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ABSTRACT

One of the differences between out-of-order and in-order computer architectures is the dis-

persal of operations to functional units. This responsibility is part of the transfer of power

from hardware (out-of-order) to the compiler (in-order). As a result of this shift, the hardware

support for operation dispersal was simplified. IPF, the first hardware implementation of an

EPIC in-order architecture, introduced new concepts to further simplify the hardware’s opera-

tion dispersal. However, they present additional constraints to the compiler’s scheduler. This

thesis presents the template bundling algorithm to extend the IMPACT compiler to handle these

new constraints. An exhaustive, systematic exploration over the newly introduced search space

is employed to produce a schedule that conforms to the scheduler’s performance expectations

while keeping compilation time under control via efficient implementation.
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CHAPTER 1

INTRODUCTION

Out-of-order computer architectures employ hardware resources to control the dispatch of op-

erations to functional units. Many modern-day architectures, such as superscalar machines,

operate under this framework. This requires the hardware to support dynamic, near-arbitrary

dispersal of operations to functional units in the presence of scheduling concerns such as de-

pendences. In-order architectures like Very Long Instruction Word (VLIW), in contrast, rely

upon the compiler to schedule operations statically for execution in the hardware. In particular,

the compiler’s scheduler needs to ensure that the final code obeys many constraints, such as

dependences, latencies, resource usage, etc.; otherwise, performance may suffer, or worse yet,

results may be incorrect. This, however allows the processor’s issue logic to be much sim-

pler. One variation of in-order machines, the Explicitly Parallel Instruction Computing (EPIC)

architecture, gives the compiler even greater responsibilities and power when compiling and

scheduling code. In one EPIC architecture, the Intel Itanium Processor Family (IPF) [1], new

concepts are introduced to the instruction format to simplify the dispersal of instructions in

hardware. Unfortunately, these same specifications significantly complicate the compiler’s job

during scheduling. This thesis will describe the augmentations of a compiler to handle these

new constraints.
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Figure 1.1 Generic EPIC operation dispersal mind-sets

EPIC architectures generally assume one of two models for dispersing operations from slots

to functional units: (a) symmetrical and (b) restrictive. Figure 1.1(a) shows the symmetrical

dispersal assumption. Any slot can dispatch an operation to any functional unit each cycle. The

blue lines indicate how each slot in a six-issue machine can reach any functional unit. As long

as there is an appropriate functional unit available, the operation will execute as scheduled.

Figure 1.1(b) shows the restrictive dispersal assumption. Each slot can disperse its operation

to only a restricted set of functional units, governed by a fixed mapping of slots to functional

units. This mapping in turn restricts the operations that can scheduled in each slot. Variations

between these two extremes also exist.

IPF groups operations into bundles, each of which contains three slots. Each implementa-

tion is capable of processing some number of bundles per cycle in an issue group. For example,

the current implementations of IPF are designed to process two bundles per cycle, making them

nominally six-issue machines. IPF classifies the different types of instructions in the instruction

2



set architecture (ISA) like memory, integer, floating point, and branch instructions into syllable

types. When encoding operations, IPF requires bundles to be generated according to templates

that assign a syllable type to each slot of the bundle. Syllable types in turn restrict what op-

erations can be scheduled in that slot and what functional units are reachable from that slot.

Finally, dispersal rules determine what functional unit an operation ends up in the hardware

given its instruction type, syllable type, slot position, and preceding operations in the cycle.

Rather than require that every functional unit be reachable by every slot or restrictively define

which functional units a slot is able to disperse to, the set of functional units reachable now

varies from slot to slot and cycle to cycle according to the templates and syllables specified.

Figure 1.2 demonstrates how these new restrictions in IPF complicate the scheduler’s job

compared to the generic EPIC architecture. The set of functional units reachable from each

slot is determined by the syllables of the template, as shown by the orange letters and dashed

lines. Certain instructions in IPF are even more restrictive, allowing their execution on an even

smaller subset of functional units. The integer load instruction in slot 3, with a legal subset

of only the M0 and M1 functional units (the dashed blue line and circle), is used here as an

example. Finally, according to the dispersal rules, the dispatch of operations to functional units

in IPF is affected by preceding operations in the cycle. The operation in slot zero is a floating

point load that may issue to M0 through M3, as indicated by the dashed grey line and circle.

The dispersal rules dictate that it will execute on the lowest numbered legal M-functional unit

currently available, M0 in this case (red circle and line). Therefore, the integer load operation

must disperse to M1. If the operation in slot 1 was also a floating point load, it would have

3
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Figure 1.2 IPF operation dispersal mind-set

taken M1, the lowest numbered functional unit out of M0 through M3 still available, leaving

no functional unit for the integer load operation in slot 3, which is why it has a dashed red

line instead. However, if the integer load was in a slot that preceded all of the floating point

load operations, no problems would exist until the machine runs out of M-functional units.

For the generic EPIC architecture, functional units are assigned to operations in slots on a

first-come-first-served basis; the operation scheduled first by the scheduling algorithm will

have first choice. For IPF, the functional unit assigned to an operation depends on those in

preceding slots, independent of the order the scheduling algorithm picks the operations. The

scheduler of EPIC compiler would need to be changed to adapt to these new restrictions of IPF.

The work for this thesis is based on the IMPACT research compiler, developed by the IM-

PACT research group at the University of Illinois at Urbana-Champaign. The call stack of the

existing IMPACT compiler’s scheduler is shown under the “old path” of Figure 1.3. A schedul-

ing algorithm, cyclic or acyclic, decides the cycle time and slot range for an operation based

4
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Figure 1.3 IMPACT scheduler call stack

on its dependencies and passes the information to the scheduling manager. The scheduling

manager calls the resource manager to determine if an appropriate slot and functional unit are

available. If the answer is yes, those resources are marked as taken, and the scheduling man-

ager updates the status of the operation and the operations it affects. The resource manager

derives its machine-specific information from the machine description. The various duties of

the scheduler (timing, placement, resource description and management, etc.) are thus spread

out amongst specialized components.

The scheduler must consider all of the new factors introduced by IPF (bundles, templates,

syllables, and dispersal rules) in addition to traditional constraints like dependences and come

up with the best-performing schedule possible. The “new path” of Figure 1.3 outlines the new

5



model dealing with the IPF constraints. The scheduling algorithms are not altered in any way,

though their interface to the scheduling manager changes slightly, allowing the compiler to

maintain its modular separation of scheduling responsibilities. The scheduling algorithm still

directs the scheduling manager with the intended cycle for an operation, but the scheduling

manager is now responsible for finding a combination of templates and a permutation of oper-

ations within the cycle such that all of the cycle’s operations are assigned to slots that allow for

simultaneous issue, given the specified constraints. The scheduling manager still relies upon

the resource manager to determine if the appropriate resources are available. However, the

resource manager has been enhanced as necessary to accommodate the new restrictions. The

constraints themselves are described in the machine description so that they can be specified

per machine implementation and be accessed by different parts of the compiler.

This thesis proposes a framework at the scheduling manager level, the template bundling al-

gorithm, for IPF instruction scheduling that takes these new constraints into consideration. The

machine description and resource manager are augmented accordingly to support this effort. In

Chapter 2, the new restrictions introduced by IPF are defined in detail, and the problems they

cause are analyzed. Chapter 3 presents the implementation of the template bundling algorithm

and the associated support and steps through the algorithm to demonstrate how it handles the

various constraints and avoids the potential problems. The complexity of the template bundling

algorithm is also analyzed. Numerical results are presented in Chapter 4, related work in Chap-

ter 5, and future work in Chapter 6.

6



CHAPTER 2

BACKGROUND

This chapter first goes over the issue and dispersal structures of generic EPIC architectures.

The discussion will be based primarily on the features assumed by the IMPACT compiler. It

then introduces the constraints and features new to IPF. An in-depth analysis then details the

constraints and their effects upon the schedule and scheduling process. The discussion will

focus on the Itanium 2 implementation of IPF. An example sequence of operations will be

employed to help concretize the concepts and the interplay among them.

2.1 Generic EPIC Architecture

EPIC architectures are in-order machines, meaning the compiler is responsible for produc-

ing a schedule of the operations for the hardware to execute. Due of this requirement, the

compiler must be aware of the hardware resources available. The IMPACT compiler uses a

machine description [2] to describe the capabilities of the target hardware and its interaction

with the instructions in the ISA. This section describes the machine model typically used by

the IMPACT compiler, an amalgam of the two generic EPIC operation dispersal mind-sets

presented earlier.

An EPIC architecture able to dispatch n operations in a single cycle is referred to as an

n-issue machines. Figure 2.1 shows a six-issue machine. Each box represents a slot for an

7



������� ��������	�
��
��� � 
��

� ��� ���
� ��� ���
�����

����� ���
����� � �
�����

!�"�! �
!�"�! �
�����

#�$��
#�$%�
�&�'�

(*),+.-0/2143 +
56+,1�/�7

89+,7�/2:�);-</�1=3 +,7 > 3�/?@:�A +;-�B
C<D9DFEHGJILKMEHNJO9PQ D0EHNSR�E�T�CMD<D

UVU�U

PMW
G�C Q Q
UVU�U

?@:�A +;-�B

Figure 2.1 Generic EPIC architecture

operation. Since all of the operations are to be dispersed in the same cycle, there is a cycle

boundary, indicated by the thick black bar, at the end of the issue. The machine model used by

the IMPACT compiler resembles the symmetrical operation dispersal model for all but the last

slot. The machine is assumed to issue only one branch instruction per cycle, and it must be the

last instruction. This is shown by the single dashed blue line extending from the set of branch

instructions to the last issue slot. (IPF has different restrictions on the number and placement

of branches in a cycle, which will be discussed in Section 2.3.) Nonbranch instructions may

be placed in any of the slots, shown by the multiple dashed blue lines connecting the set of

nonbranch instructions to all of the slots. There are also minimal restrictions as to the functional

unit to which a slot can disperse. The last slot can disperse to any functional unit, whereas the

remaining slots can disperse to any functional units except the branch functional unit. This is

8



shown by the dashed orange lines connecting the slots to the functional units. The functional

units consuming the operations scheduled are indicated by the solid red lines. Generic EPIC

architectures are not concerned with the specific functional unit in which each operation ends

up and do not specify any kind of set mapping.

2.2 Overview of IPF Restrictions

The additional constraints introduced by IPF represent a continual evolution of operation

dispersal for in-order architectures. The desired effect of these restrictions is to reduce the com-

plexity of hardware issue logic so that it does not have to provide the number of paths required

for all functional units to be reachable from all slots at all times. The more limited dispersal of

operations is configurable via templates and syllables on a cycle by cycle, bundle by bundle,

and slot by slot basis. This places additional burdens on the compiler and its scheduler.

IPF groups and encodes its operations in bundles, each containing three slots. Every im-

plementation of IPF can operate on a certain number of bundles per cycle. Both Itanium and

Itanium 2 operate on up to two bundles per cycle, so one can essentially think of them as 6-

issue machines. IPF specifies cycle boundaries by stop bits. Stop bits can be placed at the

end of any bundle and within bundles in some cases. Some of the possible placements of stop

bits are indicated by the grey bars and the actual cycle boundary stop bit by the black bar in

Figure 2.2. Stop bits are prescribed in the template of each bundle. Every bundle must corre-

spond to a valid template, which contains information about the stop bits in that bundle and an

assignment of syllable types to slots. Figure 2.2 shows in orange lettering the bundles being

9
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Figure 2.2 IPF restrictions overview

assigned templates out of the set of valid templates and the syllables being mapped into the

slots of the bundles. The template information of each bundle is passed to the hardware along

with the operations contained within it. The syllables assigned to the slots determine what issue

ports can be reached from that slot, shown in Figure 2.2 by the dashed orange lines. Issue ports

are an intermediate step between how operations are distributed from the slot to the functional

units in IPF; each operation is assigned to the appropriate functional unit through an issue port.

