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The traditional method of extracting performance from programs is based on scaling pro-
cessor resources to execute multiple independent instructions per cycle. In order to enable
their cost-effective performance potential, these processors demand that increasing levels of
instruction-level parallelism (ILP) be exposed in programs. As a result, compilers must perform
increasingly more aggressive analysis and global optimization. Nevertheless, current state-of-
the-art compilers cannot expose the level of ILP necessary to overcome the diminishing per-
formance returns of high-issue processors. Ultimately performance becomes limited by the
dependences of programs, and not the machine resources. Thus, one of the major challenges to
increasing processor performance is overcoming the fundamental dataflow limitation imposed
by data dependences. By reusing previous computation results, the dataflow limit can be sur-
passed for sequences of operations that are otherwise redundantly executed. Effective reuse
of previous computation results requires coordinating compiler and hardware techniques in an
integrated framework.

Many traditional compiler techniques eliminate program redundancy and optimize the ef-
fectiveness of the program. These optimization techniques rely on the detection of static re-
dundancy, which requires computations to be completely redundant for all possible executions.
Currently, compiler techniques have no mechanism for capturing dynamic redundancy, redun-
dancy occurring over a temporal set of definitions. As a result, empirical program behavior
studies indicate that many instruction traces are dynamically executed with the same inputs,

a form of redundancy known as value locality. Such sequences of redundant operations reduce
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the effectiveness of ILP processors by wastefully utilizing the multiple functional unit resources.
Consequently, the available silicon resources are more effectively allocated to exploiting pro-
gram redundancy than instruction-level parallelism. This dissertation proposes and investigates
architectural and compilation techniques that eliminate dynamic redundancy to improve the
resource utilization and performance.

The four key technologies here presented work in a coordinated fashion to eliminate dynamic
redundancy from program execution. The Reusable Computation Region Framework (RCRF)
provides a compilation framework to accurately determine the regions, called Reusable Compu-
tation Regions (RCRs), of a program in which reuse is likely to occur. Generally, these regions
are recurring tasks and invariant computations that represent the redundant execution behav-
ior occurring within general purpose programs. By locating and designating these regions at
compile time, effective run-time techniques for directing the reuse of computation results can be
achieved. To exploit the execution behavior of these regions, this dissertation introduces a reuse
approach, called Compiler-directed Computation Reuse (CCR). The CCR approach integrates
compiler and architecture techniques to exploit value locality for large regions of code. In this
approach, the Instruction Set Architecture (ISA) provides a simple interface for the compiler
to communicate the run-time execution of each region into a hardware structure.

The RCRF techniques can identify redundantly executing regions within programs based on
analyzing value-profile execution information gathered using training input evaluations. How-
ever, since most modern software environments do not support value profiling, static region
formation techniques are also developed. To support static region formation in the compile-
time techniques, it becomes necessary to add run-time management support to the CCR. ap-

proach. The Dynamic Computation Management System (DCMS) enhances the effectiveness
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of compiler-directed computation reuse by dynamically controlling deployment of statically-
selected computation regions by gathering run-time program execution behavior. In addition,
program invariance and computation redundancy occur in phases during run-time execution,
and compile-time reuse decisions need to adapt to program behavior and contention for the
reuse resources. The DCMS uses hardware tables to gather run-time execution behavior to en-
able accurate allocation policies of the computation reuse buffer. Within the given framework,
the DCMS can determine which compiler-selected computations are currently best exploited
using a processor’s reuse resources.

Finally, a class of computation regions formed by the RCRF can be exploited using compiler
transformation and existing architecture support. In the compiler-based Value Optimization
Framework (VOF), program reformulation and predicated execution-based value transforma-
tions are used to exploit the redundancy of regions. These techniques offer alternatives for the
compiler to synthesize codes based on data distribution rather than traditional practice of basic
program conversion.

The Reusable Computation Region Framework, the Compiler-directed Computation Reuse
Approach, and the Dynamic Computation Management System represent a fundamentally new
method of controlling the microarchitecture execution engine of processors to improve program
performance. The compiler-based Value Optimization Framework illustrates a new compiler
methodology for synthesizing code based on data distribution. Systematically coordinating
these compiler techniques and hardware technologies can eliminate significant amounts of the
dynamic computation redundancy in program execution. These techniques are new methods of
improving modern processor utilization and performance by exploiting readily available program

value locality characteristics.
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CHAPTER 1

INTRODUCTION

The performance of an application on a modern processor is dominated by the level of com-
piler optimization. Generally, optimizing compilers are successful at eliminating inefficiencies
and redundancies within programs by performing iterations of analysis and optimization. Static
analysis techniques allow a large scope of a program to be considered and increase the available
optimization opportunities. The elimination of redundancies in programs at compile time can
dramatically improve a program’s execution time. Traditional compiler techniques such as con-
stant propagation, common subexpression elimination, loop invariant code removal, conditional
branch elimination, and partial redundancy elimination [1] eliminate program redundancy and
improve the efficiency of a program. However, compiler optimization techniques rely on the
detection of static redundancy, which requires the complete assertion that the computations
be definitely redundant for all executions. As such, compiler techniques have no mechanism
for capturing dynamic redundancy, redundancy occurring over a temporal set of definitions.
As a result of the deficiencies of compiler optimization, based on various types of applications,
empirical program behavior studies indicate that many instruction traces are dynamically ex-
ecuted with the same inputs, a form of redundancy known as value locality [2], [3], [4], [5].
Overall, optimizing compilers are only able to make existing programs operate more efficiently

on processors, and they fail to reformulate the program and transform the original algorithm



to the most effective form. As such, optimizing compilers eliminate only a small portion of the
overall redundancy of program execution.

The performance of an application on modern processors is also highly dependent on the
ability to execute multiple instructions per cycle. In order to enable their cost-effective perfor-
mance potential, these processors demand that increasing levels of instruction-level parallelism
(ILP) be exposed in programs. As a result, compilers must perform increasingly more aggres-
sive analysis and global optimization. Nevertheless, current state-of-the-art compilers cannot
expose the level of ILP necessary to eliminate the diminishing performance returns of high-issue
processors. Ultimately performance becomes limited by the dependences of programs, and not
the machine resources. Thus, one of the major challenges to increasing processor performance
is overcoming the fundamental dataflow limitation imposed by data dependences. By reusing
previous computation results, the dataflow limit can be surpassed for sequences of operations
that are otherwise redundantly executed.

As the availability of silicon increases, it makes sense to develop techniques to intelligently
reduce the amount of redundancy or value locality in program execution. Several other funda-
mental architectural mechanisms are based on exploiting similar aspects of program behavior.
Branch predictors [6] often occupy a fairly significant portion of the chip area and are critical for
reducing the branch misprediction stalls. Generally, branch predictors are developed to exploit
the predictability and correlation of branch execution behavior. Similarly, cache memory sys-
tems [7], [8] seek to exploit the locality characteristics found in memory references. By storing a
referenced item, caches exploit temporal locality, the tendency for that item to be re-referenced
soon. Additionally, by storing multiple items adjacent to the referenced item, caches exploit

spatial locality, the tendency for neighboring items to be referenced soon. The exploitation of



value locality of the program execution may provide substantial improvement to application
performance on modern processors.

This dissertation introduces compiler-directed computation redundancy elimination, an ap-
proach that allows the compiler to identify code regions whose computation can be reused
during dynamic execution. In a compiler-directed approach, the compiler essentially partitions
the program into a set of units, called reusable computation regions. The compiler may de-
termine the regions based on profiling information or static formation techniques. The use of
profiling information to determine region contents allows the compiler to select units that accu-
rately reflect the dynamic behavior of the program and are more likely to benefit from reuse. As
a result, the compiler may be able to detect the most likely sequences of reuse. Unfortunately,
there are several drawbacks to profiling. As such, for the compiler-directed mechanism to be
successful, it is necessary to statically estimate the reuse potential of program regions. This
dissertation deals with both concepts of profile-directed and static-based computation region
formation.

In the compiler-directed mechanism proposed by this dissertation, the instruction set ar-
chitecture provides a simple interface for the compiler to communicate the scope of each reuse
region and its live-out register information to the hardware. During run time, the micro-
architectural components of the approach record the execution results of the regions for poten-
tial reuse. Explicit designation of computation reuse allows a large number of dynamic control,
memory, and arithmetic instructions to be jointly considered for reuse in the compiler-directed
framework. The fundamental responsibility for detecting reusable sequences of code is placed
on the compiler and the basic action of reusing the results of the sequence of the code is en-

abled through hardware. However, variations in program behavior cause the static designation



of computation regions to reduce the effectiveness of the compiler-directed hardware approach.
For instance, program invariance and computation redundancy occur in phases during run-time
execution, and compile-time reuse decisions need to adapt to program behavior and contention
for the reuse resources. Similarly, program invariance is highly related to input sets and the
modes of particular applications, thus requiring methods of controlling the deployment of the
compiler selected regions. Dynamic management hardware structures can gather run-time ex-
ecution behavior and enable allocation policies of the computation reuse buffer. Within the
dynamic framework, run-time decisions can determine which compiler selected computations
are currently best exploited using the processor’s reuse resources.

Many of the computation regions exploited through the compiler-directed hardware have
persistent value locality characteristics that can be exploited using compiler transformation and
existing architecture support. In the compiler-based value optimization framework, predicated-
execution-based program transformations are used to exploit the redundancy of regions. These
techniques offer venues for the compiler to synthesize codes based on value distribution within
processors that do not offer hardware support for computation reuse.

This dissertation proposes and investigates the coordinated efforts of architectural and com-
pilation techniques to eliminate dynamic computation redundancy of program execution on an
ILP processor. An integrated compiler and architecture redundancy elimination framework has
been implemented within the IMPACT compiler framework to quantify the benefits of exploit-

ing value locality characteristics using both compiler techniques and hardware technologies.



1.1 Contributions

To integrate both compiler and hardware techniques in a coordinated framework to eliminate
large amounts of dynamically redundant computation, four key technologies were developed.

These four technologies, discussed below, together form the contribution of this work.

e The Reusable Computation Region Framework (RCRF)

In order to apply compiler-directed dynamic elimination of redundant computation, the
primary issue of determining the regions of a program that should be selected for reuse at
run time must be addressed. Under this framework, the compiler partitions the program
into reusable computation regions, which serve as the fundamental unit of execution in
the integrated approach. Effective exploitation of dynamic redundancy requires that
the compiler either be aware of the execution behavior of the program or estimate the
program behavior. As such, two region formation approaches, profile-based and static,
are developed. A quantitative analysis is performed to assess the characteristics of the

reusable partitions selected using static heuristics and profile-based heuristics.

e Compiler-directed Computation Reuse Approach (CCR)

A new approach to computation reuse is introduced and investigated. Previous approaches
to exploiting value locality have relied strictly on hardware support to detect, exploit, and
adapt to program value locality opportunities. Hardware-only techniques generally illus-
trate limited performance improvement because run-time techniques have limited scope in
exploiting dynamic redundancy between program instructions, and hardware structures
cannot cost effectively detect program redundancy. In the compiler-directed computa-

tion reuse approach, the compiler divides the program into regions, which eliminates



reuse detection at run time and implements efficient reuse. The rationale for compiler-
directed computation reuse is demonstrated, and the hardware framework for implement-

ing compiler-directed reuse is presented.

Dynamic Computation Management System (DCMS)

An adaptive mechanism for bypassing computation regions based on the detected reuse
patterns and utilization is developed. Run-time monitoring prevents regions with less
likelihood of computation reuse from displacing computation regions with a greater likeli-
hood of reuse in their use of hardware support resources. Both quantitative and analytical
evaluations of the performance of reuse bypassing using the framework developed in this

dissertation are presented.

Compiler-based Value Optimization Framework (VOF)

Traditional compiler techniques for eliminating program redundancy rely on the detection
of static redundancy, which requires the complete assertion that the computations be
definitely redundant for all executions. Generally such techniques focus on removing the
redundancy of computations already performed by other instances of computations in the
control flow graph. In compiler-based value locality techniques, program reformulation,
control flow transformation, and predicate-based value transformations are used to exploit
redundancy. These techniques offer alternatives for the compiler to synthesize value-based
codes rather than the traditional generation of program. The concept of each technique is
explored, and the compiler infrastructure for implementing compiler-based value locality

exploitations is presented.



1.2 Overview

This dissertation is composed of seven chapters. Chapter 2 presents an overview of the
empirical redundancy characteristics of program execution and discusses related approaches to
exploiting computation redundancy.

The Reusable Computation Region Framework (RCRF) is detailed in Chapter 3. Region
selection provides an effective framework to investigate the exploitation of computation redun-
dancy in an integrated compiler and architecture approach. This chapter discusses the com-
plexities of identifying reusable computation with profiling information and with static program
heuristics. Chapter 4 presents the essential hardware design and instruction set architecture
extensions for the compiler-directed approach. Compiler-directed computation reuse provides
an effective framework to convey static analysis of dynamic redundancy to the hardware. This
chapter discusses the implications of this concept for the design of an ILP microarchitecture.

Chapter 5 investigates the application of run-time management system to the base model
of compiler-directed computation reuse. Dynamic management provides an enhancement to
the adaptability of the base model, and the necessary requirements of the system will be in-
vestigated. Chapter 6 examines the exploitation of recurrence behavior of computation regions
using compiler-based value locality transformations. Chapter 6 provides an overview and ex-
perimental evaluation of the systematic coordination of the proposed compiler and hardware
techniques to eliminate dynamic computation redundancy. A quantitative comparison is done
to investigate the effectiveness of value locality exploitation in compiler-based, hardware-based,
and compiler-directed approaches. Finally, in Chapter 7, conclusions and directions for future

research are given.



CHAPTER 2

REDUNDANCY OF PROGRAM EXECUTION

Modern microprocessor architectures are increasingly designed to exploit aspects of program
behavior. Since the introduction of virtual memory and cache memory systems, architectures
have been exploiting spatial and temporal locality of memory access patterns to reduce the
average latency of a memory reference. Similarly, the designs of branch prediction techniques
focus on extracting branch predictability and correlation for improving the handling of branches
within pipelined processors. Another program behavior is computation redundancy, or value
locality, which describes the recurrence of a previously seen computation instance.

The importance of computation reuse is not limited to the frequent existence of computation
redundancy in real-world applications. Researchers in many different scientific domains have
recognized the importance of computation reuse. General techniques to code algorithms to use
memoization of computation results to achieve efficient processing have been studied. Nev-
ertheless, development of automatic computation redundancy elimination techniques has not
been integrated into modern programming and computing environments. This thesis provides
a initial method of establishing the automatic exploitation of computation redundancy in mod-
ern high-performance computing systems. To provide sufficient background for the techniques
proposed in this thesis, this chapter outlines the general elements contributing to computation
redundancy in modern computer systems. Then, an empirical analysis of the value locality

occurring in general-purpose C programs evaluated using the IMPACT compiler is presented to



demonstrate the applicability and potential of this work. This chapter concludes with a brief

survey of proposed approaches to exploit computation redundancy.

2.1 Dynamic Redundancy

The term wvalue locality is used to describe the behavior of computations that execute with
frequently recurring sets of values. Several empirical studies indicate the presence of significant
amounts of value locality, or redundancy, in programs [5], [9], [10]. Traditional compiler tech-
niques such as constant propagation, common subexpression elimination, loop invariant code
removal, conditional branch elimination, and partial redundancy elimination reduce program
redundancy and improve the efficiency of a program. These techniques are based on the de-
tection of redundancy between computations of the program. As a result, current compiler
optimization techniques can merely eliminate inefficiencies in a program by systematically de-
tecting patterns within dataflow analysis of computations. Overall, compiler techniques are
conservative and inflexible due to complexities associated with global program analysis [11].

Dynamic redundancy is a form of redundancy that occurs when input operands being eval-
uated are identical to previously evaluated inputs in an arbitrary temporal set of executions for
the same computation. Figure 2.1 illustrates the occurrence of dynamic redundancy for a given
history of a particular computation. Generally, the degree of dynamic redundancy occurring is
determined by recording a history of unique evaluations and calculating the number of repeti-
tions divided by the total number of observed executions. Compiler techniques have no general
mechanism for capturing dynamic redundancy and as a result, even highly optimized programs
execute half of their instructions redundantly, only to recompute previously computed values.

Ideally, these values should be recorded and later reused, removing unnecessary computations.
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Figure 2.1 [Illustration of dynamic computation redundancy.

2.2 Sources of Value Locality

There are several sources of computation redundancy within programs. Sodani and Sohi [5]
characterized the sources by four categories. The fundamental sources are based on aspects of
the input data, programming model, application domain, and the software distribution model.
The work of this thesis does not specifically target any one source of redundancy; instead many
elements of the proposed techniques are capable of eliminating redundancy from all of the base
value locality sources. Naturally, many of these sources are subject to the particulars of an

instruction set, compiler, and run-time environment being employed.

2.2.1 Data redundancy

Frequently, the input sets for real-world programs contain data that has little variation.
Examples of this are sparse matrices, low frequency images, text files with white space, and
repeated data entries in spreadsheets. Other aspects of data redundancy contributing to com-
putation redundancy relate to the quantization and scaling of the input data at different points

within a program.
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2.2.2 Programming models

Studies [12] indicate that redundancy may exist primarily for the same reason that partial
evaluation is such an effective compile-time optimization: real-world programs, run-time envi-
ronments, and operating systems incur severe performance penalties because they are general
by design. Most modern programming environments are implemented to handle numerous con-
tingencies, exceptional conditions, and erroneous inputs, all of which occur relatively rarely and

contribute to redundant run-time execution.

2.2.3 Application domain

Various types of applications by the nature of their design include run-time constants and
semi-invariants. Examples are interpreters, simulators, and graphics processing. For inter-
preters, the program being interpreted is a run-time constant. For simulators, circuit layout
parameters, and architecture resource constraints are examples of run-time invariants. Finally,
for graphics processing, the scene and viewing parameters are semi-invariant.

In addition to the methods of programming a particular application, each application do-
main can be characterized by a degree of recurrence for certain overlapping subtasks within its
implementation. Program coding recurrence of this form has been studied in its relation to the
principles of dynamic programming [13]. Dynamic programming, similar to divide-and-conquer
methodologies, solves problems by combining solutions to subproblems. However divide-and-
conquer algorithms partition problems into independent subproblems, solve the subproblems
recursively, and combine each solution to solve the original problem. In contrast, a dynamic-
programming algorithm solves every subproblem exactly once and then saves the answer in

an effort to avoid the work of recomputing the answer every time the identical subproblem
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is encountered. Whenever a problem exhibits overlapping subproblems, it meets a primary
requirement of being solvable with a dynamic-programming algorithm. As such, since many
applications created in modern programs exhibit repetition of subproblems, there exist signifi-
cant amounts of redundant computation and a tremendous opportunity to exploit the principles
of dynamic programming of the implicit but uncoded underlying algorithm.

Another aspect of application domains that contributes to dynamic redundancy is the dif-
ferent behaviors observed during execution. Virtually all programs go through a series of stages
and each application domain can be described by how redundancy exists when the working set
changes, either for the code or for the data, and sometimes for both. Generally an application
may have different modes which operate on the data set in different ways and for different

periods of time.

2.2.4 Software distribution model

Although current trends in compiler technology help reduce the amount of redundancy
within programs, even code that is aggressively optimized by modern, state-of-the-art com-
pilers exhibits redundancy. In short, substantial barriers to compiler optimization occur due
to the limited scope of program analysis and optimization. The compiler must often be con-
servative and the result is code that includes large amounts of redundant computation. For
instance, when disambiguating stores and potentially aliasing loads, a compiler must frequently
generate redundant loads to resolve a potential alias. Overall, enhancing the level of program
analysis appears to be a fundamental theme in overcoming the barriers to removing redundant

instruction execution with compiler and hardware techniques.
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Other aspects of the high performance computing market add to the occurrence of redun-
dancy, the most dominant being a trend in software distribution. Proliferation of ubiquitous
computing and interchangeable software is driving the use of Dynamically Linked Libraries
(DLLs), downloadable updates, and downloadable net applications. Such models of distribu-
tion act as fundamental barriers to traditional compilation by eliminating some availability of
program analysis and decreasing the ability estimate program behavior. The distribution meth-
ods increase the potential of the underlying processor executing invariant and semi-invariant
codes. Ultimately in these models, performance is sacrificed for maintainability.

Related to software distribution are the inherent software portability aspects such as proce-
dure calling conventions, stack frame orientation, and caller/callee register assignment. These
items provide standardized software portability features but frequently sacrifice overall perfor-

mance by contributing to program redundancy [5].

2.3 Value Locality Characteristics in Programs

There are several important metrics that can be used to describe the inherent value locality
of a program. Value locality characteristics are important as they can determine which opti-
mization technique can most effectively be applied to eliminate the redundant execution. For
compiler optimizations, the invariance of a variable, the most frequent values of the variables,
or the frequent set of values for a variable over the lifetime of the program are all impor-
tant execution characteristics. In this section, a straightforward approach to value profiling
is discussed. The study concentrates on instruction-level profiling to motivate the observed

redundancy occurring in large regions of program execution.
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2.3.1 Value profiling

Value profiling [2] can be used to automatically guide compilation and optimization. To
determine code regions that have variables with semi-invariant or recurrent behavior, three
types of information are important: (i) how an instruction’s result varies over the lifetime of
the program, (ii) the top N results values for an instruction, and (iii) the reuse history of
instruction execution.

The invariance of an instruction’s resulting value can be calculated in many different ways.
The Most Recent Value-M (MRV-M) metric, defined by Calder et al., tracks the number of
times an instruction’s destination register was assigned a value that was one of the most recent
M values. Where M is the history depth of the most recent unique values executed and defines
the value profiling environment in which an instruction’s invariance is being studied. The
Invariance-X of an instruction-level locality characteristic indicates the percentage of execution
time that the top X values occurred during profiling. The MRV characteristic differs from the
invariance because it does not have state associated with each value indicating the execution
occurrence.

The value profiling information required for determining exploitable semi-invariant code re-
gion behavior also requires the repetition of instruction computation instances. A history depth
of unique instances of register source operands encountered during an instruction’s execution
can be used to calculate the overall redundancy of arithmetic operations in the program exe-
cution. Similarly, the repetition of values in the memory state can be tracked by maintaining

the history of accesses for each memory instruction and a database of all accesses to memory.

14



2.3.2 Reuse Profiling System (RPS)

Although value profiling provides insight about the values occurring during execution, the
nature of estimating a repeatable sequence requires further collection of the run-time behavior of
a program. As such, the Reuse Profiling System (RPS) was developed for this thesis. Figure 2.2
shows a diagram of the information maintained by the profiling infrastructure developed in this
thesis. The foundation of the reuse profiling infrastructure is the value profiling of source and
destination register operands. The infrastructure generally performs reuse profiling of program
execution by enabling three individual profiling methodologies: value profiling, computation
reuse profiling, and memory reuse profiling. In addition, region reuse profiling can be enabling
by annotating regions within code prior to profiling. Region reuse profiling determines the
value, computation reuse, and memory reuse execution behavior for a region of code rather
than a single instruction.

The value profiler keeps a topN value (TNV) table for each register operand. The TNV
table records (V-value, E-execution) pairs for each entry with a least frequently used (LFU)
replacement policy. When inserting a value into the table, existing entries are incremented. If
a value is not found, the least frequently used entry is replaced. A least recently used (LRU)
value replacement policy does not account for the execution occurrence of a particular value. A
modified LFU policy with fixed and temporary entries is used. The temporary entries are used
to contain the most recent unrecorded values and are periodically cleared to allow new entries
to be collected.

To determine the repetition of computation execution, the computation reuse profiler records
instances of all the source operand values of a profiled instruction within a history buffer with NV

entries. The entries maintain (CI-computation instance, FE-execution) pairs with an LRU
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Figure 2.2 Reuse profiling: value, computation reuse, and memory reuse profiling,.

replacement policy. When accounting for matching computation instances, the specific values of
the source operands are not recorded for final determination. Instead, only the reuse statistics
observed within the computation history are maintained. In addition to the history buffer,
an additional computation instance entry records the last computation entry set. This entry
accounts for redundant computation that matches identically with the very last computation
execution, allowing value locality that occurs in streaks or phases to be detected. Finally, to
determine the activity of the history buffer, for every period of 1,000 computation instances,
the number of buffer entries attributing more than 5% of the observed execution instances is
recorded. This measure indicates whether a dominant number of computation instances exists
for a computation instruction.

Conceptually, the memory reuse profiling approach is based on an address-based hash table
system that records a database of references for each accessed datum. The memory addresses
of load and store operations in a profiled program are extracted and used as the hash keys for a
single global hash table. At the same time, information is maintained locally for the instruction

references memory. The local information consists of A-address, V-value of data, and the Reuse
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time. The addresses of the hash table entries correspond to specific data items, such as variables
or array elements, in the executing program. Since the goal of memory profiling is to associate
conflicts between load and store operations, it is necessary for each hash entry to maintain the
unique ID for the last store operation that modified the respective program address. When
load operations execute, their memory addresses access the hash table and find the respective
hash entry. This entry contains the store ID of the last conflicting store operation, and is used
to construct a conflict between the load and store operations. Conflicts between operations
are maintained in the local instruction structure and are updated for each occurring conflict.
Previous work [14] developed a similar address hash structure for evaluating data dependences
to direct data speculative optimization and scheduling algorithms.

The region reuse profiling can be intuitively described as emulation of a designated region
of code as a single instruction. Live-in source register values, computations instances, and
memory reuse can be collected for the annotated region. Region annotations can be obtained
using profile-guided techniques or static analysis. The value profiler can designate a trace of
instructions with high individual instruction reuse for region reuse profiling. Further description
of the computation region formation process is given in the next chapter.

Static analysis derives regions consisting of simple loops, capturing potential redundancy
for linked-list traversals and array scans. When statically annotating regions, a defined set of
control blocks composes a region. Formally, a function can be represented by a control flow
graph G(N, E), where N is the set of basic blocks in the function and F is the set of all control
flow edges between blocks in N. The graph can be divided further to represent the individual
instructions that define basic blocks by the graph GI(I, E'), where I is the set of all instructions

in the function and F is the set of all control edges. The difference between graphs G and GI is
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that GI uses implied edges between the sequential instructions of a basic block N. The graph
G1 is trivially created from G by designating every instruction as a basic block.

For each reuse region, profiling instrumentation is inserted to verify reuse at the start of each
region. However, this process involves executing the region to initiate the path of executions
and check the register values and memory database. Thus in validating region reuse, both the
memory region reuse rate and rate that an individual load causes the invalidation of a loop
execution can be determined. During stateless region detection, loops representing memory

regions are annotated for the profiling system to gather the memory region reuse information.

2.3.2.1 Evaluation methodology

The benchmarks used in the experiments of this evaluation and the entire thesis consist of
13 nonnumeric programs: two of the SPECINT92 benchmarks, 008.espresso, 072.sc; seven of
the SPECINT95 benchmarks, 099.go, 124.m88ksim, 126.gcc, 129.compress, 130.1i, 132.15peg,
147.vortex; two Unix utilities, lex, yacc; and two media utilities, mpeg2, pgp. These benchmarks
were selected to represent the characteristics of a wide range of engineering, communication,
and desktop applications. Table 2.1 describes the functionality of the applications studied and
is cited to develop comparisons between the program behavior and reuse characteristics of the
different application types.

To throughly study the value locality characteristics of programs, profile information was
collected for two series of inputs, training and reference. Generally, a training input is selected
to indicate the program elements that are most characteristic of the application behavior. The
data input sets used for all experimental evaluations in this thesis, and the respective number

of dynamic instructions (in millions) executed for each data set are described in Table 2.2.
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Table 2.1 Benchmarks descriptions.

Benchmark

‘ Description

008.espresso

Optimization program for Programmable Logic Arrays.

072.sc

A mathematical spreadsheet program.

099.go An internationally ranked go-playing program.
124.m88ksim | A chip simulator for the Motorola 88100 microprocessor.
126.gcc The GNU C compiler, version 2.5.3.

129.compress

An in-memory compression application.

130.1i

Xlisp interpreter.

132.ijpeg Image compression/decompression on in-memory images.
147 .vortex An object oriented database.

lex A lexical analyzer generator.

yacc A parser generator for context free grammars.

mpeg2 Standard for digital video transmission.

pgp 128-bit digital signature cryptography.

Table 2.2 Data input sets used in evaluating locality.

Data Input Set 1 : Training | Data Input Set 2 : Reference
Benchmark Name | Exec M-instr Name | Exec M-instr
008.espresso | bca.in 307.8 | cps.in 369.7
072.sc loadal 86.8 | loada2 64.7
099.go 2stone9.in 292.9 | 5stone2l.in 11122.6
124.m88ksim | dcrand.big 67.8 | dhry.big 46550.2
126.gcc amptjp.i 855.0 | varasm.i 16301.2
129.compress | test.in 23.8 | bigtest.in 27835.4
130.1i train.lsp 114.3 | reference 35611.2
132.ijpeg vigo.ppm 1072.3 | penguin.ppm 22000.3
147 .vortex persons.250 1082.1 | persons.1k 32806.5
lex lex.1 37.8 | awk.lx.] 35.5
yacc c-parse.y 33.8 | awk.g.y 15.0
mpeg?2 meil6v2.m2v 94.7 | reference 974.2
pgp pgptest.plain 43.8 | pgptext.pgp 54.4
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The amount of time for a reuse profile to be generated plays an important role in the inte-
gration of an architecture mechanism or compiler technique into a traditional high-performance
computing system. Table 2.3 shows the time of the value profiling infrastructure. The second
column indicates the amount of user and system time spent performing control profiling a pro-
gram’s execution. The third column indicates both the time spent performing value profiling
and the factor of evaluation time increase relative to the time of control profiling. The fourth
column shows the both the time spent performing reuse value profiling with memory reuse
profiling and the factor of evaluation increase relative to the time of control profiling.

The amount of time spent in developing, verifying, and releasing software will vary depend-
ing on the level of the potential benefits achievable. Although the times for reuse profiling in
Table 2.3 indicate considerable expense to the program development time, the estimated bene-
fits in program execution significantly outweigh the costs. Methods of reducing value profiling

time by taking advantage of value locality properties have been considered [2].

Table 2.3 Control profiling, value profiling, and reuse profiling times.

