
c© 2005 by Erik Matthew Nystrom. All rights reserved.

FULCRA POINTER ANALYSIS FRAMEWORK

BY

ERIK MATTHEW NYSTROM

B.S., North Carolina State University, 1998
M.S., University of Illinois at Urbana-Champaign, 2002

DISSERTATION

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy in Electrical Engineering

in the Graduate College of the
University of Illinois at Urbana-Champaign, 2005

Urbana, Illinois

ABSTRACT

Fulcra is a flexible and accurate pointer analysis framework. The algorithms devel-

oped permit accurate analysis of programs within SPEC and Mediabench benchmark

suites generally within a small number of seconds. Even when a very detailed heap allo-

cation model is used, the longest analysis time is 5 min, while similar frameworks require

hours or months. Furthermore, comparisons of accuracy show that the algorithms devel-

oped for Fulcra can provide orders of magnitude difference between the least and most

accurate analysis configurations.

While the implementation is exciting, the author’s primary goal is not to laud its

speed or accuracy, but to provide a guide to designers in how to construct very flexible

pointer analysis frameworks. For example, the algorithms developed for Fulcra enable

control of context sensitivity, field sensitivity, and heap sensitivity at the granularity of

a single program object. It is only through this flexibility that frameworks can hope to

find a true balance between accuracy and scalability capable of satisfying the timeliness

demanded by some clients with the result quality demanded by others.

The contributions of Fulcra center around its whole-hearted embrace of hybrid pointer

analysis algorithms and the design of elegant qualified constraint-based algorithms that

enable simple, flexible, and accurate approachs to context and heap sensitivity.

iii

To my wife for her unwavering love and support and to my bright-eyed son who would,

at present, enthusiastically eat this text.

iv

ACKNOWLEDGMENTS

My parents, brothers, and sisters all have my immeasurable gratitude for giving me a joyous

childhood filled with curiosity and a fulfilling adulthood rooted in love and support.

I would like to thank my adviser Wen-mei Hwu for his guidance, support, and for creating

an atmosphere where I was free to explore diverse computer architecture topics. Furthermore,

my committee members Vikram Adve, Matthew Frank, Steve Lumetta, and Janak Patel have

provided insightful feedback and guidance, for which I am grateful.

Over these many years, I had the opportunity to work closely with many gifted members of

the IMPACT research group and was lucky to call them my friends. For this, I would like to

thank John Sias for challenging my assumptions and expanding my vision, Hillery Hunter for

providing new perspectives and guidance, Ronald Barnes and Matthew Merten for many years

of fruitful research and helping my development as a researcher, Andrew Trick for showing

dedication and grace under pressure, and Hong-Seok Kim for his unique view of theory.

Finally, I thank the National Science Foundation, Intel Corporation, DARPA/MARCO GSRC,

the University of Illinois, and the Department of Electrical and Computer Engineering for their

generous financial support which made my graduate studies possible.

v

TABLE OF CONTENTS

LIST OF TABLES . ix

LIST OF FIGURES . x

1 INTRODUCTION . 1

2 BACKGROUND AND SETUP . 5
2.1 Terms . 6
2.2 Empirical Evaluation . 9

2.2.1 Scalability . 9
2.2.2 Accuracy . 10
2.2.3 Benchmarks . 15

2.3 Andersen’ Style Assignment Modeling . 15
2.4 Basics of Context Sensitivity . 20

2.4.1 Bottom-up context sensitivity . 23
2.4.2 Top-down context sensitivity . 24
2.4.3 Recursive procedure calls . 27

2.5 Heap Sensitivity . 28
2.6 Indirect Function Calls . 30
2.7 Field Sensitivity . 33
2.8 Flow Insensitive Analysis . 36

3 THEORETICAL CONTEXT SENSITIVE MODEL 39
3.1 Model Two-Phase Context Sensitive Algorithm 41
3.2 Transforming a Program into a Side-Effect Free Form 42

3.2.1 Criticality . 43
3.2.2 Backtracing . 47

3.3 Limitations of Theoretical Model . 48

4 CONTEXT SENSITIVITY . 52
4.1 Interprocedural Data Flow Revisited . 52
4.2 Partial Context Sensitivity . 58
4.3 Qualified Constraints . 60

4.3.1 Qualified constraint example . 63

vi

4.3.2 Qualified constraint mix . 65
4.4 Modified Two-Phase Algorithm . 65

4.4.1 Solution preview . 67
4.4.2 Constraint recycling . 68
4.4.3 Example . 70

4.5 Applying Partial Context Sensitivity . 71
4.6 Summaries Containing Opaque Variables . 75
4.7 Modeling Heap Specialization . 76