It is the lowest level of machine modeling information needed by the compiler.
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Every instruction in the ISA of IPF belongs to an instruction type. An instruction can only

be scheduled in a slot that contains a syllable compatible with its instruction type. Certain

instruction types are more flexible than others and are compatible with more than one syllable

type. These instruction types are said to have a superset syllable. Figure 2.2 shows the different

instruction types in IPF (boxes at the top with a capital letter in blue), the set of syllables the

instruction types are compatible with (letters in blue in parentheses), and a sample of instruc-

tions of each type. The blue lines from the instruction types to the slots indicate the slots an

instruction type can go to in an MII MFB template combination. Notice how the A-instruction

type, which has a superset syllable, can be assigned to either the M or I-syllable slots.

Not all Itanium 2 functional units can handle all of the instructions of the corresponding

instruction type. The instructions in Figure 2.2 are further separated within each instruction

type according to the set of issue ports that can handle that particular instruction. For example,

integer load instructions (ld) belong to the M-instruction type and can be dispersed to either

the M0 or M1-issue port. Dashed blue lines and circles indicate the set of issue ports allowed

for the operation scheduled in the slots for restrictive operations, like the integer load instruc-

tion scheduled in the first slot. Given the slot, the syllable of the slot, the restrictions of the

operation in the slot, and the preceding operations in the cycle, dispersal rules determine the

particular issue port that the operation is dispersed to, as indicated by the solid red lines. The

fact that previous operations directly affect the dispersal of the current operation is an impor-

tant distinction between IPF and generic EPIC architectures. The previous scheduler flow for

the IMPACT compiler was unable to handle this.
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Figure 2.3 Valid templates for IPF

2.3 In-Depth Analysis of IPF Restrictions

This section details the constraints introduced by IPF as implemented on the Itanium 2.

The new terms introduced in Section 2.2 will be explained here in detail. The discussion first

focuses on the various templates and their formation, and then turns towards the dispersal of

operations.

2.3.1 Templates

Every bundle in IPF, each of which contains three slots, must conform to a template. Tem-

plates contain information about the syllables and stop bits of the bundle and are passed to the

hardware along with the operations scheduled in the bundle. There are five syllable types in

IPF: M, I, F, B, and L. Only certain permutations of syllables are considered valid templates.

The current set of valid templates for IPF is shown in Figure 2.3. There is room in the IPF

specification for eight new templates to be defined in the future.
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Each syllable takes up one or two slots in the bundle. The L-syllable consumes two slots,

so only two instructions can be scheduled in the MLX template. (X is a place holder rather

than another syllable.) Each syllable must be assigned a compatible operation. The operation’s

instruction type determines its compatibility. The operation assigned to the syllable can be a

NOP operation if there is no operation available. NOP operations in IPF do not affect the ma-

chine state and correctness of the program; however, they do consume resources and affect the

dispersal of operations. Therefore, NOP operations in IPF need to be carefully considered and

scheduled, unlike the benign NOP operations previously assumed by the IMPACT compiler.

Explicit stop bits denote cycle boundaries in IPF templates, represented by the thick black

bars in Figure 2.3. Note that for every permutation of syllables that forms a valid template, a

version exists with a stop bit at the end of the bundle. There are also two templates that can

have a stop bit in the middle of the bundle, specifically MII and MMI. They were referred

to as compressed templates in [3], and this thesis will follow that terminology. Implicit cycle

boundaries called split issues may also occur at locations not indicated by explicit stop bits (see

Section 2.4).

Intuitively, IPF may be viewed as a constrained EPIC machine whose paths from instruction

slots to functional units are reconfigurable via template specifications. Compressed templates

and explicit stop bits even allow IPF machines to appear like anything between a one-issue

to a six-issue machine in certain cycles. The compiler’s scheduler now has the power and

responsibility of partially reconfiguring the dispatch hardware through template selection and

stop bit insertions to maximize performance and code density.
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2.3.2 Dispersal

Every instruction in the ISA of IPF belongs to an instruction type. These major instruc-

tion types represent groups of instructions that can be assigned to the same set of syllables.

Figure 2.4 shows the six major instruction types and the set of compatible syllable types. Cer-

tain instruction types have superset syllables compatible with multiple syllable types. The A-

instruction type in IPF is one such example, being compatible with both the M and I-syllable

types. Within each instruction type there are also subtypes. Subtypes further subdivide the

instructions by different characteristics, such as instructions with different operand types like

architecture registers, immediates, and memory location, or different memory operations like

loads versus stores. Every instruction in the IPF ISA belongs to one and only one subtype. All

of the instructions in the same subtype usually have the same issue port constraints, a subset of

those associated with the major instruction type.1 In other words, the set of valid issue ports for

an instruction is determined by what instruction subtype it belongs to, as shown in Figure 2.4.

Although there are many instruction subtypes, many of them share the same characteristics

with regard to issue port constraints. Consequently, they are grouped into subtype groups in

the figure. The assignment of valid issue ports to instruction subtypes is implementation spe-

cific. This is how hardware asymmetry of issue ports and functional units is expressed in IPF.

For example, memory instructions belong to the M-instruction type. However, integer load

instructions belong to a subtype group (ii) that can only disperse to the M0 or M1-issue port

and integer stores belong to a different subtype group (iv) that can only disperse to the M2 or

1There are some subtypes in Itanium 2 (M6, M7, M8, and M24) where instructions have nonuniform issue
port constraints.

14



�����������	��

� ��
	


���������������������
� ��
�


��� �!� 
#" �����$�

%
&

'

(

)
*

'#+,(

'

*
)

(

&

-. / 0
1 11 12 2 2 23 34

576!8�9�:<;�=�>@?BAC8�DFE�G�8�>@6�?BAHD�9 I!E�>JDC9�8@K76L>MANACE�9	OB6�D�8�APO�9QDP6!O�9 DCRN8�>M6!?TS!D�9 U76�DBVTW,EB9XA�9<8�Y

� � � � ��
�

Z ����� 


[

[
[

[

[
[

[@[
[@[
[ \
[,[@[
\

Figure 2.4 Mapping of instruction types to syllable types and issue ports on the Itanium 2

M3-issue port, whereas floating point loads belong to a subtype group (v) that can disperse to

any of the M-issue ports, M0, M1, M2, or M3. Note that L-instruction type instructions in IPF

take two issue ports per operation, either F0 and I0 or F1 and I1. In the interest of brevity, the

large set of compatible issue ports for A-instruction type operations will be denoted as simply

A.

Every operation, including each NOP operation, is mapped from the syllable and slot to

a functional unit through an issue port. On Itanium 2 there are 11 issue ports: M0, M1, M2,

M3, I0, I1, F0, F1, B0, B1, and B2. Issue ports present an intermediate layer between the

syllables and functional units and is the lowest level of resource management that the compiler

needs to model. The dispersal rules map the operation assigned to a syllable to issue ports

according to the following parameters: (a) the slot number, (b) the syllable of the slot, (c) the
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instruction subtype of the operation, and (d) what has preceded the operation in the current

cycle. Each implementation of IPF defines its own set of dispersal rules that the compiler must

take into consideration when scheduling. A simple example in Itanium 2 is the dispersal rule

for slots with a B-syllable. If the slot is in the first position of the bundle the operation will be

dispersed to B0, the second position goes to B1, and the third position goes to B2. Viewing

the architecture as a 6-issue EPIC machine with the slots numbered from 0 to 5, an operation

in slot 0 or 3 with a B-syllable would disperse to B0, slot 1 or 4 would go to B1, etc. A

more complicated example would be an integer store instruction. The instruction type says

integer store instructions must be in an M-syllable slot and the subtype restricts the dispersal

to either the M2 or M3-issue port. The dispersal rule assigns the operation to the lowest issue

port first, i.e. the operation will be dispersed to M2 if possible. If both M2 and M3-issue

ports are occupied, then the integer store operation cannot be scheduled in this cycle without

detrimental effects (see split issue in Section 2.4), even if other M-issue ports, such as M0 and

M1, are available. Superset syllables complicate the dispersal rules because the subset of issue

ports that are legal is much larger. On Itanium 2, an A-instruction type operation assigned to

an M-syllable slot can be dispersed to either the M0, M1, M2, or M3 issue port. However,

if that same instruction is assigned to an I-syllable slot, it will then be dispersed to either the

I0, I1, M0, M1, M2, or M3 issue port. The order is very important; the architecture will only

disperse to a M-issue port if both I-issue ports are occupied by other operations scheduled in

slots before the current one. This flexibility of dispersal for superset syllables was not available
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in the Itanium implementation. On Itanium, an A-instruction type operation assigned to an I-

syllable slot will disperse to either the I0 or I1-issue port only. Although the greater flexibility

of superset syllables complicates scheduling on Itanium 2, it also enables scheduling for better

performance and code compactness. Our template bundling algorithm handles the additional

flexibility of Itanium 2, but can be easily scaled back to the Itanium model. Please refer to [4]

for the full set of dispersal rules for Itanium 2.

With the introduction of dispersal rules, the symmetrical view of operation dispersal to

functional units by generic EPIC architectures no longer applies. Instead of only making sure

that resources are available, the order in which operations are scheduled within a cycle also

needs to be considered now. For example, the extr instruction in Itanium 2 can only be

executed via the I0-issue port. The instruction shr is an I-instruction type instruction that

can be executed by either the I0 or I1-issue port. From a generic EPIC architecture’s point of

view, the order in which these two operations are scheduled in a single cycle does not matter.

It assumes that extr will be executed by the I0-issue port. As long as no other operation in

the cycle requires an I-issue port, the scheduler for the generic EPIC architecture would have

done its job. The dispersal rules of IPF, on the other hand, dictates that the lower numbered

issue port of the set of legal issue ports will be used first. This means that if shr is scheduled

in an earlier slot than extr, then a split issue (Section 2.4) will occur before extr since the

I0-issue port would have already been taken by shr. If the order is reversed, the operations

would run as scheduled. Because of these new constraints, the scheduler must be enhanced

beyond what is required for the generic EPIC architecture.
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2.4 Legality and Performance

If issue ports and dispersal rules are not properly taken into consideration by the compiler’s

scheduler, split issue may occur. In essence, split issues are cycle boundaries that occur without

an explicit stop bit. Split issue can occur due to resource oversubscription [5]. Since Itanium

had only two M-issue ports and two I-issue ports, template combinations such as MMI MMI

or MII MII would result in split issue due to resource oversubscription of M or I-issue ports.

With the added M-issue ports and additional flexibility of the superset syllable A, Itanium 2

should be able to avoid resource oversubscription unless the template selection was poor or

the dispersal rules were ignored. However, certain templates and template combinations can

still cause split issue on Itanium 2 [4]. A split issue always occurs after either a BBB or MBB

bundle. Split issue can also happen after a MIB, MFB, or MMB bundle unless the B-syllable

slot contains an NOP operation. Resource oversubscription can also still occur, e.g., MIB BBB,

or MII MMI with I-instruction type operations filling all of the I-syllable slots. Note that in

the case of the MII MMI combination, resource oversubscription would not happen on Itanium

2 if the last I-syllable is occupied by an A-instruction type operation, thanks to the added

flexibility of superset syllable operations. However, although split issues cause performance

loss by introducing cycle boundaries not planned by the compiler’s scheduler, the code is still

accepted by the hardware and generates the correct output. This raises the issue of legal, or

acceptable, code for IPF.
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The following concepts introduced in IPF: bundles, templates, and syllables, must be

obeyed in order for the scheduled code to be considered legal and to be accepted by the as-

sembler. If these specifications are not obeyed, the code generated by the compiler will not get

past the assembler because it will not run on the hardware. On the other hand, keeping track of

how operations are dispersed to issue ports and what resources are actually used in a cycle is a

performance issue. The compiler generated code should be accepted by the assembler and the

hardware and the output should be correct even if these issues were ignored (provided that the

code is legal). However the code may not perform as the compiler anticipated and scheduled

for.

Table 2.1 presents an example of operations that will be scheduled, including the instruc-

tion type, subtype group, syllable type, and issue port of each operation. This sequence of

instructions was conceived to demonstrate as many of the pitfalls of scheduling with the new

restrictions as possible. Assume that none of the memory addresses will ever alias with each

other, and that the compiler knows this. The dependences (blue) and antidependences (red)

between the operations are drawn out. As in IPF, antidependences are allowed in the same

cycle as long as the read precedes the write. NOP operations disperse, consume resources, and

affect the dispersal of other operations. The various legal schedules that can be formed out of

these operations and the performance that can actually be expected when run on hardware will

be examined.