Control Profiling (CP) | Value Profiling (VP) | Reuse Profiling (RP)
Benchmark Time (s) Time (s) | (VP/CP) | Time (s) | (RP/CP)
008.espresso 156.5 231.4 1.47 295.6 1.88
072.sc 78.5 114.6 1.46 120.9 1.54
099.go 202.2 306.4 1.51 280.8 1.38
124.m&88ksim 134.5 184.9 1.37 172.5 1.28
126.gcc 944.4 1156.7 1.22 1395.4 1.47
129.compress 29.2 72.3 247 181.9 6.23
130.1i 50.7 89.0 1.75 165.8 3.26
132.ijpeg 152.0 193.9 1.27 319.8 2.10
147.vortex 326.0 378.9 1.16 801.9 2.46
lex 22.1 66.7 3.01 163.4 7.39
yacc 18.8 47.4 2.51 158.2 8.41
mpeg2 28.7 111.7 3.89 323.0 11.25
pep 68.8 167.1 2.42 204.6 2.97
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2.3.3 Invariance

This section examines the invariance of values for instruction types and procedure parame-
ters. For the results, a TNV table size of 10 values was used for profiling. When an instruction
or parameter is said to have an Invariance-M of X, this is calculated by taking the number of
times the top M values occurred during profiling, as found in the TNV table after profiling,
and dividing the number of times the instruction was executed. Table 2.4 shows the percent-
age of execution matching the Inv-10 invariance characteristic and the percentage of dynamic
execution frequency for different individual instruction types.

Table 2.4 includes instruction categories: integer loads (I-Load), integer stores (I-Store), in-
teger arithmetic (I-Arith), integer multiplication (I-Mul), integer logical (I-Logic), floating-point
loads (F-Load), floating-point arithmetic (F-Arith), and all other floating-point operations (F-
Op). The results show that integer invariance is a common behavior in the programs evaluated.
For all programs, the integer loads and the integer arithmetic instructions consistently have a
high degree of invariance and account for the major portion of program execution. The floating-
point instructions, although having a high degree of invariance, are not frequently executed.
These results indicate that dynamic computation redundancy is concentrated in integer opera-
tions and motivates the development of a mechanism to eliminate redundant code execution in
nonnumeric programs.

Many compiler optimizations exploit the invariance commonly exhibited by variables during
program execution. Load instructions represent the mechanism by which variables that reside
in the memory system are transfered to the processor. Due to the growing disparity between
processor and memory performance, load instructions occasionally incur increasingly long la-

tencies. These latencies delay the execution of dependent instructions, which can significantly
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Table 2.4 Percentage execution invariance and percentage dynamic program execution for
individual instruction types.

Benchmark ‘ I-Load ‘ I-Store ‘ I-Arith ‘ 1-Mul ‘ I-Logic ‘ F-Load ‘ F-Arith ‘ F-Op ‘

008.cspresso | 55 (27) | 73 (14) | 48 (32) | 23 (0) 57 ©) | 80(0) | 50 (0) | 98 (0)
072.5¢ 12 (26) | 48 (14) | 49 (26) |34 (0) | 63 (6) | 783 (0) | 0(0) | 50 (0)
099.20 35 (32) | 70 (15) | 30 (35) | 20 (0) | 45 (0) | 100 (0) | 0(0) | 97 (0)
124.m88ksim | 75 (22) | 76 (12) | 65 (30) | 35 (0) | 69 (0) | 60 (0) | 100 (0) | 100 (0)
126.gcc 43 (21) | 36 (12) | 43 (26) | 39(0) | 56 (9) | 67(0) | 0(0) | 0(0)
129.compress | 42 (22) | 14 (6) | 14 (34) | 10 (0) 16 (11) | 0 (0) 0 (0) 0 (0)
130.5 40 (30) | 59 (15) | 55 (25) | 30 (0) | 70 (3) | 90 (1) | ©0(0) | 100 (0)
132.ijpog 25 (20) | 22 (5) | 22 (35) | 35 (3) 18 22) | 75(0) | 0(0) | 90 (0)
47vortex | 55 (27) | 60 (12) | 60 (30) | 10 (0) | 35 (5) | 79(0) | 0(0) | 0(0)
Tox 33 (27) | 42 (10) | 22 (34) | 15 (0) | 30 (6) | 50 (0) | 0(0) | 48 (0)
yace 52 (25) | 50 (11) | 45 (30) | 25 (0) | 52 (5) | 50 (0) | 33 (0) | 67 (0)
mpeg? 32 (19) | 40 (9) | 38 (18) | 13 (0) | 35 (3) | 56 (0) | 0(0) | 33 (0)
pEp 55 (22) | 58 (10) | 5L (31) |27 (1) | 51 (9) | 65 (1) | 45 (0) | 82 (2)

affect system performance. For these reasons, the invariance of load values is an important
characteristic to exploit in both compiler-based and hardware-based techniques. In order to
look at the overall invariance for an instruction, several degrees of invariance were examined.
For Inv-1, the frequency count of the most frequently occurring value in the TNV table is di-
vided by the number of instruction executions. For Inv-X, the occurrences of the top X values
in the final TNV table are added together and divided by the number of instruction executions
to generate the percentage invariant execution. Figure 2.3 shows the invariance for integer
loads for the top five values. The difference in Inv-1 and Inv-5 invariance of load instructions
for most programs is about 10% of the load execution. The results indicate that benchmarks
124.m88ksim, 147.vortex, and pgp have an Inv-5 invariance that accounts for upwards of 65% of
the overall instruction execution. Overall the high percentage of load execution accounted by
a relatively small number of values indicates that potentially recording a limited set of values

for each instruction can amount to significant performance improvement.
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Figure 2.3 Evaluated load invariance of top five values.

Another source of redundancy in programs that can potentially delay the processing of
instructions is the incoming parameter variables for a program procedure. Customizing proce-
dures based on parameter specific values is a beneficial form of compilation [15]. This compiler
specialization can be successfully used when a small set of values occurs frequently for a proce-
dure. Figure 2.4 shows the percentage of function calls with complete parameter repetition for
the five most frequent sets of call contexts. According to the results, specializing procedure calls
based on the the most frequently occurring sets could capture an average of 30% of the proce-
dure call invocations. In the case of pgp, a significantly higher opportunity to affect program
performance is possible since upwards of 50% of the procedure calls are made with the most
frequent arguments. Generally the results indicate that a large amount of redundancy exists
at the boundary between procedure calls and that any advanced technology that attempts to

eliminate computation redundancy will require some element of interprocedural analysis.
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Figure 2.4 Distribution of parameter repetition due to top five most frequently executed sets.
2.3.4 Instruction reuse

The percentage of dynamic instructions reused for three different variations in the number
of computation instances maintained for each instruction execution is presented in Figure 2.5.
The reuse history sizes are varied between 8, 16, and 32 entries. Even for the small number of
entries, the amount of instruction reuse that can be captured is significant, averaging nearly
25% of overall instruction execution. Nearly 40% of instruction execution is reused for compu-
tation instance history capacity with greater than 32 entries. These results assume that each
instruction will maintain a history of the previous computation executions. Memory instruc-
tions in this evaluation are reused if the memory contents accessed during their execution have
been previously accessed in their recent history and not referenced by any store instructions.

A valuable evaluation is to determine the observed reuse behavior of a program when a

table of instruction information limits the reuse collection process to a set number of instruction
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Figure 2.5 Percentage of instruction execution reused for history sizes: 8, 16, and 32 entries.

entries. Figure 2.6 illustrates the effects of altering the instruction reuse collection between 32,
128, and 1024 entries. For all evaluations, a computation instance history size of 16 entries was
used. As can be seen in comparing the results, the evaluation using 1024 closely approximates
the results of Figure 2.5. Otherwise, when only a limited number of instructions can be observed,
the overall percentage of program execution with reuse behavior detected significantly decreases.
This indicates that instruction-level reuse exploitation is largely limited by having to spend
considerable hardware resources to detect the components of the program with value locality
characteristics. This is the primary motivation of the compiler-directed approach proposed
within the next few chapters.

In motivating the proposed techniques of this thesis, it is important to determine the per-
centage of an application that exhibits computation redundancy and recurrence behaviors.

Essentially by identifying whether a small portion of program code contributes to the observed
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Figure 2.6 Percentage of instruction execution reused using reuse table sizes: 32, 128, and
1024 entries.

dynamic execution characteristics, a more effective mechanisms can be designed. Figure 2.7
illustrates the reuse execution based on the static distribution of the instructions that account
for the highest level of reuse in program execution. On average, nearly 40% of the dynamic
computations with reuse properties are being generated by 20% of the static program. The
evaluation is performed while capturing individual reuse behavior for every instruction without
contention in a reuse table. The distribution indicates that certain regions of program computa-
tion may have persistent redundant execution. In such regions, new architectural and compiler
techniques may serve to exploit the characteristics of value distribution. In conjunction with
the results of Figure 2.6, these results indicate that only a small portion a program may have
value locality, yet limited instruction-level hardware table techniques employed to find the reuse

behavior are likely to fail.
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Figure 2.7 Reuse execution based on static distribution of instructions.

The effect of reuse on performance does not only depend on the percentage of reusable
instructions, but also on instruction type. Although reuse of any instruction type will reduce
the instruction fetch requirements of the processor, reuse of specific instruction types also
creates other opportunities to improve processor efficiency. For instance, in the case of reuse
of load instructions, data does not have to be retrieved from the memory system. Similarly,
reuse of branch instructions reduces the demand for performing accurate branch prediction.
Figure 2.8 shows the distribution of operation types (control, memory, arithmetic) within the
regions possessing reuse potential. Clearly indicated by the number of control operations is the
notion that any reuse mechanism must exploit instruction sequences that extend beyond the
basic block.

In order to better understand the reuse behavior of memory values, the reuse property of

loads was measured using two different aspects. Memory reuse measures the occurrence when
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Figure 2.8 Reuse execution breakdown by instruction type: arithmetic, control, and memory.

memory references to an identical memory location by a particular static load are not interfered
by intermediate store instructions. There is potential to reuse previous results since the memory
location has not been modified. Memory/value reuse measures the same occurrence but allows
intermediate store instructions to write to the respective memory location as long as the value of
data is unchanged. Figure 2.9 reports the potential of eliminating load operations based on the
two aspects, memory reuse and memory/value. Nearly 20% of load instructions do not require
execution if the previous results can be recorded. This percentage can be substantially increased
if the mechanism can track the updates of values in the memory system and communicate that
previous computation results will be unchanged.

One of the most motivating aspects determined by reuse studies for developing new mecha-
nisms for exploiting redundancy in program execution is the existence of redundancy behavior

for many input evaluations. This occurrence indicates that the frequently observed repetition
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Figure 2.9 Reuse execution for load instructions based on memory reuse and memory/value

reuse.
characteristics of programs can serve as focal points for developing new techniques to improve
performance. Figure 2.10 shows the reuse execution for each program for two input evaluations,
INPUT1 and INPUT2. Each input set evaluation has two variations (REUSE8 and REUSE16)
in the number of history entries for each profiled instructions. The results show that a high
degree of reuse is present in both input sets and that the locality behavior is not simply a
solitary component of the training input. On average, instruction reuse can account for nearly
25% of the program execution. More detailed evaluation of the overlap of computation reuse

in the input sets is presented in Chapter 3.
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Figure 2.10 Reuse execution observed for multiple input sets (INPUT1,INPUT2) while vary-
ing the reuse computation history sizes (8,16).

2.4 Related Work

Previous research in the area of value locality and redundancy exploitation can be classified
into four major categories: value prediction, dynamic instruction reuse, memoization, and dy-
namic compilation. Value prediction and dynamic instruction reuse are two important hardware
strategies that attempt to reduce the execution time of programs by alleviating the dataflow
constraints at the instruction level. Value prediction [16] speculates the results of instructions
based on previous execution results, performs speculative computation using the predicted val-
ues, and confirms the speculation. Instruction reuse [17] recognizes that many instructions have
the same inputs when executed dynamically, and that by buffering the previous results, future
dynamic instances can avoid execution by simply using the saved result. Although alternative

schemes include dependence chains of multiple instructions or use profiling information to guide
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the detection mechanism [18], the performance improvement of these proposed approaches is
often limited by the exploitation of value locality at the instruction level [19]. In the block [20]
and trace-level reuse [3] techniques, hardware mechanisms are proposed to exploit value locality
for large straight-line sequences of instructions. These approaches detect that the inputs and
outputs of a chain of instructions are highly correlated, and recognize that the inherent benefits
of prediction and reuse only materialize when a large amount of execution is eliminated.

Another category of value locality exploitation research focuses on memoization. Generally,
memoization is a technique that stores previous results of computation in memory, and later
invocations are preceded by table lookups for already computed results. Functional and logic
programs use software concepts of memoization, whereas the Tree Machine (TM) [21] and
result cache [22] are hardware implementations of computation memoization. In these models,
computation caching exploits value locality in the way that cache memory systems exploit
spatial and temporal locality of memory accesses.

Dynamic compilation and run-time optimization are emerging directions for computer sys-
tem research which provide improved execution performance by performing some aspect of
compilation at run time. These techniques range from completing compiler-generated special-
ized templates at run time to fully adaptive code generation.

Run-time specialization enables applications to adapt to particular program inputs and
actual run-time behavior. Run-time specialization holds the promise of tremendous performance
improvements for some applications. Staged compilation is a compilation strategy in which the
code-compilation process is completed in multiple stages: for example, at traditional compile

time, at link time, at load time, and on demand at run time. By delaying a portion of the
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compilation process, it becomes possible to take advantage of information available only at the
later stages, with the goal of improving performance of the resulting code.

The portion of compilation postponed until run time is called dynamic compilation. The
principle challenge and trade-off in dynamic compilation is achieving high-quality dynamically
generated code at low run-time cost, since the time to perform run-time compilation and op-
timization must be recovered before any benefit from dynamic compilation can be obtained.
DyC [12], [23] is a dynamic compilation system in which the programmer annotates regions
of the programs that should be compiled dynamically and variables for which to specialize
the regions. A static optimizing compiler automatically identifies which data will have known
values at run time, given the values of the annotated variables, then creates and optimizes
machine-code templates. A post-pass uses these templates to automatically produce generat-
ing extensions that, when executed, produce optimized executable code at run time.

A key design issue in developing an effective dynamic-compilation system is the method for
determining where, when, and on what run-time state to apply dynamic compilation. Current
dynamic compilation systems rely on some form of programmer direction to indicate where
dynamic compilation would be most profitably applied. Several dynamic compilation systems
take a declarative, or transformational, approach, with user annotations guiding the dynamic
compilation process [24], [25], [26]. Auslander et al. [24] proposed a dynamic compilation system
that uses a form of binding time analysis to generate templates for code sequences that have been
identified as semi-invariant. Their approach currently uses user defined annotation to indicate
which variables are semi-invariant. Staging analysis has been proposed by Knoblock and Ruf [26]
as an effective means for determining when computation can be performed early by the compiler

and which optimization should be performed late or postponed by the compiler for dynamic
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code generation. The approach requires programmers to provide declarative hints to the staging
analysis to determine which variables have semi-invariant behavior. In addition, Autrey and
Wolfe have investigated a form of staging analysis for automatic identification of semi-invariant
variables [27]. The Tempo system by Consel and Noel [25] uses partial evaluation techniques
to automatically generate static templates that are selected at run time using dynamic code
generation techniques.

Alternatively, Calpa [28] is a system that generates annotation automatically for the DyC
dynamic compiler. Calpa utilizes execution frequency and value profile information to drive a
program analysis based on a dynamic compilation benefit model. Finally, run-time optimization
techniques such as Dynamo [29] and Daisy [30] are software systems that attempt to optimize
running codes and program binaries by optimizing and placing the translated codes into a

portion of memory for extended execution.
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CHAPTER 3

COMPUTATION REGION FRAMEWORK

A key design issue in eliminating dynamic redundancy is enabling a system that can replace
large amounts of run-time execution with the results from earlier executions. The fundamental
steps of any method of computation redundancy elimination involve identification, exploitation,
and adaption of the redundancy. Performing the identification of redundancy involves detecting
the recurrence and understanding how that recurrence exists between instructions. As evaluated
in the previous chapter, the collection of accurate program reuse characteristics is adversely
affected by limited hardware budgets. Similarly, hardware approaches are severely limited in
the level of analysis that can be performed at run time. Declarative approaches offer the
advantages of an effective interface to identify invariant code regions since the programmer has
inferences about the code behavior. However, current trends in programming environments
indicate the growing demands on the compiler to perform various degrees of program analysis.

Generally a compiler can identify the critical points of reuse by employing profile informa-
tion and static program analysis. Furthermore, by finding compile-time relationships among
computations, more effective mechanisms of eliminating redundancy can be developed. This
chapter investigates a code representation and compiler framework for using compiler-directed
hardware techniques to eliminate computation redundancy and for guiding compiler program

reformulation techniques for exploiting value locality.
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3.1 DMotivation

This work is motivated by the potential of computation reuse at granularities greater than
the instruction level. From the results of the previous chapter, it can be concluded that
instruction-level reuse is abundant and potentially contributes to the redundancy of large dy-
namic traces of instructions. Recent hardware solutions to ILP limitations have been proposed
to reorder code blocks and store them into a special cache called the trace cache [31], [32];
are possibly identifying invariant run-time behavior manifesting as frequently executed paths
through code. Reuse of large traces of code is an attractive technique since a single invocation
of a reuse mechanism has the potential to eliminate a long sequence of dynamic instructions.

This section presents the intuitive rationale behind using the compiler to identify regions of

program computation that exhibit run-time redundancy.

3.1.1 Reuse region opportunities

The goal of any computation reuse scheme is to minimize the execution time of computing
results that have been previously produced. The following examples illustrate that an integrated
compiler and architecture reuse approach has the potential to eliminate large sequences of
dynamic instructions.

Trace-level reuse. Figure 3.1 represents an example from the SPECINT92 benchmark
008.espresso that demonstrates the complexity of efficiently detecting sequences of reusable
instructions. A macro definition for computing the number of bits set to logical 1 in a 32-bit
word is shown in Figure 3.1(a). The macro divides the 32-bit word into four bytes and uses
each byte as an integer index for the bit_count array. The array is defined to map the respective

byte index into its corresponding number of logical 1 bits. The four components are then

35



summed together. The dependence graph for this segment is shown in Figure 3.1(b) and uses
the following instruction key: A for arithmetic/logical, L for load, R for right shift, S for left
shift, M for move, and B for branch. In this case, all the code falls into one basic block because
there is no possibility of branching until the end of the instruction sequence. The dependence
graph illustrates that the entire sequence of operations is dependent on a single input register
r3 and defines a single output register r26. No other registers defined in the sequence are live-
out, that is, used after the computation sequence. Alias analysis can determine that the array
bit_count is static and does not change during program execution. The instruction sequence
clearly designates an opportunity for reusing previously computed results. Any execution that

starts with a given value in 73 will generate the same computed value in 726.

#define count_ones(v)\
(bit_count[v & 255] + bit_count[(v >> 8) & 255]\
+ bit_count[(v >> 16) & 255] + bit_count[(v >> 24) & 255]

(a)

Er-@-E-E)

—n ~|ln w2l rln
ZEREEEEBERERRRRIE2]Z

(b) (c)

Figure 3.1 Trace-level reuse example source code macro definition (a), dependence graph (b),
and potential reuse sequence (c).
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Region-level and memory reuse. Several studies [3], [17] have determined the limits
of instruction-level reuse by checking whether a dynamic instruction and its current inputs
are the same as a previous execution. Such studies hinder the identification of the maximum
reuse potential that is possible in improving performance given that each reuse attempt has an
associated latency at run time. For instance, reuse at the instruction level may only be effective
for long latency instructions such as divide, multiply, and remainder. Reuse of a sequence of
instructions is more attractive since a single reuse may eliminate the execution of a potentially
long sequence of dynamic instructions.

Reuse Theorem 3.1 Let T be an execution trace of dynamic instructions < 1,19, ...,7, >.
Given a reusable instance of the trace T', then instruction i is reusable for every k € [1, n].

Reuse Theorem 3.2 Let 1" be an execution trace of dynamic instructions < iy, ig, ..., 1, >.
Given a nonreusable instance of the trace T', instruction i; may be reusable for every k € [1,n].

Theorem 3.1 implies that amount of trace-level reuse is limited by the amount of individual
instructions that are reusable. The theorem is used to state an upper bound on the instruction
execution elimination available through trace-level reuse. However, by noting that the overhead
of trace-level reuse may be amortized by grouping instructions to the cost of an individual
instruction, then there are clear benefits to trace-level reuse. Theorem 3.2 in coordination with
Theorem 3.1 states that trace-level reuse may not reach the maximum instruction-level reuse.

The proof of the upper bound for trace-level repetition only applies to acyclic code for-
mations. Sequences such as cyclic loop regions exhibit recurrence without necessarily having
repetition at the instruction level. Individual instruction repetition is unnecessary when there
exists redundancy over the resulting value and the steps to obtain the value can be verified

to execute in an identical way. Theorem 3.3 states that reuse is possible for a given sequence
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of instructions without instruction-level reuse. In Reuse Theorem 3.3, the Input and Output
terms respectively refer to the complete state, both register and memory, for the input and
output elements of a trace of instructions.

Reuse Theorem 3.3 Let T be a cyclic trace of dynamic instructions < i1, 9, ..., 4, > with
two dynamic instances at t, and ;. Given a reusable instance of the trace T execution, then
Inputy(T) and Output,(T) are respectively equivalent to the previous execution record of trace
T with Input,(T) and Output,(T). In such a case, for every k € [1,n] instruction i (t;) will
execute identically as its respective dynamic instruction instance i (t,).

Consider the loop example in Figure 3.2 which computes the sum of the elements in the
array A. To improve program execution speed, it is desirable to remove the loop’s computation
when the resulting sum is identically computed with a previous invocation. Assume that the
loop is first invoked at a time 7 and then at a later time 7 + 0. Additionally assume that
the loop is not located within a program domain in which the compiler could trivially detect
the opportunity to avoid re-computation of the sum. As such, the reuse of the computation
is based on determining the equivalence of the array A at time 7 4+ 0 and time 7, for which
there is a previously computed sum. The equivalence holds if array A remains unchanged along
all executed program paths between 7 and 7+ J. Once the equivalence is established one can
simply use the execution result recorded at 7 to eliminate the need to execute the entire loop
at 7 + 0. Furthermore, it is possible to exploit reuse on the region of instructions without
individual reuse of previous operands occurring during the iterations of the loop.

A real-world example in which control and memory dependences limit the effective exploita-
tion of dynamic redundancy of a cyclic region is shown in Figure 3.3. The example illustrates

the function ckbrkpts from the SPECINT95 benchmark 12/.m88ksim. Figure 3.3(a) shows
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Figure 3.2 Loop example with potential reuse.

source code which scans the contents of the array brktable for breakpoint information that is
updated from a set of only four functions: nobr, br, settmpbrk, and rsttmpbrk. During program
execution, the code behaves as a reusable computation region since it is repeatedly executed
without subsequent calls to any of the four functions that change the contents of the brktable

array. As such, the results of one execution can be reused until the brktable array is changed.

ckbrkpts ()

brkpoints *bp = brktable;
for(cnt = 0; cnt < TMPBRK; cnt++, bp++) {

if(bp->code && ((bp->adr & ~0x3) == addr))
o

‘ nobr () ‘ ‘ br ()‘ ‘ settmpbrk ()‘ ‘ rsttmpbrk ()‘

(a) (b)

Figure 3.3 Region-level reuse example (a) source code and (b) reuse sequence.
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3.1.2 Computation reuse potential

The reuse potential of proposed methods in this thesis is examined by collecting the amount
of program execution that is redundant in the form of cyclic and acyclic sequences of instruc-
tions. The profiling techniques outlined in the RPS infrastructure record reuse opportunities
for basic blocks and regions of code. Regions are defined as paths of basic block segments and
include both cyclic and acyclic formations. Reuse for blocks and acyclic regions is detected by
considering sequences of values consumed and produced by instructions as a program executes.
Load instructions were considered reusable if their source memory location had not been ac-
cessed by any store operation between load executions. Reuse for cyclic regions is detected by
monitoring additional program state at the invocation of the respective region headers.

Figures 3.4 and 3.5 illustrate the amount of program execution satisfying the evaluation
guidelines. Each figure includes a block and region column. The block reuse shows an upper
bound on the portion of a program that can be exploited with previously proposed techniques.
On the other hand, the region-level exploitation subsumes the basic block definition and can ex-
ploit reuse along several control decisions. For these results, eight records of previous dynamic
information for each code segment were maintained to check the potential reuse of program
execution. Figure 3.4 represents the static percentage of each program exhibiting reuse behav-
ior and Figure 3.5 represents the dynamic execution percentage of overall program execution
exhibiting reuse behavior. These results indicate that region-level reuse mechanisms can poten-
tially exploit almost twice the amount of program execution available to block-level approaches.
The substantial difference between the block-level and region-level models is attributed to the
ability of the region-level mechanism to reuse code executions that exhibit high-level recurrence

not solely caused by instruction-level repetition.
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Figure 3.4 Static percentage of program with region reuse potential.
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Figure 3.5 Dynamic percentage of program execution with region reuse potential.
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3.2 Compiler Support for Reusable Computation Regions

Compiler support of the CCR approach involves several components: deterministic com-
putation identification, reusable computation region construction, reuse formation, and reuse
selection. Support for compiler-directed computation reuse is implemented in the IMPACT
compiler framework. This section describes the four components related to the determination
of reusable computation within general purpose imperative programming languages.

The most practical region of instructions that can be easily conveyed to hardware is defined
by a single starting point and a single ending point. This definition allows all control path
executions between the two points to be potentially exploited by the underlying hardware
reuse mechanism. A compiler-directed approach could transform the code, as illustrated in
Figure 3.3(b), by introducing a reuse instruction to inform the hardware that a sequence could
potentially be reused. The reuse of memory computations can be significantly aided by the
analysis techniques employed by modern optimizing compilers. Using interprocedural analysis,
the complete points-to relation [33] for the brktable array can be constructed at compile time.
As such, the compiler-directed approach can direct the program points that affect the array to
invalidate previously recorded computations based on the contents of the array. This provides
potential reduction in the cost of recording computations using memory since otherwise the
consistency of all 16 entries of the brktable array must be maintained. As long as the equivalence

is established, future invocations can use the execution results recorded at an earlier time.

3.2.1 Deterministic computation

The compilation techniques for dynamic computation reuse are based on the concept of de-

terministic computation regions. A deterministic computation region is an arbitrary, connected
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subgraph of the program control flow graph that can be analyzed to determine the location of
all input operands that affect the region’s computation. In the context of the CCR framework,
two classes of deterministic regions exist: stateless (SL) and memory dependent (MD). Stateless
regions are simply paths of code that define computation results which are based only on register
operands and not on memory state. Memory dependent regions are paths of code that define
computation based on both register operands and memory state, with the requirement that the
memory dependence be either completely or conservatively determined at compile time. The
compiler first performs program-level alias analysis to identify such load instructions and anno-
tates them as determinable, indicating that all potential store instructions can be determined
at compile time. The following section describes the interprocedural memory analysis support
that enables the elimination of redundant memory accesses without monitoring the processor’s
memory access activity.

Static analysis derives regions consisting of simple loops, capturing potential redundancy
for linked-list traversals and array scans. When statically annotating regions, a defined set of
control blocks composes a region. Formally, a function can be represented by a control flow
graph G(N, E), where N is the set of basic blocks in the function and F is the set of all control
flow edges between blocks in N. The graph can be divided further to represent the individual
instructions that define basic blocks by the graph GI(I, E'), where I is the set of all instructions
in the function and F is the set of all control edges. The difference between graphs G and G1 is
that GI uses implied edges between the sequential instructions of a basic block N. The graph
G1 is trivially created from G by designating every instruction as a basic block.

The first compilation phase of exposing computation reuse is based on the concept of deter-

ministic computation regions. A deterministic computation region is an arbitrary, connected
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subgraph of the program control flow whose input register and memory locations can be identi-
fied. If the inputs do not change from invocation to invocation, and the input memory locations
remain stable, the execution outcome of a deterministic region is completely reproducible. In
the current implementation, a deterministic region cannot change the contents of memory. This
restriction is mainly for the purpose of reducing the complexity of the hardware implementa-
tion. To further expose deterministic regions, global variable migration (register promotion),

redundant store elimination, and store migration are applied.

3.2.2 Interprocedural memory disambiguation

Interprocedural pointer analysis is a critical component of employing the compiler-directed
computation reuse scheme. The key issues concerning interprocedural analysis are flow sensi-
tivity and context sensitivity. A flow-sensitive analysis system constructs pointers assignments
with respect to the order of statement execution and determines the exact assignment to a
memory location when various program paths include assignments that supersede earlier as-
signments. A flow-insensitive system provides less accurate information by representing all
possible assignments to a memory location. A context-sensitive system distinguishes different
caller contexts so that alias information for different functions do not conflict with each other.

The IMPACT compiler is supported with Cheng’s work [34] which develops an efficient
context-sensitive, flow-insensitive interprocedural modular program analysis to guide aggressive
ILP optimization and scheduling. The system uses access paths [35] to represent memory
location by how they are accessed from an initial variable. Globally and locally named data
structures are analyzed to a precise representation in the points-to relation [33]. Coarse artificial

names are also assigned for dynamically allocated objects; however, the complete points-to
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Figure 3.6 Use of compiler analysis in computation redundancy results in two potential false
conflicts: context based (a) and dynamic-structure (b).

relation cannot always be derived. The impact on using compiler analysis to determine reuse of
memory data results in conservative invalidation of memory reuse and is evaluted in Chapter 4.

Figure 3.6 illustrates the false invalidation conflicts caused by context-based overlap and
course-grain dynamic aliases. Figure 3.6(a) indicates the case when a particular memory access
in function F& can potentially write to two possible data locations. When reuse is being
attempted on one of the data locations, it is necessary to invalidate the reuse when the write
statement in function F3 is executed. This invalidation is necessary even if the opposing data
location is being written. Similarly, many dynamically allocated data structures can only be
coarsely analyzed since their formation is based on run-time behavior. Figure 3.6(b) illustrates
the case in which all potentially reusable computations accessing a data structure must be
invalidated if elements cannot be precisely invalidated. The example shows that access to the
items in one dynamic linked list of items causes the invalidation of the entire data structure of

elements even when no conflict between other lists exists.
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Figure 3.7 Distribution of static and dynamic memory references that are classified as deter-
minable for load instructions.

An important aspect to determine is whether the interprocedural analysis system provides
sufficient support for developing redundancy elimination techniques. Figure 3.7 illustrates the
static and dynamic percentage of memory references that can be classified as determinable
for load instructions. It appears evident that a wide range of applications can be accurately
analyzed to recognize the relation between the dynamic memory references at compile time.