4.7.1 Lossless specialization limits . 77
4.7.2 Lossy specialization limits . 80

4.8 Key Algorithm Pseudo-Code . 81
4.8.1 Fast two-phase algorithm . 82
4.8.2 Holding, opacity, and criticality . 83
4.8.3 Summarization . 83

5 FIELD SENSITIVITY . 88
5.1 Field Sensitivity and Safety . 89
5.2 Constraint Specification . 96

5.2.1 Object model . 96
5.2.2 Derivation rules . 97
5.2.3 Example . 100
5.2.4 Safety issues . 101

5.3 Interaction with Context Sensitivity . 103
5.3.1 Holding, opacity, and criticality . 103
5.3.2 Backtracing and summarization . 104

5.4 Effective Implementation . 109
5.4.1 Anonymous objects . 109
5.4.2 Modeling strides . 110
5.4.3 Detecting strides . 113

5.5 Empirical Results . 116
5.5.1 Effect on efficiency . 117
5.5.2 Effects on accuracy . 121
5.5.3 Interaction between FULL and CI, CS . 123

6 COMPREHENSIVE EMPIRICAL STUDIES . 125
6.1 Efficiency . 125
6.2 Accuracy . 129

7 FUTURE DEVELOPMENT . 133
7.1 Summary Refinement . 133
7.2 Redundancy Removal . 134
7.3 Hybrid Inclusion-Unification . 135
7.4 Context Sensitive Recursion . 135

vii

7.5 Control Correlation . 137
7.6 Partial Programs . 138

8 CONCLUSION . 139

REFERENCES . 140

AUTHOR’S BIOGRAPHY . 144

viii

LIST OF TABLES

Table Page

2.1 Benchmarks used for empirical evaluation, including the abbreviation used
in graphs, the source benchmark suite, lines of code, number of indirect call
sites, and a brief description. *The indirect function call in 197.parser is
due to the stdlib procedure qsort(). 16

4.1 Mixture of constraint qualifiers observed. 66
4.2 Comparison of the number of iterations necessary for a traditional two-

phase algorithm and one leveraging a solution preview, along with the
analysis speedup when constraints are recycled. 69

4.3 Analysis time necessary when global variables are included into summaries. . 74
4.4 Excessive heap specialization occurs when 132.ijpeg and jpegenc are ana-

lyzed field-insensitively and can occur in 176.gcc when the amount of in-
lining in increased. The following shows both the cost of such excessive
specialization on analysis time and how heap recollapse helps reign in these
costs. 81

5.1 Analysis time (seconds) comparing a field insensitive and a typical field
sensitive algorithm against the proposed safe field sensitivity implemented
using full enumeration, strides on objects, and strides on constraints and
objects. 118

5.2 Effect of using ENUM and OBJ on accuracy. Columns lds/obj show the
average number of static loads that appear to access a particular object.
The average is shown separately for named and heap objects. OBJ results
in substantial loss of accuracy for 132.ijpeg. 119

5.3 Effect of Safe FS FULL on CI and CS results. FULL impacts the analysis
time (a) of CI more that CS for 132.ijpeg and 008.espresso and degrades
the accuracy (b) of CI more that CS for 132.ijpeg and 130.li. 123

6.1 Pointer analysis times for benchmarks common to multiple publications. . . . 129

ix

LIST OF FIGURES

Figure Page

2.1 Two different pointer analysis results where (a) three loads access the same
object and (b) three loads access three unique objects. In calculating a
measure of accuracy, the raw points-to size is 3 for both (a) and (b), while
the measure of accesses per object is 3 for (a) and 1 for (b). 11

2.2 Example used to show how to calculate accesses per object in the presence
of differing amounts of heap specialization. In (a), in a successful attempt
at obtaining a better result, object A has been specialized into two objects
B, with 100 accessors, and C, with only two accessors. In (b), B has been
specialized without benefit into D and E, each still having 100 accessors. 14

2.3 Excerpt from jpegdec showing code that can benefit from an Andersen’s
style analysis. 18

2.4 Comparison of accuracy between a Steensgaard’s and Andersen’s formula-
tion for a context, field, and heap sensitive analysis. Graphs (a) and (b)
display a lower-bound on the percentage reduction in accesses-per-object
obtained by using an Andersen’s formulation where (a) models the heap
per-call-site and (b) uses a more accurate heap model. The data is a lower
bound because the experiment used a Steensgaard’s bottom-up process but,
due to a design constraint of Fulcra, an Andersen’s top-down. 19

