
CODE SCHEDULING AND OPTIMIZATION FOR A

SUPERSCALAR X86 MICROPROCESSOR

BY

WAYNE FRANCIS DUGAL

B.S, Purdue University, 1985

THESIS

Submitted in partial ful�llment of the requirements

for the degree of Master of Science in Electrical Engineering

in the Graduate College of the

University of Illinois at Urbana-Champaign, 1995

Urbana, Illinois

ACKNOWLEDGEMENTS

I would first like to thank my advisor, Professor Wen-mei Hwu, for his guidance and

support. I also would like to thank the IMPACT group, in general, and Dave Gallagher and Ben

Sander, in particular, for their participation in helpful discussions. Several people in AMD's

KRYPTON group have provided valuable guidance and support, especially Dave Christie and

Dave Witt. Finally, I thank my wife, Kelly, and my three children, Phillip, Lauren, and Andrew,

for their love and understanding.

iii

TABLE OF CONTENTS

Page

1. INTRODUCTION ..1

2. IMPACT...3
2.1 An Introduction to Lcode ..4

2.1.1 File layout...4
2.1.2 Function layout...5
2.1.3 Control block layout..6
2.1.4 Instruction layout..7
2.1.5 Data layout..8

2.2 Differences between Lcode and Mcode..10
2.3 Code Generator Structure..11

2.3.1 Code annotation ..11
2.3.2 Optimization, scheduling and register allocation...12
2.3.3 Producing assembly code...13

3. KRYPTON ARCHITECTURE DESCRIPTION...14
3.1 Instruction Decode ..15
3.2 Integer Functional Units...16

3.2.1 Branch functional unit...17
3.2.2 ALU0/Shifter functional unit...17
3.2.3 ALU1 functional unit...17

3.3 Floating Point Functional Unit...18
3.4 Load/Store Functional Unit..19
3.5 Reorder Buffer...19
3.6 Out-of-order-issue/completion...20

3.6.1 Register renaming..21
3.6.2 Out-of-order-issue/completion using TAGS...22

4. KRYPTON MACHINE DESCRIPTION LANGUAGE DEVELOPMENT...............................25
4.1 MDES Overview...26

4.1.1 Register_Files..26
4.1.2 IO_Sets...27
4.1.3 IO_Items...28
4.1.4 Resources..29
4.1.5 ResTables..30
4.1.6 Latencies...31
4.1.7 Operation_Class..32
4.1.8 Operations...33

iv

4.2 KRYPTON MDES ..34
4.2.1 Alu selection...34
4.2.2 FAST and MROM interaction...36
4.2.3 Two and three ROP instructions..36

5. INSTRUCTION SELECTION..40
5.1 Arithmetic and Logical Operations Using Only Memory Variables...............................42
5.2 Arithmetic and Logical Operations Using Register and Memory Variables...................45
5.3 Compare Instructions Using Memory Variables..48
5.4 Results...50

6. CONCLUSIONS ..52

 REFERENCES ...53

v

1. INTRODUCTION

Optimizing compilers for superscalar architectures perform scheduling and optimizations to

expose and exploit Instruction-Level-Parallelism (ILP). This problem is relatively well-understood

for the typical Reduced-Instruction-Set-Computer (RISC) architectures. IMPACT, an optimizing

compiler developed at the University of Illinois, has optimized code for several RISC processors.

However, any superscalar X86 architecture presents a new problem, its small register file

provides only eight registers compared to the 32 or more provided by typical RISC processors.

This makes many of the techniques used by IMPACT to exploit ILP less beneficial.

This thesis is a description of the changes made to the IMPACT compiler to support a

superscalar X86 processor, AMD's KRYPTON. Two changes to the IMPACT compiler are

discussed in this thesis. First, KRYPTON was defined to the IMPACT compiler to enhance

scheduling. Second, code generation optimizations were performed to convert register variables

to memory variables on as many instructions as possible. This was done to reduce the limitation of

the small X86 register file.

1

This thesis, study is divided into six chapters. Chapter 2 provides background of the

IMPACT compiler. It gives an overview on the IMPACT compiler, gives an introduction to

Lcode and describes the code generation process.

Chapter 3 is a description of KRYPTON, including a description of all its functional units.

This chapter focuses on a description of the functional units because a firm understanding of them

is required to develop a good Machine Description Language (MDES). It also describes the use

of a reorder buffer and discusses the use of register renaming and use of tags for out-of-order-

issue and out-of-order-completion, similar to what is used in KRYPTON.

Chapter 4 describes the development of the KRYPTON MDES. The MDES is used to

describe KRYPTON's resources to the scheduler which allows the scheduler to best use these

resources. It provides solutions to three scheduling problems presented by KRYPTON.

Chapter 5 discusses the problems caused by the small X86 register file when generating

code for KRYPTON. Three solutions to lessen the effects of the small register file are explained.

These solutions are code generation optimizations that take advantage of X86's ability to use

memory operands. Chapter 6 contains the conclusions.

2

2. IMPACT

The IMPACT [5] compiler is a generalized C compiler that can generate optimized code

for various architectures and machine resource configurations. It also implements new research

optimizations so that their effect on code can be analyzed.

IMPACT is divided into three distinct parts based on the intermediate code representation

used. The highest level is called PCode and is a parallel C code representation with intact loop

constructs. Memory system optimizations, loop-level transformations and memory dependence

analysis takes place at this level. The next lower level is called Hcode and is a simplified C

representation with only simple if-then-else and goto control flow constructs. Statement-level

profiling, profile-guided code layout and function inline expansion are performed at this level.

The final and lowest code representation is called Lcode. Lcode is a generalized register

transfer language. It is similar to most RISC instruction-based assembly languages. At the

Lcode level, classic machine independent optimizations are performed. Superblock [3]

compilation techniques are also performed at the Lcode level. Superblock support includes

3

superblock formation using execution profile information, superblock classical optimization, and

superblock ILP optimization.

IMPACT code generation is a process that converts Lcode instructions into an assembly

language. This section is an introduction to the code generation process. To do this, Section 2.1

introduces Lcode. Section 2.2 discusses the extensions to Lcode that make Mcode and Section

2.3 details the steps of code generation.

2.1 An Introduction to Lcode

In order to fully understand the code generation process, a familiarity with Lcode is

necessary. Lcode is an instruction set for a load/store architecture that supports unlimited virtual

registers. It is broken down into data and function blocks. The functions are composed of control

blocks containing the Lcode instructions. Different phases of compilation can change the Lcode

instructions. These phases will be highlighted as they are discussed in this chapter.

Only the external representation of Lcode is discussed. For a description of the most

important data structures used by the C programs, see [2].

2.1.1 File layout

A typical Lcode file may be composed of a data section and one or more functions. The

data section defines both static and dynamic variables, that are aligned to memory locations

specified by the mspec [1] file. Data types include unsigned character (1 byte), signed character (1

byte), unsigned short (2 bytes), signed short (2 bytes), unsigned integer (4 bytes), signed integer

(4 bytes), single-precision float (4 bytes), and double precision float (8 bytes). All integers are

4

expressed as two's complement number representation and all floating point values are expressed

in IEEE floating point representation.

2.1.2 Function layout

 Figure 2.1 shows the layout of a typical function in a Lcode file. The first line of a function,

preceded by the keyword function, contains the name of the function (name) and the typical

execution count of the function (exec_cnt). Execution count information may be gained

accurately from profiling or estimated static analysis. The first control block always contains the

prologue that defines return register type, local variable requirements in bytes and outgoing

parameter requirements in bytes.

(function name exec_cnt)
 (cb "prologue")
 (cb ...)

 .
 .
 .

 (cb "epilogue")
(end name)

Figure 2.1: Lcode Function Layout

As a minimum, a function will contain a control block with the prologue and a last control

block with an epilogue. Therefore, there are a minimum of two control blocks per function. A

function will never have more than one entry point, but may have multiple exit points. It is

possible to have the epilogue duplicated in more than one control block because of compiler

optimizations.