Figures 3.8 and 3.9 report the breakdown of static memory instructions and the respective
number of named data locations that can be potentially accessed. By comparing the distribu-
tions of load and store instructions that can only access a single named data location, it can
be concluded that using context-sensitive alias analysis is sufficient to precisely invalidate reuse
in memory references. The results indicate that nearly 90% of the load and store instructions

executing in the programs reference a single named data object.
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Figure 3.8 Static breakdown of named data locations for load instructions.
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3.2.3 Data Connection Framework (DCF)

The overall framework for using the interprocedural analysis is highlighted in Figure 3.10.
The figure illustrates the process of gathering the information of individual references in func-
tions and constructing a database containing all access information (reads/writes) to referenced
data in the Data Connection Framework (DCF). The database maintains the set of all instruc-
tions in a program that can alter a named storage location and is used during placement of
invalidation instructions. Two stages of analysis, intraprocedural and interprocedural, are first
performed at the high-level (Pcode) representation of code a program within the IMPACT
compiler. The result of this analysis is then passed down to the Lcode representation in the
form of Sync Ares [36]. The term Sync Arc derives its name because it maintains the analysis
information in the form of synchronizations arcs between Lcode memory operations. The scope
of this thesis does not permit adequate explanation of Sync Arcs. One important characteristic
of Sync Arcs is that Lecode modules accurately maintain their information through all compiler

transformations.

PCode LCode

Intraprocedural Interprocedural

Analyze Build Accurate Callgraph Data Connection Framework (DC
Local Statemen Propagate Function Summary

(context-sensitive)

7 |
I

DCF Program Database
for Reuse Queries

Operation Lis[

Figure 3.10 High-level interprocedural analysis and Data Connection Framework (DCF).
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3.2.4 Reusable computation regions (RCRs)

Several constraints exist in developing effective tasks for the reuse mechanism. The essence
of the reuse scheme is that the compiler directs the hardware to regions of code that have reuse
potential and can be conveyed through the instruction set architecture modification previously
mentioned. Therefore, to use the mechanism effectively, the regions selected are those that have
the maximal number of reusable paths (acyclic or cyclic) between a starting and ending point.
The reusable computation of such paths is a subgraph of a deterministic computation region,
called a reusable computation region (RCR).

A reusable computation region delineates the section of program code that will be dynami-

cally reused in the CCR framework and involves four region points:

Inception Point Starting point for memoization mode and location for reuse instruction.

Finish Point Ending point for memoization mode. Any computation within the path between

the inception point and finish point can be reused.

Exit Point Any potential side exit from computation region and termination of memoization

mode. No reuse along paths from inception to exit point.

Entry Point Side entrance to reusable region that is not involved with reuse or memoization

of computation. Entry points do not necessarily exist for RCRs.

Figure 3.11(a) illustrates an abstraction of the reusable computation region concept. Reuse
in the computation region occurs is any abstract execution path shown in Figure 3.11(b) while
Figure 3.11(c) illustrates paths of execution are not viable for computation reuse in an region-

based mechanism.

49



v ¥ v

Inception Point Inception Point Inception Point
Entry Point Entry Point
Computation
Region
4.—j> Exit Point Exit Poir
Fini@Point Finish Point Finish Point
REUSE EXECUTION
(a) (b) (c)

Figure 3.11 Abstract reusable region (a), reuse path in region (b), and execution paths in
region (c).

Computation Region Characteristics.

There are a number of computation region characteristics that are useful in effectively
exploring the compiler-directed concepts proposed in the next chapter. This chapter has already
described how regions can be acyclic or cyclic and memory dependent or stateless. The most
basic characteristic is called the region degree which is a measure of the number of inputs and
outputs for the sequence of instructions. Intermediate register results which are not required
after the region are not attributed to the degree of a region. Only dependent registers that are
live-in or live-out for the region are necessary for completing successful reuse.

Two characteristics that describe the properties of the region are the count and the height.
The count characteristic is the number of instructions connected between the input and out-
put register operands. Similarly, since the instructions of a region do not necessarily belong
to the same dependence tree, the characteristic dimension indicates how many independent
dependence trees exist in designated region of code. The height characteristic describes the de-

pendence height (level of dependent instructions) of all of the dependence relations found in the
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region tree. Similarly, since the regions can include multiple paths of execution, distinctions can
be made about the height characteristic. The primary distinction is reporting the path height,
which is the dependence height for stated path through the computation region. For regions
without multiple paths between the inception and finish points of the computation region, the
height of the region is constructed by finding the maximum dependence relation of the included
instructions. The formation of computation regions is generally heuristic based since natural
contiguous regions rarely exist and effective regions must be constructed by trying to eliminate
the redundant execution for either a sequence with a high count of instruction or significant
dependence height.

There also exist region characteristics that indicate properties about the region execution
run-time behavior and functionality. Concerning input variation, an input value may range
in behavior from being dominant to transient. A dominant input remains invariant for many
executions, while a transient input changes frequently (although possibly remaining in a small
number of variations). The behavior of an input to a region can influence the construction
of the hardware mechanism that validates the computation results. Related to the method of
describing the variance of a single region input, the polyvariant and nonvariant region types
describe classes of region execution. Polyvariant regions may have many computation instances
that are valid for a region at any time, whereas nonvariant region can only have one valid
computation instance and respective result. Generally, polyvariant region exploitation is based

on capturing recurrence, and nonvariant region exploitation is a redundancy elimination.
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3.2.5 Computation region formation

With compiler and hardware support in an integrated reuse scheme, the compiler must iden-
tify a computation tree containing a sequence of instructions in which results can be recorded
in hardware structure.

The compiler identifies the source operands to the tree of instructions so that each time it
initiates the tree, the hardware determines if the input operands were used in the tree’s previous
history of execution. The primary advantages of region-level reuse are that (i) the execution a
large number of instructions can be eliminated, (ii) the reuse information may be stored more
concisely at region-level than at instruction-level, and (iii) group-level reuse may require fewer
ports architectural register files to validate previous computation results. However, there are
several critical issues for the design of effective compiler techniques to form the optimal groups
of instructions to facilitate group-level reuse.

First, to increase the number and size of computation regions in real programs, several com-
piler optimization techniques need to be applied. These optimizations include global variable
migration (registerization), redundant store elimination, store migration, and profile-guided
function inlining, in addition to traditional and advanced optimization. Several programming
language barriers to directing the elimination of dynamic computation redundancy are removed
by performing these optimizations. When implementing region-level reuse it is important to
reorder instructions to optimize the construction of the region. Region-level reuse dissipates to
instruction-level reuse if only a single instruction can be gathered, which degrades the motiva-
tion of integrating the compiler and hardware in coordination approach.

The process of selecting reusable computation regions is heuristic-based and divides the

computation into cyclic and acyclic region formation. The next sections describe profile-guided
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and static region formation methods that are developed using the following techniques. The
process for computation regions consists of five primary steps: seed selection, successor forma-
tion, predecessor formation, and subordinate path formation, and reiteration of the previous
formation steps. The first step is to select a starting instruction for creating a computation
region, known as the reuse seed. The second step is to extend the region from the reuse seed
by selecting a path of reusable successor instructions. Selection of each successor is based on
three criteria: instruction reusability, region inputs, and region accordance. Determining the
instruction reusability is a requirement for the region formation method.

The region input heuristic is used to determine if the instruction inputs overlap with the
inputs of other instructions already selected. For example, if the instruction uses source registers
that are also used by selected instructions, then the cost of adding the instruction is already
subsumed. Similarly, when considering a successor instruction, reaching definition dataflow
analysis is performed to detect an occurrence when a source register value is confined to a
limited set of values with the currently selected region. This detection reduces the variability of
the instruction’s result, increasing its potential of being part of a successful reuse. Finally, the
total number of live-in and live-out registers within a computation region is limited to eight.
The region accordance heuristic is used to prevent the inclusion of memory instructions to the
region that increase the potential of invalidating the computation region already selected. As
such, the accordance heuristic limits the number of distinguishable named data locations to four
in order to reduce the creation of ineffectual memory dependence regions. Early experimental
evaluations of the accordance heuristic led to the definition of this setting. A summary of the
algorithm applying all the heuristics for the selecting a successor instruction with the highest

potential for improving the existing reusable region is shown in Figure 3.12.
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Reuse_Successor(suce, Region)
1 potential_succ_list = Dependent_ops(Region);
2 FOREACH candidate IN potential_succ_list DO
// Include only instructions that can be migrated to region

3 IF !Operation_migration(candidate, Region) THEN
4 potential _succ_list = potential_succ.list - candidate;
5 continue
// Include only instructions matching method’s estimation of reuse
6 IF !'Reuse_Applicability(candidate, Reuse_method) THEN
7 potential _succ_list = potential_succ_list - candidate
8 continue
9 candidate.reuse = Reuse(candidate, Reuse_method);

// Calculate the priority items for each candidate instruction
10 FOREACH candidate IN potential _succ_list DO
11 Candidate_Region = Region U candidate;

14 candidate.candidate_region = Candidate_Region;

12 IF Input_Overlap(candidate, Region) THEN

13 candidate.overlap += 1;

14 candidate.overlap += Overlap(candidate, potential _succ-list);
15 candidate.height = Dependence_Height (Candidate_Region);
16 candidate.count = Region.count + Instr_cost(candidate);

17 candidate.order += Dependents(candidate);

18 candidate.degree += (Input_Degree( Region) - Input_Degree(Candidate_Region));

19 candidate.degree += (Output_Degree(Region) - Output_Degree(Candidate_Region));
20 candidate.degree += (Memory_Degree(Region) - Memory_Degree(Candidate_Region));
21 potential_succ_list = Sort (potential succ_list , SSP_function);

22 FOREACH candidate IN potential_succ_list DO

23 IF Functional _Region(candidate.candidate_region) THEN

24 return (potential_succ_list.top_entry);

25 return (Empty)

Figure 3.12 Function for selecting successor reuse instruction.

The heuristic function to coordinate the selection of the region successor as called in the

pseudo code of Figure 3.12 is

order; + height; + overhap;

SSP; = (Reuse; x ) (3.1)

1+ degree;

The successor selection priority (SSP) is calculated for every instruction considered for
grouping within the computation region. The reuse estimation is generated by the region
formation methodology. The purpose of the selection priority function is to increase the depen-

dence height and instruction order of the computation region while minimizing the input /output
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degree. By minimizing the degree, the opportunities to compact the results of the regions and
reduce the number of required validating register ports are reduced. The region heuristics of
Figure 3.12 and the individual formation reuse requirement find successor instructions that have
good individual reuse, minimize the unnecessary invalidations, and minimize the number of in-
put register dependences to the computation. The selection process attempts to find successor
instructions through the dependence graph relations between instructions and migrates candi-
date instructions to the already selected region to create larger reuse sequences. This prevents
the original program ordering from hiding potential reuse. The process of adding successors
to the region continues until the successor path can no longer be extended using the successor
heuristics.

The third step of RCR formation is to expand the computation path by adding predecessor
instructions that flow to the original reuse seed. The fourth step is to add subordinate paths of
reuse defined along the principle path. Such paths are selected by applying similar heuristics

to those of the main path selection algorithm in the form of the following function:

PSP —( order_regionyqn " degree_regionmam  height_regionpan y TeuSepath
path —

order_regionqin  degree_regionpgn — height_region,gin  TeUSemain_path

(3.2)

The path selection priority (PSP) is calculated for each path being considered for inclusion

in an existing region. Subordinate paths are included based on the highest priority until the
candidate priority values being considered are less then 75%. In addition, if a path cannot be
included with a region because the composite region exceeds the degree capacity designated for

the region generation, then the path is discarded. The region formation algorithm makes further
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attempts to formulate such paths as individual regions by performing tails duplication for the
composite region and re-initiating the region selection process. Similarly, if the subordinate
path passes the selection priority and it does not end at the exit point, selective restructuring
of the region and path tails is performed. After the inclusion of any subordinate paths, the
computation region is generated. Side entrances, other than the inception instruction point
to the selected set of paths, are annotated as entry points. Exit points are defined by all
branch instructions that are directed to code outside of the selected set of paths. The final
step of the reuse selection policy is to continually repeat the process of growing successors,
predecessors, and subordinate paths until the region can no longer be expanded. By analyzing
the newly formed region contents after each interval, the value-flow analysis heuristics are able
to improve the reuse opportunities. The final transformations remove subsumed regions and
partially duplicate beneficial regions when subordinate paths exhibit reuse potential but cannot
be included with the current region.

A summary of the algorithm for the formation of reusable regions is shown in Figure 3.13.
The algorithm consists of cyclic region formation, acyclic region formation, and region trans-
formations. It operates over the function control flow graph (CFG) and processes the set of
instructions (I) in each CFG node, applying the respective heuristic functions of either the
profile-guided or static region formation method. At the end of iterative process, the top-most
resulting instruction is established as the inception point for the reusable computation. The
bottom-most instruction is defined as the finish point.

Figure 3.14 illustrates the acyclic formation process as applied to a region of code from the
function _cactive of benchmark 008.espresso. The four fundamental steps of region formation

are noted in the figure. The seed selection which is reordered by reuse potential is identical
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R = Empty;

// Construct cyclic regions

FOREACH region IN Cyclic_Reuse(CFG) DO
R = RUregion;

// Order instruction reuse potential

Prioritize_Seed_Selection(I);

WHILE (si = Reuse_Seed_Selection(I)) DO

R = st;
succ = St;
pred = si;

change = true;
// Tterate over successor, predecessor, and path formation
WHILE (change) DO
change = false;
// Select successor (i ¢ Region)
// using heuristics and reordering
WHILE (succ = Reuse_Successor(succ, Region))
Region = Region U succ;
change = true;
// Record current region boundary
Region_in formation = Boundary(Region);
// Select predecessor (i ¢ Region)
// using heuristics and reordering
WHILE (pred = Reuse_Predecessor(pred))
Region = Region U pred,
change = true;
// Form subordinate paths weighted by reuse potential
subordinate_paths = Reuse_Paths(Region)
FOREACH path IN subordinate_paths DO
IF (Reuse_Path(path)) THEN
change = true;
FOREACH instr IN path DO
Region = Region U instr;
succ = Bottommost_Instruction(Region);
pred = Topmost_Instruction(Region);
R = RU Region;
// Remove subsumed regions
FOREACH region in R DO
IF (Reuse_Region_Subsumed(region, R)) THEN
Delete(region, R);
// Duplicate and coalesce adjoined regions
FOREACH region in R DO
IF (Adjoined_Reuse_Region(region, R)) THEN
Duplicate_and_Coalesce_Region(region, R);

Figure 3.13 Algorithm for selecting reusable computation regions.
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to the example used to motivate trace-level computation reuse (Figure 3.1). The first instruc-
tion of the trace example has significant expected reuse value and a high number of dependent
operations, making it the best seed candidate. Following the selection of successor and pre-
decessor instructions (steps 2 and 3), subordinate paths are then selected. The region shown
in Figure 3.14 has significant reuse and execution run-time characteristics and plays a major
role in improving the overall application performance. The region represents a fundamental
code segment of the application natural algorithm which cannot be optimzed using traditional
techniques. The region formation techniques presented in this section can be used to isolate
similar application specific computation regions from general programs. Although many dif-
ferent techniques can be used to form regions from a number of programming languages, the
work of this thesis simply presents the initial motivation for developing computation-aware

compilation environments.

x = a[last]; !

~X&x>>1)& cube_inmask;\ 3 <:I Step 3: Predecessor Selection

Step 4: Subordinate Par: >
Selection

t1 = bit_index(x) / 2;
t2 = (last - 1) * (BPI/ 2);

<:I Step 2

Figure 3.14 Region formation example for the function _cactive of benchmark 008.espresso.
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3.3 Profile-Guided Computation Region formation

The nature of detecting code sequences with redundancy execution behavior requires some
estimation of the run-time behavior of a program. By profiling an application on a set of
sample inputs, representative run-time information can be conveyed to the compiler. This
enables an optimizing compiler to increase application performance by transforming its code to
achieve better execution efficiency for those sections of the program with the highest execution
frequency. Optimization of applications based on run-time value invariance [2], [24] offers
great potential in exploiting run-time behavior. Other dynamic techniques have focused on
discovering invariant relationships between variables from execution traces [37]. Invariant value
profiling was also used to prove the effectiveness of compiler-directed computation reuse [38].

As the initial implementation of the proposed mechanism is completely directed at compile
time, an accurate estimation of program reuse potential is essential. The profiling technique of
RPS was developed as a result of this work and is designed to report accurate reuse informa-
tion for three components: instruction-level repetition, reusability for memory operations, and
cyclic computation recurrence. Instruction-level reuse information consists of the frequency
of individual values and the recurrence of values within a set time interval. Memory reuse
information consists of the frequency of updates to the referenced memory locations of each
memory instruction. Cyclic computation recurrence is gathered by profiling the input registers
at the start of cyclic region invocation, by recording the number of iterations for each loop
invocation, and by relating the individual memory reuse information of every cyclic iteration

to the reusability of cyclic invocation.
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3.3.1 Reuse selection policy

Cyclic region formation. Cyclic reusable regions are identified by detecting inner-
nested loops with deterministic computation. This excludes the loops that alter memory state
with store and subroutine instructions. Similarly, load instructions within the loop must be
classified as determinable. These same regions are identified earlier by the profiling system
in such a way that reuse information is gathered for each invocation of the loop. The cyclic
profiling information is used to check that a loop has a greater than 40% opportunity to reuse
results and that greater than 60% of the loop invocations have multiple loop iterations. The
threshold is satisfactory in balancing the cost of unsuccessful reuse attempts with the benefits
of successful reuse. Formation of loop regions also use the path selection heuristics and include
compiler analysis techniques to prevent loop variable increments from deterring the reusable
region selection.

Acyclic region formation. The decision process for acyclic computation regions consists
of five primary steps: seed selection, successor formation, predecessor formation, subordinate
path formation, and reiteration of the previous formation steps. The first step is to select the
seed instruction for creating a computation region from the set of all instructions within a
function, ordered by the weight of the instruction execution, reuse potential, and the number
of dependent instructions within the instruction’s basic block.

The second step is to extend the region from the reuse seed by selecting a path of reusable
successor instructions. While applying the region input and region accordance restriction, a
successor instruction is then also considered based on its reusability. An instruction can be
considered reusable if the weight of the top k recorded executions detected during profiling

accounts for a large fraction of the instruction execution. By maintaining the ten most recent
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instruction executions, an instruction can also be designated as reusable if the history of the
computation instances indicates a high tendency for reuse execution. Load instructions must
satisfy two additional conditions: (1) the memory location referenced is reusable (defined by
the frequency that stores access a location used by the load) and (2) the memory location is
annotated as determinable. Control flow transitions between code blocks are considered likely
if the weight of the control edge is 60% of the weight of instruction i, Fzec(i). Otherwise, the
invariance of the conditional branch operands is used to select the successor path. Essentially,
instruction-level profiling information is used to find the individual repeating instructions and
to construct large regions of potential reuse in a bottom-up fashion. Therefore, an instruction

7 is reusable if it first satisfies the heuristic functions shown below:

Reuse_Persistence(i) = (Inva;i;;?j)[k} (@) > Rp) (3.3)
Reuse(i) = (% > Ri> (3.4)
MemReuse(i) = <% > Rm> (3.5)

Empirical evaluation found that setting R; and R,, to .65 produces good reusable computa-
tion. Lower values tend to admit too many instructions in the region that are not successfully
reused. The setting of R, is varied depending on its use in compiler-based code reformulation
or compiler-directed computation reuse. Setting R, to .60 and the number of invariant values

to five typically accounted for good persistent candidate region behaviors.
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These profile-guided heuristics along with the other region restrictions find successor in-
structions that have good individual reuse, minimize unnecessary invalidations, and minimize
the number of input register dependences to the computation. The selection process attempts
to reorder instructions to create larger reuse sequences. This prevents the original program
ordering from hiding potential reuse. The process of adding successors to the region continues
until the successor path can no longer be extended using the successor heuristics.

The third step of RCR formation is to expand the computation path by adding predecessor
instructions that flow to the original reuse seed. The conditions for adding a predecessor
instruction are analogous to the conditions of successors. The successor and predecessor points
define the principle reuse path in the control flow graph representation. The fourth step is to
add subordinate paths of reuse defined along the principle path. Such paths are selected by
applying similar heuristics to those of the main path selection algorithm with the additional

path compatibility requirements outlined in the previous section.

3.3.2 Enhancing profile-guided region formation

In the base computation reuse approach proposed in the next chapter, it is important to
select only statistically beneficial regions because the reuse mechanism could not be selectively
used at run time. More importantly, the use of profile information by compiler-directed mech-
anisms can hide opportunities since profile-guided decisions may not be representative of all
program workloads. Generally, it is imperative that all regions with any potential reuse behavior
be annotated. Because many programs have different modes of operation for different inputs,
collecting profiling information on a wide variety of inputs is an essential part of integrating

compiler-directed computation reuse into processor design and software development.
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Table 3.1 Region formation statistics based on profile-guided techniques.

Benchmark | Regions (Training) | Regions (Reference) | Overlap | Unique | Max |

008.espresso 148 155 0.85 0.20 1.20
072.sc 70 71 0.95 0.06 1.07
099.go 440 484 0.80 0.30 1.30
124.m&88ksim 128 128 0.99 0.01 1.01
129.compress 36 36 0.98 0.02 1.04
130.1i 57 60 0.95 0.10 1.12
132.ijpeg 60 58 0.92 0.05 1.05
147.vortex 192 199 0.97 0.07 1.07
126.gcc 1764 1905 0.86 0.22 1.22
lex 51 53 0.99 0.05 1.06
yacc 69 73 0.96 0.10 1.10
mpeg2 83 80 0.95 0.01 1.02
pep 51 54 0.82 0.24 1.24
average - - 0.92 0.11 1.12

To enhance the effectiveness of profile-guided region formation, multiple-input value-invariance
profiles were collected. Region formation steps were applied to programs annotated with value-
invariance information from the separate inputs. Table 3.1 shows the resulting region statistics.
Columns 2 and 3 indicate the number of regions formed based on the training and reference
inputs, respectively. Using the number of regions formed based solely upon the training input
set as a base, three comparison fractions are calculated. The first comparison, overlap, indicates
the regions identified using both selection methods. The average overlap fraction indicates that
upwards of 92% of regions have invariant value behavior detected when region formation is
guided by either input set. The second comparison, unique, designates the regions found only
with the second input set. The final comparison, maz, describes the maximum number of re-
gions found when using both input sets. The average max result indicates that 12% of regions

could be lost if only a single input were used to train the formation of computation regions.
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The process of guiding reuse formation by using multiple input sets to find more region
opportunities can be further extended by changing the reuse threshold. Code regions may
have periods of execution where reuse does dominate execution, although such periods may
not account for the majority of region behavior. Since the goal of enhancing profile-guided
region generation is to select any possible computation with reuse behavior, the criteria for
determining favorable R; and R, thresholds changes and new evaluations are required. A
region layering technique is used to grow regions by incrementally lowering the reuse threshold.
First, regions with a higher threshold are exposed and then the formation process gathers more
regions by steadily relaxing the instruction inclusion threshold. Figure 3.15 shows the variation
in percentage of total dynamic program execution captured in regions by region layering with
four reuse threshold levels: 65%, 60%, 55%, and 50%. The results of Figure 3.15 indicate that

nearly 15% more program execution can identified by lowering the reuse threshold.
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Figure 3.15 Dynamic reuse potential based on reuse layering thresholds.
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3.4 Static Computation Region formation

Although the benefits of profile-directed optimization have been widely accepted, there are
several fundamental drawbacks to profiling. First, profiling can be time consuming. Second,
profiling may not be feasible in some environments, such as real-time or embedded applications.
Third, profiling assumes that program behavior remains relatively constant for all possible
inputs. If the program’s behavior varies, poor performance after compilation may occur for
some inputs. Finally, it is generally infeasible to generate all of the inputs to accurately model
all program behavior.

An alternative to using value-invariant profile information is to use static program analysis
to find traces of code with invariant behavior. A framework, called the Reuse Approximation
System (RAS), was developed to estimate reuse behavior from other program information than
reuse profiling. The RAS framework includes two methods, inferred and structured, for compu-
tation region identification. Both techniques are based on control profiling (branch execution
frequency), a generally accepted technique used in most modern optimizing compilers. Tradi-
tionally, to expose sufficient instruction-level parallelism (ILP), basic blocks can be coalesced
to form superblocks [39], an extension of trace scheduling [40], which reflect the most frequently
executed paths through the code. Since superblocks have a single entry point and may have
multiple side exits, they are similar to computation region code structures.

Frequently executed paths of code, found statically or dynamically, represent fundamental
opportunities for reusing previous execution results. The main path of a superblock is generally
a long sequence of frequently revisited instructions. Also, since branches are controlled by
program data, the nature of the flow of control through an execution path relates directly to

the value locality being exercised by the decision components of code. For these reasons, the
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proposed static region techniques are based on assigning superblocks as computation regions
for the CCR approach.

Figure 3.16 illustrates the percentage of program execution for the training input attributed
to superblock and candidate superblock traces of code. These results indicate that a significant
percentage of program execution is attributed to candidate regions and can be exposed without
the aid of value-invariant profile information. Both static region identification techniques involve
finding candidate superblocks, determined by examining two features: instruction character-
istics and region input/output requirements. First, superblocks are selected and partitioned
based on the characteristics of the instructions in the path of basic blocks. Basic blocks with
procedure calls and unresolvable memory accesses are not included within regions. In addition,
a candidate region can only include load instructions which have been analyzed as determinable,

indicating that all potential store instructions to a load can be determined at compile time.
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Figure 3.16 Distribution of dynamic execution in candidate superblocks and all superblocks.
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The second feature of candidate superblocks relates to the design of the CRB entries and
is used to achieve reuse of a computation region at run time. The base model of the CRB
supports an input and output eight-entry register array, storing a computation mapping between
eight input registers and eight output registers. Experiments revealed that 90% of superblocks
matched these input and output requirements. Partitions of superblocks are selected when
the capacity of the computation entries is insufficient to generate an execution mapping for a

potential region.

3.4.1 Inferred computation regions

The inferred region identification approach uses interprocedural propagation of dataflow
information to identify regions that possess some invariant behavior. The approach uses a
coarse-grain dataflow analysis technique to infer value invariance for candidate regions. Inferring
invariance in candidate superblocks is based on detecting constructive and destructive inferring
instructions. Constructive inference indicates that a confined set or range of values may occur
for an instruction or an instruction operand during some mode of execution of a program. The
precision of an instruction’s inference indicates whether the set of values is closed or open. A
closed inference is made when a complete set of relations has been determined that governs
all path executions, while an open inference has at least one unknown definition. The order of
inferred precision indicates the number of inferred relations that have been determined for an
instruction. An open precision for a variable means that it has an unknown value that it can
assume at run-time.

Table 3.2 shows the inferences that the system makes for memory (loads) and the operands of

computation instructions. Memory instruction inferences are made with the support of context-
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Table 3.2 Instruction type inferences.

‘ Instruction Type ‘ Inference

Memory Read only
Write once
Write infrequent
Write value set

Computation Value set - small number of values
Value range - (a < X <b)

sensitive, flow-insensitive interprocedural alias analysis [41] and the DCF system. Read-only
load instructions are best candidates for computation reuse since the accessed data is guaranteed
to be identical to that of previous references. In addition, write-once data is a common inference
data related to run-time invariant variables. Write-once data is determined by analyzing the
callgraph and recursion relations of procedures. Many programs are designed with initialization
phases in which run-time invariants are determined or parameters are set by reading parameter
files. Write-infrequent data is detected when a load is defined at a significantly higher stage
(level) in the program’s loop-nested annotated callgraph than the respective referencing store
instructions. Finally, using global analysis techniques, limited sets of variable values can often
be determined, thus indicating the amount of run-time variation that can be expected for
a variable. Although the initial system does not differentiate the execution frequency of any
inferred relation, future work will include Binding Frequency Analysis (BFA) [42] to enhance the
estimation of inferences. A related technique for automatically identifying invariant variables,
Glacial Variable Analysis (GVA) [42], is extended to conservatively analyze recursive programs.
GVA is an interprocedural staging analysis for estimating the variable modification rate by

generating a measure of the difference between the execution and modification frequencies.
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Inference of register operands is based upon interprocedural propagation of value relations
throughout the program. Value relation propagation [43], [44], [45] consists of dataflow systems
with solutions that identify expressions that are constant or constrained for every possible exe-
cution of a program. This is a simple forward dataflow problem: the value relation information
of expressions is propagated interprocedurally on the program callgraph and intraprocedurally
on each program function. Conversely, the inference system only attempts to determine which
value relations are available to an instruction operand during execution. To do this, the inference
system modifies the techniques of Wegman and Zadeck [43] and Callahan et al. [45] to prop-
agate value relations for each expression until a fixed point is reached. Figure 3.17 illustrates
the value relation lattice for inferring invariance. It is important to note that value-invariant

profiling techniques essentially collect dynamic views of closed sets.

Figure 3.17 The value relation inference lattice.

Generally, the value relations for each variable assignment are described in terms of a lattice
of all possible relations as shown in Figure 3.17. The highest level represents undetermined
value relations, while the middle level contains a run-time deterministic relation. Loop-carried

value relation expressions are detected and handled by conservatively resolving value relation
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assignments. The primary difference between value range propagation and this value inference
method is in the join operator applied to the middle level of the lattice structure. In the standard
constant propagation lattice, only one value relation exists, but for the value relation inference
lattice, determination of any unique value relation causes the lattice to be extended. Essentially,
the breadth of the lattice is used to infer run-time value invariance. Unknown value relations
are created from a variable’s definition set when no relation is propagated, generally resulting
from noninferred load instructions. Eventually, a fixed point is reached and the propagation
process terminates.

Destructive inferences are program indications that reduce the probability of observing a
frequent, but small, number of input varieties. The primary example of destructive inference is
sequenced operands, such as loop increment variables, which are used within their loop level.
Increment variables used at a nesting level deeper than their definition are constructive inference
since their invariance is based on the iteration space of the inner loops. Table 3.3 illustrates the
result of inference analysis on candidate superblocks in the experimental set of benchmarks.
The inferred percentage is the percentage of instructions with constructive inferences relative
to the total number of instructions in the superblock. The amount of superblock execution
corresponds the percentage of superblock execution designated in regions with the respective
inferred percentage. The results of Table 3.3 indicate that assigning the inferred percentage to

30% enables the majority of candidate superblock execution to be captured.

3.4.2 Structured computation regions

Some regions of code represent fundamental algorithmic computation in which data is ma-

nipulated from input sources without any inferred value relations. Superblocks of this nature
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Table 3.3 Percentage of superblock execution with various inferred percentages.

