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1.  INTRODUCTION

A key element in the success of a compiler for research purposes or as a viable commercial

product is the number and type of target processors supported.  A compiler that supports

multiple target processors will typically use a generic intermediate language or data structure

when representing the converted or optimized instructions.

Code generation is the process of converting this  intermediate language  into the assembly

instructions for a target processor.  To successfully support a target processor, the developer

must have an in-depth knowledge not only of the processor instruction set but of the

organization of the processor.  It is also crucial to know the programming conventions

established by the manufacturer of the processor such as the allocation of specific registers for

operating system use. The architecture and instruction set information are typically found in the

processor user's manual.  However, the established conventions may only be found within

internal documents at the manufacturer.

During the 1990 and 1991 calendar years, extensive effort was spent in the development of

code generators for the IMPACT-I C compiler.   Code generators were developed for the MIPS

R2000/R3000, SPARC, AMD-29000 and Intel i860 RISC  processors.  These projects were

handled independently with varying levels of redundant effort.  Even though all code generators

started with a common data stream called Lcode [1] (Low-level intermediate code), the resulting

code typically used incompatible data structure. These data structures required extensive

massaging to use common tools such as the register allocator. Since development efforts were

carried on independently, a global view of the interface requirements for a generic register

allocator was not considered.  Thus, common tasks such as physical register assignment were

handled within the code generator as opposed to the register allocator.
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When the time came to support machine level optimizations and instruction scheduling, the

problems encountered up to that point were evaluated and a template guided code generator

model was proposed to produce a uniform development methodology across all code generators.

All key component interfaces were re-evaluated and extended as necessary

This thesis is intended as the primary design and interface specification for the template

based development efforts.  Its goal is to describe the code generation process and its

surrounding environment, provide interface specifications for support tools that simplify the

development process, and specify what parts of the code generator template are standard and

what parts are processor specific.  For each phase of code generation, support routines are

outlined and examples of their use are given.

Chapter 2 provides an overview of the structure of the code generator template.  Chapter 3

describes the operation and directory structure for new code generators.  Chapters 4 through 7

provide the detailed information required to develop a code generator using the template.

Finally, concluding remarks and performance results are given in Chapter 8.
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2.  OVERVIEW TO CODE GENERATION USING IMPACT-I

The creation of a code generator for IMPACT-I involves two development tasks.  First, a

machine specific file (mspec) must be developed.  This file conveys the architectural

characteristics and limitations of the target processor to earlier compilation phases.  For

example, if code is generated to reference variables, the correct reference scheme should be used

such as signed offset from the stack.  This will be discussed in detail in Section 3.

Once the mspec file has been developed, efforts can begin on the code generator.  This

process converts the original Lcode instructions into a representation called Mcode which can be

more readily supported by the target processor.  Mcode is composed of Lcode instructions which

may be directly supported with no changes, and instructions which have be converted to a

sequence sequence that can be supported.  Section 2.1 briefly outlines the structure and function

of each of the major components of a code generator using the new template.  Section 2.2

introduces Lcode and Section 2.3 discusses the extensions to Lcode that embody Mcode.

2.1.  Code Generator Structure

There are three main phases to code generation as shown in Figure 2.1.  Phase I performs

code annotation.  Phase II performs Mcode optimization and register allocation. Phase III

converts the final Mcode file to the appropriate assembly code for the target machine.  These

phases will be discussed in detail in the following sections.

2.1.1.  Code Annotation

This phase involves the conversion from an Lcode format to an Mcode format.  During this

process, instructions with delay slots are marked and machine specific delays will be added to

the instruction.  Any unsupported Lcode instructions will be converted to supported Mcode

instructions.  For example, a frequent annotation involves incompatible sizes of immediate
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values.  The Lcode instructions can support 32-bit integer, floating point and double immediate.

Few RISC architectures can support immediate fields of this magnitude.

2.1.2.  Optimization and Register Allocation

Phase I code annotation can introduce redundant instructions. Therefore, the first task of this

phase is to perform Mcode optimizations.  The supported optimizations include common sub

expression elimination, copy propagation and dead code elimination [4].

Mcode
Assembly

Code

Lcode Mcode

Code
Annotat ion

Phase I

Pre-pass Code
Optimizat ions

Register Allocat ion

Post-pass Code
Annotat ion

Post-pass Code
Schedu ling

Phase II

Generate
Assembly Code

Phase III

Pre-pass Code
Schedu ling

Figure 2.1:  A Block Diagram of the IMPACT-I Code
Generator

Pre-pass code scheduling has been shown [5] to provide a better schedule since it arranges

instructions before register allocation.  Register allocation can place artificial dependencies

between instructions due to limitations in register files.  To minimize these dependencies, pre-

pass code scheduling moves instructions closer to their potential fill slots, thus increasing the

live ranges.  Unfortunately the increased live range increases the likelihood of spill code.
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A generic register allocator will convert the virtual registers to the machine specific physical

register number.  The register allocator will decide whether to use a callee save or caller save

register.  If there are insufficient registers or the remaining registers would be a poor choice for

selection, the register allocator will insert necessary spill and fill code to break up the live range

of the register.

Post-pass code annotation and optimizations are performed after register allocation.

Instructions that are dependent on information provided by the register allocator that is necessary

to fill in the function prologue and epilogue will be annotated at this point.  The optimizations

are typically machine specific peep-hole optimizations.

Finally, post-pass code scheduling fills the load and branch delay slots as well as additional

instructions that were marked as fill candidates.

2.1.3.  Producing Assembly Code

The third phase will take the optimized Mcode file and produce appropriately formatted

assembly code suitable for use with the standard available assemblers for the respective target

machine.  An in-depth knowledge of the machine instruction set is required for this phase.

2.2.  An Introduction to Lcode

In order to understand the code generation process, one must first be familiar with the

structure of Lcode files and key internal data structures.  Lcode instructions are described with a

three address notation.  Lcode is an instruction set for a load/store architecture, supporting

unlimited virtual registers and basic synchronization operations [1].  It is broken down into data

and function blocks.  The functions are composed of control blocks containing the Lcode

instructions.  Different phases of compilation can change the Lcode instructions.  These phases

will be highlighted as Lcode is discussed in subsequent sections.
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The sections are broken down into the external representation of Lcode that is an ASCII

representation and the internal representation that describes the most important data structures

used within the C programs.

2.2.1.  External Lcode Representation

2.2.1.1.  File Layout

A typical Lcode file may be composed of a data Section and one or more functions.    The

data Section defines both static and dynamic variables.  These variables are aligned to memory

locations specified by the mspec file.  Data types include unsigned character (1 byte), signed

character (1 byte), unsigned short (2 bytes), signed short (2 bytes), unsigned integer (4 bytes),

signed integer (4 bytes), single-precision float (4 bytes) and double-precision float (8 bytes).  All

integers are expressed as 2s complement number representation and all floating-point values are

expressed in IEEE floating-point representation [1].

(function name exec_cnt)
(cb "prologue")
(cb ...)

.

.

.
(cb "epilogue")

(end name)
Figure 2.2:  Lcode Function Layout

If inline expansion [2] is chosen as one of the compile-time optimizations, the program will

be broken up into one file per function.  This simplifies the merging process required by

inlining.  The data Section of the original program will be placed into a separate file called

data.lc.  The file impact1_rename tells the name of each function stored in each created file.

2.2.1.2.  Function Layout

Figure 2.2 shows the layout of a typical function in a Lcode file.   The first line of a function,

preceded by the keyword function, contains the name of the function (name) and the typical

execution count of the function (exec_cnt).  Execution count information may be gained
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accurately from profiling [3] or estimated using static analysis.  The first control block always

contains the prologue that defines return register type, local variable requirements in bytes and

outgoing parameter requirements in bytes.

 As a minimum, a function will contain a control block with the prologue and a last control

block with the epilogue.  Therefore, there are a minimum of two control blocks per function.  A

function will never have more than one entry point, but may have multiple exit points.  It is

possible to have the epilogue duplicated in more than one control block because of one or more

of the compiler optimizations [3].

2.2.1.3.  Control Block Layout

Figure 2.3 shows the layout of a typical control block.  Control blocks may have one or more

exit points, but only one entry point.  Control blocks with one exit point are the same as basic

blocks.  Control blocks with multiple exit points are called superblocks [3].

A control block begins with the keyword cb followed by a unique identification number (id)

and an execution count (cb_exec_cnt).  The execution count shows profiled-based or static

information about number of times the control block has been executed.

(cb id cb_exec_cnt
(flow cond dest cnt)

…
(flow cond dest cnt) )
(op …)

…
(op …)
[(branch_op …)]

…
[(branch_op …)]

Figure 2.3:  Lcode Control Block Layout

Next, the flow information are given and preceded by the keyword flow.  Flow information

is composed of three fields:  the condition by which the destination will be followed (cond), a

destination control block number if the condition is met (dest), and the number of times that the
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condition was met during profiling (cnt).  It should be noted that unless profile information is

available, the cnt field here will always be 0.0 for all paths.

If a control block has no branch at the end, the condition field is ignored and the destination

is the next sequential control block.  The condition field also will be ignored if the last

instruction of the basic block is an unconditional branch.  A basic block with a conditional

branch will contain flow information for the taken and not taken cases.

Superblocks may contain multiple conditional branches but only one unconditional branch.

