0 0.00 0.00
mcopy 0 0.00 0 0.00 0.00
dcdcmp 0 0.00 0 0.00 0.00

tomcatv MAIN -32 -2.44 -23 -0.02 -2.47
AVERAGE -10 -0.19 -6 -0.08 -0.27

62

4. CONCLUSIONS AND FUTURE WORK

This thesis presents a discussion of the implementation of a global graph coloring

register allocator within the framework of the IMPACT-I C compiler based upon the

work done by Chaitin and Chow. The machine independent interface allows the register

allocator to be used to study a large variety of register �le con�gurations. This ability

also makes possible the seamless integration of the register allocator with our current

and any future processor code generators. Results show that by making macroregisters

available to the register allocator, it is possible to improve the quality of the resulting

allocation. Also, it has been shown that loop-level live-range splitting can consistently

reduce the amount of spill code.

There are several areas within the current implementation of the register allocator

that may be enhanced in order to improve the allocation quality as well as the speed of

the allocation. The most important area in terms of allocation time is dataow analy-

sis. The current method of instruction-level dataow analysis, although exact, is slow

for large functions, and therefore demands a more e�cient method. Since the current

63

implementation of the interference graph requires a large amount of memory, a better

implementation has been devised to reduce the memory requirement while maintaining

the current exibility and improving the access time.

Register allocation quality can be improved by altering the way the current register

allocator handles spill registers. Instead of reserving a certain number for spilling during

the allocation, the register allocator can deal with spilling as is done in Chaitin's allo-

cator. Although results that have been achieved for loop splitting indicate that we can

consistently reduce the amount of spill code, more work needs to be done to improve

the reduction and to investigate the limit of what can be achieved by splitting at such

a high level. The completion of the instruction-level live-range splitting implementation

should complement the existing loop-level splitting process and improve our live-range

splitting results. Finally, work is underway to incorporate constant preloading within the

current register allocation framework and to investigate the bene�ts that can be achieved

by performing constant preloading during register allocation.

64

REFERENCES

[1] P. P. Chang, S. A. Mahlke, W. Y. Chen, N. J. Warter, and W. W. Hwu, \IMPACT:
An architectural framework for multiple-instruction-issue processors," in Proceedings
of the 18th International Symposium on Computer Architecture, pp. 266{275, May
1991.

[2] R. L. Sites and D. R. Perkins, \Machine-independent register allocation," in Proceed-
ings of the ACM SIGPLAN 79 Symposium on Compiler Construction, pp. 221{225,
August 1979.

[3] G. J. Chaitin, M. A. Auslander, A. K. Chandra, J. Cocke, M. E. Hopkins, and
P. W. Markstein, \Register allocation via coloring," Computer Languages, vol. 6,
pp. 47{57, January 1981.

[4] F. C. Chow and J. L. Hennessy, \The priority-based coloring approach to register
allocation," ACM Transactions on Programming Languages and Systems, vol. 12,
pp. 501{536, October 1990.

[5] P. Briggs, Register Allocation via Graph Coloring. Ph.D. dissertation, Department
of Computer Science, Rice University, Houston, TX, 1992.

[6] D. Callahan and B. Koblenz, \Register allocation via hierarchical graph coloring,"
in Proceedings of the ACM SIGPLAN 1991 Conference on Programming Language

Design and Implementation, pp. 192{203, June 1991.

[7] F. Chow, \Minimizing register usage penalty at procedure calls," in Proceedings

of the ACM SIGPLAN 1988 Conference on Programming Language Design and

Implementation, pp. 85{93, June 1989.

[8] D. W. Wall, \Global register allocation at link time," in Proceedings of the 1986

SIGPLAN Symposium on Compiler Construction, pp. 264{275, June 1986.

[9] V. Santhanam and D. Odnert, \Register allocation across procedure and module
boundaries," in Proceedings of the ACM SIGPLAN 90 Symposium on Programming

Language Design and Implementation, pp. 40{52, June 1990.

65

[10] R. Sethi, \Complete register allocation problems," SIAM Journal on Computing,
vol. 4, pp. 226{248, March 1975.

[11] M. A. Auslander and M. E. Hopkins, \An overview of the PL.8 compiler," in Proceed-
ings of the ACM SIGPLAN 82 Symposium on Compiler Construction, pp. 22{31,
June 1982.

[12] G. J. Chaitin, \Register allocation and spilling via graph coloring," in Proceedings

of the ACM SIGPLAN 82 Symposium on Compiler Construction, pp. 98{105, June
1982.

[13] P. Briggs, K. D. Cooper, K. Kennedy, and L. Torczon, \Coloring heuristics for
register allocation," in Proceedings of the ACM SIGPLAN 1989 Conference on Pro-

gramming Language Design and Implementation, pp. 275{284, June 1989.

[14] P. Briggs, K. D. Cooper, and L. Torczon, \Rematerialization," in Proceedings of the

ACM SIGPLAN 1992 Conference on Programming Language Design and Implemen-

tation, pp. 311{321, June 1992.

[15] D. Bernstein, D. Q. Goldin, M. C. Golumbic, H. Krawczyk, Y. Mansour, I. Nahshon,
and R. Pinter, \Spill code minimization techniques for optimizing compilers," in Pro-
ceedings of the ACM SIGPLAN 1989 Conference on Programming Language Design

and Implementation, pp. 258{263, June 1989.