2.5 The code in (a) can benefit from a context sensitive analysis and (b) shows
how complete call graph expansion explicitly separates interprocedural data
flow thereby obtaining context sensitivity. This provides a conceptual base-
line for a context sensitive pointer analysis. 22

2.6 (a) Code example for which a context independent summary cannot be
formed in terms of only function inputs, (b) side-effects if *x and *y do not
alias, and (c) if *x and *y alias, **y := z and *x := &a combine to for
the data flow a := z and the subsequent side effect *z := w. 24

2.7 Example explaining top-down context sensitivity (a) code example, (b) an
approach leading to a loss of context sensitivity, (c) an approach maintain-
ing only bottom-up context sensitivity, and (d) a truly top-down context
sensitive result. 25

x

2.8 Example showing the benefit of specializing heap objects. (a) Example
based on a JPEG photo decoder/encoder, and (b) two models of the heap
where the upper figure performed no specialization and the lower created
two specialized objects. 29

2.9 Graphical representation of a the lineage for specialized heap objects from
the code example in Figure 2.8(a). 30

2.10 Code example (a) is used to demonstrate the difference between (b) call
site hoisting and (c) summary update approaches to optimistic call graph
construction within a context sensitive analysis. 32

2.11 A sample program and the points-to results that can be obtained for five
approaches to field sensitivity: Insensitive, Steensgaard, Based, Indexed,
and Offset. 34

2.12 Four core constraints for a field- and flow-insensitive analysis. 37
2.13 Three derivation rules for a field- and flow-insensitive analysis. 37

3.1 Effective procedure size when context-sensitivity is achieved using (a) a
explicitly expanded call graph and (b) when the effects of callees are rep-
resented through the use of compact procedural summaries. 40

3.2 Code example (a) for which a context independent summary cannot be
formed in terms of only function inputs and (b) a possible summary retain-
ing a reference to a. 44

3.3 Symbolic derivation of side effects: (a) symbolic effects of calling contexts,
and (b) determination of criticality. 45

3.4 Backtracing for (a), (b), (c) store, (d) plain and address, and (e) load
assignments. 47

4.1 Three fundamental forms of interprocedural data flow: (a) local data flow
from u to v termed horizontal, (b) interprocedural data flow from caller
B() to callee D() termed downward, and (c) interprocedural data flow from
callee D() to caller B() termed upward. 54

4.2 Example data flow caused by the use of a globally qualified constraint. 60
4.3 Initial conditions and derivation rules for qualifier-based context sensitivity. . 61
4.4 Illustration of the use of qualifiers in a context sensitive analysis process. (a)

Example program and (b) the initial conditions and constraint derivation
process. 64

4.5 Sample program used to demonstrate the benefits of a modified two-phase
algorithm. 70

4.6 Illustration of the derivation process when the variable q is treated context
insensitively in (a) an example program and (b) the initial conditions and
constraint derivation process. 72

4.7 Example derived from 300.twolf. All the objects in this example have purely
local effects; thus, specialization is not necessary. 77

4.8 Example demonstrating the effect of compaction for nonescaping objects. . . . 78

xi

4.9 Example derived from 130.li. In this example, since objects escape only
through global variables, specialization does not aid accuracy. 79

4.10 Pseudo-code for the modified two-phase analysis process leveraging solution
previews. 82

4.11 Extended derivation rules for (a) holding, opacity, and (b) criticality. Though
not explicitly shown, only horizontal constraints should be considered. 84

4.12 Top-level algorithm for procedural summarization. 85
4.13 Algorithm for backtracing a constraint edge along either a source or desti-

nation node. 86
4.14 Top-level constraint compact algorithm. 86
4.15 Constraint compaction rules for compact-core(). 87

5.1 Illustration of the address propagation derivation. 100
5.2 Example: (a) Initial constraint graph for code of Example 2, and (b) solu-

tion to constraints. 101
5.3 Example for which field-insensitive computation of the holding property

results in a conservative result. 103
5.4 Algorithm for field-sensitive backtracing a constraint edge along either a

source or destination node. 106
5.5 Core field-sensitive copy constraint compaction rules. 107
5.6 Core field-sensitive skew constraint compaction rules. 107
5.7 Core field-sensitive load constraint compaction rules. 107
5.8 Core field-sensitive store constraint compaction rules. 108
5.9 Effect of modulus on view of a multibyte structure. 110
5.10 (a) Enumerated solution, (b) strides on constraints, (c) strides on objects,

and (d) hybrid approach. 111
5.11 Source code extracted from the benchmark 134.perl that results in a false,

arithmetic cycle. 116
5.12 Fraction increase (decrease for negative) in time when comparing UNS and