Due to the multiple exit points in superblocks, Lcode instructions do not necessarily have the

same execution count as specified in the control block header.  The execution count of any

instruction following a branch is computed by subtracting the cnt fields of all preceding branch

instructions from cb_exec_cnt.

2.2.1.4.  Instruction Layout

Lcode instruction begins with the entry op and is composed of four major parts,  operation

number, opcode, operands and attributes, as shown in Figure 2.4. The operation number is

unique for each  Lcode instruction in the function.

The opcode signifies the Lcode operation to perform. These groups are broken down into

ALU operations, memory access and control flow. For a detailed description of each opcode and

its required parameters refer to [1].

(op op_num
(opcode

((dest_type dest_value))
((src1_type src1_value)
 (src2_type src2_value)
 (src3_type src3_value))
((attr_name attr_value) … )

)
)

Figure 2.4:  Lcode Instruction Layout

Lcode instructions support one destination and up to three source fields.  The opcode shows

the number and type of fields required at any given time.   However, in some instances such as
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memory stores, the third source field is used as the destination of the store.  This is to prevent

any incorrect register dependencies when using address indirect.

Each operand has two fields.  The first field is a type that can be register (r), label (l), integer

(i), single precession floating point (f), double precession floating point (f2), a macro (mac) or a

control block number (cb).  The second field is the data of the specified type.

2.2.1.5.  Data Layout

There are five data classifications shown in Figure 2.5.  A complete description of each

operation in the classes is covered in [1].  Class 1 can currently only have an op value of

reserve.   This indicates a block of memory starting at the current point with value integer

number of bytes should be reserved.

Class 1:
(op value)

Class 2:
(op name)

Class 3:
(op expr1 expr2)

Class 4:
(op value name)

Class 5:
(op size name expr*)

Figure 2.5:  Lcode Data Item Layout

Class 2 can only have op values of void and global.  In both cases, name is a label that may

be used for reference purposes only.  It is illegal to load from or to store to either of these

locations.  Global is used to promote the scope of the label to become visible outside the file.

Class 3 can have op values of wb, ww, wi, wf, wf2, ws that are used to write a value to an

address determined by the computation result of expr1.  The sizes of these fields are byte, word,

integer, float, double and string pointer respectively.  These are discussed in more detail in

Section 2.2.1.4.  The second expression (expr2) must evaluate to the type defined by op.  Figure

2.6 lists the valid expression types.  The results of all expressions except f and f2 will be

integers.  Therefore, the arithmetic expressions can only be applied to integers and address

labels.
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Class 4 can have op values of ASCII  or asciz (a null terminated string) that will result in the

allocation of the number of bytes necessary for the string value.  The starting address of the

allocated block will be assigned to name.  This class also includes the memory alignment

operation.  The value indicates the alignment boundary.  The aligned memory location is

assigned to name.

(add expr1 expr2)
(sub expr1 expr2)
(mul expr1 expr2)
(div expr1 expr2)
(neg expr); Negate expression
(com expr); complement expression
(i integer value)
(f single precision value)
(d double precision value)
(l label name)
(s ASCII string)

Figure 2.6:  Lcode Expression Layout

Finally, class 5 may have op values of byte, word, long, float, or double.  The size defines

the number of units of type op to allocate.  For example if size is ten and op is word (2 bytes),

then twenty bytes will be allocated.  The block of storage will be aligned to the appropriate

boundary as defined by op.  The aligned address will be assigned to name.  Each location of the

block, starting with the first at the aligned address, will be initialized by the one or more expr*.

It is illegal to have more expressions than locations to be initialized.

2.2.2.  Internal Lcode and Mcode  Representation

The goal in developing Mcode was to make it appear just like Lcode.  Thus benefiting from

a wealth of available tools.  To this end, all data structures shown in subsequent sections refer to

both Mcode and Lcode operations.  There is one major difference between Lcode and Mcode

due to the initial design of the Impact-I C compiler.  All Lcode operations are stored in a large

array.  The Lcode unique identifier is specified by the location of the operation in the array.  The

organization of the Lcode instructions has been designed into numerous routines with the

compiler.  Thus, to take advantage of these routines, an equivalent array of Mcode operations
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was created.  For this reason, there are some duplicate routines covered in Chapter 5 where the

only difference is indexing into the Lcode array instead of the Mcode array.

2.2.2.1.  Function Data Structure

The function data structure shown in Figure 2.7 describes a function and its control blocks.

The name field is the name of the original function.  The weight describes the static or profiled

execution count of the function.  The cb array is a mapping of the function control numbers to

the order encountered in the function.  This mapping is necessary because several optimization

techniques will cause creation of new control blocks.  For debugging purposes, these new

control block numbers are not renumbered.  The field n_cb indicates the number of control

blocks in the function.

typedef struct L_Func {
char *name;
double weight;
int cb[L_MAX_CB];
int n_cb;
int s_local;
int s_param;
int s_swap;
Set cb_set;
Set op_set;

}

Figure 2.7:  Lcode Function Data Structure

2.2.2.2.  Control Block Data Structure

The control block data structure shown in Figure 2.8 describes a control block and it's Lcode

operations.  There is an implicit cb number associated with each L_Cb structure.  This is

calculated by taking the pointer to the control block and subtracting the value L_Cb that is an

array containing all control blocks.  The weight field is the profiled weight of the control block.

The weight2 field is the static weight of the control block.  Profiled information can only be

available if profiling has been performed.  However, the static weight can be computed for the

control block.  First, loop detection is performed by calling L_loop_detection(function_ptr).
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Next, static weights are computed for the control block by calling

L_compute_static_cb_weight(cb_number).

typedef struct L_Cb {
double weight;
double weight2;
L_Oper *first;
L_Oper *last;
struct L_Flow *src;
struct L_Flow *dest;
void *ext;

}

Figure 2.8: Lcode Control Block Data Structure

The fields s_local, s_param and  s_swap provide run time information about local memory

requirements, outgoing parameter register requirements and swap space requirements

respectively.  The fields cb_set and op_set are sets containing the unique identification numbers

of all control blocks and Lcode operations.  The sets are used to prevent duplication of control

blocks or operations.

The next two fields, *first  and *last, are pointers to the first and last Lcode operation within

a control block.  Control flow arcs into and out of the control block are given by *src and *dest

respectively.  Finally, an optional field, *ext, is used for different purposes by different phases of

code generation.

typedef struct L_Flow {
int cc;
short src_cb;
short dest_cb;
double weight;
struct L_Flow *next;

}

Figure 2.9:  Lcode Control Flow Data Structure

Control Flow arcs are described using the structure given in Figure 2.9.  The field cc gives

the branch condition (taken or not taken).  The src_cb and dest_cb fields are used to show the

source and destination control block number.  If the flow structure is for a source arc, then

src_cb will be the incoming control block number and dest_cb will be the control block that has

defined the flow.  If the flow structure is for a destination arc, then dest_cb will be the outgoing
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control block number and src_cb will be the control block that has defined the flow.  This

provides a double linked list format that simplifies addition and deletion of nodes to control flow

graph.  The weight is the number of times that this control path was taken during profiling.

Finally, *next is a pointer to the next flow structure.  This allows there to be multiple incoming

and outgoing arcs for each control block.

2.2.2.3.  Instruction Data Structure

This is an internal data structure Lcode operations are represented by the L_Oper data

structure shown in Figure 2.10.  There is a unique implicit Lcode operation number associated

with each opcode that can be computed by subtracting the base address of the array L_oper from

the pointer to the operation.  It should be noted that this data structure is used both for Lcode and

Mcode instructions.  However, the Mcode instructions are kept in an array called M_oper.

Therefore, to compute a Mcode operation number, substitute M_oper where L_oper was

mentioned in the computation.  The field *opcode is a pointer operator name that was used in the

Lcode file.  The *opcode_attr field is a pointer to an attribute structure described below.

typedef struct L_Oper {
char *opcode;
L_Opcode_Attr *opcode_attr;
L_Operand dest;
L_Operand src1;
L_Operand src2;
L_Operand src3;
struct L_Oper *previous;
struct L_Oper *next;
L_Attr *attr;
struct L_Oper *link;
void *ext;
double weight;
int color;

}

Figure 2.10:  Lcode Instruction Data Structure

There are four operand fields.  Three are for source operands (src1, src2, src3) and one is for

the destination operand (dest).  The data structures for these fields are discussed below.  For any

given operation, the number of source and destination fields used is dependent on the operation.
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There are two  L_Oper pointers included in the structure.  They point to the previous and

next Lcode operations.  If there is no previous or no next operation, the pointers will be set to

null.  The *attr  field is used to add processor specific annotations when annotating from Lcode

to Mcode (discussed in Section 4).  Since this data structure is used for both Lcode and Mcode,

the *link  field is used as a pointer a parent Lcode operation.  This supports debugging by

allowing the intermixing of Lcode and Mcode operations in the output file.  The *ext field is

used for compilation specific use.