Inferred Percentage
Benchmark 0% | 1-20% | 21-40% | 41-60% | 61-80% | 81-100%
008.espresso 42 4 7 25 11 11
072.sc 40 9 9 21 10 10
099.go 20 36 12 19 7 5
124.m88ksim 13 17 4 50 5 11
126.gcc 21 17 21 20 9 10
129.compress 32 18 18 16 8 8
130.13 30 14 12 19 10 16
132.ijpeg 33 26 4 20 8 8
147 .vortex 35 6 14 19 13 13
lex 48 3 0 24 12 12
yacc 48 3 1 24 12 12
mpeg?2 37 2 24 18 9 9
pgp 35 13 14 20 9 9
average 33.4% | 12.9% | 10.8% | 22.7% 9.5% 10.3%

have no reuse inferences, yet may be excellent computation regions. To form regions struc-
turally, two features of each superblock are examined: size and dependence height. Large size
is the primary superblock selection constraint, since reusing the results of large superblocks
could provide significant performance improvement. Likewise, a large reduction in latency may
be achieved if superblocks with a considerable dependence height can be reused. In selecting
superblocks, these features are referred to as the structure size and structure height parame-
ters. Structure-based region formation aids the process of statically generating an abundant
number of regions for the dynamically managed reuse system. In addition to superblocks, the
structured technique also selects control flow cycles (inner loops) as candidate regions. Such
loops often represent linked-list traversals and array scans that result in significant amounts of
hard-to-detect redundant execution.

Although regions may only describe a fraction of reusable execution, it is important for the

compiler infrastructure to identify all potential reusable computation regions. The structure-
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Figure 3.18 Structural identification of computation region, MPEG2 IDCT code (a), depen-
dence graph (b), and computation (c).

based technique can be applied to regions with zero weight profiles, further reducing the reliance
on profile-guided techniques. Figure 3.18 illustrates an example of a structured region formated
from the row transform of an MPEG?2 inverse discrete cosine transform (IDCT). Figure 3.18(a)
depicts the dependence graph from the Chen IDCT algorithm [46], which requires 36 multi-
plications and 26 additions and has a dependence height of seven. Figure 3.18(b) shows the
instructions of the dependence graph. These instructions constitute a superblock that is a
candidate region and can be selected structurally. The selection affords the CCR. a significant
opportunity to eliminate redundant execution due to the inherent nature of the program code.
Typically, DCT blocks of MPEG-compressed video sequences have only five to six nonzero coef-
ficients, mainly located in the low spatial frequency positions [47]. This property has been used

to streamline the design of custom low-power IDCT systems, which indicates that execution
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behavior of this region is quite predictable over many inputs. For each of the eight rows of
an 8x8 coefficient block, the IDCT is called, and there is significant reuse locality (80%) for a

history of 16 instances of the row computation.

3.5 Computation Region Summary

Tables 3.4 and 3.5 present some characteristics of regions identified by the various compiler
methods. The region count and execution numbers compare the characteristics of inferred
regions and structured regions to profile-guided regions (formed using a reuse threshold of 65%).
Overlap occurs when more than 90% of the instructions of the static regions are found within
a profile-guided region. The results of Table 3.4 show that while the inferred method (using an
inferred threshold of 25%) identifies only 49% of the profile-guided regions, using a region height
of four and region count of six identifies 68% in the structured approach. Other experiments
indicate that together, both static approaches can identify an average of 75% of the profile-
guided regions. In addition, the static methods appear to find a significant number of regions
which were neglected when value invariance profile information guided region formation. The
benchmark 126.gcc, the largest program used, has the greatest fraction of regions found using
static methods. A compression program, 129.compress, is an interesting case because there
does not appear to be a significant number of profile-guided regions that are not identified by
the structured method, although the inferred approach is not able to detect many (less than

21%) of the regions.
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Table 3.4 Region count fraction comparing static region formation techniques.

Region Count Fraction
Inferred Structured
Benchmark Overlap | Unique | Max | Overlap | Unique | Max
008.espresso 0.70 0.99 1.99 0.72 1.46 2.46
072.sc 0.66 1.05 2.05 0.96 0.17 1.17
099.go 0.53 2.92 3.92 0.88 0.78 1.78
124.m88ksim 0.79 0.35 1.35 0.86 0.26 1.26
126.gcc 0.85 3.24 3.34 0.54 12.5 12.6
129.compress 0.21 0.37 1.37 0.71 0.16 1.16
130.1i 0.32 2.04 3.04 0.42 2.33 3.33
132.ijpeg 0.37 0.68 1.68 0.46 0.74 1.74
147.vortex 0.25 0.60 1.60 0.28 0.64 1.64
lex 0.53 2.75 3.75 0.67 2.45 3.45
yace 0.48 2.03 3.03 0.52 2.24 3.24
mpeg2 0.28 1.37 2.37 0.96 0.08 1.08
pep 0.45 3.06 4.06 0.95 0.29 1.29
average 0.49 1.65 2.58 0.68 1.85 2.78

Table 3.5 Execution fraction comparing static region formation techniques.

Overall Region Execution Fraction

Inferred Structured
Benchmark Overlap | Unique | Max | Overlap | Unique | Max
008.espresso 0.69 0.17 1.17 0.72 0.35 1.35
072.sc 0.62 0.27 1.27 0.88 0.47 1.47
099.go 0.76 0.23 1.23 0.89 0.26 1.26
124.m88ksim 0.92 0.44 1.44 0.93 0.62 1.62
126.gcc 0.76 0.23 1.23 0.42 0.34 1.34
129.compress 0.10 0.55 1.55 0.56 0.66 1.66
130.1i 0.34 0.22 1.22 0.44 0.35 1.35
132.ijpeg 0.32 0.32 1.32 0.47 0.54 1.54
147.vortex 0.29 0.36 1.36 0.31 0.44 1.44
lex 0.54 0.70 1.70 0.55 0.82 1.82
yacc 0.34 0.14 1.14 0.32 0.23 1.23
mpeg2 0.19 0.30 1.30 0.84 0.50 1.50
pEp 0.55 0.12 1.12 0.82 0.40 1.40
average 0.49 0.31 1.31 0.55 0.46 1.46
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CHAPTER 4

COMPILER-DIRECTED COMPUTATION REUSE
APPROACH

4.1 Introduction

A computation reuse mechanism can provide performance improvement if the system can
significantly reduce execution time for computing previous results and can adapt to run-time
variations. Different trade-offs exist between hardware-based run-time methods and software
approaches, and many design alternatives have been considered [17], [19], [22]. Our approach
strives to achieve the best of both concepts in an integrated architecture and compilation frame-
work. Toward this end, instruction set architecture extensions and micro-architectural mecha-
nisms, referred to collectively as the Compiler-directed Computation Reuse (CCR) approach,
are developed. The approach allows the compiler to identify code regions whose computation
can be reused during dynamic execution. The instruction set architecture provides a simple
interface for the compiler to communicate the scope of each reuse region and its live-out regis-
ter information to the hardware. During run time, the micro-architectural components of the
approach record the execution results of the regions for potential reuse. Explicit designation
of computation reuse allows a large number of dynamic control, memory, and arithmetic in-
structions to be removed from the processor execution. Inclusion of control instructions such as
conditional branches within the computation further increases the exploitation of value locality

over block-level reuse methods [3], [20].
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The remainder of this chapter is organized as follows. Section 4.2 provides a brief overview
of works related to the concept of reuse and the intuitive rationale behind the proposed scheme.
Next, Section 4.3 presents an overview of the architecture that facilitates the exploitation of
reusable computation designated at compile time. Section 4.4 details the compilation issues
and challenges associated with expressing and assigning computation region using the CCR
approach. The effectiveness of the proposed approach in improving performance and exploit-
ing instruction repetition is presented in Section 4.5. Finally, the chapter is summarized in

Section 4.6.

4.2 Motivation

To exploit dynamic redundancy, two hardware-only strategies, speculative value predic-
tion [16] and dynamic instruction reuse [17], have been proposed. Due to hardware complexity
limitations, these techniques detect reuse opportunities at the instruction level rather than at
a larger granularity. A more aggressive alternative is to allow the compiler to partition the
program into potentially reusable regions of computation whose results are then dynamically
recorded in hardware for future reuse.

The goal of any computation reuse scheme is to minimize the execution time and resource
consumption of computing results that have been previously determined. The following exam-
ples illustrate that an integrated compiler and architecture reuse approach has the potential to
eliminate large sequences of dynamic instructions at a much lower hardware cost than hardware-
only schemes.

The example in Figure 3.1 demonstrates several fundamental barriers to effective exploita-

tion of dynamic redundancy for both hardware-based and software-based methods. First, in
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exploiting the full redundancy of the sequence, a run-time hardware scheme must detect the
dependences between instructions as displayed by the dependence graph of Figure 3.1(b). The
dependence representation allows the mechanism to determine the set of instructions that are
reusable from a particular set of starting instructions. Similarly, the hardware approach is
limited in scope and may be unable to determine that only a single register is live-out of the
computation. The alternative of storing the results of all registers defined in the region can be
very costly. Third, the example could also benefit from code specialization, a software scheme
that duplicates the code to efficiently handle certain run-time values. Although value profiling
can be used to determine whether certain variables have the same value across multiple input
sets, code specializations cannot easily adapt to variations in the value set.

A compiler-directed hardware approach has the advantages of both hardware and software
methods. At compile time, the mapping relation between the single input register and single
output register may be determined. With this information, the compiler can construct an
alternative control flow graph, as illustrated in Figure 3.1(c), based on a reuse instruction that
communicates with hardware buffers to detect reuse scenarios. If the hardware determines that a
previous computation can be reused, the reuse instruction will update the corresponding output
registers and proceed to the next sequential instruction. Otherwise, no recorded computation
can be reused and the reuse instruction will branch to the original sequence, which executes
and returns. In contrast to hardware schemes, the compiler-directed approach can accurately
inform the hardware of the input and output registers which, in Figure 3.1, are r3 and r26.
Compared to software code specialization techniques, the reuse instruction can be implemented
to use multiple recorded instances, allowing a large number of instructions to be skipped for

several input sets.
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Similar to the block-level example, the region example of Figure 3.3 presents several fun-
damental barriers to exploiting reuse opportunities. First, since control instructions designate
program direction changes, any potential region-level reuse detection mechanism must have the
ability to understand the implication of start and completion of the computation intended for
reuse. Essentially a run-time scheme must construct the implied control flow graph of Fig-
ure 3.3(b) and the dependence relations among its instructions. Only by constructing such
information can attempts be made to reuse execution results along separate control paths and
loop regions. The detection mechanism must also identify that certain instructions within loops,
such as the increment of the loop index variable and the loop-back branch in Figure 3.3, do not
exhibit repetition of all their operands. Such instructions are integral to the operation of the
loop, yet their run-time behavior may inhibit the detection mechanism in determining that the
entire loop is indeed reusable. Similarly, the memory instructions of the loop are an obstacle to
effective reuse. For example, in order to reuse the results of previous loop invocations, the reuse
approach must determine if array brktable in Figure 3.3 remains unchanged along all executed
program paths between an initialization time and a reuse time.

Since the hardware cost to perform complex control analysis is high, most schemes are
limited to only exploiting reuse along sequential sets of instructions. However, the ability to
eliminate redundancy across basic blocks is fundamental to exploiting the full potential of com-
putation reuse. Likewise, determining the equivalence of memory structures at different times
requires substantial communication between the memory system and the reuse mechanism. A
compiler-directed reuse approach has the advantage of being able to exploit reuse for large re-

gions of instructions by (1) communicating the scope of each region to the hardware responsible
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for storing dynamic instances and (2) communicating the equivalence of memory structures at
different times of the program execution.

The communication of a region boundary designates the section of code that can be dynam-
ically reused. The most practical region of instructions that can be easily conveyed to hardware
is defined by a single starting point and a single ending point. This definition allows all control
path executions between the two points to be potentially exploited by the underlying hardware
reuse mechanism. A compiler-directed approach could transform the code, as illustrated in
Figure 3.3(b), by introducing a reuse instruction to inform the hardware that a sequence could
potentially be reused. The reuse of memory computations can be significantly aided by the
analysis techniques employed by modern optimizing compilers. Using interprocedural analysis,
the complete points-to relation [33] for the brktable array can be constructed at compile time.
As such, the compiler-directed approach can direct the program points that affect the array to
invalidate previously recorded computations based on the contents of the array. This provides
potential reduction in the cost of recording computations using memory since otherwise the
consistency of all 16 entries of the brktable array must be maintained. Otherwise, as long as
the equivalence is established, future invocations can simply use the execution results recorded

at an earlier time.

4.3 Architecture Support

The Compiler-directed Computation Reuse (CCR) scheme introduces a set of hardware
features and instructions to eliminate the need to dynamically detect reusable computation.
In contrast to run-time instruction reuse schemes, the reusable computation is designated at

compile time. The proposed architecture mechanism consists of the following components:
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Reuse Architecture Hardware that records the dynamic computation information. The
Reuse Architecture consists of a Computation Reuse Buffer (CRB) to store the reuse

information.

Reuse Instruction Set Extensions Instruction extensions and execution semantics for con-

veying program information to the Reuse Architecture.

Computation Reuse Microarchitecture Hardware components that validate the recorded
computations stored in the CRB and perform the update of architectural state for suc-

cessful reuse of the computation instances.

4.3.1 Computation Reuse Buffer design

To achieve the reuse goals in the compiler-directed hardware approach, a caching structure
is designed. Figure 4.1 depicts the basic model of the structure, called the Computation Reuse
Buffer (CRB). The CRB is a set-associative structure indexed by an identifier number which
is specified by the proposed ISA extensions in the CCR framework. The structure is similar in
design to a cache that consists of an array of entries, referred to as computation entries. An entry
supports the reuse for a particular compiler specified region by detecting the situation in which
all of the input information to the region is recurrent. To do this, each active entry is responsible
for recording computation information for future region executions. As such, each entry contains
four fields: (1) the computation tag, (2) a wvalid bit indicating whether the entry currently
contains a valid computation, (3) an array of computation instances, and (4) a least recently
used (LRU) information array for managing the replacement of the computation instances. The
computation tag field contains the computation identifier and is used for verifying the exact

computation. A computation instance is defined as the set of input register operands and their
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Figure 4.1 Computation Reuse Buffer (CRB) design.

respective values, the set of output register operands and their respective result values, and the
validation of memory state used by the computation. A computation instance is reusable when
its input register values match a previous execution of the computation and the input memory
state has not been invalidated.

Multiple computation instances are used to record computations with different input values
available for reuse. Each computation instance has two banks that contain an array of register
entries, a computation instance valid bit indicating whether the instance defines a valid reuse
and a memory valid field indicating whether the computation accesses memory and whether
the memory dependent region is valid. Each register entry consists of three fields: the register
index, the register value, and a valid field. The two banks respectively designate the necessary
input and output information for the computation being reused, and the number of register
entries is also specified by the particular implementation. For the input bank, the register index
and register value fields record the necessary values that the respective registers must hold for

the computation instance to be reusable. For the output bank, the information fields record
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the complete results of the computation that update the architectural register file during reuse.
The valid fields indicate whether the register entry is active for the computation instance.
Several design enhancements can be made to the base CRB architecture. These enhance-
ments focus on creating specific rather than uniform implementations of computation entries
and instances. For instance, one enhancement might be to partition the design space of the
computation entries to include variations on the type of computation instances that could be
recorded. Such design modifications would reduce the complexity for reusable computations
that consist of a small number of input and output operands. A second enhancement allows
variations in the number of computation instances available for different computation entries.
This enables reusable computation entries with large variations to be assigned to entries with
sufficient computation instances; whereas computations with limited variations would be more
reasonably assigned to entries with fewer computation instances. Any partition of the com-
putation buffer entries is said to conist of Computation Segments, where a particular segment
might include different properties. In Section 4.5 the characteristics of reusable computations
designated are examined and different variations in the design of the base CRB configuration
are investigated. However, the overall focus of this chapter is on evaluating the rationale of the

approach, rather than investigating these specific implementation details.

4.3.2 Instruction set extensions

The CCR approach involves the introduction of new instruction extensions and two new
instructions. The new extensions designate certain aspects of reusable computation to the reuse
framework. The two new instructions are (1) computation reuse, which directs the hardware

to determine if a computation has already been performed, and (2) computation invalidate,
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which directs the hardware to invalidate computations based on memory state changes. If
the hardware does not find an opportunity to reuse previous computation results, the reuse
instruction will branch to the computation code, which executes the sequence of instructions
and updates the computation buffer. The reuse instruction provides a low overhead method
of communicating with the hardware about the state of the machine, and is similar to the
proposed mechanisms in data speculation [48] and software-controlled value prediction [49].
The introduction of the reuse opcode and instruction extensions allows the compiler to
designate regions of computation that can be executed and then subsequently reused. The
approach accomplishes this by a having a region memoization mode of execution that begins
when the reuse instruction fails to find a valid computation instance. Upon starting the mode,
the LRU computation instance is selected and construction of a new instance begins. Any
register used before being defined while in this mode will record its information in the input
bank of the instance. Additionally, instructions executed in the memoization mode have specific
requirements for updating the records of the reuse instance and terminating the memoization
mode. As such, the proposed ISA extensions enable the following execution semantics during

the memoization mode:

Live-Out Register One new instruction extension is used to designate instructions generat-
ing live-out values. Destination registers defined for instructions marked with live-out

extensions record the respective information in the output bank of the instance.

Load Instruction Load instructions executed during the memoization mode set the memory
valid flag of the computation instance to indicate that a memory-dependent region is

being prepared for reuse execution.
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Control Instruction The compiler designates the end of the memoization mode by marking
certain control instructions with new extensions to indicate computation region reuse
endpoints and region exits. The recording of a computation instance occurs when a reuse

endpoint instruction is used to leave the region.

Note that these extensions require the instruction format to contain more information and
may increase the code size of programs. The execution results gathered during a successful
memoization mode define a particular path in the region of instructions selected by the compiler.
The compiler has the responsibility of insuring that the number of registers in the statically
assigned reusable region can fit within the capacity of the computation instances. Similarly,
another compiler responsibility is the program-level placement of invalidation instructions for
regions accessing memory. The invalidations instruct the region computations that changes
have potentially been made to the region’s input data, and the computation instances may no

longer be valid.

4.3.2.1 Memoization mode

The introduction of the reuse opcode and instruction extensions allows the compiler to
designate regions of computation that can be executed and then subsequently reused. The
approach accomplishes this by a having a region memoization mode of execution that begins
when the reuse instruction fails to find a valid computation instance. Upon starting the mode,
the LRU computation instance is selected and construction on a new instance begins. While
executing in the memoization mode, all instructions that use or commit register results update
the corresponding register information in the computation instance according the semantics

illustrated in Figure 4.2. The semantics define the tasks necessary to identify and reuse the
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Figure 4.2 State transition diagram for recording register contents during memoization mode.

computation results in future executions. The new instruction extensions are used to designate
instructions generating live-out values. Essentially, any register used before defined will record
its information in the input bank of the instance. Otherwise registers that are defined by
instructions marked with live-out extensions record the respective information in the output
bank of the instance.

The execution of load and control instructions during the memoization mode also requires
additional execution semantics in relation to the computation instance. The compiler desig-
nates the memoization mode to end by marking certain control instructions with extensions
to indicate computation region endpoints and region exits. These annotations are used to
distinguish between intraregion and interregion control traversals of a region. The recording
of a computation is completed and the memoization mode ended when a control instruction
with the new CCR extension returns to the location following the reuse instruction. The mode
can also end when a control instruction with the new CCR extension exits (taken branch) the
computation. Essentially, the execution results gathered during a successful memoization mode
define a particular path in the region of instructions selected by the compiler’s transformation
of the region. The compiler has the responsibility of insuring that the number of registers in
the statically assigned reusable region can fit within the capacity of the computation instances.

Similarly, another compiler must place invalidation instructions for guarding the computation
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region executions that access memory. The invalidations instruct the region computations that
changes have potentially been made to the region’s input data, and the computation instances

may no longer be valid.

4.3.3 CCR microarchitecture

The interaction of the microarchitecture pipeline and the computation reuse buffer is illus-
trated in Figure 4.3. For the initial study of the proposed approach, an in-order issue microar-
chitecture model is assumed, although the discussion contains material applicable to a generic
dynamically scheduled superscalar processor. Four unique tasks define the reuse execution for
a particular computation region: accessing the CRB computation entry, reading the architec-
tural state for the computation instances, validating reusable computation results, and issuing
the results. If a reusable result is found, the recorded results are committed. The traditional

pipeline execution of the reuse instruction begins with instruction fetch and instruction decode.
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Figure 4.3 CCR microarchitecture pipeline.
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During the CRB access step, the CCR architecture either detects a valid computation entry
for the reusable region, or flushes partially executed instructions and directs the instruction
fetch stage to begin executing new instructions at the location of the reusable code segment.
For valid computation entries, it is necessary to read the architectural state corresponding to the
input registers of the corresponding computation instances. To do this, a summary set of the
active input registers for all of the computation instances is maintained during the creation of
the instances. The summary set is the set of registers that require operand values from either the
committed architectural state of the register file or uncommitted instruction results. In-flight
instruction results and in-flight invalidate instructions force the reuse instruction to wait in order
to validate the recorded computation instances. An interlocking mechanism exists between the
computation reuse instruction, the processor retirement stage, and the register bypass circuitry
to determine the necessary wait scenarios. Additionally, early feedback is available in the case
when the hardware determines that the stalled register values can no longer affirm any of the
computation instances. This is the case when the resolved register information either detects an
independent computation instance or all computation instances are invalidated by the already
confirmed register information. Since the performance of the reuse scheme is determined by
the reuse latency and the percentage of reused instructions, these timing design considerations
have been simulated within the evaluation environment.

Figure 4.4 illustrates two methods of constructing the summary set for computation in-
stance. The index summary method of Figure 4.4(a) shows a basic method of reducing the
number of register operands that the CRB entry queries from the architecture state when val-
idating one of the computation instances. Generally, register queries are shared when there is

overlap of register indices between the computation instances. Figure 4.4(a) shows a sample
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scenario in which eight total register accesses are required by the four individual computation
instances. However, only three unique register indices are used over the four instances. By
summarizing the register set prior to the access of the computation entry, an efficient query
can be made of the necessary registers. Overall, experimental results indicate that with the
summarized register index set, the necessary register queries only exceed the register porting
fewer than 5% of all computation reuse attempts.

Although the basic summary technique reduces the number of register state queries, the
method does not reduce the number of computation input register comparisons that must be
made to validate a computation instance. Frequently there is significant overlap in register
indices and values between neighboring computations instances. This overlap relates to the
value locality behaviors that characterize the computation region execution histories represented
by the computation instances. Figure 4.4(b) illustrates a summary model that constructs
common input register comparisons for overlapping computation instances. The summarized
comparisons reduce the number of register queries and the number of parallel comparisons

necessary to validate a computation entry with a large number of computation instances.

Input Register Index Input Register Index and Value
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Figure 4.4 Methods of summarizing computation instances for verification: index summary
(a), index and comparison summary (b).
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In the example of Figure 4.4(b), the sharing of computation comparisons is present, between
CI[0] and CI[1] (for register R1 with value V2) and between CI[1] and CI[2] (for register
RO with value V'1). Instead of performing eight comparisons, by exploiting overlap of possible
computation instances, only six comparisons are necessary. The summarized model has an
additional benefit; it is capable of providing a faster response in computation instance validation
for some scenarios. By coordinating the multiple computation instances to share comparisons,
the register indices affecting the largest set of instances can be trivially determined. Likewise,
the register with the most value variation can be determined by noting the number of expected
values being compared. The critical path of deciding the correct computation instance can
be improved by initiating compares for the register with the highest variation or the largest
number of computation instances. As such the CRB can begin polling the architectural state
for those registers before the computation entry is completely resolved.

The step of summarizing the shared components of computation instances can be extended
to a different design structure known as the Shared-Instance CRB (SI-CRB). Figure 4.5 illus-
trates the CRB design that partitions all of the input and output register indices and values
into summary sets. The summarized sets include a register position that indicates for which
register index information is being maintained, and for the set of value elements, which re-
spectively indicate the values being attributed to the register index. Two banks of summary
sets, the input value bank and the output value bank hold the summary sets for the input and
output relations for every computation instance in the computation entry. The value elements
of the input bank of a summary set correspond to the live-values of the region and are used
in comparison with the architecture state. Correspondingly, the elements of the output bank

contain the respective result values for the register designated by the register position.
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Figure 4.5 Shared-Instance CRB design.

A computation entry supports reuse of multiple computation instances by connecting the
information necessary for each instance at a designated computation instance sharing record.
The purpose of sharing records is analogous to the representation of the base CRB model’s
computation instances. Each record contains two arrays, the input element vector array and
the output element vector array. The arrays hold N K-sized bit masks, where N corresponds
to the number of register positions for the computation entry and K corresponds the number
of value elements for a register position. The bit mask is set to indicate which value element
is used for the summary set. To share the contents of summary sets between the computation
records, each active record maintains the /N bit masks so that the original computation instance

can be represented.
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There are many trade-offs in using either the base CRB or the shared-instance CRB. While
the base CRB is generally uniform in its construction, it performs a significant number of
parallel comparisons to validate a computation entry. Similarly the base CRB does not ef-
ficiently store redundant value information of the computation regions. The shared-instance
CRB solves these limitations by exploiting the computation instance redundancies and elimi-
nating redundant information representation and validation comparisons. The utilization of the
the shared-instance is significant for regions with significant overlap in computation instances.
However, the shared-instance CRB has a fundamental limitation. The flexibility provided by
the uniform base CRB design was that each computation instance held. In the shared-instance
design, each active computation record contends for representing its computation instance in the
register positions and value elements shared by every computation instance of the computation
region.

In the shared-instance CRB the primary design parameters are to decide on the number of
register positions to create and the number of values to maintain for each register. If a region
was simple and always depended on a set number of registers, the design decision would fix the
register positions. However, this would limit the number of inputs and outputs of the region
generated by the compiler. The shared-instance design solves this problem by recording only the
registers that need to be compared to validate all of the computation instances. For contention
of register positions, the register position with the fewest dependent records is selected. This
is easily determined from valid fields maintained in each summarized sets. Contention for
register positions cannot exist if the shared-instance CRB design is constructed with R % X
register positions, where R is the max number of records that can be represented and X is the

restricted number of input/output registers of a region.
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The variation of a particular register value is important since the variation can cause more
than one computation instance record to be inactive. Contention for value elements is solved
with the solution of determining the element entry with the fewest dependent records. Value
elements with the fewest dependent records are replaced. Replacement of value elements can
remove up to R — E — 1 records, where R is the max number of records that can be represented
and F is the max number of value elements in a summary set. Therefore, if there is an equal
number of value elements and computation records, replacement of a value element can at
most remove one computation record. Experimental results concerning the trade-offs between
shared-instance and base CRB are examined in Section 4.5.

Although the SI-CRB design has major advantages in maintaining the computation in-
stances and efficiently validating results, there are also techniques for improving performance
in the base CCR design space. Figure 4.6 illustrates design techniques to make the process of
verifying computation results more efficient. Figure 4.6(a) shows the base case of having the
computation instance information of a computation entry stream down to the architecture state.
In turn the architecture state is used to validate the computation instance results. Figure 4.6(c)
divides the computation entry into computation frames of a history-based buffer. The history
buffer validates the computation instances with the most recent execution. The advantage
is that the number of parallel comparisons is reduced and many computation instances have
temporal locality of their results, indicating that checking the recently executed instances most
quickly will provide benefit. The number of frames determines how many additional cycles the
validation process will take for computation instances not accessed in the recent history.

A final performance enhancing technique, called Computation Anticipation (CA), uses the

design of Figure 4.6(c). The Computation Anticipation mechanism reduces the dispatch latency
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Figure 4.6 Verification of computation instance, base model (a), history-based model (b),
and computation anticipation (c).

of the approach by using the computation history to speculatively dispatch cached computa-
tion results. A streak history is maintained for each computation instance that indicates the
number of times in the recent region execution that the particular instance was selected. By
assigning a confidence threshold to the number of repeated executions of the same computation
instance, an opportunity exists to speculatively anticipate that the results held in the com-

putation instance will be used. The microarchitecture of the processors must include support
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to recovery in the case of mispredictions. The primary use of this technique is to extend the
concept of value prediction into use with the compiler-directed computation reuse approach.
These enhancements focus on investigating general rather than specific CRB implementations.

After the process of validating the computation instances has been performed by any of the
techniques discussed, there are two cases that result: the nonexistence of reusable computation
and the presence of reusable computation results. For successful reuse determination, the live-
out registers are updated by issuing multiple results to the retirement buffer. Otherwise the
processor flow of control is directed to the computation code after the pipeline is cleared of
partially executed instructions.

Finally, a final design mechanism explored in this thesis is the extension of the dual path
execution concept [50], [51]. Dual path execution has been investigated to reduce the branch
mispredictions penalty by selectively executing instruction from both paths following a condi-
tional branch. In the CCR paradigm, a failed reuse attempt behaves in an identical manner as
a mispredicted branch. As such, there are opportunities to extend dual path execution to the
CCR approach. Since studies have indicated that dual path execution can potentially reduce
branch misprediction penalties by 30%, there is potential for exploring the concept with the
CCR approach. In Section 4.5 several of the architecture optimization methods proposed in this
thesis focus on improving performance in the same area as the dual path execution methods.

First, computation anticipation works by speculating path execution prior to target res-
olution. The concept is related because instructions are placed in the pipeline to increase
utilization. Also, since the dynamic management system explored in Chapter 5 applies a con-
fidence mechanism to a path decision problem, there is significant overlap in the proposed

dual-path techniques which operate by confidently asserting path predictability. Finally, the
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compiler transformation techniques of Chapter 6 evaluate how sequences of reformulated code

and original program code can be concurrently executed to improve performance.

4.4 CCR Compiler Support

In the CCR approach the compiler identifies the code regions whose computation can be
reused using the CRB hardware resources. Due to limitations in the available silicon resources,
the CRB design employed for a processor may have restrictions in the number of computation
entries and the number of computation instances per entry. At run time, the CCR design
is incapable of designating the assignment of computation buffer resources to the most prof-
itable computation regions. However, in practice there are compiler methods of prioritizing the
computation regions to be designated for a processor with a CRB with specific capacities.