Figure 2.5 shows eight different legal schedules of the operations presented in Table 2.1.

Every bundle is labeled with its template to the left, and the explicit stop bits are shown by
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Table 2.1 Example set of operations to be scheduled
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Figure 2.5 Eight legal schedule examples
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the thick black bars. The operations are indicated by their operation number under the Op #

column in Table 2.1 while N stands for NOP operations. The subscripts of the NOP operations

denote the instruction type of the NOP operation. The instruction type of NOP operations must

be compatible with the syllable of the slot, just like any normal operation. There are NOP

operations for every instruction type in IPF but the A-instruction type. All of these schedules

will be accepted by the assembler and the Itanium 2 hardware, and the final output will also

all be the same. However, there is substantial variation amongst them. The cycle counts range

from two to three cycles, and the bundle counts range from three to five. Some of the schedules

use compressed templates. Sometimes the difference is as small as one syllable in the template.

The cycle count will begin from cycle zero.

The performance of the schedules presented in Figure 2.5 is shown in Figure 2.6. The

blue letterings above each operation is the issue port the operation is dispersed to when run

on an Itanium 2. The red dashed lines indicate locations where split issue occurs, incurring an

unexpected cycle boundary. The actual execution times of the various schedules range from

two to four cycles, a 100% performance spread, while the number of bundles required range

from three to five bundles, a 67% spread.

Judging from the dependences between the operations (keeping in mind that antidepen-

dence can be scheduled in the same cycle) and the number of slots and functional units in the

Itanium 2, one would conclude that all of the instructions can be executed in two cycles. The

schedules indicated in Figures 2.6(a) and (b) are scheduled for three cycles and they perform as

scheduled. Figure 2.6(a) requires an extra bundle, which could affect performance if there are
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Figure 2.6 Performance of schedule examples

problems in the front end or instruction fetch. Six of the schedules, Figures 2.6(c) through (h),

try to execute the operations in two cycles. Although they are all legal schedules, accepted by

the assembler and hardware, they do not all execute in two cycles. Two of the two cycle sched-

ules, Figures 2.6(c) and (d), actually take four cycles to run due to split issues. Figure 2.6(e)

takes three cycles.

Instr-5 is very restrictive and can only execute on the I0-issue port. In Figure 2.6(c), Instr-2

has already taken the I0-issue port, which incurs a split issue before Instr-5. Instr-8 is a load

instruction and can only execute on either the M0 or M1-issue port. However, both of those

issue ports have already been taken the same cycle of Figure 2.6(c) by Instr-6 and Instr-7. This

is why there is a split issue before Instr-8. Consequently, Figure 2.6(c) actually runs in four
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cycles. Figures 2.6(c) and (d) schedule the operations in the exact sam locations. However, they

demonstrate different split issues due to the differing template selection. In Figure 2.6(d) there

is a split issue in the second bundle before Instr-4. Instr-4 is also a load instruction (M0 or M1-

issue port) and both of its valid issue ports have already been taken by other operations (Instr-1

and Instr-2) before it in the cycle. The split issue after Instr-8 in Figure 2.6(d) is an example of

resource oversubscription due to poor template selection. There are only two I-issue ports in

Itanium 2 and they were both taken in the third bundle, therefore the NOP operation after Instr-8

causes a split issue. This situation can be resolved in two different ways: changing the template

of the last bundle from MIB to MFB avoids the resource oversubscription (Figure 2.6(e)), or

putting an operation that has a superset syllable in the last I-syllable slot so a M-issue port is

used instead (Instr-7 in Figure 2.6(f)). This is not possible with an NOP operation because

there is no NOP instruction that belongs to the A-instruction type. The split issue after Instr-4

in Figure 2.6(e) is the same resource oversubscription problem. It is resolved in Figure 2.6(f)

by changing the template from MMI to MMF.

Figure 2.6(f) shows a legal two cycle schedule with no hidden mistakes that would other-

wise impact the performance. Since the example contains nine operations, it may be possible

to fit all of them into three bundles. Figures 2.6(g) and (h) show that this is possible using

compressed templates, consequently improving code density. The main difference between

them is the scheduling of Instr-2. Since there is no other operation dependent upon it, Instr-2

can be scheduled either in cycle zero or cycle one. Figure 2.6(h) is the schedule our current

implementation of the template bundling algorithm would generate. It takes all of the new
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constraints introduced by IPF that have been presented and discussed here under consideration

when performing scheduling to avoid the potential pitfalls. Chapter 3 will present the algorithm

in detail and demonstrate how it avoids the potential problems shown in this chapter.
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CHAPTER 3

IMPLEMENTATION

The purpose of the template bundling algorithm is to extend the IMPACT compiler’s scheduler

beyond generic EPIC architectures into one that properly handles all of the new scheduling

constraints introduced by IPF. Figure 1.3 shows the existing scheduler framework under the

old path and the work of this thesis under the new path. The compiler can revert to the old path

if it is scheduling for a generic EPIC architecture rather than one that uses a template bundling

scheme like IPF. The scheduler schedules one control block at a time. A control block is a se-

quence of instructions with a single entry point and multiple exits. The current scheduling algo-

rithms used are a variant of the Dependence Height and Speculative Yield (DHASY) algorithm

[6, 7] and a modulo-scheduling algorithm [8] for acyclic and cyclic scheduling, respectively.

The new path retains the modular approach of the old path, distributing the responsibilities

between the scheduling algorithm, the scheduling manager, the resource manager, and the ma-

chine description. However, certain responsibilities have changed owners and the interfaces

between the various parts are changed accordingly.

The machine description has been enhanced to express the new constraints introduced by

IPF. The resource manager is also enhanced to ensure that dispersal rules are handled correctly.

Finally, the scheduling manager contains the template bundling algorithm that oversees the slot

placement of operations and formation of bundles with valid templates. The template bundling
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algorithm helps the resource manager adhere to the dispersal rules by ensuring that all previous

slots before the current slot have been scheduled and filled.

The interface between the scheduling algorithm and the scheduling manager and the in-

terface between the scheduling manager and the resource manager have both changed. The

scheduling algorithm is not directly altered, only its interface to the scheduling manager. The

scheduling algorithm still determines the cycle for operations, but the physical placement

within the cycle, or the slot placement, is now under the control of the scheduling manager.

In particular, the scheduling algorithm used to specify a slot range to the scheduling manager

for placement of the current instruction. The scheduling manager, in turn, used to pass the slot

range to the resource manager as part of the resource query under the old path. Now, since the

scheduling manager controls the slot placement, it queries only one slot at a time during the

resource query. New information to model the IPF constraints such as instruction type, syllable

type, and templates, are now also passed from the scheduling manager to the resource manager.

This chapter discusses the implementation of the template bundling algorithm with a bottom-

up approach. The mechanisms for describing the machine-specific IPF constraints are covered

first in Section 3.1. Section 3.2 describes the enhancements of the resource manager. The dis-

cussion then moves to the scheduling manager in Section 3.3, detailing the template bundling

algorithm, walking through the algorithm with an example, presenting an analysis of the algo-

rithm, and covering the compaction process. Finally, some alternate methods and implementa-

tion decisions are discussed in Section 3.4.
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3.1 Machine Description Enhancements

Compilers for in-order architectures require a machine description to perform precise schedul-

ing. A unique description is needed for each new architecture. In order to describe and im-

plement the new scheduling restrictions from IPF in a way that can be utilized and expanded

upon if future architectures adopt similar template bundling methodologies in their ISA, the

new scheduling restrictions are described in the machine description. This made sense because

many of the restrictions are related to hardware resources and are implementation specific.

The machine description system used by the IMPACT compiler is based upon bit vec-

tors [2, 9]. Figure 3.1 shows graphically a portion of the machine description. The parts in

blue remain from the old path. Everything in black comes from the new path to describe

the IPF constraints. Every instruction in the ISA, indicated by its opcode, is described in the

machine description with the resources upon which it is legal to execute, its scheduling alterna-

tives. The scheduling alternatives contain not only the valid resources like slots and functional

units, but also the execution latency of the instruction. The current implementation of the ma-

chine description is capable of selectively constraining the behavior of certain instructions by

specifying a specific range of legal slots and functional units, like the example with branch

instructions in Section 2.1. However, it cannot handle the concept of the order of operations

in a cycle affecting resource usage, like that stipulated in the dispersal rules. The machine

description also did not support other IPF constraints like bundles, templates, syllables, and

dispersal rules.
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Figure 3.1 Machine description structures
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Functional units are the lowest level of machine resources that the machine description is

aware of. Since issue ports form the lowest level of machine modeling that concerns the com-

piler in IPF, functional units are used to model to issue ports in the new machine description.

As shown in Figure 3.1, the functional units assigned to an instruction will be the legal issue

ports for the subtype of that instruction, like the ones in Figure 2.4. However, this does not

easily express the instruction’s type and subtype for the purposed of checking dispersal rules.

Therefore a new abstraction, the issue port set, is introduced. An issue port set expresses the

legal issue ports of an instruction and provides a way to label the instruction with its instruction

subtype and syllable type. In the current implementation for Itanium 2, issue port sets consist

of the following: M2, M23, M01, M, F, I0, L, I, B, and A. The letters correspond to instruction

types. If no number follows the letter, all of the issue ports associated with that instruction type

are included. For example, F includes both F-issue ports, F0 and F1. If numbers follow the

letter, they represent a range of issue ports. M2 corresponds to instruction subtypes that can

only be dispersed to the M2-issue port, such as alloc on Itanium 2. This would be subtype

iii under the M-instruction type in Figure 2.4. M23 represents the subset of M2 and M3-issue

ports, like the instruction subtype for integer store instructions (subtype iv). M03 contains all

M-issue ports: M0, M1, M2, and M3. The issue ports in an issue port set do not have to be

a contiguous range of issue ports. They happen to be that way due to the various subtypes

of Itanium 2. Issue port set A includes all of the issue ports associated with A-instructions,

i.e., all of the M and I-issue ports. L represents the two combinations of two issue ports, F0

and I0 or F1 and I1, that execute a single L-instruction. To be more general and support future
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architectures, the implementation allows an instruction to require any arbitrary number of issue

ports to execute.

The order in which the issue port sets are enumerated in the machine description is used

as the basis for the priority queue in the template bundling algorithm. Intuitively, the smaller

the set of legal issue ports the more restrictive the scheduling for the instruction, consequently

the higher its scheduling priority. The order of issue port sets presented earlier is the current

priority ranking from highest to lowest. For instance, all M2, M23, and M01 instructions in

the cycle should be considered before looking at M03 instructions. The role of the priority

queue will become more apparent when the template bundling algorithm is presented in detail

in Section 3.3.1.

As mentioned before, although IPF groups operations into bundles and expects to issue

some number of bundles per cycle, it can still be viewed as an n-issue machine, n being six

in the current implementations. The machine description under the old path of the IMPACT

compiler, being an EPIC compiler, already has the concept of slots defined. Rather than enforce

bundles as the new mechanism for operation dispersal, bundles are implemented on top of the

existing slot description. All bundles are assumed to consist of the same number of slots and

the slots in a cycle are distributed evenly amongst the bundles; syllables like the L-syllable

type in IPF are accommodated by describing them as using two slots. The position of syllables

and slots in the different bundles can be easily translated into slots in a cycle. This works quite

well without major changes to the machine description set up, the only restriction being that

all bundles must consist of the same number of slots.
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Figure 3.1 shows how dispersal rules are modeled in the machine description. Dispersal

rules are identified by the following parameters: (a) slot number, (b) syllable type, and (c) in-

struction subtype. Since bundles are implemented on top of the existing slot description, the

slot numbers for dispersal rules are stated as if viewing Itanium 2 as a six-wide issue machine,

with the numbering starting from zero. The instruction subtype is specified using the appropri-

ate issue port set. Notice that one of the parameters listed in Section 2.3.2 for dispersal rules

is missing, specifically (d) preceding operations in the cycle. Instead of enumerating all of the

possible preceding operations and their effects, they are taken into account by a combination of

a guarantee from the scheduling manager that all preceding slots in the cycle will have already

been scheduled and keeping track of the resources they consume in the resource manager. An

array is formed consisting of the bit masks of the issue ports given as resources to the dispersal

rule. The order of the array must correspond to the order given within the machine description,

which must match the specifications of the hardware [4]. This allows the resource manager to

try the resources in the order stated in the specifications. There are two examples in Figure 3.1.