The fields weight and color are used internal to modules such as register allocation.  The

static or profiled execution count of the operation is given by the field weight.  This information

is inserted after two steps.  The first step was discussed in Section 2.2.2.2.  After the control

block weights are added, the operation weights can be added as follows.  First, each control

block must be colored.  This is accomplished by calling L_color_cb(cb_id) to initialize the color

field.  Next, the operation weight is computed by calling L_compute_oper_weight(operation_ptr,

s, d).   The parameter s tells the function whether it should use static information to compute

operation weight.  The parameter d tells the function whether it should use available profiled

information to compute operation weight. If both fields are set and the information is available,

the profiled information will be used exclusively.

typedef struct L_Opcode_Attr {
int id;
char *name;
int type;
int ctype;
int delay;

}

Figure 2.11:  Lcode Opcode Attribute Data Structure

The opcode attribute field, shown in Figure 2.11, is used to describe each opcode.  This

information is kept in a global opcode array (L_opcode).  The id field, unique for every Lcode

opcode, is used as an index into the global array.  The name field is a descriptive opcode name

stored in the Lcode and Mcode files.  The type field is used to categorize the opcodes as

arithmetic, memory load, memory store, control or synchronization operations.  The ctype field

14



typedef struct L_Operand {
char type;
char ctype;
union {

int cb;
long i;
float f;
double f2;
int mac;
char *s;
int r;
char *l;

} value;
void *ext;

}

Figure 2.12:  Lcode Operand Data Structure

shows resulting C data type for the operation.  The delay shows the latency for the opcode.  The

contents of the attribute fields are filled during the initial start up process by the function

L_read_opcode_file define in the file L_opcode.c.  The configuration and latencies are defined

in files of the form L_OPCODE_*.

The L_Operand structure, shown in Figure 2.12,  is used to describe the type and contents of

each operand in an operation.  The type field shows if the operand is a register, macro, label,

string pointer, numeric value or unused.  If the type field is a register or macro then the ctype

shows the contents.  Operand types of string and label are always given a ctype of integer since

they are integer pointers.

The field value is a union that should be referenced by the appropriate entry associated with

the type field.  For example, if type is a macro, the reference should be to value.mac.  Finally,

*ext is an optional field used by various phases of compilation.

2.2.2.4.  Data Item Data Structure

The structure L_Data, shown in Figure 2.13 provides the necessary information about a

Lcode data item.  The field type defines what type of data element is defined (refer to Section

2.2.1.5 for class break down and types).  Classes 1, 2 and 5 described in Section 2.2.1.5 were

permitted to have value or size fields that are always integer numbers.  The information for these

fields is stored in the field N.
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typedef struct L_Data {
short type;
int N;
L_Expr *address;
L_Expr *value;
void *ext;

}

Figure 2.13:  Lcode Data Item Data Structure

Classes 2 through 5 can have expressions or names.  A name is an address calculation to a

memory location.  Name expressions are pointed to by the field *address.  Class 3 and 5 may

have an additional expression that can be some arbitrary calculation.  This calculation expression

is pointed to by *value.

The expression data structure, L_Expr , is shown in Figure 2.14.  The field type is a uniquely

identifies the valid fields in the expression data structure.  If the type is a calculation, it is based

on a series of calculations pointed to by the expressions *A, *B and *next.  Additionally, the type

may represent a series of sequential initializations.  Refer to Section 2.2.1.5 for more

information on expressions.

typedef struct L_Expr {
short type;
union {

long i;
float f;
double f2;
char *l;
char *s;

} value;
struct L_Expr *A, *B;
struct L_Expr *next;

}

Figure 2.14:  Lcode Expression Data Structure

2.3.  Differences between Lcode and Mcode

Mcode is based on Lcode that was discussed in Section 2.2.  Extensions have been added to

Lcode to provide more distinctions between machine architectures uniformly.  This facilitates

the development of generic modules that perform Mcode optimizations, register allocation and

instruction scheduling as discussed in Section 2.1.
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Four standard extensions have been defined to make Mcode more generic.  These extensions

are supported by all aspects of the optimizer, code scheduler and register allocator.  These

extensions are key to providing a machine specific versions of Lcode while still maintaining a

common language.

The extensions supply information to support general delay slots as may be encountered with

a load, multiply or coprocessor call.  Supplied information defines if the delay slot can be

handled with hardware interlock and the number of delay slots that must be filled.

Branch delay slots are treated similarly to general delay slots but information is provided to

indicate if there exists a squashing branch that may be used in place of a standard branch

instruction.  The squashing branch may be a squash on taken or squash on not taken.

It may be necessary or more efficient to use macro registers that are not handled by register

allocator.  These registers might include a zero register as supported by the SPARC, a status

register as supported by both the Intel i860 and the SPARC or might be a register to control the

variable length overlapping register window of the AMD-29000.

To reduce redundant computations during code generation, specific define opcodes [1] are

used to propagate information from one phase of code generation to another.  In the AMD-

29000 code generator, these define instructions provide information on the number and type of

registers used, breakdown on memory usage for a function (i.e., swap and spill space or alloc

space).  This allows a function to pass the information needed to control the variable length

register window without having to recompute it in multiple of the phases.

Finally, machine specific annotations or extensions can be used to show a divergence from

the standard use of an opcode.  For example, the AMD-29000 instruction set can only support

immediate values from 0 to 255.  If it is necessary to add a negative number in the range -1 to -

255, additional code would need to be inserted to move the negative number into a register first

(requiring 1 to 2 instructions) before the instruction.  If an extension was used, this instruction

could be converted to a subtract where the first source operand could be subtracted from the

absolute value of the second source operand and produce the same result.  This would require an
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extension field for the subtract opcode to tell the print time routine to use a subtract reverse

instruction.  Other types of examples will be discussed during the subsequent annotation

sections.
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3. GETTING STARTED

3.1.Usage

The convention for naming code generators is to place a capital L  in front of the processor

type. Thus, the AMD-29000 code generator is executed using the following command line.

     Lamd29k [-target amd-29k] [-c #] [-i in_file] [-o out_file] [-verbose]

The option target specifies the processor type.  This permits support of multiple similar

processors by one code generator as well as providing necessary information to library routines

as to the type of supported processor.

The option c specifies the code generator phase to be executed.  If this parameter is missing

or a 0 is provided, then all phases are executed.  This requires that the input file be an Lcode file

and the output file be the assembly file.  If the option is a 1, then only code annotation will be

performed.  If the option is a 2, then only optimization, register allocation, post-pass code

annotation and instruction scheduling will be performed.  If the option is a 3, then only

generation of assembly code will be performed.  An option of 4 is also available that will

perform the same option 1 followed by option 2.  Typically options 1 through 4 are only used

during the development process.

The options i and o specify the input and output file names.  By convention, an input file has

the extension .lc for Lcode and .mc for Mcode.  An output file should have the extension .s for

an assembly file, .mco for an optimized Mcode file (one that has gone through phase II).  If  no

input or output files are specified, standard input and standard output are assumed respectively.
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The option verbose tells the code generator to produce all support information to the screen

and file.

3.2. Directory Structure

The development organization of a code generator is shown in Figure 3.1. In this example

the Lamd29k directory is the code generator directory.  The main directory contains the

executable, a README file describing the usage of the code generator, and the main entry point

for a code generator.  The file l_codegen_main.c  handles the c option described in Section 3.1,

opens necessary input files and calls the initialization modules based on the user specified

phases.  The include file l_codegen_main.h contains the necessary systems libraries for I/O and

string manipulation, as well as all include files necessary for a code generator.

Figure 3.1:  Directory Organization for an IMPACT-I Code Generator

The sub directories phase1/, phase2/ and phase3/ correspond to their respective phases

discussed in Chapter 2.  The file l_amd29k.h is the main include file for phase I.  The file

l_amd29k_func.c handles all code annotation required for a function.  The file

l_amd29k_macro.h provides the necessary interfaces required for custom macro registers.  These

files will be covered in more detail in Chapter 5.

The file o_amd29k.h is the main include file for phase II.  The file o_amd29k_func.c is the

main interface point for functions in phase II.  It  ensures the appropriate calling order for all

parts of this phase.  It also contains all routines to support post-pass code annotation and peep-

hole optimization.  The file o_amd29k_reg.c is the interface module for the generic Mcode
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register allocator.  The file o_amd29k_sched.c is the interface module for the generic Mcode

instruction scheduler.

The file p_amd29k.h is the main include file for phase III.  The file p_amd29k_func.c

converts all Mcode functions to their appropriate assembly code.  The file p_amd29k_data.c

converts all Mcode data items to their appropriate assembly code.

The half-toned names correspond to UNIX links to shared directories.  The directory Lcode

contains all Lcode functions that are discussed in Appendix A.  The directory Oopti contains the

code that performs the optimizations.  The directory Oschedule contains the code that performs

instruction scheduling.  The directory Regalloc contains the code that performs register

allocation.  The directories library0 and library1 contain system library routines for the

IMPACT-I compiler.

A UNIX shell script, setup_codegen, will create this organization automatically.  The only

input parameter is the main directory name.  It is suggested that a sub-directory for the code

generator be created since there are a number of critical directory links created.  After creating

the directory hierarchy, the shell script will copy the latest versions of the template files into the

appropriate sub directories.
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4. MACHINE SPECIFIC REQUIREMENTS

4.1. Overview and Organization

In order for the front end of the compiler to efficiently produce Lcode, we must inform it of

specific characteristics of the target machine.  This information includes the number of incoming

and outgoing parameters allowed in registers, method of referencing variables on the stack,

structure alignment, and parameter sizes.  All of this information is conveyed to the compiler

through the mspec or machine specification for the respective processor.  These files are stored

in the directory Mspec shown in Figure 3.1.  Unlike other sections of the code generator, it is

best to start with the machine specification file for a processor that closely matches the target

processor.  There can be significant differences in this interface based upon whether the

processor stores data in a BIG-ENDIAN or LITTLE-ENDIAN manner.