5

2.1.3 Control block layout

Figure 2.2 shows the layout of a typical control block. Control blocks may have one or

more exit points, but only one entry point. Control blocks with an one exit point (fall through or

branch) at the bottom of the block are the same as basic blocks; control blocks with multiple

exit points are called superblocks.

 A control block begins with the keyword Cb followed by a unique identification number

(id) and an execution count (Cb_exec_cnt). The execution count shows profiled-based or static

information about number of times the control block has been executed.

(cb id cb_exec_cnt
 (flow cond dest cnt)

 ...
 (flow cond dest cnt)

 (op ...)
 ...
 (op ...)

 [(branch_op ...)]
 ...

 [(branch_op ...)]

Figure 2.2: Lcode Control Block Layout

Next, the flow information is given and preceded by the keyword flow. Flow information

is composed of three fields: the condition by which the destination will be followed (cond), a

destination control block number if the condition is met (dest), and the number of times that the

condition was met during profiling (cnt). It should be noted that unless profile information is

available, the cnt field here will always be 0.0 for all paths.

If a control block has no branch at the end, the condition field is ignored and the destination

is the next sequential control block. The condition field also will be ignored if the last instruction

6

of the basic block is an unconditional branch. A basic block with a conditional branch will contain

flow information for the taken and not taken cases.

Superblocks may contain multiple conditional branches but only one unconditional branch.

Due to the multiple exit points in superblocks, Lcode instructions do not necessarily have the

same execution count as specified in the control block header. The execution count of any

instruction following a branch is computed by subtracting the cut fields of all the preceding branch

instructions from Cb_exec_cnt.

2.1.4 Instruction layout

Lcode instruction begins with the entry op and is composed of four major parts: operation

number, opcode, operands and attributes, as shown in Figure 2.3. The operation number is

unique for each Lcode instruction in the function.

The opcode signifies the Lcode operation to perform. These groups are broken down into

ALU operations, memory access and control flow. For a detailed description of each opcode and

its required parameters, see [5].

(op op_num)
 (opcode ((dest1_type dest_value) ... (dest3_type dest_value))

 ((src1_type src1_value) ... (src4_type src4_value))
 ((attr_name attr_value) ...)))

Figure 2.3: Lcode Instruction Layout

Lcode instructions are not limited to three destination fields and four source fields. It can

support a variable number of destination and source fields. This value is set in a STD_PARMS

file. The opcode shows the number and type of fields required at any given time. However, in

7

some instances such as memory stores, a source field is used as the destination of the store. This

is to prevent any incorrect register dependencies when using address indirect.

Each operand has two fields. The first field is a type that can be register (r), label (l),

integer (i), single precision floating point (f), double precision floating point (f2), a macro (mac)

or a control block number (cb). The second field is the data of the specified type.

2.1.5 Data layout

There are five data classifications as shown in Figure 2.4. A complete description of each

operation in the classes is covered in [5]. Class 1 currently can have only an op value of reserve.

This indicates a block of memory starting at the current point with value integer number of bytes

reserved.

Class 1:
 (op value)

Class 2:
 (op name)

Class 3:
 (op expr1 expr2)

Class 4:
 (op value name)

Class 5:
 (op size name expr*)

Figure 2.4: Lcode Data Item Layout

Class 2 can have only op values of void and global. In both cases, name is a label that may

be used for reference purposes only. It is illegal to load from or to store to either of these

locations. Global is used to promote the scope of the label and make it visible outside the file.

8

Class 3 can have op values of wb, ww, wi, wf, wf2, and ws, which are used to write a

value to an address determined by the computation result of expr1. The sizes of these fields are

byte, word, integer, float, double and string pointer, respectively. These are discussed in more

detail in Section 2.1.1. The second expression (expr2) must evaluate the type defined by op.

Figure 2.5 lists the valid expression types. The results of all expressions can only be integers and

address labels.

(add expr1 expr2)
(sub expr1 expr2)
(mul expr1 expr2)
(div expr1 expr2)
(neg expr); Negate expression
(com expr); Complement expression
(i integer value)
(f single precision float value)
(d double precision float value)
(l label name)
(s ASCII string)

Figure 2.5: Lcode Expression Layout

Class 4 can have op values of ASCII or asciz (a null terminated string) that will result in

the allocation of the number of bytes necessary for the string value. The starting address of the

allocated block will be assigned to name. This class also includes the memory alignment

operation. The value indicates the alignment boundary. The aligned memory location is assigned

to name.

Finally, class 5 may have op values of byte, word, long, float, or double. The size defines

the number of units of type op to allocate. For example, if size is ten and op is word (2 bytes),

then twenty bytes will be allocated. The block of storage will be aligned to the appropriate

boundary as defined by op. The aligned address will be assigned to name. Each location of the

9

block, starting with the first at the aligned address, will be initialized by one or more expr. It is

illegal to have more expressions than locations to be initialized.

2.2 Differences between Lcode and Mcode

Mcode is machine specific Lcode. Extensions have been added to Lcode to provide

distinctions between machine architectures. This facilitates the development of generic modules

that perform Mcode optimizations, register allocation and instruction scheduling, as discussed in

Section 2.3.

One extension is the use of specific machine opcodes . These opcodes are used to

propagate information from one phase of code generation to another. In the X86 code generator,

these are X86-specific instructions. For example, X86 supports an operation to load the effective

address (lea) into a register. The three optimizations explained in Section 5 all use at least one

machine specific opcode. None of these opcodes are supported by Lcode. Machine specific

opcodes are also referred to as "proc_opc."

Another extension is the use of machine specific annotations. These can be used to show a

divergence from the standard use of an opcode. For example, X86 allows its 32-bit registers to

be used as 32-bit registers, 16-bit registers or 8-bit registers. The attribute "short_opr"

distinguishes which version of the register is being used. If the 8-bit version is used, the attribute

"short_opr 1" is added to the operation. Similarly, "short_opr 2" is added for a 16-bit register.

Other attributes the X86 code generator uses include ill_reg and cisc_compare.

10

2.3 Code Generator Structure

The three main phases to code generation are shown in Figure 2.6. During phase I the

compiler performs code annotation. During phase II, the compiler performs Mcode optimization,

scheduling and register allocation. During phase III, the compiler converts the final Mcode to

assembly language. These phases will be discussed in detail in the following sections.

M codeLcode

Assem bly
 Code

Pre-pass Code
 Scheduling

Pre-pass Code
Optimizations

 Register
 Allocation

Post-pass Code
 Scheduling

Post-pass Code
 Annotation

PHASE I

 Code
 Annotation

PHASE II

 Generate
Assembly Code

PHASE III

M code

Figure 2.6: Block Diagram of IMPACT Code Generator

2.3.1 Code annotation

This phase involves converting Lcode to Mcode. During this process, instructions that are

supported by the X86 family are directly converted to Mcode. Any unsupported Lcode

11

instructions are converted to Mcode instructions. For example, the Lcode language supports three

operand instructions and the X86 assembly language supports only two operand instructions.

During this phase all three operand instructions are converted to two operand instructions.

2.3.2 Optimization, scheduling and register allocation

Phase I code annotation can create redundant instructions. Therefore, the first task of this

phase is to perform the Mcode optimizations. This is also where machine specific optimizations

are done. For example, the X86 instructions set allows arithmetic and logical operations to use

memory variables. An optimization was developed to change certain instructions to instructions

that use memory variables.

The next step in this phase is pre-pass scheduling. For typical RISC architectures, this

provides a better schedule since it arranges instructions before register allocation.

Register allocation converts the Lcode virtual registers to machine specific registers. If

there are insufficient registers, the register allocator will insert necessary spill and fill instructions

to break up the live range of the register.

Post-pass code annotation and optimizations are performed after register allocation.

Instructions that are dependent on information provided by the register allocator are annotated

here. Dead code removal is an example of a post-pass optimization. The last step in this phase is

post-pass scheduling.