For a B-instruction type instruction scheduled in slot two or slot five, the last slot of the three

slot bundle in IPF, it must disperse to the B2-issue port. For A-instruction type instructions

scheduled in an I-syllable slot, the range of legal issue ports is much larger, consisting of all

of the I and M-issue ports. The order is very important. Itanium 2 will attempt to dispatch

the instruction to an I-issue port first before trying M-issue ports. The resource manager re-

lies on the order being maintained in the machine description so that it follows the hardware

specifications correctly.
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Syllable types are currently expressed using a byte in the machine description. By assigning

a basic syllable type to each bit, up to eight basic syllable types can be accommodated. For

example, the least significant bit can be assigned to be the M-syllable type. Superset syllables,

those compatible with more than one basic syllable type, are simply the logical OR of the

included basic syllable types. More bits can be used if there are more than eight basic syllable

types in the architecture.

Templates in the machine description keep track of the syllables that make up the template

and their order within it. The template description also contains information on legal stop

bit positions. The positions of legal stop bits are listed as after a slot number in the bundle.

In Figure 3.1, it shows that the MBB template can only have a stop bit after slot two of the

bundle, i.e., the end of the bundle, whereas the MII template can have stop bits after either slot

one or two of the bundle. The assumption is that all combinations of valid stop bit positions

can be present in a single bundle. In other words, a MII bundle can have no stop bits, one stop

bit between the I-syllables or at the end of the bundle, or two stop bits.

The issue group description in the machine description is responsible for delineating valid

combinations of templates. This is to prevent the split issues mentioned in Section 2.4. The

need for this description is primarily motivated by the set of split issues that will always occur,

such as those involving BBB and MBB templates. The actual implementation in the machine

description for the IMPACT compiler does not require the user to explicitly list all of the

combinations. Previous work [10] enables the user to specify the combinations in a clean and
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efficient manner, relying upon an optimizer to efficiently organize and manage the internal

representation.

A final addition to the machine description involves producer-consumer latency modeling.

The existing machine description of the IMPACT compiler assumes that an instruction will

take the same amount of time to execute regardless of the consumers of its results. However,

due to hardware implementation issues such as operand bypassing, this is not always the case

and Itanium 2 is no exception. Consequently, new support has been added to the machine

description to model special producer-consumer latencies. Every instruction is still given a base

latency. However, a list of special producer-consumer pairs and the extra latencies required for

those situations is kept in the machine description. If a dependence between two operations

matches an item on the list, the execution time of the producer is lengthened accordingly. For

example on Itanium 2, instructions using the adder, like add and cmp, typically require one

cycle to generate the result. However, if the consumer of the result is a multimedia instruction,

such as pmpy2, the result from the previous instruction will not be available until three cycles

later due to additional bypass latency.

All of this defines the infrastructure in the machine description for the constraints intro-

duced by IPF. The definitions are set up so that they can be generalized for architectures other

than IPF and enhanced for future architectures. The new enhancements add on to the existing

machine description framework rather than redefine them, minimizing the amount of change to

the IMPACT compiler. They also provide access to information for the higher level algorithms
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in the resource manager and the scheduling manager. In particular, the definition of disper-

sal rules provide hooks for the resource manager to identify dispersal rules and enforce them

properly.

3.2 Resource Manager Enhancements

Under the old path, the resource manager in the IMPACT compiler’s scheduler takes an

operation and a range of slots from the scheduling manager and, after consulting the resource

map, answers if resources exist to schedule the operation in a slot within the given range at

the given cycle. This is shown in Figure 3.2(a). The enhancements to the resource manager

primarily deal with obeying dispersal rules. The resource manager has to know about the

new IPF constraints and terminology such as templates and syllables, but its job is to utilize

those definitions and to ensure that the dispersal rules described in the machine description are

followed. Figure 3.2(b) shows the process of the resource manager under the new path.

Since the scheduling manager now controls slot placement within a cycle, the interface be-

tween the scheduling manager and the resource manager is changed accordingly. The schedul-

ing manager now gives the resource manager one slot to try at a time. Information concerning

the IPF constraints are also passed along, such as the templates of the cycle. Note that since

the scheduling manager is responsible for the template assignment of bundles and the slot po-

sition of operations, it therefore also ensures that the syllable type of the slot from the template

assignment is compatible with the instruction type of the operation before handing off to the

resource manager.
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Figure 3.2 Resource manager

The resource manager looks up the subtype of the operation by looking up the correspond-

ing issue port set in the machine description. It also gathers the syllable type of the slot using

the slot number and the templates of the cycle. Using the instruction subtype (expressed as the

issue port set), the slot number, and the syllable type of the slot, the resource manager finds

the appropriate dispersal rule from the machine description. A dispersal rule should exist, oth-

erwise something is wrong with the combination of slot number, instruction subtype, syllable

type of the slot, and the templates of the cycle.

As discussed in Section 3.1, the dispersal rules contain an array of issue ports. The resource

manager takes the issue ports from the array one at a time and checks if resources are available

to schedule the operation using that issue port. As soon as an available one is found, the

35



resource manager stops. This emulates the left-to-right dispersal rules ordering described in

the specifications. If an issue port is not available, it is taken up by an operation scheduled in a

preceding slot. It is the combination of this ordered resource check along with the systematic

slot scheduling in the scheduling manager that accounts for the effect of operations in preceding

slots as dictated by the dispersal rules. Miscellaneous resources are other resources that must

also be used. It was implemented so that the proper slot resources are marked as used in the

resource map.

3.3 Scheduling Manager Enhancements

The responsibilities of the scheduling manager have increased significantly, and its inter-

face has changed accordingly. Since the physical slot placement is now part of the scheduling

manager, the scheduling algorithm now indicates only the desired cycle to the scheduling man-

ager. Correspondingly, the scheduling manager sends only one slot to the resource manager

rather than a slot range. Other additional duties of satisfying the new constraints introduced

by IPF are also picked up by the scheduling manager, such as template assignments. Further-

more, the resource manager now depends on the scheduling manager for certain guarantees

while scheduling to ensure that dispersal rules are met. To satisfy all of these requirements,

the template bundling algorithm was devised to handle them in a systematic manner within the

scheduling manager.
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3.3.1 Template bundling algorithm

The template bundling algorithm is called to schedule an operation in some cycle. It con-

siders only one cycle at a time. There may already be other operations scheduled in the cycle

of interest. The algorithm will only respond with success if it is able to schedule the new op-

eration along with all of the existing operations in that cycle. The template bundling algorithm

controls the slot placement of operations within the cycle and schedules them in sequential slot

order, lowest-to-highest, or left-to-right, so that the resource manager is guaranteed that the

slots preceding the one it is concerned with are already occupied. This is important since the

behavior of dispersal rules depends upon the operations in preceding slots.

The template bundling algorithm also determines the templates of the bundles in the cy-

cle. It ensures that the syllable of the slot from the template is compatible with the operation

being scheduled. The template bundling algorithm does not consider compressed templates as

possible templates at the time of scheduling. There is a compaction phase, to be discussed in

Section 3.3.2, that makes use of those particular templates. The reason for this restriction is

that the scheduling manager handles one cycle at a time, as dictated by the scheduling algo-

rithm, and compressed templates do not fit nicely within this modular model. The primary goal

of the template bundling algorithm is achieving performance, as determined by the scheduling

algorithm, rather than reducing frivolous NOP operations. The template bundling algorithm

performs an exhaustive search throughout the operation dispersal configuration space (tem-

plates, order of operations in a cycle, etc.), so if there is a way to schedule all of the operations

37



in the cycle without incurring hidden penalties like split issues, it will find it. The algorithm

will only return as a success if it is able to schedule all of the operations in the cycle.

The template bundling algorithm consists of four functions: (a) Template bundling,

(b) Handle backtrack, (c) NOP schedule, and (d) Syllable schedule. The entry

point of the algorithm is the Template bundling function, which supervises the progress

of the algorithm. It keeps track of the operations to be scheduled in the cycle and manages

the order in which they are tried. This function also ensures that the algorithm proceeds down

the slots of the cycle in a left-to-right manner. If it ascertains itself to be in a situation that

leads to failure, it calls the Handle backtrack function. Handle backtrack takes

care of the process of traversing the slots in the backwards manner, right-to-left. It constantly

looks for alternatives to the schedule so the algorithm can reverse itself and resume its for-

ward progress. The Template bundling and the Handle backtrack functions both

rely upon the other two functions, NOP schedule and Syllable schedule, to perform

certain duties. NOP schedule is called when an NOP operation needs to be created and

scheduled. There are a number of NOP operations with different attributes, specifically differ-

ent syllable types, that NOP schedule goes through systematically so that all possibilities

are explored. Syllable schedule is called when an operation, be it real or NOP, is to be

scheduled in a slot. It calculates the template of the proposed permutation of operations and

verifies if any valid template corresponds. It then performs the resource query by passing the

information to the resource manager. The rest of this section describes the template bundling
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algorithm in detail, starting by walking through the algorithm, continuing with an example and

an analysis of the algorithm, and concluding with techniques for efficient implementation.

3.3.1.1 Template bundling algorithm description

The scheduling algorithm schedules one control block of the program at a time. It decides

that operation x should be scheduled at cycle t in a control block. This is the information

the scheduling manager, in particular the template bundling algorithm, starts with. An issue

group, g, is associated with each cycle t. There may be other operations previously scheduled

in g. They form the set Y. The template bundling algorithm determines if the set of operations

Y + x can be scheduled in cycle t in a range of slots, s1 through s2. The algorithm sched-

ules operations into the slots of the cycle one at a time in order, starting with s1. This fulfills

the scheduling manager’s obligation to the resource manager and helps it properly observe the

dispersal rules. The algorithm examines the operations in the priority queue one at a time,

starting with the operation with the highest priority. It fills a slot with an NOP operation if

no real operation can be scheduled in it. The algorithm calculates and adapts the templates of

the bundles as it schedules operations into the slots. As the algorithm traverses down the slots,

it may generate a situation that makes it impossible to complete the scheduling of all of the

operations. At this point, the algorithm backtracks and tries other permutations of the opera-

tions. If the algorithm backtracks out of the valid slot range, lower than slot s1, then no valid

schedule can be found. All restrictions, both IPF-specific and those general to scheduling, such

as template validity, resource usage, and dependences, must be obeyed in the final schedule. If
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the algorithm is unable to do so, then it will say it failed and restore the cycle, or issue group g.

In most situations, s1 and s2 should be the minimum and maximum slots of the architecture

in a cycle, zero and five for Itanium 2. This gives the scheduling manager the full range of

slots and resources to schedule with. However, the range restriction feature was retained for

code reuse purposes. The compaction phase, to be detailed in Section 3.3.2, needs to restrict

the range of slots available in a cycle when scheduling with compressed templates.

Although the template bundling algorithm is generic and machine nonspecific, there are

some assumptions made; the assumptions follow IPF specifications since that is the imple-

mentation’s primary target. The algorithm assumes that dispersal rules follow a left-to-right

pattern, meaning preceding operations in the same cycle affect the dispersal of those to come.

Intracycle dependences are allowed assuming the compiler provides for correctness; i.e., the

operations are scheduled in the cycle such that the order of the dependence is satisfied. Ex-

amples include antidependences and zero-cycle dependences. Finally, NOP operations are

assumed to also issue and consume issue ports, thereby affecting the dispersal of useful oper-

ations. Consequently, they have to be handled with care in the template bundling algorithm.

The rest of this section is a detailed description of the template bundling algorithm.