Once the Mspec file is created, it must be compiled in with the module Hcode before it can

be tested.  It is often useful in the early stages to copy the complete directory structure for this

module.  After satisfactory results are achieved, the specification file can be released.

4.2. Interface Requirements

4.2.1. Initial Changes

The first step is the assignment of a target processor name of the form amd-29k or dec-

mips.   This is used by any calling module for the machine specification file and by the code

generator to distinguish between different models.  At the same time, a name is assigned that

will be used as part of all function names in the file.  This name is typically of the form
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amd29k.  All references to names in subsequent sections assume a starting point of the AMD-

29000 specification file.

Once assigned a descriptive name for the target processor, make the following set of global

changes to the mspec.  Change all occurrences of AMD29K  in the define statements to the

appropriate processor name.  Next, change all occurrences of amd29k in function names to the

processor name.  Remember that processor name used in the function names must be identical to

the one assigned.

4.2.2. Field Size and Alignment

At the beginning of the mspec file are a group of size and alignment definitions.  The size

definitions are used to describe all parameter sizes  in bits.  If a parameter size is variable, then

assign it -1.  For example, a double precision field would be assigned a size of 64-bits.

The alignment fields are used to describe how to align each of the fields to the nearest bit

boundary.  If the alignment is variable such as with structures, then a minus one is used.

4.2.3. Macro Descriptions

Currently, a processor may have up to 16 incoming and 16 outgoing parameters.  The first

incoming register is assigned a base offset of 0 and the first outgoing parameter register is

assigned a base offset equal to the maximum number of incoming parameter registers. These are

defined using M_AMD29K_IN_BASE  and M_AMD29K_OUT_BASE .  The maximum

number if incoming parameters must be defined using M_AMD29K_MAX_FNVAR_REG .

This is used later in the specification file to determine if parameters must be passed through

memory or register.

In some calling conventions, parameters are always stored on the stack such as the return

address.  This storage can be defined using M_AMD29K_PARAM_FP_OFFSET .  There is no

way to determine if a function is a leaf or non-leaf function when these routines are called.

Therefore, variable information should be computed within the  code generator.
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4.2.4. Array Support

The compiler determines the initial alignment of an array using the function

M_amd29k_array_align  It determines the initial offset using the function

M_amd29k_array_layout.  The initial array offset is assumed to be aligned and to the first

physical entry in the array.  Finally, it determines the array size using M_amd29k_array_size.

These routines are generic and take advantage of the size and alignment information provided in

Section 4.2.2.

4.2.5. Union Support

The compiler determines the initial alignment of a union using the function

M_amd29k_union_align.  It determines the initial offsets using the function

M_amd29k_union_layout.  The initial union offsets are assumed to be aligned.  Finally, it

determines the union size using the function M_amd29k_union_size.  These routines are

generic and take advantage of the size and alignment information provided in Section 4.2.2.

4.2.6. Structure Support

The compiler determines the initial alignment of a structure using the function

M_amd29k_struct_align.  It determines the initial offsets to fields using the function

M_amd29k_struct_layout.  This routine lays out the fields attempting to minimized memory

requirements.  Finally, it determines the structure size using M_amd29k_struct_size.  It is

important to have a good understanding of structure layout and alignment for the processor

before attempting modifications to these routines.

4.2.7. Function Variable Support

The compiler determines function parameter information using the function

M_amd29k_fnvar_layout.  This routine is responsible for defining if parameters are referenced

through the stack pointer or the frame pointer as well as the number and initial offsets for the

incoming and outgoing parameters.
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The first part of the function determines how each parameter is to be passed.  If a parameter

will fit in a register, then it is marked to be passed through register and the number of used

parameter registers are incremented.  If it can only be passed through memory, it is marked in

this manner.  If the maximum number of parameter registers have been used, the remaining

parameters are passed through memory. Minor modifications will permit passing parameters

through either integer or floating point registers by assigning the appropriate type of parameter

register at this stage..

After defining the passing convention for each of the parameters, memory is allocated on the

stack with appropriate alignment to permit stacking of the parameters.

4.2.8. Local Variable Support

The compiler determines the offset for local variables using the function

M_amd29k_lvar_layout.  This function determines if local variables are to be referenced from

the stack or the frame pointer as well as defining the size and alignment of each parameter.  It

most cases, the local variables are aligned to the maximum size boundary to ensure that double

precision variables are correctly aligned.

4.2.9. Miscellaneous

There are several routines that convey important information to the compiler.  First, the

function M_amd29k_no_short_int tells the compiler if it should interpret short integers that are

typically 16-bit as long integers that are 32-bit.   The compiler can determine if the processor is

LITTLE-ENDIAN or BIG-ENDIAN with the function M_amd29k_layout_order.  Finally, it

can determine macro register numbers used to reference return structures using

M_amd29k_structure_pointer and return parameters using M_amd29k_return_register.
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5.  PHASE I -- CODE ANNOTATION

5.1.  Overview and Organization

Code annotation refers to the process of converting one instruction format to another.  The

amount of effort expended in this phase is directly proportional to the similarity betwee the

target instruction set architecture and Lcode.  Typically, there will be group of instructions that

map directly to the target processor and require no annotation, a group that may require a small

amount of annotation and a group that may be unsupported directly and require significant

annotation.  Before beginning this step, understand clearly how each instruction works and the

types of operands it may support.

A template  for this phase exists to ease the development process.  The template is currently

in the form of the AMD-29000 Lcode annotator demonstrating the functionality of this phase of

code generator on a working machine.  There are a set of functions within the annotator that

demonstrate all of the useful functions which can be used to ease code development.

The template is composed of three files which meet all of the internal and external interface

requirements for phase I.  The file l_amd29k_func.c contains all annotation routines.  The file

l_amd29k.h contains all variable and function definitions.  The file l_amd29k_macro.c permits

definition of processor specific macro registers that can be legally parsed and printed by the

standard Lcode libraries.

5.1.1.  Generic Features of l_amd29k_func.c

The function L_process_func is called once for every function within the original Lcode

file.  It prints the function header, control block headers and ensures that the Lcode operations

are emitted prior to their annotated Mcode operations in debugging mode.  It calls
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L_annotate_oper once per Lcode operations.  This routine is a generic routine and should not be

modified.

The function L_annotate_oper is the main parsing routine for Lcode operations.  It is

composed of a large switch statement containing all supported Lcode operations.  Typically

operations which require minimal or no annotation will be converted to Mcode operations in the

switch statement.  Operations which can expand to multiple Mcode operations should be

annotated in separate subroutines.

5.1.2.  Generic Features of l_amd29k_macro.c

A macro is a descriptive name for a register or a variable which can be embedded within

Mcode operations.  The following two functions provide an interface which permits definition of

macros.

The function M_init_macros will add any machine specific macros to permit accurate

parsing of the input data stream.  Examples of machine specific macros might be the zero

register contained in the SPARC.  This routine must exist to prevent link time errors but may be

empty if no custom macro registers are required.  This function is called from within l_code.c.

The function M_get_macro_name is required to print the string equivalent of any processor

specific macros defined in M_init_macros based on the specified unique identifier.  This routine

must exist to permit accurate linking but should return a "?" to indicate any unsupported macros.

This function is called from within l_code.c.

5.2. Initialization

The function L_init  is a generic initialization routine is provide as a standard part of the

interface to permit start-up initialization for code annotation.  This routine will be called from

l_codegen_main.c prior to calling L_process_func.  Any other forms of initialization should be

handled as required during the annotation process.
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5.3. Methodology

There are a number of general ground rules which should be adhered to in order to create a

code generator using the Mcode template.  This will be discussed in detail within this Section.

The most important rule is to maintain complete compatibility with the existing Lcode

operations. This means that all source operands defined in [1] must be present. Any missing

source operands may eliminate or create erroneous dependencies which can produce disastrous

results during phase II. There is an extension field which is appropriate for indicating divergence

from standard Lcode commands.  Any unneeded fields can be ignored by the code generator

during later phases.

There are a group of library routines in Appendix A which should be used by the code

generator.  These routines will ease the development process, ensure correct initialization of

critical fields and allow future extensions to Lcode without causing turmoil in all code

generators. Using these routines also prevents taking advantage of internal data structures for

short cuts that may later be changed to improve performance or reduce memory requirements.

 Some of the Lcode instructions support up to three 32-bit source fields in the form of

integers, labels or string pointers.  They may also support up to two single or double precision

floating point numbers in source fields.  Most of the RISC processors have a fixed instruction

size of 32-bits making it impossible to support even one of these fields directly.  In addition, few

CISC processors can support all of these fields at once.  Therefore, annotating apparently

harmless Lcode commands may require generation of instructions for one or more temporary

registers.  Do not arbitrarily generate extra instructions for these immediate fields.  Some of

them may fit within certain instructions!