12

2.3.3 Producing assembly code

The third phase converts the optimized Mcode file to the appropriately formatted assembly

code targeted for commercial assemblers. The X86 code generator currently supports two

different assemblers.

13

3. KRYPTON ARCHITECTURE DESCRIPTION

KRYPTON is a superscalar X86 processor. It implements the X86 instruction set with all

Pentium extensions. It accomplishes this by converting X86 instructions to a sequence of RISC-

like-operations, or ROPs. These ROPs are issued to a superscalar RISC core that supports four

ROP issues, five ROP results, and up to 16 speculatively executed ROPs.

This core has the capability of speculative issue through unresolved branches. The branch

prediction information is held with every 16 byte block in the instruction cache. Up to four ROPs

can be retired per clock cycle. This can include up to four ALU operations, four load operations,

one store operation or one branch operation.

The RISC core consist of one ALU/Shifter, one ALU, one pipelined floating point unit, one

branch unit, one load/store unit (capable of executing two ROPS), a sixteen entry reorder buffer

and an extended register file. Figure 3.1 shows this RISC core.

14

Branch
ALU0
Shifter ALU1

 LOAD/
 STOREFPU

4-wide ROP DISPATCH Operand Steering

Register
File

Fast 0 Fast 1 Fast 2 Fast 3

MROM

Reorder
Buffer

Figure 3.1: KRYPTON's RISC Core

3.1 Instruction Decode

 All X86 instructions are decoded by a complicated decode unit into ROPs. All X86

instructions contain at least one ROP, and X86 instructions that contain three or fewer ROPs are

decoded and dispatched on "FAST" decoders. All X86 instructions that take four or more ROPs

are decoded directly by a micro-coded-ROM (MROM).

If a MROM instruction is encountered, it cannot dispatch with FAST ROPS, and FAST

ROPS cannot dispatch until the MROM instruction is dispatched. In other words, FAST ROPS

cannot be combined with MROM ROPS. For example, a MROM routine of five ROPs will take

two cycles to issue (assuming no resource constraints), and FAST ROPS cannot be issued with

15

the MROM ROPs. Similarly, a MROM routine cannot begin to issue in the same cycle with FAST

ROPS even if dispatch positions and resources are available. This is illustrated in Figure 3.2.

Cycle Dispatch 1 Dispatch 2 Dispatch 3 Dispatch 4

 1 FAST ROP FAST ROP
 2 MROM ROP MROM ROP MROM ROP MROM ROP
 3 MROM ROP
 4 FAST ROP FAST ROP FAST ROP FAST ROP

Figure 3.2: Issue of MROM routines

To support this decoding, Krypton has a larger register file than the X86. Figure 3.3 shows

how an X86 instruction might be decoded and shows the use of the extra registers. The X86

instruction in Figure 3.3 adds two to a memory location and stores the result in that memory

location. The three ROPS generated are a load form memory, an add, and a store to memory.

 X86 instruction => MEM = MEM + 2

 ROP1 => TEMP_REG1 <- MEM
ROP2 => TEMP_REG1 <- TEMP_REG1 + 2

 ROP2 => MEM <- TEMP_REG1

Figure 3.3: X86 Instruction Decode

3.2 Integer Functional Units

The integer functional units that the four ROP dispatch positions can issue to are:

1. Branch functional unit,

2. ALU0/Shifter functional unit, and

3. ALU1 functional unit.

16

All integer functional units have first-in-first-out (FIFO) reservation stations. This means

out-of-order issue is not supported within functional units, only between functional units. The

reservation station is held until the operation leaves the functional unit.

3.2.1 Branch functional unit

The Branch functional unit has a one cycle latency. One new ROP can be accepted per

clock cycle. It has a two entry reservation station to hold two speculative ROPs, and it handles all

X86 branch, call and return instructions. It is available to all MROM routines as well as FAST

ROPs.

3.2.2 ALU0/Shifter functional unit

The ALU0/Shifter functional unit has a one cycle latency. One new ROP can be accepted

per clock cycle. It has a two entry reservation station to hold two speculative ROPs. All X86

arithmetic and logical instructions go through this block or ALU1. In addition, all shift and rotate

instructions are handled by this unit. It is available to all MROM routines as well as to FAST

ROPs.

3.2.3 ALU1 functional unit

 The ALU1 functional unit is identical to the ALU0/Shifter except it handles only arithmetic

and logical instructions. Combined with ALU0, up to two integer results can be calculated per

cycle.

17

3.3 Floating Point Functional Unit

The Floating Point functional unit has only one reservation station that holds two ROPs. It

takes two ROPs to perform 80-bit calculations. The two 40-bit ROPs are combined in the

reservation station before being issued to the first stage of the Floating Point unit. This

combining operation takes one cycle. The Floating Point unit consist of an adder, a multiplier,

and a shared rounder.

The adder has two stages; each has a one cycle latency. The adder forwards its result to the

rounder. The latency of the rounder is one cycle. One cycle is lost combining the two 40-bit

ROPs, yielding a net latency of four cycles for a floating point add. Floating point adds can be

issued at a rate of one every cycle.

The multiplier has a seven cycle latency for extended precision multiply. It uses a 32x32

multiplier and multi-cycles it for the 64-bit mantissa required in extended precision. The 32x32

multiplier multi-cycles for four cycles, a partial products adder takes one cycle, the rounder takes

one cycle, and one cycle is lost combining the two 40-bit ROPs. This yields a net latency of seven

cycles.

The 32x32 multiplier is also used for integer multiply. The latency for an integer multiply is

four cycles. The latency of the 32x32 multiply is one cycle, a partial products adder takes one

cycle, the rounder takes one cycle and one cycle is lost combining the two 40-bit ROPs. This

yields a net latency of four cycles. Floating point multiplies can be issued every four cycles and

integer multiplies can be issued every cycle.

18

3.4 Load/Store Functional Unit

 The Load/Store functional unit provides a four entry reservation station and allows two load

or store operations to be issued per clock cycle. The latency of a load store operation is one cycle.

This latency includes checking for a hit/miss in the data cache, and if it is a hit, forwarding the

result to the result bus. Up to two load operations can simultaneously access the data cache and

forward the result to result buses.

All stores are done as read-modify-write operations. The read portion is similar to a load

except that the data is not written to the result busses. Instead, it is merged with the store data.

This information is written to the store buffer. The store buffer writes back to the data cache at

any available time after it is retired. These reservation stations are also FIFO.

3.5 Reorder Buffer

A reorder buffer can be thought of as a queue of speculatively executed instructions. This

queue tail corresponds to the location of the next speculative instruction, and the head

corresponds to the next instruction to be retired.

Instructions are issued and appended to the tail of the queue by allocating entries in the

reorder buffer. Their relative position on the queue now corresponds to the speculative program

order. If a reference is made to a particular register that has a value or values in the reorder

buffer, then the latest update of that register is determined by the relative position in the queue.

Reorder buffers allow multiple updates of any register up to the length of the queue.

19

Branches are handled by an indication in the reorder buffer that a branch has been

successfully predicted as taken. The location of the branch target is also recorded. Mis-predicted

branches are handled by also indicating the entry allocated within the reorder buffer within a

branch has been mispredicted, and then invalidating all speculative entries after that branch. This

also frees up reorder buffer entries for the correct path that is concurrently being fetched.

Speculative load and store operations also benefit. Loads directly read data cache and

return the value to the speculative location within the reorder buffer; thus, loads are easily

forwarded to the subsequent register reference.

Stores benefit by determining a hit or miss from a read of the tags. This information is

driven back to the reorder buffer while simultaneously holding the entry in a store buffer.

Subsequent loads reference the store buffer in parallel with the data cache. When the store is the

next instruction to retire, the corresponding store buffer entry is released and cleared.

If an exception or mis-prediction occurs, the store buffer entry is locally cleared without

corrupting the data cache. The reorder buffer retires in program order four instructions per cycle.