After the region formation process has gathered all potential candidate regions, the region
prioritizing algorithm of Figure 4.7 can be applied to limit the designation of computation
regions in the program and increase the likelihood of successful run-time reuse using the CRB
resources. Two estimates are performed using the instruction-level reuse information, region
reuse percentage and region variance. Region reuse is estimated by averaging the individual
reuse behavior of all instructions. Region variance is estimated by computing a weighted average
of the variance of all the region instructions. These estimates are made and used in the region

selection heuristic function shown below:

Countregion % CRBinstances

RSP, egion = Execregion X Reuse,cgion % [Height_Factor] x (4.1)

kcount Varlance?“egion
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Select_Pprioritized_Regions (Region_Candidates)
1 FOREACH region IN Region_-Candidates(Program) DO
// Calculate estimated reuse behavior

2 region.reuse = Reuse_Estimation(region);
// Calculate estimated variance behavior of instances
3 region.variance = Variance_Estimation(region);

// Apply region selection priority function

4 region.priority= Region_Selection_Priority(region);

5 Region_Candidates = Sort (Region_Candidates , RSP);
6 region_count = 0;

7 Selected_Regions = NULL;

8 WHILE (region_count <= Centries * CRB_entries) DO
9 selected = T'op_Region(Region_Candidates)

10 Selected_Regions = Selected_Regions U selected;

11 region_count = region_count + 1;

12 ENDWHILE
13 return (Selected_-Regions)

Reuse_Estimation(region)
1 reuse = 0;
2 count = 0;
// Calculate an average of the estimated instruction reuse behavior
FOREACH instruction IN region DO
reuse = reuse + instruction.reuse;
count = count + 1;
return (reuse / count);

DU W

Variance_Estimation(region)
1 region_variance = 0;
2 count = 0;
3  weight = 0;
// Calculate an average of the estimated instruction reuse behavior
4 FOREACH instruction IN region DO
// Calculate the weighted average of the number of computation
// instances used during profiling
5 instr_vartance = 0;
6 FOR i = 1 TO computation_profile_capacity DO
7 instr_variance = instr_variance + i * instruction.variancelil;
8 weight = weight + instruction.varianceli];
9 count = count + 1;
10 region_variance = region_variance + instr_variance;
11 return (region_variance |/ weight);

Figure 4.7 Algorithm for selecting prioritized reusable computation regions.
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The Region Selection Priority (RSP) is calculated for each region being considered for
activation. The execution weight and estimated reuse are main terms used to prioritize the
region selection. In addition, both the region height and instruction count are used to encourage
regions with the greatest effect on improving execution performance. The variables kpeignt and
keount are constant factors used to adjust the priority calculation. The estimated variance of a
region is weighed against the number of computation instances for each computation entry of the
CRB. The variance term deters candidate regions that require a higher degree of computation
instance support than the CRB design provides. To account for any limitation in the number
of computation entries, prioritized regions are selected until a constant factor of the number of
entries is designated. Experimental studies determined that the performance of the compiler
allocated regions could be effectively managed by assigning only two times the number of regions

compared to the number of entries in the target CRB.

4.5 Experimental Evaluation

4.5.1 Methodology

The IMPACT compiler and emulation-driven simulator were enhanced to support a model
of the proposed architecture framework and the region formation techniques respectively in-
troduced in Section 4.3 and Chapter 3. The benchmarks used in all experiments consist of
SPECINT92, SPECINT95, UNIX, and MediaBench programs. The base level of code con-
sists of the the best code generated by the IMPACT compiler, employing function inlining,
superblock formation, and loop unrolling.

The base processor modeled can issue in-order six operations up to the limit of the available

functional units: four integer ALUs, two memory ports, two floating point ALUs, and one
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branch unit. The instruction latencies used match the HP PA-7100 microprocessor (integer
operations have one-cycle latency, and load operations have two-cycle latency.) The execution
time for each benchmark was obtained using detailed cycle-level simulation. The parameters
for the processor include separate 32K direct-mapped instruction and data caches with 32-byte
cache lines, and a miss penalty of 12 cycles; 4K entry BTB with 2-bit saturating counters, and
a branch misprediction penalty of 8 cycles. Pipeline stalling for in-flight dependent operations
is also integrated to delay the reuse resolution time. Failure to correctly reuse computations
causes the processor to experience a delay similar to the branch misprediction penalty. The
simulations evaluate computation buffers with 32, 64, or 128 direct-mapped entries with 4, 8,
or 16 computation instances (CIs) per entry. Each CI supports an input and output 8-entry

register array.

4.5.2 Experimental results

Three categories of results are presented. The overall performance of the CCR approach is
first examined. Second, some of the characteristics of the reusable computations are presented.
Third, some general results relevant to the compiler-directed scheme are evaluated.

Performance. The overall cycle-time speedups for the compiler-directed approach are
presented in this section. Two variations in the CRB design are evaluated: variation in the
number of computation instances per computation entry and variation in the number of compu-
tation entries. Performance is reported as speedup, which is derived by dividing the number of
execution cycles for the base architecture by that of the architecture with the CCR framework.

The first CRB variation considered is the number of computation instances per computa-

tion entry. Figure 4.8 presents the effect on performance for varying the number computation
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Figure 4.8 Speedup for processor with CCR support varying the number of instances.

instances. On average, a processor with 128 computation entries has speedups of 20% for
computation entries with 4 Cls, 25% for 8 Cls, and 30% for 16 Cls. The reuse of computa-
tion using the CCR approach is most effective for 12/.m88ksim, where there are a number of
substantial computations that are frequently reused. Variation in the number of computation
instances substantially increased the performance speedup of pgp. This was mainly due to the
type of computations being reused. In this benchmark, a number of stateless computation
regions were formed using the heuristics based on average reuse occurrence, but the computa-
tions have considerable dynamic variation. A large number of computation instances is able to
effectively handle this variation. Overall, the average performance improvements indicate that
the 128-entry computation buffer with 8 Cls per entry is potentially the most cost effective.
In improving the processor performance, the CCR approach eliminates on average 40% of the

dynamic instruction repetitions that occur on the base processor configuration.
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Figure 4.9 Speedup for processor with CCR support varying the number of entries.

The next CRB variation considered is the number of computation entries. Figure 4.9 illus-
trates the effect on performance of varying the number of computation entries. For a model
with 8 computation instances, the average speedups are 20% for 32 computation entries, 23%
for 64 computation entries, and 25% for 128 computation entries. The benefits of reuse are
sustained for even a small number of computation entries. On average, the majority of bench-
marks are characterized by a small number of reusable computations that account for a large
portion of the overall execution time. This indicates that the amount of region-level reuse can
potentially be exploited with a moderate number of computation entries.

Reusable Computation. Several important aspects of the computations being reused
in the CCR approach were investigated. The first is the class of computation and the sec-
ond is the type of computation. The classification of computation is either stateless (SL) or

memory dependent (MD). The classes can be further subdivided into groups indicating the
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input type of the computation. The group naming convention of SL_{num_input} is used
to indicate the group of stateless computations dependent on num_input registers. Similarly,
MD_{num_input}_{num_-mem} is used to indicate the group of memory dependent computa-
tions dependent on num_input registers and num_mem distinguishable memory structures. The
number of distinguishable memory structures for each MD group is determined by the com-
piler’s region formation heuristics. Overlapping group results are included within some of the
group entries. For instance, group SL_8 includes the computations of SL_7 but not SL_6 since
the group SL._6 is also presented. Similarly, MD_6_1 includes all computations dependent on a
single memory structure and up to six register inputs.

Figures 4.10 and 4.11 compare the static and dynamic distribution of seven groups of com-
putations that account for the most reuse of program execution. Figure 4.10 presents the static
distribution of the computation groups. On average, nearly 90% of the computations are in-
cluded within the seven selected groups. The distribution indicates that stateless computations
account for an average of 65% of the static computations created by applying the current RCR
heuristics to optimized programs. Evaluation determined that the acyclic formations of the the
seven computation groups replace the execution of an average of 10 instructions. Figure 4.11
illustrates the dynamic distribution of the seven computation groups. On average, the dynamic
execution of stateless computation regions accounts for 60% of the reuse execution.

Several of the benchmarks are able to effectively reuse computation results stored in memory
by employing the computation groups MD_3_1 and MD_6_1. Groups not accounted for by the
groups shown in Figure 4.10 include memory dependent computations dependent on higher
numbers of input registers that account for less than 15% of the overall computation type. The

distributions are shown to indicate the potential for constructing reuse buffers with resource
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Figure 4.10 Computation group static distribution.

capacities designed to cost effectively attend to the nature of the reusable computation rather
than large orthogonal computation entries and instances.

Figure 4.12 displays the average number of instructions reused by each computation group.
Only acyclic computation regions are included. The numbers indicate the how reusing computa-
tion results rather than re-execution provides improved performance since the many instructions
are not fetched from the memory system and are not executed in processor resources.

The observed variation behavior of the computation groups is presented in Figure 4.13.
The variation behavior is calculated by observing the region execution over many intervals
and collecting the number of computation instances used within that interval. Each column
includes the distribution of the computation group’s execution spent in intervals requiring 1,
2, 4, 8, or 16 computation instances. The results indicate that a high percentage of all of the

computation groups have little variation. The most computation variation is observed in group
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Figure 4.11 Computation group dynamic distribution.

SL_8, in which nearly 70% of executions require more than 16 instances. The variation of the
computation groups can be used to effectively design reuse hardware.

Figure 4.14 presents the amount of reuse execution distributed by the percentage of active
computations. Four sets are used to indicate the amount of dynamic reuse generated by 40%
of static computations. Each set includes 10% of the computations which are sorted by their
contribution to the total reuse execution. For instance, TOP 10% indicates the reuse attributed
to the top 10% of contributing computations. The cumulative results indicate that 40% of static
computations account for nearly 90% of total reuse. 129.compress is one of the few benchmarks
for which different reuse distributions exist. In this case, each of the program computations
are closely weighted in the amount of reuse execution that they contribute. Nevertheless,
the average characteristics of Figure 4.14 are good indicators of the possibility of exploiting

redundancy with limited hardware.
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The results of Figure 4.14 indicate that a CRB design with lower capacity in the number
of entries and the number of computation instances per entry may be the most cost effective
design. Using the compiler selection technique outlined in Section 4.4, reductions can be made
in the CRB size while achieving approximately the same performance.

Figure 4.15 shows the result of assigning only computation regions with the highest priority
to two smaller CRB models, a 16-entry CRB with 16 computation instances per entry and a
32-entry CRB with 8 computation instances per entry. The results of Figure 4.15 also include
the compilation model for the same CRB models with all candidate regions. The compiler
prioritized regions are able to achieve better performance since there are fewer unsuccessful
computation reuse attempts. The observed results indicate that the CRB designs with compiler-
prioritized regions achieve about 85% of the performance of their larger counterparts examined

in earlier figures. Execution with entry-prioritized regions achieve slightly better performance
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Figure 4.13 Computation group variation behavior.

as temporal locality of the region execution naturally reduces the CRB contention. Selecting
regions which can operate effectively using a limited number of computation instances amounts
to less performance since a region with high variation will not be selected at compile time.
These regions may experience periods with little variation and may in fact be able to eliminate
redundant execution with a limited set of computation instances per entry. This motivates the
work of the next chapter, where the region selection is performed at run time.

Evaluation of CRB Microarchitecture Alternatives. The alternatives for validating
the computation entries within the CCR microarchitecture are evaluated in this section. To
begin, Figure 4.16 indicates the distribution of added latency of the reuse instruction when
the input register results are in-flight and cannot be used to validate the computation results.
Nearly 85% of the computation executions are successful in validating results within the base

four stage process. Less than 7% of the executions are spent in delay of more than three cycles.
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Figure 4.14 Dynamic reuse distribution.

Although the results appear promising, as noted in the microarchitecture discussion, there is
still sufficient design space to improve the overall base access latency of the CRB.

The primary design alternative of the CRB is the Shared-Instance CRB. Figure 4.17 evalu-
ates a 32-entry base CRB with 16 computation instances per entry against a 32-entry SI-CRB
with 16 register positions and 8 value elements per register position. The hardware costs of
these designs are further discussed at the end of this section. The overall results of Figure 4.17
indicate that the SI-CRB can achieve nearly the same performance as the base CRB approach.
In the cases of 129.compress and pgp, performance for the SI-CRB suffers because there is not
a high concentration of shared values among computation instances. Increasing the number
of value elements per entry would eliminate this penalty. However, by organizing the SI-CRB
with the evaluated parameters, the SI-CRB design requires about half the hardware cost and

achieves the same relative performance. It is also important to note that since both methods
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Figure 4.15 Compiler allocated computation regions based on priority.

treat memory-dependent regions identically, the performances for memory dependent regions
are equivalent in either model.

Figure 4.18 illustrates the overlap in values of the computation instances held for compu-
tation regions. The percentage is evaluated by determining the numbers of register inputs of a
region that could share value elements (for the same respective register index) with a region al-
ready in the computation reuse buffer. The percentage is weighted by the number of input and
output values matched with an existing computation instance. The regions have at most 8 reg-
ister input or output values, and can have as few as 0 register inputs (strict memory-dependent
regions). Overall, the distribution of input and output value overlap illustrates that there is
a potential for achieving nearly a 30% reduction of the CRB resources. The high percentage
indicates how the SI-CRB is able to have limited hardware support and still maintain the base

CRB’s representation of the region’s computation instances.
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Figure 4.16 Performance degradation for increased computation validation latency.

The results of Figure 4.18 indicate that the computation instances of many of the region
executions of 129.compress and pgp could not be efficiently represented using the SI-CRB con-
figuration. Furthermore, in separate experiments, the overlap of register indexes was very high,
indicating that since the primary deficiency of the SI-CRB design is handling control-intensive
regions with greatly differing input registers, the design will be able to achieve cost-effective
performance improvements over the base CRB.

The general microarchitecture alternative that can reduce the CRB microarchitecture design
complexity is the history-based computation instance entry. As mentioned, the primary trade-
off is a dramatic reduction in the amount of parallel comparisons at the cost of extending
the overall latency for validating reuse. Figure 4.19 illustrates the performance of the CCR
scheme when additional latency is attributed to the computation result validation associated

with validating stages of the computation instances. Three schemes with various numbers of
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Figure 4.17 Speedup for the base CRB model and SI-CRB model over base architecture.

history frames are evaluated. The first scheme evaluates all of the computation instances in a
single cycle, using a single history frame. This history model is the same proposed model of the
general CRB. The second history scheme has a history queue with two computation instance
frames. The two frames allow access to the most recent instances in a single cycle and the
other instances require additional access time. The final scheme has a history queue that is
partitioned into four frames, each section being ordered by history of the recent instances. The
most recent sections are accessed in a single cycle, while the other stages require additional
cycles based on their relative order.

The results of Figure 4.19 indicate that any delays in issuing the computation can be very
costly to computation reuse performance. A few benchmarks evaluated using the CRB with four

history frames no longer achieved performance speedup over the processor model without any
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Figure 4.18 Percent overlap of computation region register values with regions already occu-
pying CRB.

computation reuse support. On average, history-based access using two frames of computation
instances reduces 20% of the performance improvement of the proposed CRB model.

The result of using the computation anticipation technique to reduce the dispatch latency
of computation instances shows the most promise of the alternative methods of validating
computation results. In this model, the selected computation entry is able to speculatively
issue results of computation instances based on the previously observed access patterns. The
access patterns that indicate one instance being repeatedly accessed are used to confidently
predict that the pattern will persist. Figure 4.20 shows the accuracy of using the confidence
mechanism to predict the outcome of the computation reuse attempt. The mechanism can
correctly predict an average of 50% of computation instances, allowing the computation results

to be successfully speculated within the microarchitecture pipeline. Nearly 30% of the time,
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Figure 4.19 Performance of history-based computation instance array.

the computation variation cannot be confidently predicted by the anticipation mechanism.
Performance results indicate that the computation anticipation results in 3-5% performance
improvement.

General Approach Evaluation. To evaluate the overall CCR approach, it is important
to understand which components in the scheme cause the most disruption to achieving the best
performance. Three conflict types govern efficient reuse in the CCR approach: computation
entry miss, computation instance miss, and false (unnecessary) compiler-direction memory in-
validation. Figure 4.21(a) shows the breakdown of these conflicts for the 128-entry computation
buffer with eight computation instances. For all benchmarks, the computation instance miss
conflict dominates the percentage of time that a designated computation region can not find
a previous result. For only two benchmarks, 099.go and 126.gcc, do the conflicts caused by

computation entries being replaced account for greater than 15% of the overall computation
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Figure 4.20 Accuracy of anticipating computation instance execution behavior.

conflicts. This result is not surprising since these benchmarks are two of the largest programs
and have a significant number of compiler-directed computations contending for the compu-
tation buffer resource. A false invalidation is caused by the compiler’s inability to determine
the relationship between loads of a computation region and certain program stores at compile
time. Figure 4.21(b) shows the performance improvement based on eliminating all of the false
memory invalidations. On average, the performance of pointer-intensive programs of 130.li and
147.vortex appear most affected by the false invalidations. Overall, context-sensitive analysis
shows little precision inefficiencies in the benchmarks studied. The performance results indicate
the importance of supporting interprocedural alias analysis within the compiler and its direct
influence on the effectiveness of the proposed approach.

Due to the nature of determining reusable computation at compile time, the performance

potential of the CCR framework depends on utilizing effective heuristics and having accurate
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run-time estimation of program behavior. To determine the significance of using value profiling
information outlined for the CCR approach to make these decisions, the performance of an input
data set different from the one used to determine reusable computation was measured. The
training input set is used to select reusable computation regions; and the training and reference
input sets were then evaluated, and the results were compared to each input’s respective base
performance. Figure 4.22 examines these results for a 128-entry CRB model with 8 Cls per
entry. The average performance speedup for the training input set is 26%, and the average
for the reference input set is 23%. Although on average there is a reduced relative speedup
for the reference input set, several of the benchmarks achieved higher relative speedups for the
reference input set. In addition, the average amount of instruction-level redundancy eliminated

using the reuse architecture averaged 33%.
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Figure 4.22 Performance for training and reference input data sets.
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Distribution of Variation Classes

Figure 4.23 Variation of computation instance behavior for multiple input sets.

Overall, the moderate performance speedups of Figure 4.22 reinforce the strategy of using
profile information to aid the compiler in detecting opportunities for computation reuse. And
secondly, for the benchmarks achieving lower relative speedups for the reference input, the
percentage difference is moderate, indicating agreeable execution behavior across input sets.
Figure 4.23 illustrates the variation in region requirements observed for the two input sets
evaluated for a subset of benchmarks. The bars indicate the type and amount of invariance oc-
curring. Generally each application sustains relatively the same variation-based reuse behavior
between the input sets, indicating that it is possible to characterize a program’s behavior by
the redundancy found within its execution.

Hardware Implementation Costs. Table 4.1 represents a hardware cost estimate of
the CRB design. This table accounts for bytes of hardware memory, but does not include wiring

or logic gate costs. The largest cost comes from maintaining the computation instance register
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index and value. Experimental results in Chapter 5 will illustrate the performance of the CRB

approach evaluated for different levels of hardware resources.

Table 4.1 Hardware cost expressions and cost for models evaluated.

Cost
Scheme | Cost Expression (in bytes)

CRB N(Entry + CI(CI-COST + Num_Input(Input_Cost) + Num_Output(Output_Cost))) | 42624

SI-CRB | N(SI — Entry+ CR(RECORD_COST + 2 x Register_Positions x Num_Elements)+

2 * Register_Positions(Num_Elements x Element_Cost + Element_Overhead) 18092

| Var | Definition |

N Number of computation entries

Entry Size of computation entry information

CI Number of computation instances per entry

CI_COST Size of computation instance information

Num_Input Number of input registers in computation instance

Input_Cost Size of input register information (value, reg index, valid)

Num_Output Number of output registers in computation instance

Output_Cost Size of output register information (value, reg index, valid)

CR Number of computation records

SI — Entry Size of computation entry information for SI-CRB

RECORD_COST Size of computation record information

Register_Positions | Number of register positions

Num_Elements Number of value elements

Element_Cost Size of element information (valid)

Element_Overhead | Size of maintaining element information by register position

Finally, in motivating the proposed compiler-directed approach, Figure 4.24 illustrates the
ratio of the hardware facilities required to extract a single computation instance for each com-
putation region of Figure 4.24 using hardware-only relative to compiler-directed techniques.
The estimations are generated by calculating the amount of information recorded for reuse
and not for detecting potential reuse. The compiler-directed approach uses static analysis to
understand the live-out of a region and only records those identifiers and values, whereas the
hardware-only approach must retain every register updated within the region. Thus, the in-

formation recorded for compiler-directed methods is significantly lower for the same reusable
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Figure 4.24 Resource estimation for hardware exploitation of regions.

sequences. Figure 4.24 clearly shows an advantage for the compiler-directed approach to reduce

the hardware overhead necessary to reuse large amounts of computation.

4.6 CCR Summary

In this chapter, the base compiler-directed approach for exploiting dynamic redundancy
was presented. The approach uses the compiler to decide and annotate code segments with
the potential for reuse. This enables the underlying hardware architecture to capture the
reuse potential in regions of code rather than basic blocks and individual instructions, thereby
exploiting more substantial opportunities. Additionally, the approach captures the redundancy
of high-level computations that do not possess instruction-level repetition. The effectiveness of
the proposed approach was evaluated using several different resource models, varying the size

of the computation reuse buffer and the number of computation instances recorded for each

117



computation. The resulting speedup of the approach measured with a moderate architecture
model (128-entry CRB with 16 computation instances per entry) achieved an average 30%

speedup.
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CHAPTER 5

DYNAMIC COMPUTATION MANAGEMENT SYSTEM

5.1 Introduction

Compiler-directed computation reuse in the CCR approach enhances program execution
speed and efficiency by eliminating dynamic computation redundancy. A major limitation of
the work thus far is that the compiler relies on value profiling to identify reusable regions, making
it difficult, if not impossible, to deploy the scheme in many software production environments.
This chapter presents a new model where a novel hardware mechanism alleviates the need for
value profiling at compile time. The compiler is allowed to designate reusable regions that
may prove to be inappropriate. The hardware mechanism monitors the dynamic behavior
of compiler-designated regions and selectively activates the profitable ones at run time. The
proposed design makes more effective utilization of hardware buffer resources, achieves rapid
employment of computation regions, and improves reuse accuracy, all of which promote more
flexible compiler methods of identifying reusable computation regions. Experimental results
show that even a modest hardware monitoring mechanism can greatly increase the benefit of
the CCR approach.

This chapter addresses the limitations of the original CCR approach by presenting new
hardware-based enhancements for accurately and effectively determining reusable computa-

tions within program execution at run time. To support the targeted enhancements to the
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CCR approach, the proposed hardware uses three integrated components. The first hardware
structure, called the Reuse Sentry, detects regions with significant execution frequency and
controls the deployment of active computation regions. The Fuvaluation Buffer evaluates can-
didate computation regions for potential reuse. This structure monitors selected regions to
determine if the regions should be placed in the Computation Reuse Buffer (CRB). Finally, the
third component, called the Reuse Monitoring System, examines the behavior of computation
regions in the computation buffer and makes assessments on the allocation of CRB resources.
Overall, the system introduces architectural support for eliminating dynamic redundancy due
to inherent aspects of programming languages and application workloads.

The remainder of this chapter is organized as follows. The following section will motivate
the proposed hardware components. Section 5.3 describes the system for performing run-time
management of computation reuse regions. The effectiveness of the proposed system is evaluated

in Section 5.4. Finally, the chapter is summarized in Section 5.5.

5.2 Motivation

The Compiler-directed Computation Reuse (CCR) approach [38] uses the compiler to iden-
tify code regions whose computation can be reused during dynamic execution to eliminate
dynamic redundancy. The instruction set architecture provides the interface for the compiler
to communicate the scope of each region to the hardware. During run time, the microarchitec-
tural components of the approach record the execution results of the potential reuse regions.
Experimental results show that the approach can eliminate a large number of dynamic instruc-

tions in general applications, resulting in much higher execution speed and efficiency.
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In the base CCR approach, code segments called Reusable Computation Regions are selected
at compile time using estimates of the expected reuse that will occur during run-time execution.
Because the hardware structure of the base CCR approach always attempts to reuse previous
computation results for all annotated regions, these regions contend for the same computation
reuse resources regardless of each region’s benefit. Thus, the compiler must select only those
regions whose reuse at run time will result in the most benefit.

Figure 5.1 shows the performance achieved by a six-issue processor with a 32-entry CRB
hardware structure with 16 computation instances per entry and with a CRB with infinite
resources, both over a base processor without reuse support. The CRB with perfect resources
has the capability of maintaining all of the previous execution results for every computation
region selected at compile time. On average, the 32-entry CRB design captures about 40%
of the potential speedup available using infinite resources. The gap is due to the fact that
the compiler is faced with the undesirable trade-off between missing reuse opportunities and
exhausting buffer resources. The substantial potential performance benefit provides the initial
rationale for enhancing the base CCR scheme to allow the compiler to be much more aggressive.

Although the CCR approach can eliminate significant amounts of redundant execution,
there are additional opportunities that require capturing elements of program behavior. For
instance, virtually all programs go through a series of stages during execution. A stage is char-
acterized by changes in the execution properties for code, the data, or both. Similarly, programs
such as compilers, interpreters, and graphics engines exhibit phase behavior, having different
modes of operation for different inputs [52]. The use of profile information by compiler-directed
mechanisms can hide opportunities since profile-guided decisions may not be representative of

all program workloads. More importantly, the use of profile information in many systems is
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Figure 5.1 Performance for processor with base 32-entry CRB and perfect CRB.

not feasible due to constraints in software development. For these reasons, it is imperative for
a system to adapt to variations in program behavior.

In analyzing run-time computation reuse, experimental observations indicate that reuse be-
havior often occurs in distinct phases. A reuse of any of the cached computation instances
contained in the CRB over an interval of time represents an opportunity to eliminate computa-
tion redundancy. Periods of region executions with successful reuse are called reuse intervals.
An enhanced, dynamically managed CCR. scheme can take advantage of reuse intervals by
favoring the utilization of the computation buffer resources for those regions. Ideally, only
computation regions demonstrating reuse success would be deployed at run time.

An example of reuse interval behavior can be seen in 008.espresso running the bea training
input from the SPEC92 benchmark suite. The reuse execution collected over a period of 2

million instruction executions for three computation regions is shown in Figure 5.2. Each
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point indicates whether the region had a computation miss (no cached computation results), a
computation hit (a matched computation result from a previous execution), or no attempt (the
region was not executed at that time). All three regions exhibit initial periods during which
the computation instances are being stored for future execution. These periods are indicated
by the excessive percentage of reuse misses.

The behavior of the first region indicates two medium-sized reuse intervals with intervening
periods of reuse misses. The second and third regions have longer reuse intervals, which occur
after the initial cold start period. However the third region experiences a long period of time
without any execution. The identification of reuse intervals can be made over different lengths
of program execution time. Overall, the behavior exhibited in Figure 5.2 motivates dynamic
management of computation reuse since regions execute with periods of reuse and multiple

regions compete for the same computation reuse resources.
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Figure 5.2 Computation regions executed for 008.espresso. Fach data point indicates either
a computation reuse miss, computation reuse hit, or no computation reuse attempt.
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The third motivation for extending the design of the compiler-directed reuse hardware is
the variation in the computation instance capacity required by each region. Generally, the
number of computation instances that a region requires over an interval of execution varies
with the region type. Regions exhibiting reqular variation require a set number of computation
instances that remains constant over the lifetime of the program. Such regions can be assigned
to computation entries with a specific number of computation instances, thereby reducing the
hardware costs of providing a large number of instances for every type of region. Conversely,
through experimentation an average of 70% of regions have irreqular variation behaviors that
warrant different computation instance capacities at different times. Thus, to effectively utilize
computation resources, the CRB needs to adapt its allocation to run-time requirements.

Several proposed architectural techniques can realize significant performance benefits by
adapting to run-time variation. Branch prediction and cache management have been the pri-
mary areas where run-time information has been applied. However, trends in dynamic opti-
mization [24] and run-time hotspot detection [53] indicate other exciting avenues to exploit
run-time behavior. Run-time information allows for a more effective use of processor resources.
Likewise, allowing the compiler-directed computation reuse approach to use run-time informa-
tion would allow it to adapt to program trends. There are several reasons for adapting run-time
techniques to the compiler-directed reuse approach. First, the reuse of a computation region
can be activated at run time rather than at compile time. This includes using run-time infor-
mation to direct the deployment of a reuse region. Second, the run-time information can be
consulted to effectively utilize a limited number of computation entries by assigning resources
to those regions generating substantial performance improvements over a period of time. Third,

the run-time variation statistics would allow effective allocation of reuse buffer resources in the
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presence of hardware with varying recording capacities. Finally, dynamic management tech-
niques allow the compiler to introduce computation regions that are not strictly guided without
degrading performance improvements.

The percentage of computation regions with irregular variation requirements is shown in
Figure 5.3. For this graph, regions were selected by profile-guided heuristics [38] and then
examined for a reuse buffer with one entry per region and 16 computation instances per en-
try. This model allows the variation behavior of all regions to be studied. Fach region was
observed over periods of 1024 instruction executions. During each of these time periods, the
unique number of computation instances was divided into four bins indicating the number of
required instances (2,4,8,16+). If a region executed more than 50% of the time periods in
one bin, then the region was noted as having regular variation (stable number of computation
instances required). Figure 5.3 indicates the percentage of dynamic region executions in the
irregular variation behavior class. On average, 73% of regions require different computation
instance capacities. Additionally, only 33% of these irregular regions had greater than 75% of
their executions covered by two bins. These results indicate that a method of relocating compu-
tation regions to computation buffer entries through program execution may achieve increased
utilization under strict hardware constraints.

The final motivation for improvement is that the base CCR approach relies on profile-
guided heuristics to identify computations that are potentially reusable during the execution
of the program. Specifically, value profiling techniques [2] determine regions called Reusable
Computation Regions that instruct the hardware how to effectively reuse the computation de-
fined within these regions. Such reliance on value profiling can hamper the use of the base CCR,

approach in many software production environments.
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Figure 5.3 Computation region variation behavior.

5.3 Dynamic Computation Management System

The proposed hardware support for dynamic computation reuse management uses three
stages to activate a computation region. The stages perform detection, evaluation, and ex-
amination of beneficial computation reuse. First, the region must meet a minimal execution
requirement to warrant consideration for CRB resources. Second, the region must be evaluated
to determine if it is likely to benefit from reuse and placement in the CRB. Finally, the variation
of the computation region is examined to determine the most effective way to assign it in the
CRB. These stages act as a run-time confidence mechanism to accurately select regions for the
computation buffer resources, and result in improved CRB utilization and reuse accuracy. The
stages are collectively constructed in the Dynamic Computation Management System (DCMS)

which consists of the following three hardware components:
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Reuse Sentry (RS) collects execution counts for computation regions and identifies candi-
date computation regions. The Reuse Sentry contains a Reuse Deployment Buffer to
deploy the computation and a Candidate Execution Counter to determine the activity of

candidate computation regions.