Another problem related to the limited instruction size is that most architectures use multiple

instructions to load the upper and lower halves of registers.  The AMD-29000 can require up to

four instructions to load a double precision immediate. This type of annotation should not occur

during the phase I but after register allocation covered in Section 6.5. This simplifies register

allocation and allows the reuse of the Lcode optimizations routines.
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Some architecture's require that immediate fields always be in a specific source parameter.

This may require swapping of source operands.  Remember that subtraction and division are not

commutative operations.  Some processors provide instructions to handle take care of the

commutativity.

Always attempt to convert an unsupported Lcode instruction into a series of simpler

instructions that are supportable. If this is not possible, leave the instruction unsupported and

generate an error to flag during phase I.  If the instruction is encountered frequently, work with

other members of the IMPACT group to resolve the problem.

5.4 Creating an Mcode Instruction

It is important to know the exact series of steps required to create an Mcode operation.  First,

it is mandatory to call either L_create_moper or L_duplicate_moper to create an Mcode

operation.  L_create_moper creates Mcode operation with the opcode specified in the

parameter.  A pointer to a parent Lcode command is provided for debugging purposes.  All

fields other than the opcode and link field are initialized to undefined or zero.  This means that

all of the required parameters must be specified.  If a desired Mcode command is identical or

very similar to an existing Lcode or Mcode operations, make an exact duplicate of in by calling

L_duplicate_moper.  In this case, it is only necessary to provide a pointer to the operation to be

duplicated.  The parent  Lcode operation is set to the parent of the duplicated operation or the

pointer to the Lcode command.  This is easy to determine since an Lcode command will always

have its link field set to null.

Once the operation is created, modify any necessary operand fields.  Library routines allow

creation of support fields from scratch.  It is also possible to duplicate a field by calling

L_duplicate_operand.

After the operands have been created, specify any necessary extensions using

L_set_extension.  Remember that the usage of these extensions is up to dependent on the target

processor!  It is also necessary to specify any  delay slot information using L_set_fill_specs.
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Finally, insert the new operation into the control block.  This can be accomplished in many

ways, however, the most efficient way is to use L_insert_before.  This function will insert the

operation immediately before the original Lcode operation.  The higher level routine will take

care of deleting the Lcode operation from the control block and eliminate any apparent

confusion.  As a result of using L_insert_before, no pointers need to propagated through the

function and will always be inserting the instructions in the order created.

5.5.  Annotation Examples

This Section will show examples of frequently performed annotations and the appropriate

code that is used to perform these annotations.  In all of the examples, a new Mcode operation is

always inserted before the existing Lcode operation.  After the instruction has been completely

annotated, the Lcode operation will be removed from the control block and the only reference

will be a link which was initialized when the new Mcode operation was created.  For further

details see Section 5.3.

5.5.1.  Passing Information Between Phases

It is possible to pass information from one phase of code generation to another by create and

Lcode DEFINE operation.  The AMD code generator uses this as a means of reducing

computation overhead.  Phase I creates a set of define operations which are used to communicate

the number of incoming and outgoing parameters, the swap space and alloc space requirements

as well as the number of callee and caller save registers.  Several of these are filled in during

phase II after register allocation.  This information is used to accurately create the prologue and

epilogue sections for a function and to provide diagnostic information about the function when

the verbose option is selected.  It is useful and usually necessary to define custom macros to

accomplish this task.
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new_oper = L_create_moper(Lop_DEFINE, oper);
L_new_macro_operand(&new_oper->dest, L_MAC_INPARAM, L_CTYPE_INT);
L_new_int_operand(&new_oper->src1, incoming_regs);
L_insert_before(mcb, oper, new_oper);

Figure 5.1:  Defining a Field

Figure 5.1 shows the appropriate code to define the incoming parameter registers for a

function.  An Lcode function does not provide this information and therefore it is necessary to

scan the function for this information.  Once this information has been determined, it can be

passed between phases using the code from this example.  The functions are discussed in detail

in appendix A.  The variable new_oper is a pointer to the new Mcode command, oper is the

pointer to the original Lcode command, incoming_regs contains the number of incoming

parameters and mcb is the control block that the new operation is being inserted into.  The

new_oper is inserted before the existing Lcode oper.  The call to L_new_moper includes the

pointer to the Lcode operation.  This pointer will be stored in the link field which was discussed

in Section 2.2.2.3.

5.5.2.  Directly Supported Lcode Operations

If the processor can support an Lcode command without any changes, the code example

given in Figure 5.2 should be used.  This sample creates a new Mcode operation by duplicating

the existing Lcode operation and inserting it into the control block.

L_insert_before ( mcb, oper, L_duplicate_moper(oper));

Figure 5.2:  Duplicating an Operation

5.5.3.  Unsupported Lcode Operations

In the event that an Lcode operation can not be supported, it must be converted to an

equivalent set of supportable Lcode operations.  As an example, the AMD-29000 can not

support the conditional branches as they are defined by [1].  This requires that all conditional

branches be converted to a binary case using a compare and then a branch.
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new_oper = L_create_moper(Lop_GT, oper);
breg = L_n_reg++;
L_new_register_operand(&new_oper->dest, breg, L_CTYPE_INT);
L_duplicate_operand(&new_oper->src1, &oper->src1);
L_duplicate_operand(&new_oper->src2, &oper->src2);
L_insert_before(mcb, oper, new_oper);

new_oper = L_create_moper(Lop_BEQ, oper);
L_new_register_operand(&new_oper->src1, breg, L_CTYPE_INT);
L_new_int_operand(&new_oper->src2, 0);
L_duplicate_operand(&new_oper->src3, &oper->src3);
L_insert_before(mcb, oper, new_oper);

Figure 5.3:  Unsupported Lcode Operations

Figure 5.3 shows how to annotate a branch greater than instruction into a series of

instructions that can be supported by the AMD-29000.   The first group of 6 lines create a

compare instruction with a temporary destination register.  The second group of 5 lines create a

branch equal operation  based on the condition of the compare and using the original

destination.

5.5.4.  Unsupported Field Sizes

Since different instructions have differing field requirements, a generic set of routines were

developed to split fields into separate conditions.  The function L_register_only may be called

if only a register or macro register may be used in a field.  This routine will create an Lcode

operation with the appropriate move operation to a temporary register and insert the new

operation into the control block.  If no operation is created, a null pointer is returned, otherwise

the pointer to the new operation is returned.  This permits the calling routine to determine the

temporary destination which must be inserted into the annotated Lcode operation.

Figure 5.4 is a modification of Figure 5.3 taking into account potential unsupported field

sizes.  The first two lines ensure that the appropriate field sizes are used for the source operands.

A simple check for a returned null pointer determines whether to use the original source register

or the new temporary register.
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operand_oper1 = L_register_only(&oper->src1, oper);
operand_oper2 = L_register_or_const(&oper->src2, oper);

new_oper = L_create_moper(Lop_GT, oper);
breg = L_n_reg++;
L_new_register_operand(&new_oper->dest, breg, L_CTYPE_INT);
if (operand_oper1)

L_duplicate_operand(&new_oper->src1, &operand_oper1->dest);
else

L_duplicate_operand(&new_oper->src1, &oper->src1);
if (operand_oper2)

L_duplicate_operand(&new_oper->src2, &operand_oper2->dest);
else

L_duplicate_operand(&new_oper->src2, &oper->src2);
L_insert_before(mcb, oper, new_oper);

new_oper = L_create_moper(Lop_BEQ, oper);
L_new_register_operand(&new_oper->src1, breg, L_CTYPE_INT);
L_new_int_operand(&new_oper->src2, 0);
L_duplicate_operand(&new_oper->src3, &oper->src3);
L_insert_before(mcb, oper, new_oper);

Figure 5.4:  Unsupported Field Sizes

5.5.5. Instructions with Delay Slots

There are two types of delay slots which should be marked during the first phase of code

generation.  The first type are any instructions which may change the flow of control away from

the next sequential instruction.  These include conditional and unconditional branches,

subroutine calls and return from subroutine calls.  In most architecture's, these instructions cause

stalls in the instruction pipeline when the next address is not available earlier enough.  In order

to eliminate these stalls, delay slots are used.  Thus, the instruction scheduler can put an

instruction into the slot to prevent degradation in performance.

The second type of delay can be from instructions such as loads.  Due to memory latencies,

the destination of the load should not be accessed in the next instruction.  These types of delay

slots may be resolved inside the processor using hardware interlock if the results are not

available in time thus preventing an instruction from executing and producing an incorrect

result.  To simplify the internal hardware of the processor, interlock may not be provided thus

requiring the compiler to fill the delay slots with useful instructions or nop instructions.
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Commonly, hardware interlock is provided for general delay slots (an exception to this is the

load instruction in the MIPS R2000/R3000).  Most pipelined processors require static filling of

branch delay slots.

In order to statically fill a branch delay slot, an instruction must be found which does not

alter the operation of the program.  Quite commonly, an instruction is moved from above or

below the branch into the delay slot.  In some circumstances it is possible to move an instruction

from the destination of the branch into the delay slot.  To accomplish this, one of three

conditions must be met.  Either the instruction must be common to all paths from the branch, the

instruction must not alter a register that is used in one path or the other (not in the live-out of the

branch), or it must be possible to prevent writing the results of the instruction if an incorrect

decision is made.  The last case is called a squashing branch.  This means that if the compiler

incorrectly makes a guess as to the direction of the branch, the instruction can be aborted causing

no harm.  Thus the compiler can insert the instruction from the destination of the most likely

path into the delay slot.