3.6 Out-of-order-issue/completion

 A version of Tomasulo's algorithm [6] is used to implement out-of-order issue in

KRYPTON. The difference is the use of a reorder buffer to do register renaming rather than the

use of a future file as originally proposed by Tomasulo.

20

3.6.1 Register renaming

 Register renaming improves issue freedom by removing dependences. This is shown by

example with the following set of instructions:

I1. R3 <- R3 + R5,

 I2. R4 <- R3 + 1,

 I3. R3 <- R5 + 1,

 I4. R7 <- R3 + R4.

 In this sequence I3 cannot execute until after I2 reads its input operands. This is true

because the result of I3 has an anti-dependence on the fist operand of I2. Even if this anti-

dependence is removed I3 must wait on I1 because of an output dependence. The only way for

these instructions to issue is in sequential order.

 Register renaming creates a new instance of the register each time a new assignment is made

to a register. The previous sequence appears this way using register renaming:

 I1 TEMP1 <- R3 + R5,

 I2 TEMP2 <- TEMP1 + 1,

 I3 TEMP3 <- R5 + 1,

I4 TEMP4 <- TEMP3 + R4.

 In this sequence the anti- and output dependences are removed, and I3 can be executed with

or before I1, and I4 can be issued anytime after I3.

21

3.6.2 Out-of-order-issue/completion using TAGS

 Taking this a step further, and applying a version of Tomasulo's algorithm with an reorder

buffer, TAGS could be used for instructions pending results. These instructions would be stored

in reservation stations until the operands are ready. In the previous sequence and a four issue

machine, Figure 3.4(a) shows the best possible issue sequence.

(a) Best issue sequence using register renaming

CYCLE SLOT1 SLOT2 SLOT3 SLOT4
 1 I1
 2 I2 I3
 3 I4

(b) Best issue sequence using TAGS

CYCLE SLOT1 SLOT2 SLOT3 SLOT4
 1 I1 I2 I3 I4

Figure 3.4: Issue Sequences Using Register Renaming and TAGS

 Using the concepts of tags for pending operations, the previous sequence would appear

as follows:

 I1 TEMP1 <- R3 + R5,

 I2 TEMP2 <- TAG_TEMP1 + 1,

 I3 TEMP3 <- R5 + 1,

 I4 TEMP4 <- TAG_TEMP3 + R4.

 Figure 3.4(b) shows the best possible issue sequence for these instructions.

22

It should be noted that I2 and I4 cannot execute in cycle one because they are waiting for

TAGS. However, they can be issued and held in a reservation station. They will execute in the

next cycle when the TAG is forwarded.

 One disadvantage of the schedule in Figure 3.4(b) is that a compiler may have found two

instructions elsewhere that were ready to execute in SLOT2, SLOT3 and SLOT4 of cycle one.

Now the compiler no longer has the freedom to schedule the instructions there. This disadvantage

is not valid given the assumption that the previous sequence of instructions was provided by the

compiler as the best possible schedule.

Given a four-issue superscalar machine with four alus and the previous schedule, all four

instructions would be dispatched to the reservation stations in cycle one. I1 would be issued to

and executed by alu0 in cycle one. I2 would be issued to and executed by alu1 in cycle two. This

occurs after it has received its TAG from alu0. I3 would be issued to and executed by alu3 in

cycle one. I4 would be issued to and executed by alu4 in cycle two. This occurs after it has

received its TAG from alu3.

Given the same four-issue superscalar machine with four alus but without the ability to

issue out-of-order, only the I1 would be executed in cycle one. I2 and I3 would be executed in

cycle two, and I4 would be executed in cycle three. The difference is one cycle, which results

from I3 being issued and completed out of order.

The out-of-order issue in the previous example is between functional units - in this case

alu2 and alu3. This is the only way instructions can be issued out-of-order in KRYPTON because

the reservation stations are FIFO. Another type of out-of-order issue is within a functional unit. In

23

this case, if an instruction is waiting for a TAG in a reservation station, a free instruction can

bypass it.

24

 4. KRYPTON MACHINE DESCRIPTION LANGUAGE DEVELOPMENT

Scheduling for superscalar processors can be very difficult. To schedule accurately, the

scheduler has to know what resources are available, when they are used and how long they are

used. It also needs to know what combinations of resources are used by each instruction and the

latencies associated with operand in each instruction. The Machine Description Language

(MDES), developed by John Gyllenhaal, provides the capability to describe all of a processor's

resources, instruction latencies, and legal combinations of operands to IMPACT. This allows the

scheduler to develop an optimum schedule for that processor.

Section 4.1 gives an overview of MDES. This overview is needed to understand the next

section, which defines specific problems encountered when developing the KRYPTON MDES

and the solutions to these problems. Examples from the KRYPTON MDES are used throughout

this section. A complete description of MDES is found in [1].

KRYPTON presented many new modeling problems. Section 4.2 discusses three of these

problems and uses examples of the solutions to these problems from the KRYPTON MDES. The

25

problems in increasing order of difficulty are the following: modeling the different alus and

ensuring the correct one was chosen, modeling the interaction of the MROM and the FAST

instructions, and modeling X86 instructions that contain two or three ROPs.

4.1 MDES Overview

This section describes the steps taken to develop a MDES, which is done by showing the

steps used to develop the KRYPTON MDES. Sections 4.1.1, 4.1.2 and 4.1.3 describe how to

define the legal operands. Sections 4.1.4 and 4.1.5 describes how to define the available resources

and how these resources are used. Section 4.1.6 describes instruction latencies. Sections 4.1.7 and

4.1.8 describes how to combine the operands, resources and latencies into an instruction set. This

instruction set can be a subset of the processor's instruction set or a complete set. Either way it is

the set of all Mcode instructions used for that processor.

4.1.1 Register_Files

 This section of the MDES is used to define operand types allowed in the X86 assembly

language. All legal register types and constant sizes are enumerated in this section. These names

are used in the IO_Sets section to specify what operand types are allowed for each instruction in

the processor's instruction set. The format of an Register_Files entry follows:

name((capacity static_size rotating_size)(width width_in_bits))),

where

 1. name is the register file's or operand type's name,

 2. static_size is the number of static registers in the file,

26

 3. rotating_size is the number of rotating registers in the file, and

 4. width_in_bits is the register width in bits.

The Register_Files section for the X86 code generator is shown in Figure 2.1. It should be

noted that the only field presently supported by IMPACT is name.

(Register_Files declaration

 i ((capacity 4 0) (width 32))
 f ((capacity 64 0) (width 32))
 f2 ((capacity 32 0) (width 64))
 flag ((capacity 1 0) (width 32))
 istk ((capacity 99 0) (width 32))
 fstk ((capacity 8 0) (width 80))

 # generic literal field bit field for short loads/stores

 Lit ((capacity 0 0) (width 32))
 Label ((capacity 0 0) (width 32))
 NULL ((capacity 0 0) (width 0))

end)

Figure 2.1: X86 Register_Files Section From X86_krypton.hmdes

 4.1.2 IO_Sets

 The entries in the IO_Sets section of the mdes give a name to a set of register files. The name

may be used anywhere a Register_Files entry name can be used in the IO_Items section (Section

4.1.3) and indicates that any of the specified register files are valid as that operand.

 The IO_Sets section for the X86 code generator is shown in Figure 2.2. This IO_Set shows

how Register_File entries are grouped into more manageable sets. For example, the IO_Sets entry

"ANY" contains all possible operand types and may be used instead of a Register_File entry name

to specify an operand type in an IO_Item.

27

(IO_Sets declaration
 FLAG (flag)
 ISTK (istk)
 FSTK (fstk)
 REG (i f f2)
 CON (Lit Label)
 SOME (i f f2 Lit Label flag istk fstk)

ANY (i f f2 Lit Label flag istk fstk NULL)
end)

Figure 2.2: X86 IO_Sets Section From X86_krypton.hmdes

4.1.3 IO_Items

 The entries in this section gives names to all legal combinations of operands that are used.