Evaluation Buffer (EB) evaluates candidate computation regions for potential reuse. The
structure monitors regions to determine if they should be placed in the computation reuse

buffer to eliminate computation redundancy.

Reuse Monitoring System (RMS) examines the behavior of regions in the computation
buffer and assesses allocation of CRB resources. The RMS removes computation regions

from the CRB and directs alternate computation regions to utilize the CRB resources.

Figure 5.4(a) shows the base CRB model and Figure 5.4(b) illustrates the proposed dynamic
computation management hardware. In Figure 5.4(a), computation regions always attempt to
reuse execution by contending for entries in the CRB. In the enhanced design of Figure 5.4(b),
the resources are selectively assigned to regions with persistent reuse.

The Reuse Sentry and Evaluation Buffer can be located off the critical path of the processor
pipeline because their resources do not directly affect the process of using previously cached
computation results. However, the Reuse Monitoring System and the operation of the CRB re-
quire close interaction with the processor datapath and cannot tolerate a large access or update
latency. This is because the access latency of the computation entries and their respective com-
putation instances is inversely proportional to the performance benefit of the compiler-directed
approach [38]. The following sections describe each of the main components of the dynamic

management system.
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Figure 5.4 The Computation Reuse Buffer (a) and the Dynamic Computation Management
System support (b).

5.3.1 Reuse Sentry

The first step in effective management of the computation reuse resources is detection of
frequently executing computation regions. Such regions can be easily identified in hardware by
detecting a high execution frequency over a particular time interval. By examining all region
executions over the same interval, computation resources can be accurately allocated to regions
with different requirements.

A structure called the Reuse Sentry (RS) collects the execution history and efficiently deploys
reuse. This hardware is named for its function as a sentry, or guard, that prevents the passage
of unauthorized regions. As depicted in Figure 5.5, the RS structure is indexed by the reuse
instruction address and contains several fields: address tag, execution count, state information,
predicted address, and computation entry index. The RS structure also includes a global

Observation Reset Counter used to evaluate all region executions. The activities of the RS
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Figure 5.5 Reuse Sentry hardware.

structure are divided between the Candidate Execution Counter and the Reuse Deployment

Buffer.

5.3.1.1 Candidate execution counter

The Candidate Execution Counter (CEC) primarily detects regions with frequent execution.
Regions that execute often are given higher priority for resources than regions with low frequen-
cies. A secondary function of the CEC is to record the position of each region in the DCMS
system. The position follows the transitions of Figure 5.6, which uses four states: observed,
candidate, active, and inactive.

When the processor executes a reuse instruction, an entry is created in the RS and the

instruction address is designated as the index. The initial creation of an entry classifies the
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Figure 5.6 Region states and transitions.

respective region as an observed region. In this state, the region is being monitored to determine
if it frequently executes. Regions that execute frequently over a short time interval are excellent
candidates for reuse resources. If executed frequently during the observation state, a region may
be passed to the Evaluation Buffer, and is then referred to as a candidate region. In order to
detect candidate regions, the execution counter of a region’s RS entry is incremented on each
execution of the region. The execution counter can exceed two predefined levels, the major
and minor candidate thresholds, each of which is associated with a bit in the execution counter.
When the counter bit corresponding to a threshold is set for the first time, a candidate flag field
is set in the state field for the duration of the observation time. The major threshold indicates
regions with a dominant number of executions, while the minor threshold indicates a lower
execution frequency. The distinction between major and minor thresholds aids determination
of the best candidate regions from the observed regions in a particular interval.

To ensure that only frequently executing regions are marked as candidates, the RS is peri-
odically flushed. The Observation Reset Counter is used to establish a time interval, called the
observation interval, for periodically refreshing the entries of the RS that have not surpassed

any candidate threshold or have been classified as inactive. The Observation Reset Counter is
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incremented each time an inactive or observed region is executed. The inactive classification
is assigned by the evaluation and examination stages of the DCMS and is used to designate
regions that previously occupied the CRB, but had poor reuse behavior.

When the major candidate threshold is surpassed, hardware logic attempts to add an entry
for the region to the Evaluation Buffer (EB) and change the region state in the RS from observed
to candidate. If the EB does not have sufficient entries to handle the request, another attempt
is made at the end of the observation interval. In this case, the RS is scanned for all entries
meeting the major candidate threshold. This means that relative to the observation interval,
entries in the evaluation buffer are made both asynchronously and synchronously. If the EB
has capacity remaining after obtaining major candidate regions at the end of the interval, then

the RS is searched for entries meeting the minor threshold.

5.3.1.2 Reuse deployment buffer

The second function of the Reuse Sentry is to provide a means of efficient deployment of
compiler-directed computation reuse. The basis of the CCR approach is placement of a reuse
instruction at the entrance to a large region of code that exhibits computation redundancy.
The reuse instruction is formulated as a branch instruction with two potential locations for the
next instruction to be executed: the fall thru or the taken location. The control resolution is
based on whether previous computation results have been stored for the region.

In the dynamically managed approach, if a region has been classified as either inactive,
observed, or candidate, then it has not been assigned computation reuse resources and it must
execute each of its operations. Otherwise, if a region is active then resources have been assigned

to it and there is a good chance that region execution can be bypassed by simply reusing
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previous computation results. In order to improve deployment of computation reuse, the Reuse
Deployment Buffer (RDB) is constructed to predict reuse instructions similar to a Branch
Target Buffer (BTB). For the active classification, the target address field in the RS entry of a
region is used to predict the target of the reuse instruction as the next instruction following the
entire computation region. If the target is not set, the RS predicts not-taken, and the execution
continues with the next sequential instruction. The RS prediction is used to reduce the delay

in determining whether the computation reuse region has been assigned resources.

5.3.2 Evaluation Buffer

After the Reuse Sentry identifies regions as candidates, they must be evaluated to determine
reuse execution behavior, i.e. whether they warrant the use of computation reuse resources.
There are two criteria that a candidate region must satisfy to be transitioned from the EB
(candidate state) into the CRB (active state). First, the candidate must exhibit a high per-
centage of successful reuses, called an active reuse interval, occurring over a specified minimum
amount of execution time, called the active evaluation interval. The minimum percentage of
successful reuse over the time interval is called the active reuse threshold, while the actual
reuse percentage over the interval is the active reuse percentage. The number of failed reuse
attempts in the active reuse interval can also be tracked to determine whether an active interval
exists. Second, the candidate region must have a minimum number of active intervals before
the evaluation interval, a predefined number of all candidate region executions generated by
incrementing the Evaluation Reset Counter for every candidate region execution, expires. The

evaluation interval resets the entries within the evaluation buffer, allowing new regions to be
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p

evaluated. The number of active intervals exhibited by a region during the evaluation interval

is called its active interval count.

The Evaluation Buffer hardware is shown in Figure 5.7. EB entries contain the following

fields: active interval count, execution count, miss count, activity vector, and a computation

instance array. The active interval count simply maintains the number of active intervals

experienced during the evaluation interval and is used in assigning activation priority for the

region. The execution counter tracks the number of executions in the currently evaluated active

reuse interval. Miss count represents the number of reuse misses for the current active interval.

The execution counter is implemented as a roll-over counter that is initialized to the minimum

value. The counter increments for each candidate region execution, and an active interval is

counted if the number of failed opportunities for reuse does not exceed the failed threshold.
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Figure 5.7 Evaluation Buffer hardware.
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Figure 5.8 Activity vector.

The result of evaluating an active interval (active/failed) during every active evaluation
interval is used to maintain an active difference in a special purpose shift register called the
activity vector, shown in Figure 5.8. This vector is shifted in the active direction for every active
interval achieved and shifted in the opposite direction for failed intervals. The vector maintains
the approximate difference in the number of active intervals and failed intervals while aiding
the evaluation of EB entries.

At the end of the evaluation interval, entries are removed from the EB under two conditions.
First, the entry is removed if there is not an active interval count and a positive active difference
has been recorded in the activity vector. This allows regions with only marginal reuse to be
removed. Upon reaching the mazimum activation threshold, attempts are made by the EB
system to place the respective regions in the CRB. Similarly, at the end of the evaluation
interval, region entries meeting a minimum activation threshold are compared with entries in
the CRB for opportunities to revise CRB resource allocation. If no favorable opportunities
exist, the EB entry is reset, but the region remains under evaluation (continuation). Second,

the entry is immediately removed if the activity vector reaches the mazimum failed threshold.
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Entries with an activity vector indicating a minimum failed threshold are possibly replaced
depending on the requests of the RS. At the end of the evaluation interval, entries with activity
vectors indicating activity below the minimum active and minimum failed thresholds are also
removed. Any of the above entry failures results in the region state being changed to inactive,
while admittance to the CRB results in active state assignment.

The computation instance array of the EB entry differs in two ways from the traditional
computation instance array. First, the input set only consists of input register operands and
their respective values and the validation of memory state used by the computation. In order
to minimize the dynamic management support hardware, the set of output register operands
and their respective result values are not stored. Second, the array contains a single bit, called
an instance indicator, for each computation instance activated during the evaluation process.
The instance indicators serve to make an assessment of the number of computation instances
necessary for the region. The EB migrates computation regions from the candidate to active
state based upon availability of computation reuse buffer resources. The evaluation buffer
determines the best candidate region by finding the EB entry with the largest difference between
its number of active and failed intervals. Additionally, the number of set instance indicators
is used to make the initial assignment to computation reuse entries. The computation reuse
resources have a variable number of computation instances per computation entry, and the
RMS informs the EB of available entries and their respective capacities. The EB decision is
based first on matching the available capacity with the potential required capacity of entries

and then on reuse evaluation (decided by the maximum activation difference).
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5.3.3 Reuse Monitoring System

The Reuse Monitoring System determines if the computation resources designated for each
active region are appropriate and revises the assignment of resources based on the observed run-
time requirements. The computation reuse entries are divided into segments, each containing
a different computation instance array capacity. Generally, the segmentation allows the RMS
to match the hardware capacity with a region’s requirements (adapting to irregular variation).
The RMS performs four entry revisions: demotion, promotion, eviction, and admittance. The
process of demotion transplants a region to an entry with lower computation instance capacity,
while promotion gives a region higher computation instance capacity. The RMS is responsible
for evicting regions from the computation reuse buffer if they do not result in successful reuse.
Finally, a region be admitted from the EB if its reuse behavior is more favorable than existing
CRB entries.

Figure 5.9 illustrates the proposed Reuse Monitoring System. Each computation entry in
the CRB has a respective entry in the RMS that is used to govern the replacement policy of
the entry and the replacement policy of the computation instances. The policies are able to
share the same hardware components within the entries, since both operations are related to
the run-time utilization and accuracy of the computation instances. To aid appropriate revi-
sion decisions, reuse behavior information is collected in the same manner as the EB entries.
Figure 5.9 illustrates the additional fields for collecting activity information: activity history
and computation instance activity. A monitoring interval is computed from the global RMS
Counter, which is incremented for every active region execution. The monitoring interval peri-
odically revises the existing region entries in the CRB and imports new region entries from the

evaluation buffer.
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Figure 5.9 Reuse Monitoring System hardware.

Computation Instance Replacement. The RMS hardware provides high reuse accu-
racy for a region by tracking the activity of the computation instances within each computation
entry. A traditional replacement policy for the instances, least recently used (LRU), does not
perform well. However, there are some instances, called dominant instances, of computation
that occur frequently over the lifetime of a region. The accuracy of region reuse can be greatly
enhanced by allowing the dominant instances to remain in the CRB. To do this, computation
instance activity (CIA) saturating counters are incremented for each successful reuse of an in-
stance. When the counter saturates, the dominant field is set and remains set for the entire
monitoring interval. On a computation instance miss, nondominant regions are selected using

an LRU policy.
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Computation Entry Revision. For the RMS to determine region requirements, the
hardware must be aware of the reuse success rates of the computation placed in each compu-
tation entry. In addition, each entry maintains an activity history field that contains a b-bit
shift register for recording the history of achieving the minimum activation percentage during
each of the last b monitoring intervals. Bit position historyg represents the current monitoring
interval and position history,_1 represents the activity level from b — 1 monitoring intervals
ago. In addition, the CIA counter information is used to estimate the needs of the computation
region during revision of resource assignment.

Revisions are performed at the end of the monitoring interval and upon detection of an ac-
tivity vector with excessive failures. The proposed implementation steps are followed in order
of their appearance in Table 5.1. The timing column refers to revisions taking place on the
reset of either the evaluation or monitoring intervals. The segment_level (SL) refers to the parti-
tioned segment of the CRB; a higher segment level indicates segments with greater computation
instances capacity. A desirable candidate (DC) refers to a region in the EB with a promising
activation vector. When admitting regions from the evaluation buffer, the instance indicators
are used to determine the base segment of the CRB to detect RMS entries. Admittance of a

candidate region may preempt a region with a poor activity history.

Table 5.1 RMS region revision conditions.

Revision Timing Condition

Eviction Asynchronous MaxFailure Vector && !Segment_Entry_Available[SL+1—MAX]
Synchronous MinFailure Vector && DC && DC Vector > RMS Vector

Demotion Synchronous MinActive Vector && Dominant Instances < NumlInstances[SL]/2

Promotion | Asynchronous MaxFailure Vector && Segment_Available[SL+1—MAX]
Synchronous MinFailure Vector && Segment_Available[SL+1—MAX]

Admittance | Synchronous DC MaxActive Vector && Segment_Available[Dominant Level - MAX]
Asynchronous | DC MinActive Vector && Segment_Available[Dominant Level = MAX]
Synchronous DC MaxActive Vector && DC Vector > RMS Vector

&& Population(RMS History) < 1/2 History Size
&& Population (recent RMS History) < 1/2 Population (RMS History)
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5.4 Experimental Evaluation

5.4.1 Methodology

The IMPACT compiler and emulation-driven simulator were enhanced to support a model
of the proposed architecture framework and the region formation techniques respectively in-
troduced in Section 5.3 and Chapter 3. Concerning the general compilation environment and
processor model evaluated, all experiments of this section were generated using the same meth-
ods outlined in Section 4.5.

In the experimental simulations of the DCMS, the computation buffer had 32 entries with 16
computation instances (CIs) per entry. Each CI supports an input and output 8-entry register
array. The DCMS was configured according to the hardware assignments and parameters listed
in Table 5.2. Because the design space is complex, experimentally evaluating the individual
effect of each hardware parameter was infeasible. Initial parameters were selected and optimal
settings were selected based on the hardware cost and approximate performance constraints.
The Reuse Sentry hardware is configured to allow regions with a dynamic execution percentage
ranging from 6% (32 executions/reset interval) to 3% (16 executions/512 branches) to become
candidates. The EB hardware is configured to activate regions that have more than 66% (2:1)
active intervals and determine an active interval by reusing results greater than half (active
threshold percentage) the executions of an interval of its 32 region executions. The RMS
parameters are established identically to respective structure components in the EB, except
that they are given slightly more cautious failed activity vectors to more readily adapt to
changes in reuse requirements. CRB revisions required 12 cycles, representing the case when a

large computation entry was migrated to an entry with reduced capacity.
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Table 5.2 DCMS hardware configuration.

| System | Component Setting
Reuse Sentry (RS) Number entries 256
Associativity 2-way
Exec counter size 5 bits
Minor Candidate region threshold 16
Major Candidate region threshold 32
Observation reset interval 512 observed region executions
Evaluation Buffer (EB) Number entries 8
Associativity Fully associative-Directly assigned
Exec and miss counter size 5 bits
Active interval counter 4 bits
Activity vector size 15 bits

MinActive vector position

4th active position

MaxActive vector position

8th active position

MinFailure vector position

4th failed position

MaxFailure vector position

6th failed position

Evaluation reset interval

1024 candidate region executions

Reuse Monitor System (RMS)

Number entries

Size of CRB

Associativity

Fully associative-Directly assigned

Monitoring reset interval

2048 active region executions

Exec and miss counter size 5 bits
Active interval counter 4 bits
Activity vector size 13 bits

MinActive vector position

4th active position

MaxActive vector position

8th active position

MinFailure vector position

2th failed position

MaxFailure vector position

4th failed position

Active history 8 bits

Dominant Instance Hit Counter 5 bits
Computation Reuse Buffer (CRB) | Number entries 32

Number computation entry segments 4

Segment types

2,4,8,16 computation instances

5.4.2 Experimental results

Computation management results are presented here: (1) overall performance and reuse

accuracy, (2) region formation characteristics, and (3) hardware costs.

Performance and Accuracy.

The overall cycle-time speedups for evaluating the refer-

ence input set in the CRB and DCMS approaches are presented in Figure 5.10. The training

input set is used in guiding computation region formation. The CRB design is evaluated with

a direct-mapped and a two-way set associative configuration. The DCMS approach models are
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evaluated with a 32-entry CRB with four equal segments of computation instances respectively
holding 2, 4, 8, and 16 computation instances. The two DCMS models are executed with
different profile-guided reuse thresholds: 65% and 55% (rightmost bar).

Overall, Figure 5.10 illustrates the value of the DCMS approach for two reasons. First, the
DCMS approach achieves higher performance due to better computation management proper-
ties than the set-associative CRB approach. Essentially the components distributed in the RS,
EB, and RMS are collecting run-time information that can improve the ability to manage the
CRB better than simply providing more available resources to the CRB. On average the perfor-
mance speedup degrades to 15% if the regions formed with reuse threshold 55% are executed on
the set-associative CRB. Second, a processor implemented for CCR with DCMS has enhanced
speedups due to enabling the reuse in regions not selected for the base CRB modes. The DCMS
model with the additional regions selected by lowering reuse identification to 55% is able to

provide the DCMS with more opportunities to exploit dynamic computation redundancy.
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Figure 5.10 Performance for CRB and DCMS models.
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The performance benefits of the DCMS approach are enabled by reducing the percentage
of failed reuse attempts and increasing the percentage of successful reuse attempts. Figure 5.11
presents the distribution of reuse attempts for the DCMS relative to the base CRB approach
for the lower reuse identification threshold. On average there is both a reduction in reuse
failures (22%) and an improvement in successful reuse attempts (21%). The RS and EB stages
of the DCMS are working in a coordinated fashion to make only confident reuse attempts.
The addition of computation regions using the DCMS approach increases the percentage of
failed reuse attempts for 124.m88ksim. However, overall reuse accuracy exceeded the marginal
number of failures added. Although some of the DCMS parameters did not allow regions
with long intervals between executions to use the CRB resources, the DCMS had an overall
positive effect on performance. Nevertheless, there is a great deal of potential in improving the

management in the DCMS to use information other than reuse and execution frequency.
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Figure 5.11 Comparison of reuse attempts for the CRB and DCMS models.
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Figure 5.12 Performance for DCMS, instruction reuse (IR), and value prediction (VP).

Figure 5.12 illustrates the performance for three locality exploitation schemes: DCMS,
instruction reuse (IR), and instruction-level value prediction (VP). The instruction-level tech-
niques are provided with 1024 entries of their respective hardware resource. The IR method
has a history size of eight entries. The results indicate that the dynamically managed compiler-
directed scheme can achieve higher performance for all of the benchmarks studied.

Region Formation Evaluation. Although the techniques of Section 3.4 represent
a first attempt at statically identifying reuse in programs for the DCMS approach, results
indicate promising potential in eliminating use of value-invariant profile information in the
CCR approach. Figure 5.13 illustrates the performance speedup achieved using the inferred and
structured approaches relative to the profile-guided approach. A third experimental method
combines the maximum number of regions found using both static approaches. On average, the

individual static approaches are able to achieve 40-43% of the profile-guided speedup.
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Figure 5.13 shows that the structured approach has substantially better performance for
benchmarks 129.compress, mpeg2, and pgp. These programs exploit value-invariant behavior
directly related to data input at the application programming level, allowing no value-invariant
inferences to be made, and thus the respective computation regions were more readily found
using the structure technique. Generally such programs have natural code regions that represent
fundamental tasks of inherent program algorithm. On the other hand, the inferred approach is
able to better identify regions in benchmarks 124.m88ksim and 126.gcc which have abundant
analyzable relational information found by examining individual modules in a whole-program
setting. The combined approach significantly improves the percentage of profile-guided speedup
achieved to nearly 55%, indicating that the best region identification scheme will most probably

be composed of multiple methods.
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Figure 5.13 Performance for static region identification techniques.
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The final important aspect of the DCMS approach investigated was the evaluation of the
region formation techniques on a new untrained input. Figure 5.14 illustrates three methods
of region identification: profile-guided of the training and reference inputs, the structured and
inferred static approaches, and the profile-guided and static approaches. All methods generate
the maximum number of regions corresponding to the multiple inputs or analysis techniques.
The experiment evaluates a subset of the original benchmarks that have a third available input
set. The results indicate the continued success of both the profile-guided and static region iden-
tification approaches, each respectively averaging 28% and almost 20%. The combined method
employs regions identified using either method, and on average has 5-6% greater performance
improvement than the profile-guided method. This result indicates that the profile-guided in-
puts are not indicating all of the potential program reuse behavior. Nevertheless, the DCMS

improves performance by selecting the statically identified regions at run time.
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Figure 5.14 Performance for combining profile-guided and static region identification methods
on untrained input set.
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Table 5.3 Hardware cost expressions and cost for models evaluated.

| Scheme | Component | Cost Expression (in bytes) | Cost |
| CRB ] - | Num_Entries = (CI_entry_cost(Num_Instances)) | 42624 |
DCMS CRB Num_Entries_Segment|0] * (C1_entry_cost(Num_Instances_Segment[0])) 19980
+..... + Num_Entries_Segment|[Segments — 1]
(CI_entry_cost(Num_Instances_Segment[Segments — 1]))
RS Num_Entries x (Tag + Execentr + State + Targetqqdr + CRB_index) 2240
EB Num_Entries * (Intervalepir + Execentr + MiSScntr
+Activityyector + Instance_Indicators(Num_Instances)) 5276
RMS Num_Entries x (Intervalentr + Execentr + MisSentr + Activityvector
+ Activitynistory + Dominant_Instancecnsr * Num_Instances_in_C RB_entry) 316
(total) - 27812

Hardware Implementation Costs. Overall, the moderate performance speedups rein-
force the strategy of using dynamic management support since the hardware requirements are
significantly less than the costs of the base CRB model. Table 5.3 represents a hardware cost
estimate of the CRB and DCMS models evaluated. This table accounts for bytes of hardware
memory, but does not include wiring or logic gate costs. Table 5.2 defines the symbols and the
respective settings found in Table 5.3. Using this examination, the DCMS requires nearly half
the hardware of the traditional CRB, yet provides improved region management functionality
and the ability to adapt to run-time program behaviors. Experimental results indicate that the
EB hardware resources have the most influence on achieving the reported performance results.

Figure 5.15 illustrates the performance results comparing varying levels of hardware re-
sources for the three locality schemes. Two benchmarks, 008.espresso and 129.compress, along
with the average of all benchmarks are presented. The results indicate that the dynamically
managed compiler-directed scheme can achieve higher performance even when substantial hard-
ware resources are available for instruction-level reuse and value prediction. Only when the

resources are limited to 16K are the performance results equivalent.
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Figure 5.15 Performance when varying levels of hardware resources for DCMS, instruction
reuse (IR), and value prediction (VP).

5.5 Summary

Innovations in high-performance system design and the availability of silicon resources have
allowed modern processors to include mechanisms for analyzing run-time program behavior
to effectively manage constrained resources. The proposed system in this chapter enhances
compiler-directed computation reuse by allowing the processor to detect the most frequently
executed code regions, to examine reuse execution behavior, to dynamically allocate reuse buffer
resources, and to selectively deploy code regions for optimal elimination of dynamic computa-
tion redundancy. To evaluate the opportunities created by the mechanism presented in this
chapter, advanced compiler techniques were employed to provide an abundant supply of poten-
tial computation regions. Results show that with little additional hardware, this combination of

new region identification techniques and a dynamic management system achieves performance
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improvement over the traditional computation reuse framework. In addition, the chapter pro-
vides insight into opportunities for static identification of computation reuse in programs, which

would eliminate dependence on value-invariance profile information in the software development

process.
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CHAPTER 6

VALUE OPTIMIZATION FRAMEWORK

One fundamental limitation of traditional compiler optimization techniques is that they do
not significantly alter the program’s original control and data flow structure to achieve high
performance on wide-issue processors. By exploiting persistent value locality characteristics
within programs, an enabled compiler can enhance the original computation to include new
optimized control paths with value-specific contexts. Specialized code can be synthesized by
analyzing the data distribution of the region. The region identification approaches used for
compiler-directed computation reuse to determine redundant code regions can be used to find
such opportunities for applying value-based compiler transformations.

This chapter presents an effective optimization framework that allows the compiler to trans-
form programs to exploit value locality behavior without new hardware support. Value profiling
and value analysis techniques are used to extend the data dependence representation of the com-
piler and are used as the basis for transforming the code in the Value Optimization Framework
(VOF). Predicated execution and predicate-based optimization techniques play an imperative
role in the optimization framework by allowing the newly created value-context paths to be

optimally executed on modern processors designed to exploit instruction-level parallelism.
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6.1 Introduction

One fundamental limitation of most traditional compiler optimization techniques is that
they do not significantly alter the program’s original control and data flow structure. For
processors designed to exploit instruction-level parallelism (ILP) to be effective, compilers must
aggressively restructure code to express program behavior characteristics and utilize micro-
architecture techniques. As the compiler translates high-level language constructs into assembly
instructions, it does not alter the basic control structure or synthesize instructions based on the
value-locality of the code’s execution behavior. Instead, most optimization techniques focus on
exposing and increasing ILP within a fixed control structure.

Restricting a compiler to use the program’s unaltered control and data flow structure is
undesirable for several reasons. The deficiencies in executing the original control flow presented
within programs have been previously studied [54]. First, a high-level language represents pro-
gram control flow in an extremely sequential manner through the use of nested if-then-else
statements, switch statements, and loop constructs. Each control construct is fully evaluated
before proceeding to the next. This sequential computation often defines the program crit-
ical paths that constrain the available ILP. Second, programmers represent control flow for
understandability or for ease of debugging rather than for efficient execution on the target ar-
chitecture. As a result, software often contains redundant control constructs that are difficult to
detect with traditional compiler techniques. These may involve evaluating the same conditions
multiple times or evaluating conditions that partially overlap. For such reasons, an effective
ILP compiler should be capable of transforming the program control structure to eliminate

these problems.
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The original dataflow structure of a program also presents similar limitations to the per-
formance of modern processors. The inherent structure as described in the source within a
program becomes the major factor in determining the efficiency of wide-issue processors since
the existence of multiple independence instructions is a property of the program algorithm
and not of the design technology. In order to enable their cost-effective performance potential,
these processors demand that increasing levels of ILP be exposed in programs. The ability
to restructure code aggressively is a critical feature of an effective optimizing compiler. The
most obvious situation where aggressive transformation is regularly applied is on arithmetic
expressions. Compilers often completely restructure the programmer’s arithmetic computa-
tions into more parallel forms using a variety of transformations. These include expression
re-association, tree height reduction [55], and blocked back substitution [56]. Although ILP
compilers may aggressively restructure computation, they typically apply only a limited set of
arithmetic identities, theorems, and rules to the program’s original dataflow structure. Thus
any reformulation approach that operates by exploiting natural characteristics of a program has
the potential to dramatically enhance the level of efficiency as well as the level of ILP achieved
in programs. Only when the limit of the ILP is completely determined and the fundamen-
tal dataflow limitation imposed by data dependences remains can the ILP paradigm be fairly
evaluated.

Recent studies on value locality reveal that many code sequences frequently execute with
a small variety of inputs [5], [9]. Value locality, the repetition of a set of values executed
by an instruction, is one program characteristic with substantial potential for enabling new
methods of program reformulation. The existence of a limited set of value characteristics for a

code segment essentially represent an opportunity to develop new value-specific transformations
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that surpass the limitations imposed by the data dependences that remain after all fundamental
arithmetic computations have been applied. To exploit dynamic redundancy of value sets in
programs, most proposed models are divided into two hardware strategies, speculative value
prediction [16] and dynamic instruction reuse [17]. However, many hardware complexity and
system design limitations exist in the detection of value locality within a program at run time.
A more aggressive alternative, the compiler-directed reuse approach described in the previous
chapters of this thesis and also published in [38], is to allow the compiler to partition the
program into potentially reusable regions of computation whose results are then dynamically
recorded in hardware for future reuse. Many code regions exhibiting value locality and identified
through the value profiling and analysis techniques of compiler-directed reuse approach can be
reformulated to use existing instruction execution capabilities rather than require dedicated
hardware buffers. These value-based reformulation opportunities can be expressed to existing
microarchitectures that support predicated execution, eliminating the need for special hardware.

Predication has become an effective instruction set architecture feature for expressing pro-
gram control by conditionally executing instructions [57], [58]. A compiler can employ if-
conversion to convert a sequence of code containing branches into an equivalent branch-free
sequence of conditionally executed instructions [59]. Predicated execution increases ILP by
allowing the compiler to schedule operations from multiple paths of control for simultaneous
execution. The relation between the predicated instruction representation and value-based
transformations is that predication support within the microarchitecture allows multiple paths
to be executed simultaneously. These multiple paths, although traditionally representing the
control flow of a program, can also be the reformulated control paths synthesized from dataflow

sequences of a program. By utilizing predication support for dataflow sequences with value
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locality, new opportunities for applying predication support within programs are created. At
the same time, value-based reformulation improves the performance efficiency of the compiler-
directed reuse approach since regions with low variation can be reformulated rather than di-
rected to the limited computation reuse buffer hardware resources.

Value-Based Optimization Approach. Motivated by the potential of aggressive tech-
niques for transforming arithmetic expressions, this chapter introduces a new approach to opti-
mizing program dataflow structures. The goal of this work is to develop a systematic method-
ology for reformulating specific regions of program data flow for more efficient exploitation of
their inherent value locality characteristics on an ILP processor. Dynamic value locality infor-
mation is first gathered and represented as a walue dependence graph. A new, more parallel
computation is synthesized with the goal of reducing dependence height. To accomplish the
desired optimization and synthesis, the parallel computation is modeled as new control flow
structures. In turn the control structures are converted to a predicate representation using
if-conversion techniques and predicated-based optimization techniques are then employed.

VOF explores applying two advanced predicate reformulation techniques, Predicate Deci-
sion Logic Optimization (PDLO) [54] and Partial Reverse If-Conversion (PRIC) [60], to the
value-synthesized code region. Using PDLO, the control operations of the region are first
systematically extracted and represented as a program decision logic network. Then, a more
efficient control network is re-synthesized with the goals of reducing dependence height and
redundancy. To accomplish the desired optimization and synthesis, the program decision logic
network is modeled as a Boolean equation. Boolean minimization techniques are then applied
to simplify and optimize the equation. Finally, the optimized network is re-expressed in the

form of predicated assembly code. After predicate-based optimization, the PRIC framework is
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enabled to extract the full benefits of applying value-based transformations using the predicate
representation. The partial reverse if-conversion technique operates at schedule time to balance
the amount of predicated parallel computation code with any untransformed components of the
original code. The balance is based on the characteristics of the target processor.