In order for the instruction scheduling routines of phase II to efficiently and correctly handle

these types of instructions, all instructions with delays must be marked. A nop instruction will

be inserted if the operation has not hardware interlock and no useful instruction can be filled into

its delay slot. The routine L_set_fill_specs is used to mark these instructions appropriately.  This

routine must be called for each of these instructions.  Details for this function are covered in

appendix A.

new_oper = L_create_moper(Lop_BEQ, oper);
L_new_register_operand(&new_oper->src1, breg, L_CTYPE_INT);
L_new_int_operand(&new_oper->src2, 0);
L_duplicate_operand(&new_oper->src3, &oper->src3);
L_set_fill_specs(new_oper, L_NO_STATUS, 1);
L_insert_before(mcb, oper, new_oper);

Figure 5.5:  Marking Delay Slots

Continuing with the example from Figure 5.5, we finally finish by providing status

information about the conditional branch and the number of delay slots.  This example shows
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that this conditional branch does not support squashing branches and has no hardware interlock.

It also indicates that there is one branch delay slot which should be filled.

5.5.6.  More Efficient Operations

There are cases where an architecture may provide some more efficient ways of handling

Lcode operations than the straight forward annotations would produce.  The original code

segment shown in Figure 5.7 has one problem for the AMD-29000.  An immediate field must be

the second source field.  A the straight-forward annotation would produce two instructions to

address this problem.  However, a more efficient coding can take advantage of the subtract

reverse instruction provide by AMD. The new code subtracts r5 from 1 and accomplishes the

same solution in a more efficient manner.

Original Code: sub r6,1,r5

Straight-forward: mov r4,1
add r6,r4,r5

Efficient: subr r6,r5,1
Figure 5.6:  Efficient Annotation

5.5.7.  Extensions

The efficient annotation shown in Figure 5.6 is good except Lcode does not support a

subtract reverse.  The first  impulse is to extend Lcode.  There can always be good reasons to

add useful commands.  Unfortunately, it is not feasible to add a new set of commands every time

a new code generator is developed.  Therefore, an extension field is used to indicate any

deviations from a standard Lcode operation.  The meaning and use of this field is left up to each

code generator.  The AMD-29000 code generator uses it to mark a deviation from a standard

command.

Figure 5.7 has converted the subtract instruction mentioned to a subtract reverse by setting

the extension field.  This extension is only recognized by phase III in the AMD-29000 code

generator.
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new_oper = L_create_moper(Lop_SUB, oper);
L_duplicate_operand(&new_oper->dest, &oper->dest);
L_duplicate_operand(&new_oper->src1, &oper->src1);
L_new_int_operand(&tmp_oper, -src2->value.i);
L_duplicate_operand(&new_oper->src2, tmp_oper);
L_set_extension(new_oper, SUBR);
L_insert_before(mcb, oper, new_oper);

Figure 5.7:  Use of Extensions
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6.  PHASE II -- OPTIMIZATION, REGISTER ALLOCATION AND INSTRUCTION
SCHEDULING

6.1. Overview and Organization

Phase II combines several features of the code generator into one module with the goal of

faster overall performance.  It provides a generic optimizer, register allocation, pre-pass and

post-pass code scheduling and post-pass code annotation.

A template for this phase exists to ease the development process.  It is composed of four files

that meet all of the internal and external requirements for phase II.  The file o_amd29k_func.c

is the main entry point that controls which aspects of phase II are executed.  Each aspect of this

phase can be enabled or disabled independently with compile time switches. The main entry

point is O_process_func that is called once per function. It then calls each part of this phase

sequentially for each function.  This function is generic and should not be modified.

The file o_amd29k.h contains all variable and function definitions.  The file

o_amd29k_reg.c is the interface to the generic register allocator and will be discussed in further

detail in Section 6.4.  The file o_amd29k_sched.c is the interface to the generic instruction

scheduler and will be discussed in greater detail in Section 6.6.

6.2. Initialization

The function O_init  is a generic initialization routine provided as a standard part of the

interface to permit one-time initialization for phase II.  This routine is called from

l_codegen_main.c prior to calling O_process_func.

A second initialization routine, O_perform_init , may be called once per function.  This

provides a simple means of performing initialization that may be required for the register
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allocator of some architectures.  Specifically, since the AMD-29000 has a variable length

register window with parameter registers stored in the window, we must tell the register

allocator about different numbers of available registers from one function to the next.

6.3. Optimization

6.3.1. Purpose

The code annotation process of phase I may generate redundant code within control blocks

as a result of incompatibilities between Lcode and the target instruction set. Common sub

expression elimination, copy propagation and dead code elimination have been supported to

remove these redundancies. These optimizations will only be performed on a control block basis.

It is assumed that the more significant global optimizations were performed by earlier

compilation phases such as Lopti  and Ltrace.

6.3.2. Interface Requirements

The optimizations may be enabled or disabled by the compile time switch MACHINE_OPT

located in o_amd29k_func.c. If the switch is enabled, O_perform_optimizations will be called

with a pointer to the current function.

6.4. Register Allocation

6.4.1. Purpose

The register allocator was designed to support traditional register architectures as well as

those with fixed and variable length register windows.  The register files may be separate or

overlapped for integer, single-precision or double precision registers.  The number of available

registers may be defined once per function or once per file allowing changes as needed.  The

register allocator will no only perform efficient allocation but will also insert necessary spill and

fill code.
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6.4.2. Interface Requirements

6.4.2.1 Register Banks

The physical register configuration of a target processor is divided into a series of register

banks.  A register bank is uniquely defined by the register saving convention and the data type.

The register saving convention can be either caller save implying that critical registers are saved

by the calling function or callee save implying that critical registers are saved by the called

function.

There are four additional parameters that will fully describe the register bank: the number of

registers, the size of the register, an offset into the register map and a target processor register

map.  The size of the register defines integer registers or single/double/quad floating point

registers.  The register map is an array of physical register numbers which will be assigned upon

exit from the register allocator.  The offset permits sharing of the same array of physical

registers between multiple banks or can be used to create the variable register window

requirements.

R_define_physical_bank (R_CALLER, R_INT, 0, CALLER_INT_REG, 1, 
caller_reg_map);

R_define_physical_bank (R_CALLER, R_FLOAT, 0, CALLER_FLOAT_REG, 1, 
caller_reg_map);

R_define_physical_bank (R_CALLER_, R_DOUBLE, 0,CALLER_DOUBLE_REG, 2,
caller_reg_map);

Figure 6.1:  Creating Caller Save Register Banks

Figure 6.1 creates a bank of caller save registers for integer, floating point and double

precision floating point.  Each bank begins at offset zero and uses the same register map.  Thus,

this example has created three overlapping caller save register banks as required for the AMD-

29000.  A separate register map can be assigned to each bank, ensuring non-overlapping register

banks.

Figure 6.2 creates a bank of callee save registers for integer, floating point and double

precision floating point.  This example shows the variable length register window capability as

well as overlapping register banks.  The total number of available registers is modified once per
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function call by subtracting the number of incoming and outgoing parameter registers.  Then the

starting offset within the register map is adjusted for the number of outgoing parameter registers.

R_define_physical_bank (R_CALLEE, R_INT, CALLER_INT_REG, 
CALLEE_INT_REG-incoming-outgoing, 1, 
&callee_reg_map[outgoing]);

R_define_physical_bank (R_CALLEE, R_FLOAT, CALLER_FLOAT_REG, 
CALLEE_FLOAT_REG- incoming-outgoing, 1, 
&callee_reg_map[outgoing]);

R_define_physical_bank (R_CALLEE, R_DOUBLE, CALLER_DOUBLE_REG, 
CALLEE_DOUBLE_REG-(incoming+outgoing)/2, 
2, &callee_reg_map[outgoing]);

Figure 6.2:  Creating Callee Save Register Banks

An optional bank of registers may be defined that will be used to load and store virtual

registers that can not be allocated to physical registers.  These are defined in the same manner as

shown in the above examples with the class substitution of R_SPILL instead of R_CALLEE or

R_CALLER.  If bank of spill registers is not defined, some will be allocated from the caller save

bank if required.

6.4.2.2.  Costs Associated with Register Banks

The code generator provides information about the cost of utilizing a callee or caller save

register to make efficient use of the banks.  The caller cost is the number of instructions or

cycles required to save and subsequently restore a register around a function call.  The callee

cost is the number of instructions or cycles to save and subsequently restore a register at the

entrance and exit to a function.  Most architectures have a fixed cost to save and restore a

register.  However, windowing architectures have different costs.  The callee cost is the penalty

assessed to adjust the register window regardless of the number of registers used.  There is a

subsequent callee cost that is used to compute the overhead for each subsequent callee register.

These costs may also be computed differently if the function is a leaf or non-leaf function.  The

functions O_caller_cost and O_callee_cost are provided as standard interfaces for computation

of these costs.
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6.4.2.3.  Register Spilling and Filling

Unfortunately, due to limitations in register files or for efficiency reasons based on callee

and caller costs, it is necessary to spill registers to memory and fill registers from memory.  As a

result, there are three standard routines provided by each code generator to facilitate this process.