This information will be used later to bind an opcode with a particular set of operands to the

resources and latencies associated with that operation. The format of an IO_Items entry follows:

 name ([dest0 dest1 dest2][src0 src1 src2 src3 src4 src5]),

where

 1. name is the entry's name,

 2. dest0, dest1, dest2 are the destination operands(three for KRYPTON), and

 3. src0, src1, src2, src3, src4, src5 are the source operands(five for KRYPTON).

 An example of some IO_Items declarations for the X86 code generator are shown in

Figure 2.3.

IOI_Std3 ([REG ANY -][SOME SOME - -])
IOI_Std3f ([FLAG ANY -][SOME SOME - -])
IOI_Cisc_To_Reg ([REG - -][ANY ANY ANY ANY ANY])
IOI_Cisc_To_Mem ([- - -][ANY ANY ANY ANY ANY])

Figure 2.3: X86 IO_Items Entries From X86_krypton.hmdes

28

4.1.4 Resources

 The entries in this section define all the resources that are used to model the processor. The

Resources section for KRYPTON is shown in Figure 2.4. For a given resource entry, either a

single resource is defined,

 resource_name or resource_name[0],

or an array of resources is defined,

 resource_name[0..3] or resource_name[0, 1, 2, 3].

The order of the indexes specifies the default order in which the instruction scheduler will

try to allocate the resources for an operation. If this order is not desired then a specific instance of

the resource can be specified in the ResTables section (Section 4.5).

Resources declaration
 slot[0..3]
 dispatch[0..3]
 alu[1..0]
 load_store[0..1]
 branch
 special
 fpunit
 fadd1
 fadd2
 flshf
 fmul
 frnd
 fppadd

end)

Figure 2.4: KRYPTON Resources Section From X86_krypton.hmdes

29

 The "slot" resource or array of resources is a required Resources entry. This Resources entry

defines the number of operations that may be scheduled in a cycle. For KRYPTON four

instructions can be executed per cycle as long as there are available resources.

4.1.5 ResTables

 The entries is the ResTables section define how operations use resources over time. An

example of some ResTables declarations for KRYPTON is shown in Figure 2.5. Each ResTable

entry is composed of the entry's name and a list of resource usage entries:

name ((resource_usage_entry0) (resource_usage_entry1) (...)).

 Each resource entry consist of a resource name with an optional set of indexes and a

resource usage start and stop time:

 (name[index1..indexn] start..stop).

 The [index1..indexn] may be omitted if the name does not refer to an array of resources, or

if any of the resources in that array may be used and should be attempted to be scheduled in the

default order. If a particular binding is required, an instance of the resource can be used.

The RL_IMul entry in Figure 2.5 requests two dispatch units and does not care which are

received. RL_IMUL_2 is another way of requesting two dispatch units.

The start and stop times are with respect to the cycle which the instruction leaves the

decoder(cycle zero). The .. stop may be omitted if the stop time is the same as the start time. This

is the case for all functional units that execute in one cycle.

30

RL_IMul (# Integer Multiply
 (slot 0)

(dispatch[0..1] 0)
 (fpunit 0)
 (fmul 1)
 (fppadd 2)
 (frnd 3)

)
RL_IMul_2 (# Integer Multiply

 (slot 0)
 (dispatch 0)
 (dispatch 0)
 (fpunit 0)
 (fmul 1)
 (fppadd 2)
 (frnd 3)
)

Figure 2.5: KRYPTON Res_Tables Entries From X86_krypton.hmdes

4.1.6 Latencies

 The entries in the Latencies section specify the cycle for which each register operand is

read(source, predicate or incoming sync operands) or written(destinations, or outgoing sync

operands). This information is used to calculate dependence distances for flow, anti-, output and

control dependences. Each Latencies entry is composed as follows:

 name(exception latency(pred0..)(dest0..)(src0..) (sync_src0..)(sync_dest0..)).

 All latencies that are not specified are assumed to be used at cycle zero. Typically, all source

registers are used at decode time (cycle zero), and all of the destination registers are written when

the instruction leaves the functional unit. At this time the X86 code generator does not use

information from sync_src, sync_dest or pred fields.

31

4.1.7 Operation_Class

 The entries in the Operation_Class section are used to describe classes of instructions,

within a class all instructions expect the same operands, use the same resources in the processor,

and have the same operand latencies. The use of operation classes is optional since the same

information can also be placed directly in each Operations section entry (see Section 4.8). Each

entry contains a list of one or more alternatives, and each alternative represents a different way

the instruction can behave.

 name ((alternative1)(alternative..)(alternative)).

Each alternative is represented by

 (IO_Set_name ResTable_name Latency_name).

 The scheduler will choose the first alternative available in the order they are listed. An

example of some Operation_Class declarations for KRYPTON is shown in Figure 2.6.

 In Figure 2.6, the Operation_Class names CL_ALU and CL_ALU_sh or used often and are

used to make the Operations section more readable. Operation_Class name CL_CISC_To_Reg is

used to give the scheduler two different options from the Res_tables section of the MDES

(Section 4.2.3).
CL_Alu (

 (IOI_Std3 RL_IAlu Lat_1)
)

CL_Alu_Sh (
 (IOI_Std3 RL_IAlu_Sh Lat_1)
)

CL_CISC_TO_REG (
 (IOI_Cisc_To_Reg RL_CISC_TO_REG_1 Lat_2)
 (IOI_Cisc_To_Reg RL_CISC_TO_REG_2 Lat_2)
)

 Figure 2.6: Operation_Class Entries From X86_krypton.hmdes

32

4.1.8 Operations

The Operations section entries associate an operations opcode with opcode flags, assembly

name, assembly flags, and either an Operation_Class name or direct specification of scheduling

alternatives. An example of some Operations declarations for KRYPTON is shown in Figure 2.7.

The two possible forms are

name<opcode_flag0...>(assembly_name <assembly_flag0...>operation_class)

or

name<opcode_flag0...>(assembly_name <assembly_flag0...>(alternative0...)),

where each alternative has the form

(IO_Set_name ResTable_name Latency_name).

 Lop_ASR (sar CL_Alu_Sh)
 Lop_ADD (add CL_Alu)

 Lop_EQ (cmp CL_Cmp)
 Lop_EQ (cmp CL_Cmp_Set)
 Lop_MUL (imul ((IOI_Std3 RL_IMul Lat_imul)))

 Lop_LD_UC <LOAD EXCEPT> (mov CL_LOAD_EX)

Figure 2.7: Operation Entries From X86_krypton.hmdes

 The name specifies the opcode operation being described. Multiple entries with the same

name are used to specify different assembly names and/or assembly flags for different scheduling

alternatives.

The opcode_flags allow specific opcode information to be specified. This additional

information is defined in a C header file.

The assembly_name and assembly_flags are not supported by the X86 code generator.

The Operation_class is explained in Section 4.1.7.

33

4.2 KRYPTON MDES

KRYPTON presented three unique modeling problems. Section 4.2.1 describes the

problem of modeling the different alus and ensuring the correct one was chosen. Section 4.2.2

describes the problem of modeling the interaction between MROM and FAST instructions.

Section 4.2.3 describes the problem of modeling X86 instructions that contain two or three ROPs.

4.2.1 Alu selection

The alu selection problem is difficult for three reasons. First, both alus in KRYPTON can

both perform arithmetic and logical operations while ALU0 also performs shift and rotate

operations. Second, if a shift or rotate function and an arithmetic or logical function are decoded

and both alus are available, the logic ensures the ALU0 is selected properly. Third, except for the

last selection method, alus are allocated using a "last-used" method. This method selects the alu

that was not "last-used" when both alus are available.

Figure 2.4 gives all the resources defined by the KRYPTON MDES. The declaration of

alu[1..0] entry is used to take advantage of the default order and maintain consistency with

AMD's method of naming alus. A declaration of alu[0..1] would have also taken advantage of the

default order but would not have been consistent with AMD's method. Using either method, the

scheduler will choose the first alu in the index when both are available.