The template bundling algorithm begins with the Template bundling function, as

shown in Figure 3.3. It starts by querying for an issue group g at cycle t in the control block,

creating one if none exists for that cycle. If g already exists, then there could be other opera-

tions in g, which form the set Y. It is possible for g to exist but Y to be empty because issue
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1: Template bundling (op x, cycle t, earliest slot s1, latest slot s2)
2: issue group g = Issue group[t] //Once unique issue group per cycle per control block
3: Set Y = Instruction set (g) //Existing operations in g
4: if Insufficient resources (Y+x) then
5: return FALSE
6: end if
7: issue group g backup = g
8: unschedule Y
9: priority queue q = Enqueue (Y+x) //Not enough slots for remaining operations or split issue
10: i = s1
11: while s1 <= i <= s2 + 1 do
12: if |q| > s2 + 1 − i or Split issue (g) then
13: i = i − 1; CONTINUE
14: end if
15: if for some j s.t. s1 <= j < i, op w = g[j] and j + w′ > i (w′ = number of slots required by w) then
16: i = j; CONTINUE
17: end if
18: if g[i] contains an operation then
19: op v = Handle backtrack (x, v, t, g, i, q)
20: if v = NULL then
21: CONTINUE
22: end if
23: else
24: if |q| > 0 then
25: take the first operation in q as v
26: else
27: if i > s2 then
28: BREAK //Schedule succeeded
29: end if
30: if NOP schedule (g, t, i) then
31: i = i + 1; CONTINUE
32: else
33: i = i − 1; CONTINUE
34: end if
35: end if
36: end if
37: while v ! = NULL do
38: if v satisfies all restrictions and Syllable schedule(v, g, t, i) (if v is a superset syllable call Syllable schedule multiple

times with v set to different compatible syllables until one works or all fail) then
39: i = i + v′; remove v from q; BREAK
40: end if
41: v equals the next operation in q; v = NULL if the end of q is reached
42: end while
43: if v = NULL (failed to schedule any operation) and NOP schedule(g, t, i) then
44: i = i + 1; CONTINUE
45: else
46: i = i − 1; CONTINUE
47: end if
48: end while
49: if i < s1 then
50: g = g backup; return FALSE //Schedule failed
51: end if
52: return TRUE

Figure 3.3 Template bundling algorithm
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groups are never deleted while operations can be unscheduled in the IMPACT compiler. Empty

issue groups are simply skipped over when the schedule is committed.

The resource check on line four of Figure 3.3 is a high-level resource check utilizing the

subtype, or issue port sets, of the operations in Y + x. For example on Itanium 2, there is

only one I0-issue port. Consequently, there cannot be more than one operation in the cycle

with the I0-issue port set. One M2 and two M23-issue port set operations also would not fit in

the same cycle either. Issue port sets therefore provide a quick resource check at the beginning

of scheduling a cycle.

If the resource check passes, the current configuration of g is saved in g backup in case

the algorithm fails for other reasons. All of the operations in Y are unscheduled and all Y + x

operations are put into a priority queue q. The priority of an operation is based on its subtype,

the issue port set. The order of the priority was shown in Section 3.1 when issue port sets

were introduced. The priority of an operation will never change, since it is a property of its

instruction subtype. Therefore, if an operation is taken out of the priority queue and inserted

back, it will be close to its original position. Its position can differ only with respect to other

operations with the exact same priority.

The algorithm initializes the index variable i to the lowest slot allowed s1. As long as

i remains in the range of valid slots the algorithm continues. The algorithm does not stop

automatically when it runs out of real operations for the cycle. It fills the rest of the slots,

up to and including s2, with NOP operations to ensure that there are no hidden split issue

concerns. If the algorithm backtracks out of the valid slot range, lower than slot s1, however,
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the algorithm stops because that is the indicator that no valid schedule exists for the operations

Y + x.

Line 12 in Figure 3.3 perform some checks that tell the algorithm to backtrack. If the

number of operations left in the priority queue to be scheduled |q| is greater than the number

of slots left, s2 + 1 − i, then the remaining operations can not possibly fit in the issue

group. The algorithm also utilizes the issue group specification in the machine description

(Section 3.1) to check for split issues due to template combinations. If the combination of

templates in g is not listed as valid in the machine description, Template bundling begins

to backtrack.

Since operations may take up more than one slot (e.g., L-instructions in IPF), it is possible

for the algorithm to place the index i in a slot that appears empty but is actually occupied by

one of these multislot instructions. This only occurs when backtracking because the algorithm

ensures that the index i is incremented correctly when scheduling forward. Therefore, as seen

on line 15, the algorithm searches for an operation scheduled in a prior slot to make sure i

is not sitting in someone else’s slot. The notation g[j] means the content of slot j in issue

group g. If i is in a slot that belongs to an operation w in slot j, the algorithm decrements i to

j and continues to backtrack.

The algorithm increments i when it successfully schedules an operation or NOP opera-

tion in a slot. The index i is decremented only when the algorithm is backtracking. Since

the algorithm starts from the lowest available slot, if an operation is present in slot i of g,

g[i], then the algorithm must be backtracking. A decision must be made if something can
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1: Handle backtrack (op x, time t, issue group g, int i, priority queue q)
2: op z = g[i] //Get the operations in slot i of g
3: if z is a NOP operation then
4: if NOP schedule (g, t, i) then
5: i = i + 1; return NULL //Replaced z with new NOP with different syllable
6: else
7: Unschedule and delete z; i = i − 1; return NULL
8: end if
9: else
10: if z is a superset syllable then
11: if Syllable schedule (z, g, t, i) succeeds with another syllable type then
12: i = i + z′; return NULL
13: end if
14: end if
15: unschedule z and enter into q by its priority
16: v = operation after z in q; v = NULL if z is the last operation in q
17: if v = NULL then
18: if NOP schedule (g, t, i) then
19: i = i + 1
20: else
21: i = i − 1
22: end if
23: return NULL //No more operatoins, tried to insert NOP operation
24: end if
25: return v
26: end if

Figure 3.4 Handle backtrack algorithm

be done in the current slot to proceed forward, or to continue backtracking. This is done by

the Handle backtrack function in Figure 3.4 (called on line 19 in Figure 3.3). Han-

dle backtrack either takes care of the situation and adjust i appropriately, or it returns a

new operation, v, for Template bundling to try scheduling in the current slot.

Handle backtrack (Figure 3.4) first obtains the operation z in g[i]. Since the tem-

plate algorithm tries to schedule an operation from the priority queue q before filling a slot

with a NOP operation, it means no operation in q can be scheduled in i if z is already a NOP

operation. However, it may be that a NOP operation with a different syllable type can be sched-

uled in i. This is handled by the NOP schedule function (Figure 3.5). If it returns with a

new NOP operation with a different syllable type, i is incremented to stop the backtracking.
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1: NOP schedule (issue group g, time t, slot i)
2: op o = g[i]
3: if o ! = NULL then
4: syllable type y = Get syllable from op (o) //Get the syllable type
5: int j = Syllable to NOP index (y) //Get the NOP index
6: j = j + 1 //Increment the NOP index since it failed
7: else
8: j = 0
9: end if

10: template p = Get template (g, i)
11: while j <= jMAX (the last NOP instruction type available for the architecture) do
12: if p is locked then
13: if o ! = NULL then
14: return FALSE
15: end if
16: syllable s = Get syllable from template (p, i)
17: op n = Create NOP (s)
18: j = jMAX //Only one syllable allowed if template is locked
19: else
20: syllable s = NOP index to syllable (j)
21: template p2 = Calculate template (p, s, i)
22: if Valid template (p2) then
23: op n = Create NOP (s) //Create NOP based on NOP index
24: else
25: j = j + 1; CONTINUE
26: end if
27: end if
28: if Syllable schedule(n, g, t, i) then
29: g[i] = n
30: if p is not locked then
31: New template (g, i, p2)
32: end if
33: return TRUE
34: end if
35: j = j + 1
36: end while
37: return FALSE

Figure 3.5 NOP schedule algorithm
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If NOP schedule fails, z is deleted, i is decremented, and the algorithm will continue to

backtrack.

If z is not an NOP operation, it must have come from q. If z has a superset syllable, it

is possible that z can be scheduled in the current slot i under a different compatible syllable

type with a different template. The Syllable schedule function (Figure 3.6) is called to

verify this. If successful, i is incremented by the number of slots required by z, z′, and the

template bundling algorithm ceases to backtrack. If z does not have a superset syllable or no

other compatible syllable succeeds, it is unscheduled and put back into q. Recall that z will go

back into q at approximately the same position it occupied before since the queue is ordered

by the priority of the operations. If there are no operations in q after z (i.e., v is not valid), that

means all of the operations in q have been examined and none are appropriate for slot i given

the current situation. Consequently the algorithm tries to schedule a NOP operation in slot i.

If that succeeds, the algorithm proceeds. If it fails, the algorithm continues to backtrack. If v

is valid, it is returned out of Handle backtrack as the next operation to try. For all other

situations, NULL is returned.

Certain operations have a superset syllable as their syllable type. This means they are com-

patible with more than one syllable type and can be scheduled in all slots with the appropriate

syllables. The template bundling algorithm leaves the determination of templates until fairly

late, either NOP schedule or Syllable schedule. In fact, the templates are determined

by the operations as they are scheduled. However, this also means that the algorithm has to
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1: Syllable schedule (op x, issue group g, time t, slot i)
2: template p = Get template (g, i)
3: if p is locked then
4: syllable type s = Get syllable from template (p, i)
5: if s is not compatible with op x then
6: return FALSE
7: end if
8: else
9: syllable type s = Get syllable from op (x)

10: template p2 = Calculate template (p, s, i)
11: if !Valid template (p2) then
12: return FALSE
13: end if
14: end if
15: if Query resource manager (x, g, t, i) then
16: g[i] = x
17: if p is not locked then
18: New template (g, i, p2)
19: end if
20: return TRUE
21: end if
22: return FALSE

Figure 3.6 Syllable schedule algorithm

have some way to systematically test operations with a superset syllable, treating it as hav-

ing a different syllable type each time. The internal representation of the machine description

helps the scheduling manager do this. Each bit of the syllable type representation is associated

with a specific syllable type. Therefore, superset syllables are the only ones with more than

one bit set at a time. Whenever an operation with a superset syllable is encountered, the least

significant bit of its internal syllable type representation is extracted, and it is scheduled as if

it is of that syllable type. If the scheduling fails or the operation is under consideration again

while backtracking, the next least significant bit of its internal representation is extracted and

used. Thus for each slot, the operation is considered once for each syllable type with which it

is compatible. For example in IPF, A-instruction type operations have a superset syllable that
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is compatible with both M- and I-syllable types. Assume that the least significant bit represents

the M-syllable type and the next bit I-syllable type. When an A-instruction type operation is

first being scheduled, it is treated as having an M-syllable, meaning the syllable of the slot from

the template must be M. If this fails, either due to resource constraints, invalid template types,

backtracking, etc., the operation is considered again with the next bit, i.e., as an I-syllable.

If the operation is under consideration in the same slot for the third time, there would be no

more bits left in the internal representation and the algorithm will know it has performed the

exhaustive search on the operation.

Coming back to line 24 in Template bundling, g[i] does not already contain an

operation. If there are operations left to be scheduled, |q| > 0, the first operation, the one

with the highest priority, is taken out of q and used as v. If there are no operations left to

be scheduled, the algorithm continues by scheduling NOP operations in the remaining slots.

This is because NOP operations are assumed to issue and consume resources, and it is the

algorithm’s duty to ensure that no split issue occurs. Since this potentially creates bundles with

only NOP operations, empty bundles are culled when the schedule is finalized.

If v is valid by line 37, this means there are operations left to be scheduled. The algorithm

attempts to schedule the operation by calling Syllable schedule, moving on to the next

operation in the priority queue q if it is not successful with the current operation. If an oper-

ation out of q has been scheduled in the current slot i, the algorithm continues. Otherwise, it

attempts to insert a NOP operation instead after attempting and failing to schedule the opera-

tions in q. If the algorithm cannot insert an NOP operation either, then the current situation is
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a dead end, and the algorithm begins to backtrack. Finally, when the algorithm exits the main

while loop in Template bundling spanning lines 11 through 48 in Figure 3.3, it either

restores the issue group from g backup if it failed or return success.