Safe FS FULL to a FI baseline. FI Baseline times are shown between
the benchmark labels and the graph. Benchmarks 008.espresso, 130.li,
132.ijpeg, and jpg2Kdec show dramatic analysis speedups when any field
sensitive algorithm is used. To aid interpretation of the data, the approx-
imate FS times for these four benchmarks are shown in brackets near the
x-axis. 120

5.13 Fraction of variables involved in skew cycles, fraction of objects to which
a stride was applied, and the fraction of points-to edges to which a stride
was applied. 121

5.14 Fractional decrease in the number of loads perceived to access program
objects when compared to the results from a FI baseline. The benchmark
jpg2Kdec failed to complete for FI and thus its FS data has been excluded. . . 122

xii

6.1 Time necessary for Fulcrato perform four different analyses: field-insensitive,
field-sensitive, field- and context-sensitive, and field-, context-, and heap-
sensitive. 126

6.2 Factor increase in analysis time for a field-sensitive, context-insensitive anal-
ysis over a field-insensitive analysis. 127

6.3 Factor increase in analysis time for (a) a field-sensitive, context-sensitive
and (b) a field-sensitive, context-sensitive, and heap sensitive analysis against
a baseline field-sensitive, context-insensitive analysis. 128

6.4 Effect of different analysis configurations on the number of access-per-object
observed. 130

6.5 Decrease in access-per-object observed for a field-sensitive, context-insensitive
analysis over a field-insensitive analysis. 131

6.6 Decrease in access-per-object observed for (a) a field-sensitive, context-
sensitive and (b) a field-sensitive, context-sensitive, and heap sensitive anal-
ysis against a baseline field-sensitive, context-insensitive analysis. 132

7.1 Code example (a) for which more aggressive redundancy removal could
obtain a smaller summary (b) by leveraging the fact that heap location
heap1 is a superset of heap3. 134

7.2 Code example (a) for which structure fragmentation could expose additional
redundancy by transforming the code to that shown in (b). 135

7.3 Effect of context-sensitive recursion on analysis time and accuracy of 130.li. . 136
7.4 Excerpt from jpegdec where an analysis result can benefit from the corre-

lation between the indirect call at line 8 and its parameter, both involving
variable dest. 137

xiii

1. INTRODUCTION

Fulcrum - ful • crum; pl. ful • cra; etymology From Latin fulcire “to prop.” The support

about which a lever turns; One that supplies the capability for action.

Interprocedural pointer analysis has an extensive history in the research community.

Though not revealing the difficulty of the problem, its goal can be simply stated as

obtaining a description of the possible targets of a program’s pointer based accesses.

However, a vast number of complications and design issues erupt when one attempts to

realize an implementation. It is likely this combination of simplicity and impossibility

that has lured a decade of theoreticians and engineers.

A goal of this work is to document many of the impediments to efficient pointer

analysis and to provide elegant and controllable mechanisms for overcoming them. This

dissertation will hopefully serve as a guide to designers wishing to construct flexible

pointer analysis frameworks.

The name Fulcra was chosen for two reasons. First, a fulcrum is, by itself, not much

more significant than a door stop. Similarly, the potential of a pointer analysis system

is wasted if not put into a position where some client can leverage its results. Such goals

necessitate the engineering of a general pointer analysis framework capable of providing

timely results. This effort brings with it many reality checks.

1

The second reason for the name choice is related to the fact that the constraint based

analysis framework developed for Fulcra is very flexible (at least within the bounds of

pointer analysis). For example, the degree of context sensitivity, field sensitivity, and heap

sensitivity can all be varied at the granularity of a single program object. The analysis

process uses this flexibility as a fulcrum for leverage toward a more efficient analysis

process. Fulcra was chosen over fulcrum because the author preferred the shorter plural.

As its contributions, this dissertation provides:

1. The first framework to comprehensively embrace hybrid pointer analysis algorithms

2. A simple, flexible, and accurate approach to context sensitivity and heap sensitivity

centered on elegant qualified constraint-based algorithms

3. One of the most efficient Andersen’s style pointer analysis formulations

4. A configurable pointer analysis framework that supports in excess of 24 substan-

tially different kinds of pointer analyses

5. A comparison across many different approaches to pointer analysis and the ramifi-

cations of different selections

The dissertation is organized into six major parts. Chapter 2 provides background

on different elements of, and alternatives, in the design of pointer analysis systems. In

addition to general background, it also motivates the selection of particular high-level

designs from the available alternatives (such as an Andersen’s style formulation).