Figure 6.1 illustrates the program transformation paths and compiler techniques presented
in this section. There are three potential program representation paths: traditional control
flow (CF), predicate dataflow (PF), and value-inserted control flow (VF). The predicate repre-
sentation of code effectively designates the execution conditions of the newly created program
sequences. The key idea behind the value-based optimization framework is to synthesize op-
timized code structures by analyzing the original program value characteristics and applying
a series of control flow and data flow transformations using both a predicate-based compiler
representation and predicated execution microarchitecture support. Experimental results in-
dicate that programmatic logic optimization and predicate-based transformation can result in

substantial performance improvements in program regions where value locality is persistent.
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Figure 6.1 Program flow-graph transformation paths.
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The remainder of this chapter is organized as follows. Section 6.2 provides a brief overview
of related methods of exploiting value locality and an overview of predicated execution sup-
port that provides the underlying microarchitecture mechanism for the proposed optimization
framework. Next, Section 6.3 presents the compiler optimization opportunities that motivate
reformulating regions of code to predicate-based sequences that can effectively exploit the value
locality characteristics. Section 6.4 details the compilation framework for establishing the value-
based optimizations. The effectiveness of the proposed approach in improving performance and
exploiting value-locality behavior is presented in Section 6.5. Finally, the chapter is summarized

in Section 6.6.

6.2 Related Work and Architecture Support

Related Work. Previous research in the area of value locality and redundancy exploitation
can be classified into two major categories, value prediction and dynamic instruction reuse.
Value prediction and dynamic instruction reuse are two important strategies that attempt to
reduce the execution time of programs by alleviating the dataflow constraints using hardware.
Although alternative schemes use profiling information to guide the detection mechanism [18],
the performance improvement of these proposed approaches is often limited by the ability of
the hardware mechanism to effectively transform the observed value locality into a form that
can reduce the processor execution time. However, compiler techniques offer a wide range of
transformations of code that have yet to be fully applied to exploit value locality behaviors in
codes.

In addition to the arithmetic reformulation work mentioned in the previous section, a large

body of related work in the area of control flow optimization has also been carried out. These
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methods can be classified into three major categories: branch elimination, branch reorder-
ing, and control height reduction. Branch elimination techniques identify and remove those
branches whose direction is known at compile time. The simplest form of branch elimination is
loop unrolling, in which instances of back-edge branches are removed by replicating the body
of the loop. More sophisticated techniques examine program control flow and data flow simul-
taneously to identify correlations among branches [61], [62]. When a correlation is detected,
a branch direction is determinable by the compiler along one or more paths, and the branch
can be eliminated. In [62], an algorithm is developed to identify correlations and to perform
the necessary code replication to remove branches within a local scope. This approach is gen-
eralized and extended to the program-level scope in [61]. The second category of control flow
optimization work is branch reordering. In this work, the order in which branches are evaluated
is changed to reduce the average depth traversed through a network of branches [63].

Another category of program reformulation is control flow optimization research, which
focuses on the reduction of control dependence height. This work attempts to collapse the
sequential evaluation of linear chains of branches in order to reduce the height of program
critical paths [64]. In an approach analogous to a carry lookahead adder, a lookahead branch
is used to calculate the taken condition of a series of branches in a parallel form. Subsequent
operations dependent on any of the branches in the series need only to wait for the lookahead
branch to complete. The control dependence height of the branch series is thus reduced to that
of a single branch. The mechanisms introduced herein also serve to reduce control dependence
height. This chapter, however, leverages an approach [54] to minimization and re-expression of

control flow networks that is far more general than those proposed in previous work.
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The final category of related work is value-based compiler transformations. Value-based
optimizations include all optimizations based on a predictable value or range of values for a
variable or instruction at run time. These include constant propagation, code specialization [65],
optimizations assuming the value predictability of an instruction, continuous optimization, and
partial evaluation. Variables and instructions that have invariant or predictable values at
run time, but cannot be identified as such using compiler analysis, can benefit from value-
based compiler optimizations. Dynamic compilation and run-time optimization are emerging
directions for computer system research which provide improved execution performance by per-
forming some transformations that exploit variable invariance behavior. Dynamic-compilation
process [24], [26] segments the stages of compilation to both traditional compile time and run
time by using a form of binding time analysis to generate templates for code sequences that
have been identified as semi-invariant. Dyc [23] is a dynamic compilation system in which the
programmer annotates regions of the programs that should be compiled dynamically and vari-
ables for which to specialize the regions. A static optimizing compiler automatically identifies
which data will have known values at run time, given the values of the annotated variables,
then creates and optimizes machine-code templates.

Architecture Support. Predicated execution, the main architectural feature utilized
in this work, is a mechanism that facilitates the conditional execution of individual instruc-
tions [58]. Predicates are registers that store a single bit value, representing either TRUE or
FALSE. Each instruction is associated with a particular predicate, known as its guard predi-
cate, that determines its execution. In the case when an instruction’s guard predicate is TRUE,

it executes normally. Conversely, when an instruction’s guard predicate is FALSE, it is nullified.
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Figure 6.2 An example code segment (a), after if-conversion (b), and after scheduling (c).

Figure 6.2 contains a simple example illustrating the concept of predicated execution. Fig-
ure 6.2(a) shows sequential if-then-else constructs, called hammocks. The branch outcomes are
determined by the evaluation of the branch condition C'ondl. Depending on the outcome of
the first branch register, 1 is either incremented or decremented. Figure 6.2(b) shows the code
segment, after if-conversion, and Figure 6.2(c) shows the code after scheduling. Here the two
branch conditions have been transformed into comparison instructions that define predicate
destinations. The example illustrates how support for predicated execution allows the multiple
path contexts to be executed in parallel on a wide-issue machine.

The most important component of a predicate architecture is the instruction set support for
computing predicates, or the predicate define instructions. Predicate defines are inserted by the
compiler to generate values for control of conditional execution. The PlayDoh predicate define
instruction set [66] provides a baseline predicated execution support. An additional strategy
for enhancing the generation of predicated code identifies new Boolean optimization predicate
define extensions to the PlayDoh instruction set [54]. For each destination predicate register, a
predicate define instruction can either deposit a 1, deposit a 0, or leave the contents unchanged.
The predicate type specifies a function of the source predicate and the result of the comparison

that is applied to derive the resultant predicate.
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Table 6.1 Predicate definition truth table.

Base compare types Predicate
optimization types

pSRC Comp |UT UF OT OF AT AF|VT VF AT AF

0 0 o 0 - - - - -1 0 0
0 1 o 0 - - - - 1 - 0 0
1 0 0 1 - 1 0 - 1 1 0 -
1 1 1 0 1 - - o011 1 - 0

Table 6.1 (left-hand portion) shows the deposit rules for each of the PlayDoh predicate types
in both normal and complement modes. PlayDoh defines three predicate types, unconditional
(UT or UF), wired-or (OT or OF), and wired-and (AT or AF). Each type can be in either normal
mode or complement mode, as distinguished by the T or F appended to the type specifier (U,
O, or A). Complement mode differs from normal mode only in that the condition evaluation
is treated in the opposite logical sense. Each entry corresponds to the result assigned to the

w»

destination predicate. Note that a means that the destination is left unchanged.

The Boolean predicate types introduced to facilitate generating efficient predicate decision
logic are referred to as disjunctive-type (VT or VF) and conjunctive-type (AT or AF). Table 6.1
(right-hand portion) shows the deposit rules for the new predicate types. The AT-type define
clears the destination predicate to 0 if either the source predicate is FALSE or the comparison
result is FALSE. Otherwise, the destination is left unchanged. Note that this behavior differs
from that of the and-type predicate define, in that the and-type define leaves the destination
unaltered when the source predicate evaluates to FALSE. The conjunctive-type thus enables the

compiler easily and efficiently to form the logical conjunction of an arbitrary set of conditions

and predicates. The disjunctive-type behavior is analogous to that of the conjunctive-type.

pDy_typeo, pD1-type; = (srcy cond srey) (pSRC).
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The instruction is interpreted as follows: pDg and pD; are the destination predicate registers;
typeo and type; are the predicate types of each destination; srcy cond srec; is the comparison,
where cond can be equal (==), not equal (! =), greater than (>), etc.; and pSRC' is the source

predicate register. The value assigned to each destination is dependent on the predicate type.

6.3 Value-Based Compiler Reformulation Motivation

This section presents an overview of the value-based program optimization, starting with
the conversion of dataflow sequences to the control representation for subsequent predicate-
based conversion and reformulation. In order to simplify the expression of code paths with
exploitable value locality characteristics, the compiler applies if-conversion to transform all po-
tential data flow into the predicated representation. In the IMPACT compiler, this conversion
is traditionally performed within code regions formed using hyperblock formation heuristics [67]
which determine complex control block structures with frequently executed but unbiased dy-
namic paths. To a great extent, the designation of new control structure relates to the existing
hyperblock structure, as codes with a high level of control parallelism are often the lead se-
lection criteria for forming hyperblocks. In the case of new value-based codes, the number of
different value behavior contexts reformulated corresponds to the level of control parallelism.

The compilation techniques for detecting the code regions executing with value locality
characteristics are based on the concept of deterministic computation regions. A deterministic
computation region is an arbitrary, connected subgraph of the program control flow graph that
can be analyzed to determine the location of all input operands and memory locations that
affect the region’s computation. The nature of detecting a repeatable sequence requires some

estimation of the run-time execution behavior of a program. The most direct method is value
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profiling [2]. Value profiling is an effective method of finding the value recurrence and potential
reuse of instructions. Applying dynamic information with formal analysis [4] can also help in
finding relationships among computations and understanding the fundamental source of pro-
gram redundancy and predictability. Studies [3] have supported the existence of regions of code
with strong value locality that persist over multiple program input evaluations. To illustrating
the opportunities of program reformulation on these established characteristics, three concepts
are explored in this section. First, a base example of value-based dataflow conversion for a sin-
gle operand is displayed, illustrates the initial potential of using predicated-execution support
to synthesize new code from program value behaviors. Next, the inherent memory flow of a
program is transformed using the outlined techniques to eliminate redundancy in program exe-
cution. Finally, value-based dataflow transformation is shown for a case with multiple operands,
demonstrating the power of applying predicate optimization and reformulation techniques to

code originally containing only computation instructions.

6.3.1 Dataflow transformation

The process of converting the dataflow representation of a program into the context-based
predicate dataflow representation as described in Figure 6.1(c) is motivated and explained
through a simple example. Figure 6.3 illustrates a three-step process being applied to a simple
straight-line sequence of two instructions. The first step, shown in Figure 6.3(a), illustrates
the starting code. For the purpose of this example, value analysis may have yielded results
indicating that the value of variable x may occur with only two possible values, 1 or 2. By
applying the Value Control Insertion (VCI) transform, the dataflow of the sequence is identically

represented by the code shown in Figure 6.3(b). The two values are used in formulating a
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branch instruction, and the two possible paths include the context of information supplies
by the transform.! By applying a series of traditional compiler optimizations to each value
path, more efficient sequences can be created. The third step applies if-conversion to the value
paths, removing the intermediate control representation and replacing the control structure
with predicate dataflow structure, called the value sequence. The final code for the transform
is shown in Figure 6.3(c). The value sequence is composed of two components, the decision
component and the residue output computation component. The predicate definition instructions
synthesized by the intermediate control flow are referred to as the decision component of the new
dataflow computation. Similarly the predicated instructions, in this case move instructions, are
referred to as the residue output computation component, since the purpose of the instruction

is to move the results into the respective live-out registers of the original code sequence.
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Figure 6.3 Code for one variable closed region: dataflow representation (a), value-transformed
control flow representation (b), and value-transformed dataflow representation (c).

!'Namely that value of X is 1 for the left-hand path, and the value of X is 2 for the right hand path.
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There are several advantages to the code represented by the value-based predicate form.
First, the long latency multiply instruction is strength reduced, allowing dependent instruc-
tions to execute early. The parallel code created is likely to execute efficiently on a machine
model design to execute multiple instructions per cycle. Generally, the advantages are that the
optimizations may yield shorter code sequences at very little additional code size. The dataflow
transformation supplied in this first example is for a single variable dependence chain region,
and is said to be of degree-1. Similarly, the example’s variation is referred to as order-2 closed
since in the example only two values are possible for the case. Several variations of the final
code can be caused by the form of the original code and the value information used. Figure 6.4
illustrates an important aspect of the value transform for the case of a degree-1, order-3 open
region. Figure 6.4(a) shows the original code with the description of the sequence order. Since
the order is open, an unknown value may appear for the value of X that is not 1, 2, or 3.
The order in this example may have been generated by profile information. In fact the profile
information can simply summarize a variable as open to include multiple values that have very
infrequent weight to create very efficient code for the value scenarios that occur often.

Figure 6.4(b) shows the form of the code after the VCI transform in which four value paths
correspond to the ordered-values and open value. Again, optimization is applied to each path,
although the open path is only reduced in scenarios where the value context of creating the
other path affords the open path some usefulness; in all other cases, the open path code is
identical to the original code. Figure 6.4(c) shows the code after if-conversion. For an open
value transform, instead of including the open path with the value paths, a control instruction
is created to relocate the execution to the original instruction sequence. This target location is

called the Escape Sequence for an open transformation. Generally the open path is not included
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Figure 6.4 Code for one variable open region: dataflow representation (a), value-transformed
control flow representation (b), and value-transformed dataflow representation (c).

as it represents the fundamental dataflow limit in the original sequence and because in the case
of using value profiling, the open sequence is not the most frequently occurring path. Later in
this chapter, an alternative is shown that does allow the instructions of the escape sequence to

be combined with the value sequences.

6.3.2 Memory flow transformation

In addition to the recurrence of previously-seen program values in dataflow, a similar charac-
terization of program behavior has been observed for memory instructions [9], [68]. The notion
of silent stores has been introduced to describe store instructions with the dynamic execution
behavior of writing values that match the exact value already stored at that memory location.
Thus a silent store is defined as one that does not change the memory system state. Essen-
tially the memory instructions express redundant computation that could be eliminated without

changing the program correctness. There are several reasons for exploiting the behavior of silent
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store instructions. Eliminating silent stores can benefit the efficiency of a processor’s memory
hierarchy by reducing the number of dirty cache lines that require main memory write backs.
Similarly, the operations computing the results of the silent stores can also be eliminated when
the silent value property can be determined. Finally, other techniques such as computation
reuse will benefit from communicating only true state changes to the memory system.

Figure 6.5 reports the fraction of all stores executed by each benchmark that are effectively
silent. When an executed load instruction occurs in the same control block of a silent store, the
store instruction is said to be a paired silent store. For these stores, there is more opportunity to
initiate a memory flow transformation that eliminates the process of redundant store. Clearly
from the results of Figure 6.5, there is a substantial opportunity to modify the information sent

to the memory system from within the processor.
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Figure 6.5 Execution distribution of silent store instructions.
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Figure 6.6 Fundamental conversion of memory flow (a) to control flow representation (b),
and then to value-based predicate dataflow (c).

Figure 6.6 illustrates the general steps of the transformation. The first code sequence of
Figure 6.6(a) shows the original sequence that includes a load instruction followed by a store
instruction that communicates with the identical memory location for all invocations of the
sequence. When value profiling or value analysis determines that the store is a silent store,
then the control flow of Figure 6.6(b) can be inserted using a form of VCI. By creating the two
paths, the store instruction is performed only when changing the resident value of the respective
memory location. The code is if-converted and Figure 6.6(c) results, having a predicated store.
The predicate condition verifies that the memory data is unchanged and squashes the store’s
execution on that occurrence.

A memory transformation opportunity extracted from the application SPECINT95 bench-
mark suite 126.gcc illustrates the primary benefit of the optimization and motivates the lik-
lihood of finding other opportunities in applications. Figure 6.7 shows the code segment in

various stages of program reformulation.
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for (j = 0; j < regset_size; j++) {

x = (BB_new_live_at_end]i][j] & ~BB_live_at_end[i][j]);
BB_live_at_start[i][j] = BB_live_at_start[i][j] | X;
BB_live_at_end]i][j] = BB_live_at_end[i][j] | X;
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Figure 6.7 Example of memory flow transformation for 126.gcc, showing the original code
(a), the original dependence graph (b), the value-transformed predicate-asserted dependence

graph (c).
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The original source code for a loop is illustrated in Figure 6.7(a). The code invokes a subrou-
tine that calculates the live variable analysis within a compiler. The routine is constructed using
an iterative algorithm that updates information along all necessary paths until the information
reaches all of its possible locations and the algorithm stops. It is well understood [69] that such
compiler routines often compute sparsely distributed information such that many stores will
frequently continue to write the same data. This example is rewarding since the inherent value
locality of a subroutine technique coded for an application is identified, and a nontraditional
solution to improving the code’s efficiency is readily available through value-based transforms.
Figure 6.7(b) shows the dependence graph prior to transformation. The highlighted instructions
indicate the silent potential silent stores of the subroutine. The code after value transformation
is shown in Figure 6.7(c) which includes new predicate definition instructions and predicated
store instructions. Observed execution behavior of the sequence indicates that 60% of the store
executions are redundant and do not need to update memory.

Overall, as stated there are benefits to performing this optimization within the memory
system. On the other hand, the register live-range of the loaded value may possibly be extended
to perform the necessary computation. Similarly, the store instruction may possibly be delayed
in order to perform the necessary predicate comparison. Finally, to apply the optimization it
is necessary to have precise memory disambiguation and analysis. On a positive note, there
are substantial future opportunities that remain outside the scope of this thesis. Essentially,
a similar form of the predicate-based memory flow transformation can be applied to aid in
run-time memory disambiguation [70] and eliminate some dependence on data speculation

hardware [48].
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6.3.3 Advanced predicate optimization

Several advanced compilation techniques have been developed to enable the consistent ap-
plication of efficient predicated code [54], [60], [71]. The two existing predicated optimization
technologies supported within the IMPACT framework are the Predicate Decision Logic Op-
timization (PDLO) and Partial Reverse If-Conversion (PRIC) framework. Traditionally these
techniques operate on predicated code that represented the original program control flow struc-
ture. The utility of these techniques is significantly enhanced by the value-based techniques
that create new intermediate control flow structures. PDLO and PRIC techniques are able to
operate on the original dataflow computation of the program rather then strictly adjusting the
predicated representation of the control flow. Likewise, in turn these techniques complement
the efficiency of the code produced using value transformation techniques.

Predicate Decision Logic Optimization. Motivated by the design of the Shared-
Instance CRB, several opportunities exist to enhance the generation of both the decision and
residue computation components of the value-transformed dataflow sequence. Namely, the de-
sign of the SI-CRB was conceived from the overlap of register value comparison within the
hardware structure of the base CRB. Similar characteristics occur for the value-transformed
codes, making any analogous predicate reformulation techniques equally applicable. The Pred-
icate Decision Logic Optimization [54] is a method of simplifying the program decision logic
by means of sharing value comparisons. The basis for the technique is that since predicate
registers represent Boolean values, predicate registers and the respective predicate definition
instructions can be represented using combinational logic. Once the logical representation is

derived for a sequence of predicate definition instructions, circuit optimization techniques in
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the computer-aided design (CAD) field can be utilized to reduce the decision logic guarding the
residue computation.

In the IMPACT compiler, the derived Boolean function is represented with a binary deci-
sion diagram (BDD) [72]. The BDD algorithms used are described in [73]. The predicate BDD
contains the relationship among predicates as defined by the network of predicate define oper-
ations. The predicate BDD is used throughout the compiler as a database for queries made by
optimizations when operating on predicated code. Queries to the BDD are made in IMPACT
by the optimizer, the scheduler, and dataflow analysis. The BDD maintains a canonical repre-
sentation of the decision logic functions, from which a Boolean sum-of-products expression can
be produced for any represented function. Note that the expression thus generated reflects the
canonical nature of the BDD’s internal representation, and is usually not optimal for expres-
sions with multiple product terms. Therefore, it is necessary to optimize the derived expression
before attempting to synthesize a predicate defining structure.

Value-transformed code segments that can leverage the Boolean minimization techniques
are referred to as Vectored Computation Regions. Each vector represents a computation in-
stance which, as described, is a set of register indexes each with a respective value. Multiple
vectors for a computations region are indicators of the computation variation. Similar to the
order of value information, the order of a vectored computation region refers to the number
of computation instances. In addition to requiring overlap of register comparison between the
vectors (instances), for effective performance improvement, the computation vectors must also
contain persistent values. Since the predicate reformulation synthesizes code based on data
values, the effectiveness remains as long as the values observed during execution are those

synthesized using the VOF techniques.
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Figure 6.8 MPEG2 IDCT dependence graph.

Given the observed opportunities to utilize the SI-CRB, many relevant opportunities for
the Boolean minimization were found. Figure 6.8 illustrates an example previously shown in
Section 3.4. This example shows a computation region formed from the row transform of an
MPEG?2 inverse discrete cosine transform (IDCT) using the Chen IDCT algorithm [46].

As previous noted, typically DCT blocks of MPEG-compressed video sequences have only
five to six nonzero coefficients, mainly located in the low spatial frequency positions [47]. These
execution properties are generally known characteristics of the transform and represent per-
sistent values. Figure 6.9 illustrates the average value execution for an 8 x 8 coefficient block
of the IDCT transform. For the mpeg2 application, each eight-element row is processed and
then the series of each eight-element column is processed. Each execution begins by placing
eight memory values into eight register operands. In the case of the CCR approach, the IDCT
computation region has significant reuse locality (80%) for a history of 16 instances of the row
computation. As can be observed in the data, there is high probability that value comparisons

can be shared since only the data location Block[0][0] has a significant execution percentage
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Figure 6.9 Nonzero value distribution of DCT blocks of MPEG compressed video.

of nonzero values. Identically, the register operands establish the point of specializing a code
sequence prior to initiating the IDCT computation

Figure 6.10 illustrates the case of applying the base degree-1 techniques of Section 6.3.1 to
the MPEG IDCT code region. Figure 6.10(a) shows the original code and Figure 6.10(b) depicts
the generated decision components and the vector escape sequence to the original code region.
The vector decision components can be optimized using the Boolean predicate minimization
techniques [54]. The initial decision components of the transformed code correspond to logic
diagrams. A two-level network composed of the input decision component and the output result
move component is presented in Figure 6.11(a). The two-level network is analogous to a sum-of-
products (SOP) expression. Figure 6.11(b) illustrates the expression after the two components
have been analyzed, optimized, and reformulated to eliminate redundancy and inefficiency in

the original value-transformed code sequence.
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Figure 6.12 Computation region execution with persistent vector characteristics.

Figure 6.12 indicates the amount of region execution observed during profiling that qualifies
for potential classification as persistent value vectors. To gauge the persistence of a computation
region, profile information was gathered for both the training and the reference input. Value
vectors overlapped in both input sets and accounting for greater than 5% of the respective
region execution. This setting was determined by experiments to find the maximum percentage
of persistent value vectors. Overall, about 20% of region execution shows promise in being
reformulated using either the dataflow techniques. The results of evaluating the SI-CRB also
help conclude that there is significant overlap of computation comparisons and output values
to allow the Boolean optimization to enhance value vector reformulation.

Partial Reverse If-Conversion. As discussed in Section 6.3.1 the escape sequence of an
open compiler-synthesized region is typically not included with the value paths when generating

the new dataflow trace of instructions. Essentially if it were, the original dependence height
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would establish the same fundamental limit on execution as in the original nonvalue trans-
formed representation. However, the concept embodied in the Partial Reverse If-Conversion
technique [60] can be used to improve the execution efficiency of the escape sequence. The
partial reverse if-conversion framework operates at schedule time to balance the amount of con-
trol flow and predicated present in the code originally generated using hyperblock formation
techniques. For the VOF techniques, the decision computation and residue computation compo-
nents can be formed with a balance of some components from the original code sequence. This
allows effective generation of value-based sequences that match the characteristics of the tar-
get processor and reduce the penalty of generating value-based sequences that do have differing
run-time value profile characteristics than those observed during the value profiling. Figure 6.13
illustrates the computation region that performs the population count of the SPECINT95 appli-
cation 008.espresso that was presented in Chapter 3. The code has one input register operand,

and the value profile directed the generation of three value-based context paths.

Figure 6.13 Value-transformed sequence for population count example of 008.espresso, a
degree-1 region with an open order-3 value transform.
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| Cycle || Value sequence - Instructions Issued

0 opPl | opP2 | opP3
1 op M1 | op M2 | op M3 op J1

(a) Schedule for the value sequence in Figure 6.13.

| Cycle | Escape Sequence - Instructions Issues |
0 op Al | opR1 | op R2 | op R3

1 opSl | op A2 | op A4 | op A6
2 opLl | opS2 | opS3 | op S4
3 op L2 | op L3

4 op A3 | op L4

5 op A5

6 op A7

(b) Schedule for the escape sequence in Figure 6.13.

Figure 6.14 Static schedules for the 008.espresso value and escape sequence.

The transformed sequence includes an escape sequence to guard against any potential ex-
ecution condition not matching the value-inserted predicate paths. For the basic optimization
path, Figure 6.14 illustrates the static code schedules for both the value and escape sequences
for a general machine model of a six-issue processor. When the execution of the original code
matches one of value paths, a two-cycle latency known as the value sequence latency (VSL),
shown in Figure 6.14(a), is required. The original code, shown as the escape sequence of Fig-
ure 6.14(b), requires seven cycles for execution, known as the escape sequence latency (ESL).
When the execution of the original code does not match one of the value paths, the latency
VSL+ ESL is incurred, an occurrence known as the maz escape latency (MEL). Nine cycles in
this case. The static IPC? for the code sequences are 3.5 and 2.6 respectively. Although there
is high utilization of the processor resources for the value sequence, there is also an opportunity
to migrate instructions from the escape sequence to the position of the value sequence.

Applying partial reverse if-conversion techniques to balance instructions between the escape

sequence with the value sequence creates the two schedules shown in Figure 6.15. In this

ZCalculating IPC with predicated execution is obscure since instructions are conditionally executed.
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| Cycle || Value sequence - Instructions Issued |

0 opPl | opP2 | opP3 | op A1 | op R1 | op R2
1 opM1l | opM2 | opM3 | op R3 | op A2 | op J1

(a) Schedule for the value sequence in Figure 6.13 using PRIC.

| Cycle || Escape Sequence - Instructions Issues |
0 opLl | opS2 | op A4 | op A6
1 opL2 | opS3 | opS4
2 op A3 | op L3 | op L4
3 op A5
4 op A7

(b) Schedule for the escape sequence in Figure 6.13 using PRIC.

Figure 6.15 Static schedules for the 008.espresso using PRIC techniques.

example, the utilization of machine resource during the value sequence has improved since
the instructions shown in bold type have been placed with the value sequences. Likewise,
by initiating instructions from the escape sequence concurrently with the value sequence, the
max escape latency is reduced to MEL(7) = VSL(2) + ESL(5). This example motivates
the use of compiler support for PRIC to enhance the VOF techniques. To perform partial if-
conversion of this form on the value-based transformed codes, it is necessary to determine how
many instructions from the escape sequence can be included with the value sequence without
harming the performance efficiency of the value-transformed code.

Although the PRIC technique offers an array of methods for determining when to reverse if-
convert a hyperblock, in predicated codes of VOF techniques applicable to reverse if-conversion,
there are fewer decisions on where to initiate the control insertion. As such, only a simple form

of PRIC was implemented and is discussed in the following section.

6.4 Compiler Framework

The support for compiler-directed computation reuse and value-based program reformula-

tion are related in many ways. Figure 6.16 illustrates an overview of the compiler technologies
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applied to eliminate dynamic computation redundancy. Both methods share the RCRF tech-
niques for identifying regions of computation with exploitable value behavior. The RCRF is
in turn based on the RPS for profile-guided region generation and the the RAS static region
formation. The partitioning of regions for either compiler reformulation or compiler-directed
reuse is performed using region heuristics in the Computation Region Assessment (CRA) phase.

The application of the compiler value-based optimization framework interfaces to several
existing ILP components. At run-time, these regions require predicated execution support. The
regions assigned to the CCR approach utilize compiler support for constructing the computation
regions (RCS), which in turn use the DCF for inserting invalidation instructions for memory
dependent regions. The CRB and DCMS provide run-time support for the CCR approach. The
following sections describe the compiler support for the VOF optimization techniques and the
overall method for coordinating the assignment of regions for VOF reformulation or compiler-

directed redundancy elimination.

Compiler Support

RCRF

¥

CCR

RCS
l Run-time System
CRB

DCF

Predicated
Execution (PE)

DCMS

Figure 6.16 Overview of applying compiler-based and compiler-directed techniques.
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6.4.1 Coordination of compiler-based and compiler-directed techniques

As shown in the results of the previous section, upwards of 30% of computation region
executions exhibit stability of values being executed. The persistence of values is imperative
for compiler-based value transformations, since only the compiler-directed technique that uses
hardware buffers can capture large variations in dynamic redundancy. The Computation Region
Assessment (CRA) performs a profile-based check of the conditions between the multiple input
evaluations to detect these regions. The region persistence is judged based on the following
criteria. First, when examining the training value invariance, the execution weights of the top
values are collected. The invariance is calculated on an instruction-by-instruction basis and is
averaged over the region. It is necessary for the value invariance to exist for the individual
instructions and for the composite region metric to also indicate sufficient value persistence.

Equation 6.1 gives the basic persistence relation.

Invariancelk](7)

Exec(t)

Reuse_Persistence(i) = ( > Rp) (6.1)

The setting of R, is varied depending on its use in compiler-based code reformulation or
compiler-directed computation reuse. Setting R, to .60 and the number of invariant values to
from 5-10 typically accounted for good persistent candidate region behaviors. When examining
the invariance between the two profiles, the overlap of the invariance in the top values collected
is used to judge the overall program persistence for those regions. The overlap in invariance is
calculated by determining the weighted average of execution for the top invariance values that
occur in both profiles. The Reuse_Persistence_Overlap for each profile input must be greater

than R, overiap for the the specified top input m values of each input. Essentially, the top
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m invariant values must account for greater than R, gyeriqp Of the program execution for the
other input evaluation. Generally R, yeriqp i set to .50 and m to 10 to determine persistence
between the two input set evaluations. There are several other cases that amount to deciding
on the inherent persistence of a region. In the case of a region being executed a large portion
of time for only one input set, then heuristically, the persistence characteristic is attributed
based only on the single input set. Another case is when there are few invariant values for both
input sets, yet there is little overlap between the invariant values. This behavior is captured
as a persistent opportunity since the compiler reformulation transformations likely to enable a
small number of multiple concurrent value-based sequences can be performed at no cost. When
performing the transformations of the following sections, value vectors are constructed from
both input sets and ranked according to a weighted distribution based on the total execution

of both input sets.