The NOP schedule function tries each type of NOP operation once for each slot. It does

this by using the NOP index. All of the NOP operations are identified in the machine descrip-

tion and given an index number. By being able to obtain the index number from the syllable

of the slot (line five in Figure 3.5) and trying each index number only once, NOP schedule

is guaranteed to try all of the NOP operations available to the architecture without repeating

itself. Special attention needs to be paid if the template of the issue group is locked. This only

happens during the compaction phase (Section 3.3.2). If the template is locked, there can only

be one syllable type for that slot. Therefore, NOP schedule tries only one syllable type. At

the end, the template is updated with the new NOP operation unless the template is locked.

3.3.1.2 Template bundling algorithm example walk-through

This section examines how the algorithm behaves when applied to the example code se-

quence presented in Table 2.1. For simplicity, it is assumed that the compiler has determined

that none of the memory instructions will ever alias with each other and therefore may be freely

rearranged with respect to each other. In reality, pointer analysis must provide the information

regarding the dependences between memory instructions. The IMPACT compiler also assumes

that all memory accesses will hit in the cache; therefore, it schedules for the minimum latency.

The target architecture will be the Itanium 2.
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Figure 3.7 Scheduling cycle 0

Judging from the dependences among the instructions, the scheduling algorithm would

determine that Instr-1, 2, 3, 4, and 5 can all be issued in the first cycle, cycle zero. Let us

assume that this is also the order they will be tried in. (An actual scheduling algorithm may

assign different scheduling priorities to the instructions.) After scheduling Instr-4, the schedule

will look like Figure 3.7(a). The reason Instr-3 is scheduled in slot zero is because the M2 and

M3-issue port subset is heuristically determined to be more restrictive than the other subsets;

consequently, it is placed towards the beginning of the priority queue in the template bundling

algorithm.

Instr-5 requires special attention since it has the very restrictive issue port set of I0. The

earliest slot s1 is 0 and the latest slot s2 is 5 for the Itanium 2. The high level resource check

passes and all of the currently scheduled instructions in Y, Instr-1 through 4, are unscheduled.

50



All instructions, Y + x, are put into the priority queue q, with the order from highest priority

to lowest being: Instr-5, 3, 1, 4, then 2. This is shown in Figure 3.7(b). The algorithm first

attempts to schedule Instr-5 into slot zero, but fails on line 11 in Syllable schedule

(Figure 3.6) since there is no template in IPF that begins with the I-syllable. The algorithm

moves on to the next instruction in the queue, Instr-3, and succeeds in scheduling it into slot

zero. The index i is incremented by one and Instr-3 is removed from q.

The current situation passes the checks on lines 12, 15, and 18 in Figure 3.3 so Instr-5, the

first operation in q is again taken as v. Instr-5 is scheduled into slot one, since templates exist

with the M-syllable in slot zero and the I-syllable in slot one, such as MII. Since no template in

IPF ends in the M-syllable, neither Instr-1 nor 4 can be scheduled into slot two. However, Instr-

2 can be scheduled in slot two since it has the superset syllable A. At this time the remaining

operations in the priority queue are Instr-1 and 4 (Figure 3.7(c)). The final schedule for cycle

zero is shown in Figure 3.7(d).

Scheduling for cycle one is fairly straightforward. Figure 3.8(a) shows the priority queue

when scheduling Instr-9. Instr-8 ends up before 6 and 7 because the M01-issue port set has a

higher priority than A, since A-syllable instructions are very versatile and can be dispatched

to any M- or I-issue port. The final schedule for cycle one is shown in Figure 3.8(b). Instr-

9 follows all the other instructions because no operation should cross the branch. The final

schedule for the example operations is shown in Figure 3.9.
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Figure 3.9 After template bundling algorithm; before compaction
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3.3.1.3 Template bundling algorithm analysis

The template bundling algorithm involves the following search spaces:

• Syllable type. An architecture has s number of basic syllable types; five in the case of

IPF. Superset syllables are compatible with some number of syllable types in s. The total

number of syllable types, basic plus superset, will be termed S; six in the case of IPF.

• Template type. A template is a permutation of a number of basic syllables. The max-

imum number of syllables N that form a bundle is architecture specific; three for IPF.

Each architecture specifies a number of valid template types T ; IPF currently has 10 basic

template types. Compressed templates are not part of this search space since the tem-

plate bundling algorithm delays their usage until the compaction phase. If compressed

templates are to be considered, then the search space is increased by the number of com-

pressed templates available. However, the number of syllables available per template N

will be smaller for compressed templates, unless the single cycle approach is eliminated.

The compaction phase will be discussed in Section 3.3.2.

• Issue groups. The maximum number of bundles that can be issued in one cycle, or issue

group, is represented by B and is architecture specific. Current implementations of IPF

contain up to two bundles per issue group. Certain combinations of valid bundles can

not be executed in the same cycle, causing split issue (Section 2.4). These restrictions

are defined in the machine description and is a low constant referred to as I .

53



• Dispersal rules. The dispersal rules are modeled as additional constraints in the resource

map and incur a small increase in that search space. The computational complexity of

the resource map is specific to the compiler and will be referred to as R. Note that

accessing the resource map to schedule an operation, incurring the computation time of

R, is necessary, even if template bundling is not required for the architecture.

• Valid NOP types. The number of valid NOP types P will be equal to or less than the

number of syllable types s. IPF has five NOP types, corresponding to the five basic

syllable types. In other words, the superset syllable A does not have a corresponding

NOP instruction. NOP operations are assumed to issue according to the dispersal rules

and consume resources, just as if they are a valid operation of the same syllable. This is

a trait of the IPF architecture and is an additional constraint.

If the architecture allows N syllables per bundle and up to B bundles per issue group,

that means a total of N × B operations can issue each cycle. This will be referred to as as

U since it will be used quite often. For the upper bound analysis, all U operations have a

superset syllable type that is compatible with all s basic syllable types and all permutations of

all syllable types correspond to a valid template in T . Effectively, the number of scheduling

possibilities is a k − permutation, nPk = n!
(n−k)!

, where n = sU and k = U (n = sU since

the algorithm tries all compatible syllable types for each operation). Although this does not

explicitly consider NOP operations, the search space involving NOP operations is less since

P <= s.

54



���������

� 	 


	 






��
�


����





���	

�

���
���

� � � ��� �

��� � �

���
��� � 
��
�	

	

�

�

	

�

� 
�

Figure 3.10 Search space of the template bundling algorithm

Figure 3.10 shows the search space of the template bundling algorithm. The algorithm

begins at “Start,” and traverses down the search space by scheduling one operation at a time.

Note that on the first level of the search space, there are sUP1 = (sU)! possibilities, not just U .

This is because the upper bound analysis assumes that all U operations have a superset syllable

compatible with all s syllable types. All other levels are affected similarly. When an operation

is scheduled, it checks for split issues and calls Syllable schedule, incurring the com-

putation time of ITR. Traversing the entire search space involves the following computation

complexity:

ITR(sUPU +
U∑

k=1

sUPk)
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In practice, the situation is much better. In IPF, there is only one superset syllable Awhich is

compatible with only two basic syllable types. Consequently, instead of n = sU , for IPF U <=

n <= 2U . Template definitions would be practically meaningless if all permutations of all

syllables are valid, which means many permutations are discarded quickly. Many permutations

are also discarded due to stringent resource requirements, like operations with restrictive issue

port sets like M2. The algorithm traverses the search space such that sections of it are truncated

as soon as a problem is detected. When the algorithm fails to schedule an operation (v on line

38 of Figure 3.3) and moves to the next operation in the priority queue, it proceeds horizontally

in the search space at the same depth. The search space that extends downwards from the

previous operation is effectively culled. If the algorithm is unable to schedule an operation

from the priority queue and backtracks, it is moving upwards in the search space and will

never revisit that particular branch again. I is a low constant for IPF, and R is present even

if template bundling is not required of the architecture. Again, the addition of dispersal rules

to R only increases its complexity marginally compared to what is already there. Suggestions

for improving the template bundling algorithm to reduce compilation time will be covered in

Section 6.1. However, there are also implementation techniques that have been utilized that

greatly reduce the compilation time.

3.3.1.4 Efficiency in implementation

This section goes over implementation techniques for the template bundling algorithm that

reduced the compilation time. Rather than reduce the complexity of the algorithm, which is
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reserved for future work, these optimizations deal with compilation concerns such as keeping

information within the compiler up to date in an efficient manner. These optimizations had

large effects on the compilation time and are arguably more important than reducing the com-

plexity of the template bundling algorithm since the search space is restricted in many areas by

architecture specifications.

In IPF, certain intracycle dependences are permitted. Specifically antidependences and

certain flow dependences are allowed to exist within a single cycle. The scheduling algorithm is

aware of the dependences between operations and gives an operation to the scheduling manager

only if its incoming dependences are resolvable by the cycle given. In other words, all of

the operations in the set Y + x (Figure 3.3) should have all of their incoming dependences

resolved except for intracycle dependences. Therefore, one implementation optimization of the

template bundling algorithm is to begin backtracking as soon as any dependence is violated.

Since it is established that all of the dependences are resolvable, the only dependences that can

be violated are intracycle dependences. By backtracking as soon as a dependence is found to

be violated, the number of permutations of operations that need to be checked is effectively

reduced. In the current implementation, the dependences of an operation are checked in line

38 in Figure 3.3. If scheduling v in the current slot i violates some dependence, that means

some other operation has been scheduled earlier in the cycle that must come after v instead.

Therefore, instead of trying other operations remaining in the priority queue, the algorithm

exits the while loop on line 37 in backtrack mode, decrements i, and continues on in the main

while loop (line 11).

57



Another implementation optimization based on dependences was found to significantly

decrease compile time. When an operation is scheduled or unscheduled, all of its depen-

dences must be updated. This could be considerable if the operation has many dependences.

Some examples include branch operations with flow dependences to all other operations in

the control block and memory operations with alias dependences with other memory opera-

tions. Currently, operations are scheduled and unscheduled and its dependences updated in

the main while loop of the Template bundling function (Figure 3.3) every time Sylla-

ble schedule is called. If an operation has many dependences and is repeatedly scheduled

and unscheduled again and again as the algorithm goes through the various permutations of

operations in the slots, a lot of time would be wasted on useless work. However, since it is

established that the operations in Y + x should have their dependences resolvable other than

intracycle dependences, the algorithm can restrict the dependences that are updated to only

those between operations within Y + x instead. Consequently, the number of dependences

that are updated decreases dramatically, and dependences to operations not in Y + x are up-

dated all at once at the end of the Template bundling function.

3.3.2 Compaction

The purpose of the compaction phase is to utilize the compressed templates to reduce the

code size. It assumes that the starting schedule is as compact as it can be without using

compressed templates. The two phase approach was adopted so that the template bundling
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1: Compaction phase (control block cb)
2: sMAX = Architecture max slot ()
3: for each issue group i in cb do
4: if i is the last issue group then
5: BREAK;
6: end if
7: t = Get cycle (i)
8: j = Next non-empty issue group (cb)
9: if i is not as compact as can be due to arbitrary unscheduling then
10: Unschedule one operation x from i
11: Template bundling(x, t, 0, sMAX)
12: end if
13: if Not good for compressed templates (i, j) then
14: CONTINUE;
15: end if
16: for each compressed template type c do
17: i backup = i
18: Lock template of last bundle (i, c)
19: Unschedule one operation x from i and get slot s2 right before the stop bit in c
20: if Template bundling(x, t, 0, s2) then
21: j backup = j
22: Lock template of first bundle (j, c)
23: Unschedule one operation x from i and get slot s1 right after the stop bit in c
24: if Template bundling(x, t, s1, sMAX) then
25: BREAK;
26: end if
27: end if
28: i = i backup
29: j = j backup
30: end for
31: end for

Figure 3.11 Compaction algorithm

algorithm can be more general. The compaction algorithm retains the original scheduled per-

formance since it does not change the intended cycle of operations. The difference in NOP

operations with and without the compaction phase is presented in Chapter 4.