2

Chapter 3 discusses the theoretical model for a context sensitive pointer analysis.

The model facilitates the discussion of two critical concepts: (1) The end goal of context-

sensitivity is to obtain pointer analysis results equivalent to those obtained had every path

through the program’s call graph been explicitly expanded and then analyzed context-

insensitively. (2) No unrealizable data flow can occur if a program lacks procedural side

effects. While providing a good starting point for understanding the challenges context

sensitivity poses, the basic model has many shortcomings, making it an inappropriate

choice for actual implementation.

Chapter 4 presents a novel approach to constructing a context-sensitive pointer anal-

ysis that uses qualified constraint-based algorithms that is both amenable to implemen-

tation and has many characteristics that enable more efficient analysis. In particular,

maintaining context sensitivity is translated into a regular interaction among qualifiers,

or constraint attributes, and permits an analysis to venture across a continuum span-

ning from context-insensitive to fully context-sensitive analyses. This is the primary

mechanism necessary for cracking context-sensitive analysis, in particular when using

Andersen’s formulation.

Chapter 5 presents the approach used to obtain field sensitivity, in particular safety

issues and the implications a field sensitive analysis has on a jointly context sensitive

analysis. Chapter 6 presents a broad evaluation of Fulcra for context sensitivity, heap

sensitivity, and field sensitivity. The evaluation includes comparisons of analysis time

3

and result accuracy. Finally, Chapter 7 details opportunities for future research and

development.

4

2. BACKGROUND AND SETUP

Conceptually, the goal of a pointer analysis system is to describe the potential targets of

each pointer-based access. The memory locations that a program expression appears to

access will likely influence the decisions made by a compiler or other software development

tool. The heavy use of pointers by many applications makes pointer analysis useful, if

not critical, for tasks like register promotion, scheduling, memory data flow, debugging,

verification, as well as most program optimizations.

Pointer information could be obtained through the execution of a program for every

possible input and the collection of all seen memory accesses. Similar in concept, and

more likely to complete, pointer analyses use an abstract model of program execution to

derive a conservative set of all possible pointer relationships. This chapter’s goal is to

provide background on many of the algorithmic options available to designers. Section 2.1

introduces important terms that will be used throughout this dissertation. Section 2.2

walks through the evaluation process used to gather empirical results. The remaining

sections act as a pointer analysis primer, covering many facets of the pointer analysis

problem and detailing many approaches that may be taken. They will also highlight the

design choices made for this work. In addition to this chapter, we refer readers to [1, 2]

for a more extensive set of references.

5

2.1 Terms

The following important terms will be used throughout this work:

1. Object - A collection of contiguous memory locations sharing a common name. Ob-

jects provide a static view of the the memory locations that a program may access

at runtime. There is a one-to-one mapping between named, i.e., statically allocated,

variables and an object, while a single object may represent many anonymous, i.e.,

dynamically allocated, memory locations.

2. Pointer Information - A relationship between program expressions (operations)

based upon the objects these expressions (operations) may access.

3. Points-to - Object a points-to b if a’s value is the address of b.

4. Alias - Two expressions e1 and e2 alias if they resolve to the same object. For

example, *x and *y alias if x and y reference the same object. While related, points-

to and aliasing are different and knowledge of one does not necessarily translate

into an equivalent form of the other.

5. Client - A consumer of pointer analysis results.

6. Realizable Result - A pointer analysis result that may occur for some execution of

a program. Unrealizable will refer to all other results.

7. Optimistic Result - A pointer analysis result that is a subset of all realizable results.

8. Conservative Result - A pointer analysis result that is a superset of all realizable

results. This may also be referred to as Over approximation.

6

9. Incorrect Result - The generation of an optimistic result for use by a client that

requires conservative results to generate valid output. Correct or Safe will be used

when a result is acceptable for particular clients.

10. Accuracy - A measure of how closely the derived pointer relationships match those

realizable by the program. While some works use precision, this author prefers

accuracy. Section 2.2 will cover this in more detail.

11. Scalability - A measure of an algorithm’s ability to analyze a range of programs

having a variety of characteristics without consuming an exorbitant amount of

resources. Section 2.2 will cover this in more detail.