6.4.2 Value Optimization Framework

The previous section provided a motivating overview of the process of value transformation
and predicate optimization using advanced optimization techniques. This section describes in
detail the mechanisms by which the value-transformations are applied.

Once vectored computation regions have been identified, value-based predicate transforma-
tions are applied in several steps. First, value vectors are generated to represent the value
execution with the highest priority of executing. These vectors are then converted using the
VCI and if-conversion systems. The program decision logic of the vectored regions can then
be presented by the predicate BDD and the condition BDD, and the SOP expression is gen-

erated for the region’s decision and output components. The sum-of-products expressions are
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VOF _Transform_Regions (Vectored_Region_Candidates)
1 FOREACH region IN Vectored_Region_Candidates(Program) DO
// Determine vectors to exploit for region

2 region.vectors = Generate_Vectors_for_Region(region);
// Insert value control flow
3 region = VCl(region, region.vectors);
// If-Convertion to convert to predicated representation
4 region.ic = 1C(region);

// PDLO-Extract Sum-Of-Products Expression
5 region.sop_info = SOP(region);
// PDLO-Optimize the predicte boolean representation
6 region.pred_opti = Pred_Opti(region.sop_info);
// Generate predicate definitions
7 region.code = Predicate_Optimization(region.pred_code);
// PRIC-Partial reverse code
8 region.code = PRIC(region.code);

Generate_Vectors_for_Region (region)
Region_Vectors|N| = Sort (region , Profile_Information)
FOREACH vector IN Region_Vectors DO
vector.path = Optimize(vector);
vector.count = Count(vector.path);
vector.height = Dependence_Height(vector.path);
// Apply vector selection priority function
6 vector.priority= Vector_Selection_Priority (vector,VSP);
7 Region_Vectors|N| = Sort (Region_Vectors , VSP) // Sort based on VSP
8 Selected_Vectors = NULL;
9 FOREACH vector IN Region_Vectors DO
10 IF (Vector_Count(vector,Selected_Vectors,region) == FALSE) THEN
11 continue;
12 IF (Vector_Per formance(vector,Selected_Vectors,region) == FALSFE) THEN
13 continue;
14 Selected_Vectors = Selected_Vectors U vector;
15 return (Selected_Vectors)

CUs W N~

Figure 6.17 Algorithms for value optimization techniques.

represented by the artificially inserted value conditions. These expressions are then optimized
using condition analysis and traditional Boolean logic minimization techniques. The resulting
decision component is expressed using predicate definition instructions. Finally, partial reverse
if-conversion can be employed to create efficient balance between the value sequences and the
escape code sequence. Figure 6.17 illustrates the process of applying the value-based trans-
formations and the predicate-based optimizations. The function VOF _Transform_Regions

performs the activation of the steps of the value-based transformations.
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Value-vector Generation. The generation of value vectors for the selected code region
begins with the extraction of the prioritized vectors for the computation region. A two-step
process is used to generate vectors for a computation region. First, vectors are prioritized
according to the potential benefit of the value sequences they may generate and their cost. The

priority is based on the form of the heuristic function shown below:

count_region heightregion

VSPvector = Frequencyvector X ( (62)

count_pathvector  height_pathyector

The vector selection priority (VSP) is calculated for each vector prior to constructing a set
of value vectors for the value transformations. The frequency factor is the amount of region
execution incurred by the value vector. The count and height terms indicate the number of
instructions and the dependence height of the code region prior to transformation. The elements
that include a path term are for the optimized path created for evaluating the benefit of the
value transform to the code region. After the construction of a region’s prioritized vectors,
generation of the region’s order is performed by gathering the composite set of vectors that
can potentially transform the dataflow region. The function Generate_Vectors_for_Region in
Figure 6.17 illustrates the general form of the generation technique. Essentially from the top
vectors ordered by the VSP priority, vectors are selected allowing the composite set to maintain
the following relationships with the original code.

A relation that limits the code size of the set of value-vectors creation is applied to reduce
the final code size of the generated sequence. An estimate of the number of operations in
the composite set of computation regions is acquired by calculating the operations in each
value path. The total count of operations of the value sequence (computation and predicate

decision instructions of all vectors) is summed, and an estimate of the overlap between each
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value sequence is then subtracted. The overlap terms account for the reduction of operations
through predicate sharing, operation sharing, and output sharing. The estimated composite
set may only exceed a multiplied factor of the original operation count.

A second relationship, shown in Equation (6.3), is applied to estimate the performance of the
value sequence. The performance is calculated by adding the the frequency of executing of each
potential value vector in the composite set as the estimate of value-sequence path execution.
The value execution weight is then used to determine if the execution of the value sequence will
make a significant performance improvement for the original code sequence. The dependence
height for the original sequence and value sequence are used for estimating the performance of
the sequence. Essentially two path estimations are made. First is the execution time of the
value sequence VSL x Freqyg; then the escape sequence is calculated as ESL x (1 — Freqysg).
A penalty for the branched escape sequence is made based on the frequency of escape. A factor
Kper formance 1s used to force computation regions to show improvement over the original code

sequence.

ESL > Kpertormance X (VSL* Freqys + (VSL 4+ ESL + Penaltyescape) X (1 — Freqys)) (6.3)

Memory flow transformations to eliminate redundant memory system activity are identified
by searching for individual instructions that exhibit silent store behaviors. The VOF system
treats these opportunities as degree-1 closed order-2 variation regions since the transformed
store instruction either does or does not match an earlier load instruction. After value vectors
for a computation have been selected using both the operation count and the operation, value-

based control insertion for the value and escape sequences is performed using the VCI process.
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The value-based control flow is annotated for the if-conversion (IC) process to transform the
representation to the predicate dataflow domain. Essentially, an artificial hyperblock is formed
from the original dataflow, and the dataflow is receptive to to predicate optimization techniques.
Predicate Decision Logic Optimization. Once the program decision logic has been
extracted in the SOP form based on program conditions, predicate optimization techniques can
be applied. Predicate expressions are optimized in two steps. First, expressions are reduced
using condition BDD information. Conditions such as redundant literals in product terms are
removed in this phase. This is analogous to the hardware of the SI-CRB sharing comparison
operations. Once redundant products and literals have been removed from the predicate expres-
sions, the iterative-consensus method is applied to produce a complete sum, and then to select
a subset of prime implicants for a simplified two-level logic implementation [74]. The focus
of this iterative algorithm is the consensus-taking routine, which applies the Boolean theorem
x+Ty — x+y. After each pass through the product list, products subsumed by other products
are removed. The iterative-consensus algorithm generates a complete sum for the input expres-
sion. Nonessential products can then be removed to generate a minimal covering sum. Within
the IMPACT PDLO system, a heuristic-based mechanism of the iterative-consensus application
is used to prevent the time of the algorithm from requiring an excess of compile time.
Following optimization of the predicate expressions, the control logic can be synthesized
most intuitively as a two-level predicate define network which directly evaluates the minimized
sum-of-products expression. T'wo levels of predicate define instructions are used for each predi-
cate. The first level consists of and-type predicate defines of the form p;_at = C;(T"), where one
predicate p; is defined for each product term in the predicate expression, and 1" is the TRUE

predicate, which always has the value 1. The second level consists of or-type predicate defines
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of the form p;_ot = (condT’)(p;), where there is one such predicate define for each product (p;)
and condT is an invariant TRUE condition (e.g., (0 == 0)). Predicates which have products in
common can share intermediate predicates, allowing for some savings through reuse. In most
cases, redundancy between products is reduced due to the characteristics of value locality for
the dataflow sequences creating many shared value comparisons. Other techniques to perform
factoring on the logic expressions are possible. However, since the predicate expressions are
generally strongly connected, the resulting predicate definition structure can be quite manage-
able. Techniques [54] showed that this is not the case with predicate expressions originally
created from control flow structures.

Partial Reverse If-Conversion. Once predicate code has been created and optimized for
the value sequences generated from the code exhibiting value locality, a form of partial reverse
if-conversion is performed. To do this, the escape sequence is predicated upon the condition of
the escape branch instruction condition. The process determines whether instructions of the
escape sequence should be executed concurrently with the predicated instructions of the value
sequences. Generally the advantage of initiating the escape sequence in parallel with the value
sequences must be weighed in terms of delaying the effectiveness of the value sequence. In
the originally proposed PRIC framework applied to hyperblocks, there were many decisions on
where to initiate the control insertion. Instead for the value-based if-converted region of code,
there is a limited number since it is only desirable to migrate escape sequence instructions
between the value sequence block and the the escape sequence location.

The subroutine code of VOF_PRIC_schedule in Figure 6.18 illustrates the method of applying
the partial reverse if-conversion principle at schedule time. To begin, after creating the combined

predicate region, composed of both the value and escape sequences, the compiler makes the
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decision on which instructions of the escape sequence to remain in the value sequence block.
To determine the appropriate amount of code to reserve if-convert from the entire region, the
compiler considers only the n instruction of the escape path sequence. To choose from any
of the instructions of the value sequence would contradict the original generation of the value-
vectors. While future heuristic-based techniques may investigate opportunities to perform other
reverse if-conversion policies, the current vector generation process achieves an effective balance

between the escape and value sequences.

VOF _PRIC_Schedule (Region)
1 Initialize block-schedule; // Schedule value sequences first
2 Insert ( block_schedule, Region.value_ops);
3 Prioritized_List_Schedule(block_schedule);

// Each iteration schedules an instruction
4 pric_schedule = TRUE;
WHILE pric_schedule '= NULL DO

pric_schedule = FALSE;

// Handle escape sequence instructions
7 FOREACH escape-op IN region DO

// Allow escape instruction that can be scheduled (dependents have been scheduled)

o Ot

8 IF Can_Schedule_Op(escape_op, block_schedule) THEN
//Compute schedule for escape op;

10 S M [escape_op].value_block = Insert(block_schedule, escape_op);
//Insert reverse if-converting branch at earliest location

11 S M [escape_op].value_block = Insert_Branch_in_Schedule(SM [escape_op].block, ric_op);
//Schedule for value sequence block

12 S M [escape_op].value_block = SM_Schedule(SM [escape_op].value_block);
//Create and Schedule escape sequence block

13 S M [escape_op].escape_block = Create_Block(region.unschedule_escape_ops);

14 S M [escape_op].escape_block = SM_Schedule(SM [escape_op].escape_block);
//Compute scheduling information for the value block

15 S M [escape_op].scheduleyaive = Compute_cycle_time(SM [escape_op|.value_block);

16 S M [escape_op].scheduleescape = Compute_cycle_time(SM [escape_op].escape_block);
//Compute schedule priority for the PRIC sequences

17 S M [escape_op].prioritypric = PRIC Priority;

18  candidate_ops = Sort (SM);
19  top_candidate_op = Sort (candidate_ops, (PRIC_Priority)); //Sort schedules on pric priority value
20 IF (SMtop-candidate_op].schedule_priority | T'hreshold) THEN
21 pric_schedule = TRUE;
// Place top candidate op in block
22 Insert ( escape_block_schedule, Region.unscheduled_escape_ops);
23 Prioritized_List_Schedule(escape_block_schedule);

Figure 6.18 Method of scheduling escape sequence instruction using partial reverse if-
conversion methodology.
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The process of reverse if-converting the computation region is developed using the list sched-
uler and the Schedule Manager (SM) [75] of the IMPACT compiler. In fact, the hyperblock-
based PRIC framework within IMPACT also integrates SM technology. The first step of the
process performs list-based scheduling on the instructions of the value sequence. The list sched-
uler performs a cycle-by-cycle schedule using an instruction priority function. The second step
performs prioritized operation scheduling for the partial reverse if-conversion framework on first
schedule. This allows the escape sequence instructions to be integrated with the value sequence
schedule and assessments can be made over the efficiency of the reverse if-conversion scenario.

The process begins by taking all of the instructions that are available for scheduling and that
are parts of the escape sequence and scheduling each of them using the scheduling manager.
Different schedules are created for each candidate escape instruction. Each schedule includes
the scheduling of a reverse if-converting branch to account for the branch resource necessary to
perform escape generation. For every candidate instruction scheduled, the schedule cycle times
of both the value sequence and escape sequences are computed. The cycle times are used to
compute a prioritized list of the schedules.

To make the decision on whether each candidate instruction should be included with the
value sequence, the estimated profitability for the resulting code schedule is evaluated. For
each candidate instruction, three schedule times are considered. First, the original code (both
value and escape sequences prior to PRIC) schedule is used as a baseline of the performance
that should be improved. This schedule is the exact formation of the VSL(Original) +
ESL(Original). The second schedule is the value sequence code schedule with the candi-
date instruction inserted. The third schedule is the escape code sequence schedule remaining

after the candidate insertion with the value sequence. Each of these three schedules needs to
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be compared to determine if a reverse if-conversion of the value-transformed code is profitable.
This relation computed is: schedule_cyclesyriginar > Kpric % (schedule_cycles,aiue_sequence +
schedule_cycleSescape_sequence+escape_penalty)- L his operation calculates the cycles by using the
schedule height and the frequency of execution of the respective sequences. The frequency of
executing the value sequence VS is estimated by the information used to generate the initial
value vectors. The term escape_penalty is related to the penalty of the processor in having to
execute the branch instruction and the respective number of mispredictions introduced by the
reverse if-conversion branch. Generally an additional factor K),;. can be applied to make sure
that there is sufficient slack in the profitability calculation at run time. As such, the required
relation of the two potential reverse if-conversion schedules (apply/no apply) is set to force the
application to have no less than a K,,;. speedup. Thus the candidate selection must offer the
greatest, improvement of schedules and show marked improvement over the original code. An
additional constraint is that the new schedule for the value sequence cannot be greater than
30% of the original value sequence schedule time. This maintains the achieved speedup of the
value-based sequences.

The process of scheduling operations and finding a single candidate escape instruction to
be placed with the instruction sequence is continued until the PRIC scheduling relation can no
longer be matched. The scheduling of the code can be expensive; however, the schedule manager
framework is extremely efficient in performing incremental operation scheduling, allowing many

scheduling variations to be performed, each in near constant time.
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6.5 Experimental Evaluation

6.5.1 Methodology

The IMPACT compiler support was enhanced to include the transformation framework
techniques proposed in Section 6.4. In the experimental evaluations of the compiler transfor-
mations, the base processor modeled can issue in-order six operations up to the limit of the
available functional units: four integer ALU’s, two memory ports, two floating point ALU’s,
and one branch unit. To study the benefits of applying the predicate-based transformations,
as well as the computation reuse effect on the fundamental dataflow limitations, several other
machine models were investigated. Each model has an increased number of functional units
over the base processor modeled. In addition to the 6-wide machine, a 9-wide, 12-wide, and
16-wide machine were also evaluated. Table 6.2 illustrates the breakdown of functional unit
resources for the models investigated. For all other purposes, the architecture resources and
compilation environment explored with experiments in this section were generated using the
same methods outlined in Section 4.5. Additionally, two perfect models of processor were ex-
plored. The first has infinite functional unit resources and an instruction is never stalled in the
process of waiting for a function unit. The second perfect model concerns the CRB design; in
some experiments, an ideal CRB capable of recording all computation regions and computation

instances is modeled.

Table 6.2 FEvaluated processor models.

Name ‘ Issue-Width ‘ Function Units (Int, Mem, Float, Branch) ‘

Issue-6 6 4,2,2,1
Issue-9 9 8, 4,3, 1
Issue-12 12 12, 6,4, 1
Issue-16 16 16, 8, 5, 1

189



Table 6.3 VOF optimization parameters.

‘ Support ‘ Relation ‘ Policy ‘
Vector Generation | Reuse Persistence R, .60 for max 10 elements
Persistence Overlap Rj,_oyeriap 50% for 10 elements
Penaltyescape 8
errformance 1.3
PRIC Penaltyescape 8

A number of variations for the different compiler support relations were evaluated during
the investigation of the techniques for eliminating dynamic redundancy. Table 6.3 illustrates

the parameters used for the experiments of this section.

6.5.2 Results and analysis

Value-based Reformulation. Figure 6.19 illustrates the height reduction of applying
the value-based transformation to the computation regions. The height reduction is computed
by taking the dependence height (control and data) of the original computation region and
dividing it by the height using value-transformations. Two columns are included to indicate the
height calculation with the computation and the computation and decision elements (predicate
instructions). The results indicate that the value-transformed codes are able to effectively
transform the original dataflow representation of the computation regions to new predicate-
enabled dataflow regions with substantially reduced dependence heights. Generally the original
dependence heights are three times the size of the respective value-transformed codes. An
additional amount of height is reduced by simply eliminating the control instructions from the
height calculation. When this is evaluated, the average result for transformed regions is that
the original code exceeds 3.25 times the value-transformed codes. This result indicates that

compiler can effectively use value distributions to synthesize efficient code sequences.
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Figure 6.19 Average relative height reduction for dataflow transformed regions.

Results for performing VOF techniques for the 16-issue machine are presented in Figure 6.20.
Performance is shown with and without the help of the PDLO support, and the base model
being compared is also a 16-issue processor model. Generally the results indicate that the
performance of compiler-based reformulation can achieve an average improvement when given
sufficient machine resources. On average a performance improvement of nearly 6% is observed
for the 16-issue machine. The modest result is achieved in comparison with the 16-issue machine
without value-transformed code and thus indicates overall success in extending the effective-
ness of wide issue processors. Namely, the results indicate that transforming computations
regions can obtain good performance even when the regions are consistently limited by data
dependence height. Since parallel resources reach hard limits in improving dependence height

limited regions, the modest performance improvement of the value-based transforms become

significant.
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Figure 6.20 Performance for VOF and VOF-PDLO optimization.

An evaluation of VOF and PDLO compiler techniques for different machine models is shown
in Figure 6.21; in this case, the limited machine models are not able to aggressively improve per-
formance. Instead, for the six-issue model, the parallel code synthesized of predicate definition
instructions is over-running the limited execution resources of the processors. By improving
the functional unit capacities, performance can be achieved using the PDLO framework.

The performance of VOF-PDLO optimization for two input sets is shown in Figure 6.22.
As a proof of concept of the policies used to gather persistent regions, it can be seen that
the regions reformulated by the input sets are relatively similar in performance. This has
significant meaning in understanding that invariant program behavior of some computation
regions are likely to have reuse exploited by the CCR, approach, while others are invariant and
can be reformulated. Further study to evaluate these regions based on their reuse characteristics

would yield interesting insight into different strategies of exploiting reuse opportunities.
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Figure 6.21 Evaluation of PDLO speedup for different machine models.
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Figure 6.22 Evaluation of VOF-PDLO speedup for different input sets.
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Figure 6.23 Code growth for applying value transforms.

Code growth is one side effect of the value-based transformations. Figure 6.23 illustrates the
code growth due to VOF-PDLO, for the different components that compose the transformed
code. Since each value context generated during the value vector generation phase represents a
path of replicated instructions, there is code growth due to assigning the results of the region
and the predicate decision instructions. The code growth is about 5% on average, which may
be an acceptable level for the achieved performance of the reformulation technique. Future
techniques may be able to selectively apply the transformation with code considerations as
a factor in determining the level of transformation and whether to use reformulation more
selectively.

The performance of partial reverse if-conversion of the escape sequences of the value-based
transformation is shown in Figure 6.24 for the 16-issue processor model. In these cases the

different levels of compiler parameters indicate the threshold attempting to create well balanced
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Figure 6.24 Performance for VOF-PDLO and VOF-PDLO-PRIC.

code migration between the escape sequence and the value sequence of the value-based codes. By
allowing escape sequences to be partitioned with the value sequences, some degree of insurance
is being performed since the value vectors institute the most likely paths. But more performance
can be achieved by initiating the escape sequence in parallel for a wide machine such as the
16-issue model.

Coordinating Redundancy Elimination Techniques. By coordinating the redun-
dancy elimination techniques proposed in this thesis, a cost effective design of the CRB can be
achieved. Figure 6.25 shows the performance for three models of execution, a 32-entry CRB
design, a 32-entry CRB design with compiler reformulation of vectored regions, and a 128-entry
CRB design. Clearing by utilizing compiler support to reformulate the computation regions

with invariance, then the CRB resources can be freed of some access contention. In the case of
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Figure 6.25 Performance comparing CCR models when coordinating compiler-based and

compiler-directed techniques.

Figure 6.25, the coordination can amount to using a 32-entry computation buffer rather than
a 128-entry buffer while achieving very similar performance.

ILP Paradigm Evaluation. One of the most important aspects of future compiler
transformations is their ability to enable the cost effective design strategy of ILP machines.
Optimizations that improve code efficiency by using many concurrent processor resources re-
duce the limitations of instruction parallelism naturally found in program codes. Figure 6.26 is
used to motivate the application of silicon resources to the elimination of computation redun-
dancy. Three models of execution are shown: base processor model /system with 32-entry CRB,
base system model with perfect machine resources, and the base model with perfect system re-
sources, and finally the base model with the CRB and perfect system resources. Generally the

fundamental performance of applications can still be improved even for perfect system resources
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Figure 6.26 Performance comparing benefits of compiler-based and compiler-directed tech-

niques when varying machine resources.

such as functional unit cache memory and branch prediction accuracy. In this case, computa-
tion reuse maintains some performance improvement over a machine with perfect ILP resources.
This is due to the fact that both the ILP compiler and hardware technique do not properly
exploit the value locality characteristics of code. As Figures 6.26 and 6.25 indicate, there are

excellent opportunities to improve processor performance by eliminating dynamic computation

redundancy.

6.6 Summary

In this chapter, new methods for transforming dataflow and memory flow expressions were
investigated. The transforms of the VOF system effectively illustrate how value sequences could

be created from the value profiling information. Subsequently, the paths could be represented
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using predicated execution and expressed in more parallel forms than the original codes. Al-
though the predicated representation of the generated value-based sequenced was necessary
for the value-based transformation, it is also a prefered method of exploitation. Through
predicated execution, a series of advanced predicate transformation techniques can be applied
to improve the efficiency of value-based transformations. The two techniques studied in this
chapter are the predicate decision logic optimization and partial reverse if-conversion trans-
formation. At the heart of the decision logic optimization technique is the existence of value
locality and the opportunity to devise effient decision logic for the regions with computation
instances that match closely in their value conditions. The optimization technique reduces the
decision height of transformed sequences, allowing the predetermined computation results to be
quickly introduced into the machine pipeline. The reverse if-conversion framework enables the
predicate-based value transformed sequences to effectively balance the amount of speculation
performed on escape sequence of value-synthesized codes. Even though predicated execution
has been shown to be a powerful tool for enhancing ILP by reducing the detrimental effects of
branching control flow, value was added to the predicated execution mechanism by illustrating
that other spaces of opportunities exits.

Predicate-enabled program reformulation in conjunction with the compiler-directed compu-
tation reuse approach also showed interesting results. By coordinating actions of these tech-
niques, improved behavior of the hardware resources of the CCR approach was observed. This
improvement is enabled by eliminating invariant program behavior that is more efficiently han-
dled using program reformulation techniques than hardware resources. The hardware is best
constructed to exploit computation with dynamic redundancy whereas compiler-based tech-

niques are more suited for regions with persistently invariant value execution.
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CHAPTER 7

CONCLUSION

7.1 Summary

Compiler-directed computation reuse and compiler-based value transformations are novel
approaches proposed in this thesis for exploiting program value locality. Effective exploita-
tion of both technologies requires the compiler to understand the run-time invariance behavior
within programs. This dissertation presented the Reusable Computation Region Framework,
constructed within the IMPACT compiler, which provides a method for exploring the proposed
techniques. Two compiler-directed hardware techniques, Compiler-directed Computation Reuse
Approach and the Dynamic Computation Management System, provide significant advantages
over previous methods of eliminating redundancy at the instruction level. Based on value exe-
cution behaviors, the compiler transformation techniques of the Value Optimization Framework
reformulate the original program to highly-parallel instruction sequences that can be efficiently
executed with predicated-execution support. The techniques enable cost effective performance
on modern processors designed to exploit instruction-level parallelism.

The Compiler-directed Computation Reuse Approach uses the compiler to identify code
regions whose computation can be reused during dynamic execution to eliminate dynamic re-
dundancy. The instruction set architecture provides a natural and effective interface for the

compiler to communicate the scope of each region to the hardware. During run time, the
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microarchitectural components of the approach record the execution results of the computa-
tion regions. Compiler-directed reuse has more potential to eliminate redundant computation
by identifying regions in programs at compile time, which eliminates reuse detection at run
time and implements efficient reuse. Several alternative hardware designs and optimization
techniques were explored to determine which areas of technology offered the most promise in
improving the performance and cost effectiveness of the CCR approach.

A major limitation of the compiler-directed approach is that the compiler relies on value
profiling to identify reusable regions, making it difficult, if not impossible to deploy the scheme
in many software production environments. The Dynamic Computation Management System
is a novel hardware mechanism that alleviates the need for value profiling at compile time
and enhances the assignment of computation regions in the hardware resources. The man-
agement system monitors the dynamic behavior of compiler-designated regions and selectively
activates the profitable ones at run time. The proposed design makes more effective utilization
of hardware buffer resources, achieves rapid employment of computation regions, and improves
reuse accuracy, all of which promote more flexible compiler methods of identifying reusable
computation regions.

By exploiting persistent value locality characteristics within programs, the transformations
of the Value Optimization Framework enhance the original program code structure by synthe-
sizing new optimized paths with value-specific contexts. The context-based sequences assert
new dependence representations for the codes that overcome the fundamental dataflow lim-
itations imposed by the original data and memory dependences. Predicated execution and

predicate-based compilation techniques play an imperative role in the optimization framework
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as the newly created value contexts are translated to the predicate dataflow representation and
efficiently executed on a wide-issue processor.

Eliminating dynamic computation redundancy has been presented as an important method
of enhancing program execution speed and efficiency. The proposed compiler-directed and
compiler-based techniques presented in this dissertation work in a coordinated manner to com-
pletely eliminate dynamic redundancy and fully exploit program recurrence. The computation
redundancy of regions with high variation is captured by the hardware support in the CCR
approach. However, since the compile-time extraction of computation regions cannot have
absolute knowledge of the program execution conditions, the DCMS is required to make ac-
curate run-time decisions about applying the computation reuse hardware resources. Code
regions with persistent value locality are restructured using the VOF transformations rather
than the hardware support of the CCR approach. Effective application of these technologies
is enabled by the computation region formation framework that provides the identification of
program regions with exploitable behaviors. The proposed coordinated compiler techniques
and compiler-directed systems for eliminating dynamic computation redundancy allow a high

degree of program efficiency to be achieved for a diverse range of applications.

7.2 Future Research

The work proposed in this dissertation promotes a number of future research directions in
both compiler and architecture domains. The work still needs to be validated by a real hard-
ware implementation and evaluation. Namely, the trade-offs between the cost of the instruction
annotation overhead of the CCR approach and the evaluated benefits need significant inves-

tigation. In addition to hardware evaluations, alternative embodiments of the approach, such
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as eliminating the dependence of compiler-annotated region identifiers and compile-time alias
analysis are the most likely future research directions.

The CCR approach operates by insuring that recorded results of designated regions of code
are valid for reuse. However, the technique is generally limited in eliminating redundancy
in the memory-dependent regions that access the same data values from different memory
locations. It is often the case that two independent sequences of memory accesses result in
the same computation results because the respective source memory values are identical. The
CCR approach can be extended to further incorporate this form of memory redundancy by
communicating each computation region’s memory expression to the memory system. The
memory system could evaluate the memory expressions and detect whether future memory
sequences are redundant. Reuse availability information would be coordinated between the
memory system and the processor when a computation region was initiated. Overall, the
future approach would further integrate the compiler’s role in the performance of advanced
microarchitectures and high-performance systems.

As a mechanism for enhancing program execution, the compiler-directed approach has been
thoroughly investigated. However, computation reuse offers other advantages such as the poten-
tial to reduce processor power consumption. Instructions that are bypassed using the proposed
methods of this thesis are not fetched, do not execute in the microarchitecture pipeline, and
do not access the memory system. As such, computation reuse has the potential to reduce
the amount of power consumed. Further developments in system design include exploring con-
cepts to achieve optimal solutions to the power/performance and cost/performance trade-offs

for active computation regions.
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The techniques of the VOF framework transform regions of code based upon the analyzed
results of program analysis and value locality profiling. However, the techniques developed
in the VOF could be applied to program-level reformulation. As future trends in software
production environments continue, the responsibilities of the compiler to enable efficient code
execution will continue to increase. Currently, optimizing compilers are only able to make
existing programs operate more efficiently on processors, and fail to reformulate the program
and transform the original algorithm to the most effective form. Many opportunities exist
to identify problematic code structures with invariant execution behaviors, and the results
presented for the VOF techniques motivate several promising opportunities for future work in
systematic program reformulation. In addition, new programming environments that provide
opportunities through the high-level language to further expose opportunities for reformulation
are interesting directions of research created by the dynamic management system and are being
studied.

Significant research in high-performance systems exists on using multiple threads to improve
computing efficiency. These systems could benefit in many ways by expanding the work of
compiler-directed computation reuse. First, in multithreaded systems, each thread operates
on an individual task and later synchronizes results with one or more threads. It is often the
case that separate threads have significant overlap in their working set and generate redundant
computation sequences. The compiler-directed computation reuse approach could communicate
shared computation instances for computation regions processed by different threads, enhancing
performance by generating new thread-level efficiencies. For a subordinate-threaded system in
which minor threads execute to optimize a main thread, the computation reuse buffer provides

a likely system to relay interthread communication of execution results.

203



The DCMS model operates through the use of information collected at run time to improve
program performance, specifically enhancing the efficiency of the CCR approach. As the inflex-
ible ISA boundary separating software and hardware systems becomes more permeable with the
construction of run-time systems, the fundamentals of the CCR approach will not be limited
to only its compiler-directed embodiment. Run-time specific schemes of the CCR approach
are possible through dynamic optimization systems that enable adaptive execution, dynamic
compilation /translation, and continuous profiling/optimization. In such systems, the hardware
passes information up to a layer of software. In turn the software uses that information to
direct optimization and specialization, and employs global analysis and program knowledge to
direct the new opportunities. There is a significant amount of future work in investigating dy-
namic systems that coordinate run-time program information with both the power of compiler

transformation and compiler-directed hardware technologies.
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