To ensure that the shift or rotate instruction uses ALU0 (alu[0]), a ResTables declaration

of RL_IAlu_sh is declared as shown in Figure 2.8. All shift and rotate instruction use this

ResTable declaration. This forces the scheduler to use ALU0. A second ResTables declaration of

34

RL_IAlu is declared as shown in Figure 2.9. All logical and arithmetic operations use this

declaration. This allows the scheduler two alu options: By default, ALU1 is chosen. If it is not

available, ALU0 is chosen.

This solves the first two problems. First, if a shift operation is encountered, it is scheduled

if and only if ALU0 is available. Second, if a logical or arithmetic operation is followed by a shift

or rotate operation, and both alus are available, then the logical or arithmetic operation uses

ALU1 and the shift or rotate operation uses ALU0.

The third problem cannot be modeled without a change to the MDES. The modeling

chosen always forces a use of ALU1 if both alus are available. This ensures that a shift or rotate

instruction can always execute if both alus are available. KRYPTON chooses alus based on the

"last-used" method and could send an arithmetic or logical operation to ALU0 if both are

available.

This creates a problem only if this operation is stalled because it is waiting for a TAG. This

will actually cause a stall in the processor if the next instruction is a shift or rotate instructions.

RL_IAlu_Sh (# alu or shift op
 (slot 0)
 (dispatch 0)

 (alu[0] 0)
)

RL_IAlu (# alu_op
 (slot 0)
 (dispatch 0)
 (alu 0)

)

Figure 2.8: ALU ResTable Declarations

35

4.2.2 FAST and MROM interaction

Section 3.1 briefly discussed the instruction decode logic used in KRYPTON. If an

instruction is encountered that is decoded by the MROM unit, its ROPs cannot be issued with

FAST ROPS. Figure 3.2 illustrates this.

The return instruction is an example of a MROM instruction even though it only contains

two ROPs. Its ResTable declaration is shown in Figure 2.9. By using all four dispatch instances

this instruction will not be issued until the previous FAST ROPs have been issued, and no FAST

ROPs can be issued with it. The MROM cannot issue until the FAST ROPs are complete because

it needs all four dispatch units. Likewise, FAST ROPs cannot issue until the MROM ROPs are

complete because it is using all four dispatch units.

MROM instructions with 5-8 ROPS must use four dispatch instances in cycle 0 and four

dispatch positions in cycle 1.

 RL_Ret (# Return micro-code that is why I use 4 dispatch
(slot 0)

 (dispatch 0)
 (dispatch 0)
 (dispatch 0)
 (dispatch 0)

(load_store 0)
(alu 0)
(branch 1))

Figure 2.9: Return ResTable Declaration

4.2.3 Two and three ROP instructions

 All X86 instructions are decoded into at least one ROP. Some instructions that are used in

the X86 code generator are decoded into two or three ROPs. The problem of modeling these

36

instructions is that while these ROPs are decoded together, they may be issued across cycle

boundaries.

This problem is illustrated using two commonly used operations. The first X86 instruction

adds 2 to a memory location and is in the following form:

 X86 instruction = MEM <- MEM +2,

which represents three KRYPTON ROPS,

 ROP1 = TEMP_REG1 <- MEM,

 ROP2 = TEMP_REG1 <- TEMP_REG1 + 2,

 ROP3 = MEM <- TEMP_REG1.

Similarly, the second X86 instruction performs an addition between an X86 register and a

memory location and stores the result in the X86 register. It is in the following form:

X86 instruction = EAX <- EAX + MEM,

which represents two KRYPTON ROPS,

 ROP1 = TEMP_REG1 <- MEM,

 ROP2 = EAX <- EAX + TEMP_REG1.

 In each case, more than one dispatch position is needed in cycle 0 to issue all the ROPs in

cycle 0. The number of dispatch positions required equals the number of ROPs. The first

instruction can be issued three different ways and the second instruction can be issued two

different ways. This depends on the number of dispatch positions available in cycle 0. Figure 2.10

shows the possible alternatives for the first instruction.

37

 X86 instruction = MEM <- MEM +2

 Generates three ROPS

 ROP1 = TEMP_REG1 <- MEM
 ROP2 = TEMP_REG1 <- TEMP_REG1 + 2
 ROP3 = MEM <- TEMP_REG1

Option 1 :
 Cycle Dispatch 1 Dispatch 2 Dispatch 3 Dispatch 4

 0 FAST ROPX ROP1 ROP2 ROP3
or similarly

 0 ROP1 ROP2 ROP3
Option 2 :
 0 FAST ROPX FAST ROPY ROP1 ROP2

 1 ROP3
Option 3 :

 0 FAST ROPX FAST ROPY FAST ROPZ ROP1
 1 ROP2 ROP3

Figure 2.10: Options for a 3-ROP X86 Instruction

The solution to this problem is to provide an entry in the ResTable section for each of the

three alternatives and give the scheduler a choice between the three alternatives. The three

alternatives for Figure 2.10 are shown in Figure 2.11 and are labeled RL_CISC_TO_MEM_1,

RL_CISC_TO_MEM_2, and RL_CISC_TO_MEM_3.

One way of providing a choice among the three options is to use the Operation_Class

(Section 4.7). This is also shown in Figure 2.11 and is labeled CL_CISC_TO_MEM. All X86

instructions that use the same resources as the first instruction use CL_CISC_TO_MEM as the

resource option. By default the scheduler will attempt to use the resources specified by

RL_CISC_TO_MEM_1. It then attempts RL_CISC_TO_MEM_2 and RL_CISC_TO_MEM_3

in the order listed.

38

RL_CISC_TO_MEM_1 (# MEM <- MEM alu_op X SEE CL option 1
 (slot 0)
 (dispatch[0..2] 0

(load_store[0..1] 0)
 (alu 1)
)

RL_CISC_TO_MEM_2 (# MEM <- MEM alu_op X SEE CL option 2
 (slot 0)
 (dispatch[0..1] 0)
 (load_store 0)

(load_store 1)
 (dispatch 1)
 (alu 1)

)
RL_CISC_TO_MEM_3 (# MEM <- MEM alu_op X SEE CL option 3

 (slot 0)
 (dispatch 0)

(load_store 0)
(dispatch[0..1] 1)

 (load_store 1)
(alu 1)

)

CL_CISC_TO_MEM (
(IOI_Cisc_To_Mem RL_CISC_TO_MEM_1 Lat_2)

 (IOI_Cisc_To_Mem RL_CISC_TO_MEM_2 Lat_2)
 (IOI_Cisc_To_Mem RL_CISC_TO_MEM_3 Lat_2)
)

 Figure 2.11: 3-ROP Scheduling Solution

Similarly, two options exist for the second instruction based on the number of dispatch positions

available in cycle 0.

39

5. INSTRUCTION SELECTION

A major problem in generating code for KRYPTON is register pressure. Many

optimizations that generally work well for superscalar processors just do not work well for

KRYPTON.

An example of this is loop invariant code removal. This optimization moves code outside

the loop body that is not loop dependent. In theory it can reduce the cycle count by the number

of iterations of the loop. However, it also increases the variable lifetime and consequently the

register pressure. If this happens, a spill and a fill instruction can be generated by the register

allocator. This cancels the effect of the optimization and also adds additional instructions that

can decrease performance. Another example is loop unrolling. This optimization reduces the

number of iterations of a loop and expands it. This expansion generally causes an increase in

40

registers, which also increases register pressure. This in turn can increase the number of spill and

fill instructions.

This is not a problem for a typical superscalar processor with a large register file.

However, the X86 architecture provides only eight registers, and, generally, any optimization

that increases either the variable lifetime or the number of registers used does not work well on

KRYPTON.

Figure 5.1 shows the limitation of KRYPTON's small register file on IMPACT. The

benchmarks were scheduled using the KRYPTON MDES that was developed in the previous

chapter.