In IMPACT, the scheduler handles one control block at a time. After each control block

is scheduled it goes through the compaction phase to utilize compressed templates to reduce

code size. Figure 3.11 shows the Compaction phase algorithm. The compaction algorithm

steps through the control block one issue group at a time. It finds the next issue group in time

and sees if there is a possibility that the two issue groups can share a compressed template.
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The checks performed on line 13 of Figure 3.11 are architecture specific checks dependent

upon the compressed templates available. Since the set of compressed templates is probably

a small portion of the set of valid templates, certain characteristics may be derived to narrow

down the legal cases that would beneficial. For example, the only compressed templates cur-

rently available on IPF are based off of the MII and MMI templates. One easy check is the

number of operations in i and j. For IPF, if the number of operations currently scheduled in

the two issue groups of interest total more than nine, then there is no compressed template that

will reduce the number of NOP operations. Another situation is if either i or j contains three

or fewer operations with syllable types like B, F, or L, syllable types that are incompatible with

the existing compressed templates.

If the checks pass, the compaction algorithm changes the appropriate template of the cur-

rent issue group i to a compressed template, locks it, and reschedules the operations within

the entire issue group using the Template bundling function (Figure 3.3). If it succeeds,

the compaction algorithm attempts the same thing with the following issue group, j. If either

reschedule fails, the algorithm tries the other compressed templates. Note how the slot ranges

specified for the Template bundling function calls are not simply zero and the maximum

slot anymore. This is to force operations to remain on the correct side of the stop bit in the

compressed template. Figure 3.12 shows the final schedule for the example operations after

compaction. Notice how all of the operations remain in the cycle they were originally sched-

uled for in Figure 3.9. However, the three NOP operations were removed and the example now

consists of three bundles instead of four.
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Figure 3.12 Schedule after compaction

3.4 Implementation Alternatives

Several decisions were made during the implementation of the template bundling algorithm

that had significant impact. This section discusses some implementation alternatives that could

have been done instead. These range from organizing the scheduler structure differently to

tweaking and taking advantage of certain aspects of the IPF constraints.

Rather than keeping the modular approach, the new scheduler could have been an integrated

unit instead. In particular, integrating the scheduling algorithm and molding it for the IPF re-

strictions would mean great changes to the implementation and possibly the results. However,

creating an IPF-specific compiler was not the intention of this work. The idea was to add ex-

tensions to the existing IMPACT compiler so that it can be configured to either compile for

generic EPIC architectures or IPF-like template architectures. Furthermore, the modular ap-

proach allows easier adaptation to changes for future architectures and experimentations with

different scheduling algorithms. Integrating the scheduling algorithm would have made these

other objectives much harder to achieve. There has been other proposal to do this integration,

which will be covered in Chapter 5.
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Currently, the motivation for the two phase approach lies in delaying the integration of

compressed templates. Other works [3] bypass this by considering compressed templates at all

times in the scheduler. The consequences of this decision are not very clear. As presented in

Section 3.3.2, the complexity of the compaction phase algorithm is relatively low, being a linear

pass through the control block. However, the scheduler can arguably take better advantage of

scheduling slack to generate better code if it knows about compressed templates at all times.

The decision was made to proceed with the two phase approach for primarily two reasons: (a)

ease of implementation and separation of concerns and (b) the IMPACT compiler’s assumption

of the scheduling manager handling one cycle at a time.

Theoretically, by exploiting split issue judiciously, one can achieve better code density

at the expense of code legitimacy. However, a conscious decision was made not to do so.

Although a description of the hardware behavior when split issue and resource oversubscription

occurs is described in the Itanium 2 specification, it is by no means a guarantee. It is, after all,

improper behavior and can be considered a failure on the part of the compiler. Furthermore,

future architectures may not guarantee correct behavior in the case of split issues.

The existing IMPACT compiler infrastructure, the modular scheduler and the bit-vector

based machine description for example, had great influence on the implementation of the tem-

plate bundling algorithm. The descriptions for the new IPF constraints were integrated into the

existing machine description, and the template bundling algorithm was implemented so that

the scheduling algorithms were disturbed as little as possible. However, the performance of the
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template bundling algorithm should not be compromised to promote ease of implementation.

Chapter 4 will present the results of the template bundling algorithm.
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CHAPTER 4

EXPERIMENTAL RESULTS

This chapter presents the numerical data gathered for this thesis. The focus will be on how

the new path with the template bundling algorithm, SZU, compares against the previous imple-

mentation that was used by the IMPACT compiler, SMH. SMH was based on the old path of

the compiler using the machine description and bundling code given to the IMPACT research

group by Intel. SMH also took a two-phase approach (scheduling/compacting) to the bundling

problem. The three major differences are: (a) SMH assumes that the templates of the cycle

are chosen based on the operations to be scheduled rather than as they are being scheduled,

(b) SMH can adjust the level of compaction during the second phase and fine-tune code size

reduction, and (c) SMH uses the Intel machine description instead of the one developed for

the IMPACT compiler. Certain previous publications [11] of Itanium results by the IMPACT

research group were based on the SMH implementation. The effect of the compaction phase

of the new template bundling algorithm, SZU, will also be examined. The version without the

compaction phase will be referred to as SZU-NC.

The results on the SPECint2000 benchmark suite are presented, excluding 252.eon since

the IMPACT compiler did not handle C++ at the time of the experiments. All of the exper-

iments begin from the same point in the IMPACT compilation process. Almost all of the
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ILP optimizations, such as super/hyperblock formation, loop optimization, critical path reduc-

tion, have all been performed already. Scheduling, physical register allocation, and peephole

and machine specific optimizations remain. The SPECint2000 numbers were generated on

a Hewlett-Packard zx6000: two 1 GHz/3 MB L3 Itanium 2 processors, 8 GB RAM, Linux

2.4.2.1-gspec. The term gspec means that the operating system was enhanced to support gen-

eral speculation, used to recover from mis-speculation. Pointer analysis and modulo scheduling

were performed on all of the benchmarks except 253.perlbmk; the pointer analysis at the time

of the experiments could not handle that one benchmark. The 176.gcc benchmark required a

small manual fix; missing memory aliasing information due to errors in the pointer analysis

allowed the scheduler to perform a bad reordering of operations that had to be corrected.

4.1 Performance Analysis

Table 4.1 shows the SPECint2000 performance results for SZU, SZU-NC, and SMH. Over-

all the differences in performance are slight. This is to be expected since all three compilations

share the same starting point, after most of the ILP and performance enhancing transforma-

tions are already done, and the same scheduling algorithms. Therefore, the difference in per-

formance comes from the different decisions made when forming the bundles and templates

and the effect those decision have on peephole, machine specific optimizations.

The current compaction algorithm does not alter the cycle an operation is scheduled in, so

changes in performance between SZU and SZU-NC would only come from changes in instruc-

tion cache behavior and microarchitecture front end issues only. The benchmark 186.crafty
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Table 4.1 SPECint2000 results

Benchmark SZU SZU-NC SMH SZU/SZU-NC SZU/SMH
164.gzip 754 754 728 1.000 1.036
175.vpr 680 677 664 1.004 1.024
176.gcc 775 769 822 1.008 0.943
181.mcf 337 340 337 0.991 1.000

186.crafty 713 679 687 1.050 1.038
197.parser 550 551 550 0.998 1.000

252.eon X X X X X
253.perlbmk 664 669 652 0.993 1.018

254.gap 584 571 580 1.023 1.007
255.vortex 1181 1180 1187 1.001 0.995
256.bzip2 714 688 710 1.038 1.006
300.twolf 898 886 904 1.014 0.993

GEOMEAN 684.4 677.1 680.9 1.011 1.005

is known to suffer from instruction cache issues, and the SZU to SZU-NC ratio shows good

performance improvement. The differences between SZU and SMH are harder to quantify.

However, a closer examination showed that for the 176.gcc benchmark the SZU version spends

a lot more time in the kernel than SMH, decreasing its performance. Wild loads due to mis-

speculation is the cause of this phenomenon. The new template bundling algorithm allows

more aggressive promotion of operations by finding more opportunities to break dependences

and to reorder operations, creating more speculative instructions. This can sometimes have

a detrimental effect if speculative operations fail rather than succeed, especially potentially

excepting instructions (PEI) like memory load operations. Hopefully better memory analysis

information or heuristics will minimize these effects.
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Table 4.2 Backend component compilation time

Benchmark SZU SZU-NC SMH SZU/SZU-NC SZU/SMH
164.gzip 5 5 7 1.00 0.71
175.vpr 31 30 38 1.03 0.81
176.gcc 237 236 308 1.00 0.77
181.mcf 2 1.5 2 1.33 1.00

186.crafty 53 52 65 1.02 0.82
197.parser 12 12 15 1.00 0.80

252.eon X X X X X
253.perlbmk 41 41 71 1.00 0.58

254.gap 46 45 68 1.02 0.68
255.vortex 61 60 94 1.02 0.65
256.bzip2 5 5 7 1.00 0.71
300.twolf 274 277 283 0.99 0.97

4.2 Compilation Time Analysis

The compilation times presented in Table 4.2 are the number of minutes it takes for the

IMPACT compiler to run from the Lcode internal representation through a series of SSA op-

timizations and through the scheduler, finishing with the final assembly code (HS to HSX to

HSX s in the IMPACT compilation process).

Except for 181.mcf, where the compilation time is very small already, the compilation

times for the new template bundling algorithm, SZU, are all less than for SMH. This occurs

even though SZU is an exhaustive search and always unschedules all operations in the issue

group of the target cycle before trying to schedule. Section 6.1 presents possible extensions to

further reduce the compilation time.

As shown by the SZU versus SZU-NC ratio, the compaction phase of SZU does not sig-

nificantly extend the compilation time. Again, 181.mcf is an anomaly due to its short baseline

compilation time. If the compaction phase is enhanced in the future the compilation time of
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Table 4.3 Static NOP operations

Benchmark SZU SZU-NC SMH SZU/SZU-NC SZU/SMH
164.gzip 3992 5849 3839 0.68 1.04
175.vpr 17525 22137 17341 0.79 1.01
176.gcc 190916 268709 186712 0.71 1.02
181.mcf 986 1547 970 0.64 1.02

186.crafty 17881 26883 17185 0.67 1.04
197.parser 12474 17034 12023 0.73 1.04

252.eon X X X X X
253.perlbmk 92732 148601 91202 0.62 1.02

254.gap 89918 127836 87926 0.70 1.02
255.vortex 60623 75320 59703 0.80 1.02
256.bzip2 3494 4708 3359 0.74 1.04
300.twolf 29461 42511 29035 0.69 1.01

the compaction phase may increase. However, if the compaction phase remains a linear pass

through the issue groups as it is now, it will most likely remain an insignificant portion of the

compilation time.

4.3 NOP Analysis

Table 4.3 shows the number of static NOP operations present in the assembly code of each

compilation process. Since most of the ILP and performance enhancing transformations are

already done, the number of useful operations is approximately equal across the three compila-

tions. In other words, the difference in code size comes from the difference in NOP operations.

Although the difference in static NOP operations between SZU and SMH is relatively minor,

SZU-NC presents major savings. This suggests that compressed templates are important to

code size reduction.
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Figure 4.1 shows the breakdown of dynamic operations between explicit NOP operations,

predicate squashed operations, and useful operations for each compilation process across the

benchmark suite. The results are normalized to the number of dynamic operations for the SZU

compilation. For SZU versus SMH, there is no clear correspondence between the percentage

of dynamic NOP operations and the overall performance of the benchmark (Table 4.1). In fact,

for most of the benchmarks the number of explicit NOP operations between SZU and SMH is

very similar. The compaction phase in SZU does contribute to reducing the number of explicit

NOP operations. Again, there is not a significant performance benefit in reducing the number

of NOP operations. Only programs that have decreased performance due front-end problems

would benefit from this reduction in code size.

For two of the benchmarks, gzip and bzip2, SMH executed significantly less NOP oper-

ations than SZU despite a mere four percent difference in static NOP operations (Table 4.3).