[16] F. Chow and J. Hennessy, \Register allocation by priority-based coloring," in Pro-

ceedings of the ACM SIGPLAN 84 Symposium on Compiler Construction, pp. 222{
232, June 1984.

[17] J. R. Larus and P. N. Hil�nger, \Register allocation in the spur lisp compiler,"
in Proceedings of the ACM SIGPLAN 86 Symposium on Compiler Construction,
pp. 255{263, June 1986.

[18] R. A. Bringmann, \Template for code generation development using the IMPACT-I
C compiler," M.S. thesis, Department of Computer Science, University of Illinois,
Urbana-Champaign, IL, 1992.

[19] H.-P. Co., PA-RISC 1.1 Architecture and Instruction Set Reference Manual. Cuper-
tino, CA: Hewlett-Packard Co., 1990.

[20] H.-P. Co., PA-RISC Procedure Calling Conventions Reference Manual. Cupertino,
CA: Hewlett-Packard Co., 1991.

[21] M. Johnson, Am29000 User's Manual. Sunnyvale, CA: Advanced Micro Devices,
Inc., 1990.

66

[22] W. W. Hwu, S. A. Mahlke, W. Y. Chen, P. P. Chang, N. J. Warter, R. A. Bring-
mann, R. G. Ouellette, R. E. Hank, T. Kiyohara, G. E. Haab, J. G. Holm, and D. M.
Lavery, \The superblock: An e�ective structure for VLIW and superscalar compila-
tion," tech. rep., Center for Reliable and High-Performance Computing, University
of Illinois, Urbana, IL, February 1992.

[23] S. A. Mahlke, D. C. Lin, W. Y. Chen, R. E. Hank, and R. A. Bringmann, \E�ective
compiler support for predicated execution using the hyperblock," in Proceedings of

the 25th International Symposium on Microarchitecture, December 1992.

[24] A. Aho, R. Sethi, and J. Ullman, Compilers: Principles, Techniques, and Tools.
Reading, MA: Addison-Wesley, 1988.

[25] J. R. Goodman and W. C. Hsu, \Code scheduling and register allocation in large ba-
sic blocks," in Proceedings of the 1988 International Conference on Supercomputing,
pp. 442{452, July 1988.

67

APPENDIX A PA-RISC 1.1 AND AM29000 REGISTER MAPS

int caller int map[] = f
19, 20, 21, 22

g;

int callee int map[] = f
3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18

g;

int caller double map[] = f
8, 8+32, 9, 9+32, 10, 10+32, 11, 11+32, 22, 22+32, 23, 23+32,

24, 24+32, 25, 25+32, 26, 26+32, 27, 27+32, 28, 28+32, 29, 29+32,

30, 30+32, 31, 31+32,

g;

int callee double map[] = f
12, 12+32, 13, 13+32, 14, 14+32, 15, 15+32, 16, 16+32, 17, 17+32,

18, 18+32, 19, 19+32, 20, 20+32, 21, 21+32,

g;

Figure A.1: PA-RISC 1.1 register maps

The register maps provided to the register allocator are generated directly from the

register �le of the target processor. Figure A.1 shows the register maps for the PA-

RISC 1.1. Note that there are only four maps for the six register banks in the register �le

description. The two arrays caller int map and callee int map are derived directly from

68

Table 3.3. The caller int map array contains the four available caller-saved registers,

gr19-gr22, and the callee int map array contains the 16 available callee-saved registers,

gr3-gr18. The remaining two arrays caller double map and callee double map are used

for both the single-precision and the double-precision register banks, as they are the same

physical register.

When the array caller double map is used as a map for the double-precision, caller-

saved register bank, the only values seen by the register allocator are those in odd-

numbered locations, containing registers fr8-fr11 and fr22-fr31, because double-precision

registers are described as having a size of 2. However, when used as a map for the

single-precision, caller-saved register bank, every location is seen by the allocator since

the single-precision registers have a size of 1. A double-precision register in the PA-RISC,

for example fr8, may also serve as two single-precision registers, denoted by fr8L for the

left half and fr8R for the right half. Thus, in the map, fr8L is denoted by 8 in the �rst

location and fr8R is denoted by 8+32. The number 32 is added to the entries corre-

sponding to right halves so that each map entry contains a unique number. The same

holds true for the array callee double reg map[].

In the case of the Am29000, there are only two arrays (see Figure A.2), since integer,

single-precision, and double-precision data all reside in the same physical register �le.

The caller reg map array contains the 19 available caller-saved registers, gr98-gr111 and

69

int caller reg map[] = f
98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111,

116, 117, 118, 119, 120

g;

int callee reg map[] = f
130, 131, 132, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143,

144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155, 156, 157,

158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171,

172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185,

186, 187, 188, 189, 190, 191, 192, 193, 194, 195, 196, 197, 198, 199,

200, 201, 202, 203, 204, 205, 206, 207, 208, 209, 210, 211, 212, 213,

214, 215, 216, 217, 218, 219, 220, 221, 222, 223, 224, 225, 226, 227,

228, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 239, 240, 241,

242, 243, 244, 245, 246, 247, 248, 249, 250, 251, 252, 253, 254, 255

g;

Figure A.2: Am29000 register maps

gr116-gr120, and the callee reg map array contains the 126 available callee-saved regis-

ters, fr2-fr128. There are no left and right halves to worry about, as in the PA-RISC, so

these maps are derived directly from Table 3.5.