The function O_fill_reg will load a register of the specified type from the specified offset into

the specified register.  The function O_spill_reg does the opposite of O_fill_reg.  The function

O_move_reg is used to copy the contents of one register to another.  This may be necessary if

the register type required is not available.

6.5. Post-pass Code Annotation

6.5.1. Purpose

Post-pass code annotation is designed for two primary purposes.  First, it permits annotation

of Lcode commands that can not be completed until after register allocation.  Specifically, it is

difficult to insert prologue and epilogue code without knowing the register requirements.

Second, it allows the annotation of instructions that were inserted in phase I but may need to be

annotated to more than one instruction.

6.5.2. Interface Requirements

The function O_annotate is called once per function after register allocation. Execution of

this function is enabled or disabled by the compile time switch CODE_ANNOTATE .

Annotations performed here are done exactly as described in Chapter 5.  Again, it is important

that all rules mentioned in Chapter 5 be maintained during these annotations.  For example, the

system has no knowledge of upper or lower halves of registers.

If the processor can manipulate upper and lower halves of registers, there are two goals of

annotation after register allocation.  First, it is necessary to tell phase III to create more than one

instruction and what the instruction should look like.  Second, create an equivalent number of

instructions as required so that post-pass code scheduling has more candidates for fill slots.
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Once these instructions are created, it is necessary to ensure an appropriate dependence between

them so that they are not reordered and thus produce incorrect results.  Figure 6.3 shows an

example with Mcode that accomplishes this goal.  The appropriate annotation code will be

required to create the multiple operations.  In this example, the mov_f2 operations is converted to

an initial move and three subsequent add instructions, creating the appropriate number of

instructions.  The destination of each previous instruction is the source of the subsequent

instruction in the group, thus ensuring the correct dependence.  Finally, an extension is added to

each of the operations to denote the loading of the lower or upper half of the lower or upper

register, thus allowing phase III to produce the correct code.

Before:
(Mop 39 mov_f2 ((r 27 f2)) ((f2 3.14150000000e+00) () ()) (()) ())

After:
(Mop 39 mov_f2 ((r 27 f2)) ((f2 3.14150000000e+00) () ()) (()) () 

(ext DBL_LREG_CONST))
(Mop 40 add_f2 ((r 27 f2)) ((f2 3.14150000000e+00) (r 27 f2) ()) 

(()) () (ext DBL_LREG_CONSTH))
(Mop 41 mov_f2 ((r 27 f2)) ((f2 3.14150000000e+00) (r 27 f2) ()) 

(()) () (ext DBL_HREG_CONST))
(Mop 42 mov_f2 ((r 27 f2)) ((f2 3.14150000000e+00) (r 27 f2) ()) 

(()) () (ext DBL_HREG_CONSTH))

Figure 6.3:  Annotation of Double Precision Move

6.6. Instruction Scheduling

6.6.1. Purpose

There are four aspects of the instruction scheduling.  These include pre-pass and post-pass

code scheduling, filling branch slots from destination and filling in no-ops where hardware

interlock is not provided.

Pre-pass code scheduling will move instructions closer to likely fill slots thereby increasing

the register live ranges and making it less likely that the register allocator will reuse the register.

Post-pass code scheduling will fill delay slots from above the instruction or below the instruction

but within the control block.  Any unfilled branch delay slots will finally be filled from

destination or in the worst case with a no-op.
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6.6.2. Interface Requirements

Depending on the number of available registers in the target architecture and the

sophistication of the assembler, it may be desirable to disable the scheduler. For example, the

MIPS assembler performs instruction scheduling.  It is possible to enable or disable pre-pass and

post-pass instruction scheduling using the compile time switches PREPASS_SCHED and

POSTPASS_SCHED respectively.  Filling from destination address may be enabled or disabled

using the compile time switch FILL_FROM_DEST .

Even if the scheduler is not used, the standard function to fill in unfilled delay slots that can

not be addressed with hardware interlock may be required.  This is provided by the function

O_handle_unfilled that will correctly work regardless of use or lack of use of any of the

previous scheduling features.

To use any of the generic scheduling functions, a standard interface routine must be provided

as a call back from the scheduler to the respective code generator.  This function,

O_inq_valid_filler , is used to create dependence arcs which are unique to a specific

architecture.  Specifically, the AMD-29000 limits the types of instructions that may be placed

immediately after an instruction that modifies the register window.  This routine will inform the

scheduler about illegal instruction sequences.

The function, O_inq_valid_filler , is provide an initial instruction, a  potential instruction to

immediately follow the initial instruction, and a flag indicating if it is pre-pass or post-pass call.

This permits handling dependencies that may only be determined after register allocation has

been completed.

One common dependence for a call during pre-pass scheduling is to prevent movement of

instructions that may expand into multiple instructions in post-pass code annotation.  The

scheduler only attempts to move instructions it needs to fill delay slots, however, if the

instruction later expands into multiple instructions, it may increase the execution of a common

path.  For example, if an instruction is moved into a loop and it later expands into multiple
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instructions, the processor will execute at least one extra instruction that will ultimately degrade

performance.
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7.  PHASE III -- GENERATION OF ASSEMBLY CODE

7.1. Overview and Organization

Phase III is the final stage of code generation, responsible for emitting the appropriate

assembly code and data Sections.  It is useful during the debugging stages to emit information

such as register and memory requirements to verify the accuracy of the function prologue and

epilogue Sections.  Most of the early debugging problems occur in these Sections.  A template

for this phase exists to ease the development process.  It is composed of three files that meet all

internal and external requirements.  The file p_amd29k_func.c contains all code required to

generate assembly code for a function.  The main entry point is P_process_func that is called

once per function. Typically, the number of supported operations will be less than during phase I

annotation.  The interface to this function is generic and should not be modified.

The file p_amd29k.h contains all variable and function definitions.  The file

p_amd29k_data.c contains all code required to produce data segments for a function.  The main

entry point is P_process_data.  Large portions of this file can be left unchanged providing a fast

template for data segments.  This will be covered in more depth in Section 7.3.2.

7.2. Initialization

The function P_init is a generic initialization routine provided as a standard part of the

interface to permit one-time initialization for phase III.  This routine is called from

l_codegen_main.c before calling either P_process_data or P_process_func.
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7.3. Interface Requirements

7.3.1. Generating Assembly Code for Functions

Generation of assembly code follows a very similar procedure as annotation of Lcode. Most

instructions are similar and can be converted using standard routines.  Some of the instructions

will require custom routines due to greater complexity.  There are five main routines that support

the generation of assembly code including P_process_func, P_print_oper,

P_print_operand_asm, P_print_reg, and P_print_string_literal .

7.3.1.1.  Function Requirements

Unlike most of the other entry functions, P_process_func may require significant

modifications to meet the requirements of a given code generator. All string literals are emitted

before the start of the function.  This will need to be changed if the assembler expects a different

approach.  Next, function debug information is printed.  Currently, this is tied to the verbose

switch and produces information about registers and memory requirements.    Finally, a standard

segment of code is executed that scans through all control blocks within the function and calls

P_print_oper for each Mcode operation.

7.3.1.2.  Instruction Requirements

The function P_print_oper is similar to L_annotate_oper.  This function is composed of a

large switch statement containing all supported Mcode operations.  Straightforward operations

can be emitted with the standard function P_print_normal_oper.  This routine produces a

formatted instruction with the opcode first, the destination, source one and source two.  This can

be easily modified to rearrange the operands based on the requirements of the instruction set.

The opcode is an input parameter to this function allowing easy translation of the Mcode

operations to different opcodes based upon the extension.  A good example of this was shown in

Figure 6.3 in the annotation of double-precision move immediate instructions.  To maintain the

appropriate dependencies, this was implemented with a move followed by three subsequent add
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instructions.  The extension field is used to determine that the add instructions are really move

instructions, thus the appropriate opcode would be passed to P_print_normal_oper.

7.3.1.3.  Operand Requirements

A standard function, P_print_operand_asm, is used to simplify the work for emitting

assembly instructions.  This routine will handle all supported operand types for the processor.

Most of the function is generic with the exception of macro registers.  These are customized to

each code generator by adding any custom macro registers and formatting the appropriate

register and specifiers.

The function P_print_reg is used to print out the appropriate register convention based on

the physical register number.  The AMD-29000 version uses a boundary condition to print

global registers or local registers.

7.3.1.4.  Other Requirements

As mentioned in Section 7.3.1.1, string literals will be produced at the beginning of the

function.  The function P_print_string_literal  is used to print the literals.  This routine

eliminates any redundant literals within the same file to minimize memory requirements.  It will

then emit the appropriate Section information to store literals and finally emit the string literal

using the function P_print_string  found in P_amd29k_data.c.  Modifications will be required

to use the appropriate assembly directives for the target processor processor.

7.3.2. Generating Data Sections

Generation of data Sections is a straightforward process.  Very few modifications should be

required to support most data elements. There are three main routines that support the generation

of assembly code including P_process_data, P_process_expr and P_print_string .

The function P_process_data is a large switch statement supporting all data types defined in

[1].  Modifications will be required to use the appropriate assembler directives for alignment,
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global definition and Section definition.  Minor modifications are required to replace the data

size opcodes of the AMD-29000 with those supported by the target processor.

The function P_process_expr will emit expressions as they are defined in Section 2.2.1.5.