Although the performance of SZU was actually better (Table 4.1), this is still cause for inves-

tigation. Upon closer examination, it becomes evident that SMH achieves better code com-

pression than SZU in certain cases. Although the number of cycles required for the control

block is the same between SZU and SMH, the SZU compilation added an extra bundle, or

three NOP operations. The effect becomes pronounced in the dynamic behavior because the

control blocks where this occurred have high execution counts.
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CHAPTER 5

RELATED WORKS

This chapter goes over other schedulers for the IPF architecture in the literature. The focus

will be on how the new constraints IPF introduced, such as syllable types and templates, are

handled. Section 5.1 covers the ORC implementation, an open source compiler for IPF. Sec-

tion 5.2 goes over a proposed implementation using integer linear programming. All other

works are grouped together in Section 5.3.

5.1 ORC Implementation

The EPIC Open Research Compiler (ORC) published their work on resource management

and template bundling for the Itanium implementation of IPF [3]. Their implementation uti-

lized a finite-state automaton (FSA) for machine resource modeling, which was extended to

encompass the constraints IPF introduced. The primary result showed that templates must be

considered when scheduling for IPF.

The scheduler was separated into two parts, called the high-level scheduler and the micro-

level scheduler. The high-level scheduler handled duties similar to the scheduling algorithm

in this thesis while the micro-level scheduler encompassed the scheduling manager, the tem-

plate bundling algorithm, the resource manager, and the machine description. The FSA was
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function-unit-centric, keeping track of what issue ports are being used in the cycle. As ad-

ditional operations are scheduled, the FSA advances from state to state according to the new

issue ports being marked as used. Intracycle dependences were handled by checking the list

of valid templates at the new state; at each state a list of valid templates is kept, based on the

state transitions and operations scheduled to reach that state. If a valid order is not present,

the algorithm reverts back to the previous state of the FSA. The ORC algorithm did not have a

compaction phase. Rather, the micro-level scheduler kept a window of two cycles for template

selection, thereby utilizing compressed templates. Template selections were finalized when

the window moves on. For cyclic scheduling however, the ORC algorithm finalized template

assignments after all of the operations for the loop have been scheduled. Results for one-cycle

template selection, which would correspond to SZU-NC in this thesis, were also presented in

the paper.

It is unclear how dispersal rules were handled in the ORC compiler. In other words, it is

unclear how an operation’s assignment to a specific function unit and how the effect of opera-

tion ordering were modeled. One possibility is to consider the dispersal rules while performing

the intracycle dependence check, since the operation ordering in the cycle is considered at that

time. Dispersal rules may not have had as much significance for the ORC implementation at

the time of the paper since dispersal rules for the Itanium implementation were much simpler

than Itanium 2. Not only did the Itanium have fewer function units to consider and a lesser

variety of groupings of issue ports for instruction subtypes, operations with a superset syllable
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had to dispatch to an issue port of the syllable type of the slot, i.e. an A-instruction type opera-

tion scheduled in an I-syllable slot will only disperse to an I-issue port and not an M-issue port

like in Itanium 2.

5.2 ILP-Based Instruction Scheduling

Integer linear programming (ILP) has been proposed to perform instruction scheduling for

IPF [12]. It is a mathematical and theoretically optimal scheduling technique. However, it is

much more complex and expensive from a compilation standpoint. The algorithm presented

takes a two-phase approach. A macro-scheduling phase assigns each instruction to an instruc-

tion group so that all instructions from one group can be executed simultaneously in a single

clock cycle. This is done while ignoring bundling restrictions. A bundling phase is responsible

for forming bundles that conform to the set of valid templates. All of this is done while repre-

senting the resource and template constraints in ILP. The work was further extended to show

how speculation and cyclic code motion can be handled [13].

This thesis utilizes a bit-vector representation for machine resources. Although it may not

be as mathematically optimal as ILP, it is easier to implement, and it can easily handle many

different situations, such as cyclic code motion and software pipelining, and large programs

such as the SPEC2000 benchmark suite. The template bundling algorithm implemented upon

this representation has also been shown to be very time efficient.
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5.3 Other Approaches

In Section 3.4, one of the alternatives mentioned is to integrate the scheduling algorithm

when performing scheduling and template decisions. In particular, this combination should be

able to take advantage of slack in the schedule to produce more compact code. This approach,

integrating the operation and cycle selection with the template selection, was proposed in [14].

The emphasis was on improving code density as much as possible by performing template se-

lection and operation scheduling simultaneously. A recursive algorithm was utilized to perform

an exhaustive search to find the optimal solution. Nonoptimal heuristics were then introduced

to help control compile time.

Although the paper does address certain cases where a NOP operation would exist under

the current implementation of the template bundling algorithm, the results gathered for this

thesis suggest that reduction of NOP operations does not directly translate into improvement in

performance. Performance will improve from NOP operation reduction only if the application

has instruction fetch problems, like 186.crafty. Furthermore, the algorithm presented in [14]

only guaranteed minimum cycle code for a nonconstrained machine while arguing that code

density is proportional to performance. On real hardware, trade-offs will have to be made in an

intelligent manner between all of the operations that are ready to be scheduled. The implemen-

tation proposed by this thesis allows scheduling algorithms to be conceived and experimented

separately from the template bundling concerns. Code density also appears to be a secondary

effect on performance, being a major concern only in programs experiencing instruction cache
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issues. Other methods for utilizing scheduling slack to enhance code density will be discussed

in Section 6.2.
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CHAPTER 6

FUTURE WORK

The first job of the scheduler of the compiler is to not make mistakes when generating a sched-

ule for execution. Its job is even more important for in-order architectures like EPIC and IPF

since there is no hardware support for dynamic reordering of operations. The template bundling

algorithm framework presented in this thesis does this by handling the various restrictions in

a cohesive intelligent manner. However, there is always room for improvement. After all, a

scheduler that does not make mistakes can simply be one that schedules for maximum latency

between all operations, one operation per cycle, or one that takes infinite time to ponder all

possibilities. This chapter discusses how the template bundling algorithm can be improved,

focusing on compilation time and code density.

6.1 Compilation Time Improvements

An extension to the current template bundling algorithm to further reduce compilation time

is to insert the new operation x into the issue group gwithout unscheduling all of the operations

Y currently scheduled in g (Figure 3.3). If the insertion is successful, then the run time would

be a factor of ITR rather than exponential. However, as appealing as this improvement sounds,

further study is necessary. Regardless of the insertion algorithm’s implementation, it will likely

not be an exhaustive search like the current template bundling algorithm, since its starting point
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is constrained. Therefore, it is conceivable that the insertion algorithm may fail in a situation

that contains a valid schedule if an exhaustive search is performed. Consequently, the benefit

of the insertion algorithm needs to be balanced against the probability of failure, which would

invoke the exhaustive search template bundling algorithm.

An insertion algorithm is nontrivial, due to dispersal rules, templates, and NOP operations.

The template bundling algorithm schedules NOP operations in slots without real operations

because they consume resources and consequently affect the dispersal of real operations. In

other words, in order to insert a new operation x into g, it must take the place of an existing

NOP operation. However, this replacement will have effects on the dispersal rules and may

even require the changing of template assignments.

One approach to the insertion algorithm is to require x to take the place of a NOP operation,

n, without changing the placement of any of the existing real operations Y or the templates of

the bundles in g. However, this means the NOP operation’s slot must have a syllable type

compatible with x. Furthermore, the issue port currently consumed by n must also be what x

would disperse to according to the dispersal rules. If the second condition is not satisfied, any

change will percolate down to the succeeding operations and possibly alter what issue ports

they disperse to, producing split issues.

Other approaches include limited updates to the template assignments, modifications to

the placement of the existing operations Y, or a combination of both. However, the insertion

algorithm will then begin to resemble the exhaustive search template bundling algorithm and

gain will lessen as complexity increases. It is my opinion that it would be best to implement

77



the previous approach, guided by heuristics that dictate when to skip the insertion algorithm

and go straight to the exhaustive search algorithm instead. The heuristics can be based on the

number of operations already scheduled in g, |Y|, the syllable type of x, the existing templates,

etc.

Finally, more improvements in compilation time may be possible by trimming down the

search space of the exhaustive search. The current implementation of the template bundling al-

gorithm is made to be general and adaptable. Machine-specific restrictions could be integrated

to constrain the search space. There may also be other more general, nonmachine specific

bounds not yet discovered.

6.2 NOP Operations Analysis and Improvements

Since the framework follows the IPF definition that NOP operations disperse and affect re-

source consumption, their presence cannot be treated lightly. The template bundling algorithm

properly handles NOP operations by scheduling them into the issue group. However, reduction

of NOP operations will improve code density and performance in certain cases. Although the

results indicate that the impact on performance from reducing NOP operations is not dramatic

(see SZU versus SZU-NC results in Chapter 4), it cannot be ignored. Due to the requirement

of forming bundles with valid templates and the limited selection of template types, arguably

NOP operations will always be present in IPF code. Although the compaction phase does a

good job in reducing the number of NOP operations, it is by no means optimal.
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Figure 6.1 Optimal NOP operation example

Figure 6.1 is a motivating example illustrating the deficiency of code density in the current

template bundling and compaction algorithm. Figure 6.1(a) is a dependence graph showing the

operations and the dependences between them. Since Instr-I2 does not have any other operation

dependent upon it, it can be scheduled in any cycle. The critical path consists of Instr-M1, M3,

and F6. The scheduling algorithm currently in use attempts to schedule an operation as soon as

it is ready, resulting in the schedule shown in part (b). The schedule with optimal code density

is shown in Figure 6.1(c), eliminating a total of six NOP operations. The scheduler delays

Instr-I2, M4, and M5 by one cycle each from when the operation is ready to be executed to

maximize code density.

In order to achieve the schedule shown in part (c), the scheduler has to realize that opera-

tions off of the critical path not only can be scheduled later, but should be scheduled later to

achieve better code density. One approach in the current framework would be to enhance the

compaction phase to consider scheduling slack while compacting. Currently, the compaction
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phase does not allow operations to cross cycle boundaries. Since the scheduling algorithm

tends to pull up operations by scheduling them as soon as they are ready, the compaction phase

can try to exploit slack in the schedule by delaying certain operations to enhance code den-

sity. Rather than start the compaction phase from the top of the control block, it can take a

bottom-up approach instead. When the compaction algorithm is considering compacting two

issue groups, allow operations in the preceding issue group with slack in its schedule to be

pushed down into the later cycle. Heuristics will be needed to judiciously select which oper-

ations to delay and judge their effect. Scheduling slack can also be utilized to perform other

optimizations other than reduction of NOP operations.
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CHAPTER 7

CONCLUSION

IPF, the first hardware implementation of an EPIC architecture, introduced new concepts to

the compiler’s scheduler. These new concepts, bundles, syllables, templates, dispersal rules,

etc., are a continuation in the evolution of operation dispersal in computer architecture. When

the responsibility of tracking operation dispersal was transferred from the hardware of out-

of-order architectures like superscalar machines to the compiler of in-order architectures like

VLIW and generic EPIC machines, the hardware dispersal mechanism became exempted from

much of the decision making. However, it still needed to support symmetrical, cross-bar-

like dispersal of operations from slots to functional units. These new IPF concepts give more

power and responsibility to the compiler and simplify the operation dispersal in hardware even

further. They simultaneously constrain operation dispersal away from the symmetrical model

assumed previously and give the compiler a limited ability to configure the operation dispersal

mechanism as it sees fit.

This thesis presents extensions to the scheduler of an EPIC compiler, the IMPACT research

compiler, to handle these new constraints introduced by IPF. A modular implementation, gov-

erned by the template bundling algorithm in the scheduling manager, these extensions not only

handle the new concepts introduced by IPF but do so in a way that can be expanded and ex-

tended upon for future architectures should they employ similar constraints. The separation of
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responsibilities also allow experimentations with different scheduling algorithms, handling the

machine specific template bundling scheduling concerns separately. Despite being an exhaus-

tive search, the template bundling algorithm has proven to be efficient, improving compilation

time from a previous implementation.

The work done by this thesis lays the foundation for future exploration in scheduling for

IPF. Possibilities include performance and compilation time oriented research. It provides a

quick, solid scheduling platform for experimentations with scheduling algorithms and schedule

time transformations. There is also still room for improvement within the template bundling

algorithm for compilation time and NOP operation reduction.
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