Benchmark Cycle Time Cycle Time Loss
 X86 REG NO REG

022.li 59826274 55919424 7.0%
023.eqntott 8878206 8377315 5.9%
072.sc 53265761 45195802 17.8%
008.espresso 28463477 25414404 11.9%
026.compress 27197622 22732987 19.6%

Figure 5.1 X86 Register File Limitations

These benchmark programs were scheduled two ways. The first column shows the

scheduling results using the X86 register file. The compilation path was varied using as many

"smart" optimizations as possible. The result is the fastest schedule. This cycle count is

calculated by using profile and scheduling information.

The second column shows the results of the same experiment using an infinite register

file. This was accomplished by turning the register allocator off. The third column shows the

slowdown caused by the spill and fill instructions.

41

This section discusses three optimizations that were developed to reduce register pressure.

These optimizations were not designed to directly reduce raw cycle count and in some cases to

trade-off increased cycle count for reduced register pressure. They were designed to reduce the

number of fill and spill instructions. Reducing the number of fill and spill instructions reduces

the total cycle count. Sections 3.1, 3.2 and 3.3 discuss these optimizations, which all use

memory variables instead of register variables. Section 3.4 gives the results of these

optimizations.

5.1 Arithmetic and Logical Operations Using Only Memory Variables

This section explains an optimization that uses memory variables instead of register

variables. The optimization searches for a pattern of the following : load X86_REGISTER from

a MEMORY_LOCATION, perform an arithmetic or logical operation on X86_REGISTER storing

the result into X86_REGISTER, and store X86_REGISTER into MEMORY_LOCATION. This

pattern is converted to one arithmetic or logical operation on MEMORY_LOCATION . An

example of such an X86 instruction pattern is

X86_REGISTER <- MEMORY_LOCATION (load),

X86_REGISTER <- X86_REGISTER+ 2 (arithmetic operation), and

MEMORY_LOCATION <- X86_REGISTER (store).

This sequence of instructions maps directly into three ROPs. It can also be represented by the

following X86 instruction:

MEMORY_LOCATION <- MEMORY_LOCATION + 2 (arithmetic operation) .

42

Instructions in this form are given the name CISC_TO_MEM. This instruction generates three

ROPs:

1.) TEMP_REG <- MEMORY_LOCATION,

2.) TEMP_REG <- TEMP_REG +2, and

3.) MEMORY_LOCATION <- TEMP_REG.

Two advantages exist in the CISC_TO_MEM instruction. First, one less register is used,

which can reduce register pressure, which in turn can reduce the number of register spills and

fills. Second, Krypton will always issue and execute the load and store in cycle one and the add

in cycle two if the resources are available. The load-op-store sequence of X86 instructions will

execute exactly as the CISC_TO_MEM instruction if the three instructions are scheduled as

shown. Because of scheduling, this is not always the case, and the store may take an extra cycle

to execute. The exact resource usage for a CISC_TO_MEM instruction is shown in Figure 5.2. It

is taken from the KRYPTON MDES. The algorithm developed for this optimization is shown in

Figure 5.3.

 RL_CISC_TO_MEM_1 (# MEM <- MEM alu_op {REG or Immediate}
 (slot 0)
 (dispatch 0..3)
 (load_store 0)
 (load_store 0)
 (alu 1)
)

Figure 5.2 CISC_TO_MEM Resource Usage

A CISC_TO_MEM instruction takes only two cycles. This happens because the store

operation is done as a read-modify-write operation. The read is done in the same cycle as the

load. The modify will occur at the end of cycle two, with the result forwarded to the store buffer.

43

The write can occur as soon as cycle three but not until the instruction is retired and the data

cache is available. When this happens, the store buffer writes the 32-bit data to the data cache.

 for all LOAD OPERATIONS in CONTROL BLOCK {
 for all ARITHMETIC or LOGICAL OPERATIONS of same REGISTER {
 if (MEM_LOCATION redefined or MEM_LOCATION INDEXES redefined)
 break;
 if (!CISC_TO_MEM format)
 break;
 for all STORE OPERATIONS {
 if (REGISTER redefined)
 break;
 if (REGISTER live out or REGISTER live between)
 break;
 if (MEM_LOCATION redefined or MEM_LOCATION INDEXES redefined)
 break;
 add_operation(CISC_TO_MEM);

 delete_operation(LOAD);
 delete_operation(ALU);
 delete_operation(STORE);

 break; /* no more stores will affect this load */
 }
 break; /* if store is found or not found stop searching */
 }
 }

Figure 5.3 CISC_TO_MEM Algorithm

Figure 5.4 gives an Mcode example of the CISC_TO_MEM optimization for the

benchmark 008.espresso. The goal of this optimization is to reduce register pressure. In this case

it not only reduces register pressure but takes advantage of two other optimizations to reduce the

cycle count.

In this example, op 120 is a left-shift of r 91 by 4 with the result stored in r 92, op 121 is

a load to r 94 of the memory location indexed by r 88 and r 92, op 122 is a move form r 94 to

r 95, op 123 is a logical-or of r 95 and 8192 with the result stored in r 95, and op 124 stores

r 95 to the memory location indexed by r 88 and r 92. If these five operations were converted

directly they would take five cycles and five registers.

44

Two optimizations are performed to eliminate op 120 and op 122. The first optimization

converts op 120 and op 121 into a new op 121 and modifies op 124. This optimization takes

advantage of the X86 instruction LEA (load effective address). The second optimization

combines the new op 121 and op 122 into a new op 121. This pattern of three instructions takes

two or three cycles to execute and uses three registers.

These three operations are now converted from the load-logical operation-store format to

the CISC_TO_MEM format. This instruction now takes two cycles to execute and uses only

two registers.

Mcode before optimization

op 120 lsl [(r 92 i)] [()()(r 91 i)(i 4)]
op 121 ld_i [(r 94 i)] [()(r 88 i)(r 92 i)]
op 122 mov [(r 95 i)] [(r 94 i)])
op 123 or [(r 95 i)] [(r 95 i)(i 8192)])
op 124 st_i [] [(r 95 i)(r 88 i)(r 92 i)]

Mcode after LEA and REVERSE_COPY_PROPAGATION optimizations

op 121 ld_i [(r 95 i)] [()(r 88 i)(r 91 i)(i 4)]
op 123 or [(r 95 i)] [(r 95 i)(i 8192)])
op 124 st_i [] [(r 95 i)(r 88 i)(r 91 i)(i4)]

Mcode after CISC_TO_MEM optimization

op 124 or [] [(i 8192)(r 88 i)(r 91 i)(i 4)]

Figure 5.4 Example Optimization from 008.espresso f_161

5.2 Arithmetic and Logical Operations Using Register and Memory Variables

This section explains another optimization that uses memory variables. In this case the

memory variable is only a source operand. The optimization searches for a pattern of the

following: load X86_REGISTER from a MEMORY_LOCATION, and perform an arithmetic or

45

logical operation using X86_REGISTER as a source operand. This pattern is converted to an

arithmetic or logical operation with the memory location as a source operand. An example of

such a X86 instruction pattern is

X86_REGISTER_A <- MEMORY_LOCATION (load), and

X86_REGISTER _B <- X86_REGISTER_B + X86_REGISTER_A (arithmetic operation).

This sequence of instructions maps directly into two ROPs. It can also be represented by the

following X86 instruction:

X86_REGISTER <- X86_REGISTER + MEMORY_LOCATION .

Instructions in this form are given the name CISC_TO_REG. This instruction generates two

ROPs:

1.) TEMP_REG <- MEMORY_LOCATION, and

2.) X86_REGISTER <- X86_REGISTER + TEMP_REG.

Both set of instructions are treated the same by KRYPTON . The first option maps

directly into two ROPs; the second is decoded into two ROPs. Both methods take two cycles to

execute on KRYPTON. The exact resource usage for a CISC_TO_REG is shown Figure 5.6.