The processor should require little or no change to this function.  The last function is

P_print_string .  This function will produce both null terminated and non-null terminated

strings.  The architecture may require some modifications to this function.  In particular, some

architectures have an assembler directive that will automatically null terminate strings.  This

function assumes that the architecture does not support this directive.
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8.  CONCLUSIONS

8.1. General

The initial inclination at the early stages of the project was to start from scratch and redefine

a machine specific intermediate code that was different from Lcode.  As the project progressed,

it became apparent that the development efforts required to accomplish such a goal were

significant and would not meet the time requirements of the project.  It would also increase the

complexity in maintaining such a system.  As a result, Mcode derived into minor modifications

to existing Lcode.  A great deal of effort was spent to ensure that existing code from the

optimizer and scheduler could be easily ported into the system.  As a result,  optimization

routines and scheduling routines were ported to the template in a matter of days instead months.

The first completed code generator using this model was the AMD-29000.  Currently

development efforts are in progress for the HP-PA and a port of the existing SPARC code

generator to the new model.

8.2. Results

The desire is always to see good performance results at the conclusion of a project.  Table

8.1 shows the performance of the AMD-29000 code generator before the new model and the

new AMD-29000 code generator using the model.  The new code generator averages 16.7

percent faster than the original code generator.  It is obvious that these performance

improvements resulted from a more efficient register allocator, the use of pre-pass code

optimizations and the scheduling.  The original code generator did not support instruction

scheduling at all.  The key benefit that the template approach provided is the developer of a code

generator  can spend the time focused on learning the architecture of the processor.  It is
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impractical for development effort to require expertise on register allocation, optimization and

instruction scheduling.  If this were the case, the development cycle would be intolerable or the

quality of the code generators would be inconsistent.  Now the standard features will provide

consistency that is high-quality across all code generators.

Test Original
Code

Generator

New Code
Generator

Original/
New

Perm 2398736 2024745 1.185
Towers 2490888 2473419 1.007
Queens 1789606 1730230 1.034
Intmm 4012932 2606923 1.539
Mm 4660989 4491189 1.038

Puzzle 11950376 10505222 1.137
Quick 1992477 1824400 1.092
Bubble 2400717 2325523 1.032
Tree 4273124 3824896 1.117
Oscar 10246233 7797199 1.314
Total 46216078 39603746 1.167

Table 8.1:  Execution Times of Stanford Test Suites
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APPENDIX A

This section describes useful interface routines which facilitate the code generation process.

Except where specifically noted, all routines support both Lcode and Mcode operations.

I/O Routines:

void L_open_input_file(char *file_name);  Opens specified file file_name.  Returns error if
file does not exist.

void L_close_input_file(char *file_name);  Closes specified file file_name.

int L_get_input(); Reads next Lcode/Mcode entry in file file_name.  Will return a data item
(word, etc.) or a function.  All fields are parsed, verified and inserted into appropriate data
structures.  A data description is returned in the data structure L_data.  A function
description is returned in the data structure L_fn.  L_INPUT_EOF is returned when the end
of file is encountered.

void L_print_loper(FILE *F, L_Oper *oper);  Prints an Lcode operation with the Lop
indicator to output F.

void L_print_moper(FILE *F, L_Oper *oper, int verbose);  Prints an Mcode operation with
the Mop indicator to output F.  If the verbose option is true, then the parent Lcode operation
will also be printed.

void L_print_mcb(FILE *F, L_cb *cb, int verbose);  Prints an Mcode operation with the Mop
indicator to output F.  If the verbose option is true, then the parent Lcode operations will also
be printed.

void L_print_mfunc(FILE *F, L_Func *fn, int verbose);  Prints an Lcode function to output
F.  If the verbose option is true, then the parent Lcode operation will also be printed.

void L_print_data(FILE *F, L_Data *data);  Prints an Lcode data element to output F.

Functions that Manipulate Mcode:

L_Oper *L_create_moper(int opcode_id, L_Oper *parent);  Creates a new Mcode operation
with opcode_id.  The link pointer is set to the parent Lcode operation.  It fills in the opcode
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name and attribute fields and initializes all other fields to 0.  It is the responsibility of the
calling routine to fill in appropriate source and destination fields.

L_Oper *L_duplicate_moper(L_Oper *oper);  Creates an exact duplicate of the input
operation.  The input operation may be Lcode or Mcode.  If it is Lcode, it will be linked as
the parent Lcode operation.  If it is Mcode, the parent of the Mcode operation will be linked
as the parent Lcode operation.

void L_delete_oper(int cb_id, L_Oper *opA);  Deletes specified operation from function.
cb_id is used to speed up this process since special cases must be handled if operation is first
or last operation in the control block.

void L_insert_before(int cb_id, L_Oper *opA, L_Oper *opB);  Inserts operation opB before
operation opA.  cb_id is provided to speed up insertion in the event that opA was the first
operation in the control block.

void L_insert_after(int cb_id, L_Oper *opA, L_Oper *opB);  Inserts operation opB after
operation opA.  cb_id is provided to speed up insertion in the event that opA was the last
operation in the control block.

Functions that Manipulate Mcode Operands:

void L_new_cb_operand(L_Operand *op, int cb_id);  Initializes the fields for operand op
with the cb type descriptor, ctype of integer and value field to cb_id.  It is responsibility of
calling routine to ensure that the field is a valid source or destination operand.  No checking
is performed to ensure valid use of operands based upon opcode.

void L_new_int_operand(L_Operand *op, int value);  Initializes the fields for operand op
with the int type descriptor, ctype of integer and value field to value.  It is responsibility of
calling routine to ensure that the field is a valid source or destination operand.  No checking
is performed to ensure valid use of operands based upon opcode.

void L_new_float_operand(L_Operand *op, int value);  Initializes the fields for operand op
with the float type descriptor, ctype of float and value field to value.  It is responsibility of
calling routine to ensure that the field is a valid source or destination operand.  No checking
is performed to ensure valid use of operands based upon opcode.

void L_new_double_operand(L_Operand *op, int value);  Initializes the fields for operand
op with the double type descriptor, ctype of double and value field to value.  It is
responsibility of calling routine to ensure that the field is a valid source or destination
operand.  No checking is performed to ensure valid use of operands based upon opcode.

void L_new_string_operand(L_Operand *op, int value);  Initializes the fields for operand op
with the string type descriptor, ctype of string and value field to the pointer to value.  It is
responsibility of calling  routine to ensure that the field is a valid source or destination
operand.  No checking is performed to ensure valid use of operands based upon opcode.
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void L_new_macro_operand(L_Operand *op, int mac, int ctype);  Initializes the fields for
operand op with the macro type descriptor, ctype of the specified macro ctype and value
field to mac.  It is responsibility of calling routine to ensure that the field is a valid source or
destination operand.  No checking is performed to ensure valid use of operands based upon
opcode.

void L_new_register_operand(L_Operand *op, int index, int ctype);  Initializes the fields
for operand op with the reg type descriptor, ctype of the specified register ctype  and value
field to index.  It is responsibility of calling routine to ensure that the field is a valid source
or destination operand.  No checking is performed to ensure valid use of operands based
upon opcode.

void L_new_label_operand(L_Operand *op, char *label);  Initializes the fields for operand
op with the label type descriptor, ctype of label and value field to the pointer to value.  It is
responsibility of calling routine to ensure that the field is a valid source or destination
operand.  No checking is performed to ensure valid use of operands based upon opcode.

void L_duplicate_operand(L_Operand *dest, L_Operand *src);  Copies all operand fields
from the operand specified by src to the operand specified by dest.  It is responsibility of
calling routine to ensure that the field is a valid source or destination operand.  No checking
is performed to ensure valid use of operands based upon opcode.

Mcode Specific Extensions:

extern void L_set_extension(L_Oper *oper, int ext);  Will set the extension of the specified
operation to the 32-bit integer value defined by ext.  Any previously defined extension fields
will be replaced.

extern void L_get_extension(L_Oper *oper, int *ext);  Will return the current extension field
for the specified operation.  If there is no defined extension field, 0 will be returned.

extern void L_set_fill_specs(L_Oper *oper, int fs, int slots);  Sets the fill status and number
of fill slots to the specified values in fs and slots respectively.  Status are defined as follows:
L_NO_STATUS:  No status
L_HW_INTERLOCK: Processor supports hardware interlock for operation
L_SQUASH_TAKEN_BRANCH: Squash instruction after branch if branch taken
L_SQUASH_NOT_TAKEN_BRANCH: Squash instruction after branch if branch not taken.

All of these fields except L_NO_STATUS are bit fields that may be ORed to set a status.
The number of fill slots indicates the number of available delay slots for the instruction.
Any previously set parameters will be replaced by subsequent calls.

extern void L_get_fill_specs(L_Oper *oper, int *fs, int *slots);  Returns the fill status and
number of fill slots in fs and slots respectively.  Status are defined as follows:
L_NO_STATUS:  No status
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L_HW_INTERLOCK: Processor supports hardware interlock for operation
L_SQUASH_TAKEN_BRANCH: Squash instruction after branch if branch taken
L_SQUASH_NOT_TAKEN_BRANCH: Squash instruction after branch if branch not taken.

All of these fields except L_NO_STATUS are bit fields that may be ORed to set a status.
The number of fill slots indicates the number of available delay slots for the instruction.
Any previously set parameters will be replaced by subsequent calls.
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