RL_CISC_TO_REG_1 (# REG <- REG alu_op MEM SEE CL option 1
 (slot 0)

(dispatch 0)
 (dispatch 0)
 (load_store 0)
 (alu 1)
)

Figure 5.6: CISC_TO_REG Resource Usage

46

One advantage of the second instruction is that one less register is used, which can reduce

register pressure, which in turn can reduce the number of register spills and fills. Another

advantage occurs when the load is a load sign extend or load zero extend. If this is the case, the

first method actually generates three ROPS while the second case always generates two ROPS.

A load sign extend or load zero extend is an 8-bit or 16-bit load into a 32-bit register with

the sign or zeroes extended across the 32-bit register. Using the zero extended load as an

example, the three cycles are explained. In the first cycle, the register is cleared. This takes one

ROP, one cycle and an alu. In the second cycle, the load is performed. This takes one ROP, one

cycle and a load/store unit. In the third cycle, the addition is performed. This takes one ROP, one

cycle and an alu. The exact resource usage of an extended load followed by an add is shown in

Figure 5.7.

If this extended load followed by an arithmetic or logical operation is converted to a

CISC_TO_REG operation, the resource usage is the same as Figure 5.6. In this case the

optimization not only saves a register but also saves one cycle.

RL_Load_Ex_1 (# byte/word/double load option #1
 (slot 0)

(dispatch 0)
 (dispatch 0)
 (load_store 0)
 (alu 1)
)

followed by

 RL_IAlu (# alu_op SEE CL
 (slot 0)
 (dispatch 0)
 (alu 0)
)

Figure 5.7: Extended Load Followed by an Alu_op

47

This optimization searches for up to three uses of the load, and if they can all be converted to

CISC_TO_REG it converts them. If this is the case, a trade-off of cycle time is made to reduce

register pressure.

The algorithm developed for this optimization is shown in Figure 5.8.

for all LOAD OPERATIONS in CONTROL BLOCK {
 for all ARITHMETIC or LOGICAL OPERATIONS of same REGISTER {
 if(!CISC_TO_REG format)
 break;
 if(can't_cisc_all_uses)
 break;
 if(redefined_between_load_and_last_use(MEM_LOCATION))

 break;
 if(redefined_between_load_and_last_use(MEM_LOCATION_INDEXES))

 break;
 if(live_out(REGISTER))
 break;
 add_operation(CISC_TO_REG);

 delete_operation(LOAD);
 delete_operation(ALU);

 break;
}

}

Figure 5.8 CISC_TO_REG Algorithm

5.3 Compare Instructions Using Memory Variables

This section explains the last optimization that uses memory variables. In this case the

memory variable is only a source operand, and the operation is a compare. The optimization

searches for a pattern of the following: load X86_REGISTER from a MEMORY_LOCATION,

and perform a compare between X86_REGISTER and another operand. This pattern is

converted to a compare between the memory location and another operand. An example of such

an X86 instruction pattern is

X86_REGISTER<- MEMORY_LOCATION (load), and

48

compare X86_REGISTER, 1 (compare operation).

This sequence of instructions maps directly into two ROPs. It can also be represented by the

following X86 instruction:

compare MEMORY_LOCATION , 1.

Instructions in this form are given the name CISC_COMPARE. This instruction generates two

ROPs:

1.) TEMP_REG <- MEMORY_LOCATION, and

2.) compare TEMP_REG, 1.

Both set of instructions are treated the same by KRYPTON . The first option maps

directly into two ROPs; the second one is decoded into two ROPs. Both methods take two cycles

to execute on KRYPTON.

The thing that distinguishes this optimization is the load-compare pattern is actually a

Mcode load-compare_and_branch pattern.. This compare and branch instruction is modified and

broken down to a separate compare and branch in a different step.

This optimization has the same advantages as the CISC_TO_REG to and also searches for

up to three uses of the load and converts them to CISC_COMPARE operations. Again, a trade-

off is made between cycle time and register pressure. The algorithm developed for this

optimization is shown in Figure 5.9.

49

for all LOAD OPERATIONS in CONTROL BLOCK {
 for all COMPARE_AND_BRANCH OPERATIONS of same REGISTER {
 if(!CISC_COMPARE format)
 break;

 if(uses(REGISTER) > 3)
 break;
 if(can't_cisc_all_uses)
 break;
 if(redefined_between_load_and_last_use(MEM_LOCATION))

 break;
 if(redefined_between_load_and_last_use(MEM_LOCATION_INDEXES))
 break;
 if(live_out(REGISTER))
 break;
 annotate_operation(CISC_TO_REG);

 delete_operation(LOAD);
 break;

 }
 }

Figure 5.9 CISC_COMPARE Algorithm

5.4 Results

Figure 5.10 shows the results of the optimizations on cycle time. The seven columns are

the seven combinations of optimizations. Each column heading corresponds to a combination.

The first on or off represents the CISC_TO_MEM optimization. The second on or off represents

the CISC_TO_REG optimization. The third on or off represents the CISC_COMPARE

optimization. All numbers are percent speed-up over the benchmarks with all optimizations off.

Benchmark off off on off on off off on on on off off on off on on on off on on on

 022.li 0.98 0.00 0.98 1.19 0.47 1.19 0.47
023.eqntott 1.40 1.21 1.05 0.00 1.42 1.21 1.05

 072.sc 0.18 0.00 0.18 1.49 1.67 1.49 1.67
 008.espresso 0.13 0.17 2.14 7.38 2.03 5.65 3.58
 026.compress 11.76 3.92 16.50 12.06 16.05 13.03 17.46

Figure 5.10 Optimization Results

50

As expected, the largest speed-up happens in the 026.compress benchmark . This is the

benchmark with the most spill and fill instructions. Certain combinations of optimizations

actually perform worse than does a single optimization. This is mainly due to the heuristics used

in the register allocator. However, the best overall result occurs with all the optimizations turned

on.

51

6. CONCLUSIONS

This thesis has described the changes made to the X86 code generator to support AMD's

KRYPTON microprocessor. Code has been scheduled using the KRYPTON MDES and the

memory variable optimizations. This code has been tested on both 486 and Pentium machines.

The scheduling information has been analyzed and feedback has been provided to enhance the

IMPACT register allocator and scheduler. The "CISC" optimizations have been shown to increase

overall performance by reducing register pressure.

Future work includes comparing scheduling results with a KRYPTON simulator provided

by AMD. It also includes verifying the results on a machine with a KRYPTON processor. The

simulator can provide insight to enhance the MDES, and will show the instructions dispatch, issue

and completion. Comparisons can be made with the scheduled code, and changes to the MDES

may be necessary.

52

REFERENCES

[1] J. C. Gyllenhaal, "A machine description language for compilation," M.S. thesis, University
of Illinois, Urbana, IL, 1994.

[2] R. A. Bringmann, "Template for code generation development using the IMPACT-I C
compiler," M.S. thesis, University of Illinois, Urbana, IL, 1992.

[3] W. W. Hwu, S. A. Mahlke, W. Y. Chen, P. P. Chang, N. J. Warter, R. A. Bringmann, R. G.
Ouellette, R. E. Hank, T. Kiyohara, G. E. Holm, and D. M. Lavery, "The Superblock: An
effective technique for VLIW and superscalar compilation," The Journal of Supercomputing, vol.
7, pp. 229-248, January 1993.

[4] W. M. Johnson, Superscalar Microprocessor Design. Englewood Cliffs, NJ: Prentice-Hall,
Inc., 1991.

[5] P. P. Chang, S. A. Mahlke, W. Y. Chen, N. J. Warter, and W. W. Hwu, "IMPACT; An
architectural framework for multiple-instruction-issue processors," Proceedings of the 18th
International Symposium on Computer Architecture, pp. 266-275, May 1991.

[6] R. M. Tomasulo, "An Efficient Algorithm for Exploiting Multiple Arithmetic Units," IBM
Journal, vol. 11, pp. 25-33, January 1967.

[7] Intel Literture Sales, Pentium Family Users Manual. Intel Corporation, Inc., Mount
Prospect, IL., 1995

[8] D. Witt, The KRYPTON Architecture Manual. AMD Inc., Austin, TX., 1994

53