12. Procedural Side-effect - or side-effect, data flow whose consequences are visible to

procedures outside the one containing the code that causes the data flow to occur.

13. Call Path - a sequence of procedure calls possible within the program’s call graph.

There are many facets to the pointer analysis problem. The following outlines inde-

pendent and complementary tactics to more faithfully model real program execution and

thereby obtain more accurate results.

1. Assignment Modeling: Andersen style [3], also referred to as a sub-typing or inclu-

sion based approach, and Steensgaard style [4], also referred to as a unification or

equivalence based approach, represent the two extremes of modeling assignments.

If a single location points to two different objects, Andersen will continue to track

7

the objects separately, while Steensgaard will unify them, tracking them as a sin-

gle object. Steensgaard is a lossy compression of pointer information but is very

efficient, almost linear in its pure form.

2. Context Sensitivity: A context-sensitive algorithm is able to keep data flow along

different call paths separate. For example, should functions A and B both call C,

a context-insensitive algorithm may show false data flow from A into B, by way of

C. Approaches to context sensitivity are diverse and vary in the level of separation

provided to interprocedural data flow, the modeling of recursion, and the treatment

of indirect function calls.

3. Heap Sensitivity: Heap sensitivity enables an algorithm to distinguish between

different heap allocated objects even though allocated by the same call to malloc().

Typically, the specialization of heap locations is strongly tied to context sensitivity,

though other options exist [5].

4. Field Sensitivity: A field-sensitive algorithm is able to distinguish between fields of

an aggregate object (a struct in the C language). In a field-insensitive analysis,

the C-language expressions x.f1 and x.f2 are equivalent to x.

5. Flow Sensitivity: An algorithm is flow sensitive if its results account for the effects

of control flow on the pointer data flow. The primary alternatives are full flow

sensitivity [6, 7] and the use of static single assignment (SSA) [8] to obtain partial

flow-sensitivity [9].

8

This dissertation focuses on analysis algorithms for an Andersen’s style, context,

field, and heap sensitive, but flow insensitive framework. The following sections provide

additional background on and the reasoning behind these choices.

2.2 Empirical Evaluation

As with all studies, it is important to have a measure or measures of the quality of

one result versus another. For pointer analysis, it is important to compare the cost of

the analysis process and the potential usefulness of the result across a wide variety of

applications. The following sections discuss the scalability (cost), accuracy (usefulness),

and the applications used for evaluations.

2.2.1 Scalability

While most pointer analysis algorithms have a fairly high theoretical complexity (poly-

nomial if not exponential in the worst case), the worst case may not be the common case

and, for the same applications, there may be orders of magnitude difference in the real

cost of two similarly positioned analyses.

This work uses a purely empirical measure of scalability and simply times the analysis

process over a set of applications. While straightforward in concept, some previous works

leave ambiguity as to what is being timed or state that some processing is left for demand

driven queries. All timing measurements in this dissertation start once the program

expressions are loaded (an abstract syntax tree (AST) in our case) and conclude once

9

the complete and concrete analysis results have been produced. The measured analysis

times do not include the annotation of these results back to the AST, but the results are

in a form where they do not require any additional refinement. Thus, the timing includes

all algorithmic iteration, call graph discovery, simplifications, and pointer derivations.

Unless otherwise stated, all timing results will be presented in seconds.

Keep in mind that application size is not always a good indicator of the resultant

cost of the analysis process. For example, a 10 million line program lacking pointer use

should be easy to analyze. There are many programs around 50 000 lines of code (LOC)

that vary greatly in difficulty and, in the end, analysis time.

2.2.2 Accuracy

Measuring the usefulness of the results of a particular pointer analysis is surrounded

by much disagreement. The options can be roughly divided into three categories: raw,

extrapolated, and client based.

A raw measure is some metric based purely on the analysis process. The main metric

used is a count of points-to relations. As long as an analysis framework computes the

final, concrete points-to relations (which is not a given since some frameworks perform

this step on a demand driven or offline basis), these results are straightforward to obtain.

However, they are also the most difficult to interpret. While a reduction in the number

of points-to relations is desirable, the relationship between points-to and data flow is

ambiguous. The biggest drawback is that a raw points-to count loses its meaning if two

10

��� ���

�

�

����
�

����
�

����
�

	

����
�

����
�

����
�

�

Figure 2.1 Two different pointer analysis results where (a) three loads access the same
object and (b) three loads access three unique objects. In calculating a mea-
sure of accuracy, the raw points-to size is 3 for both (a) and (b), while the
measure of accesses per object is 3 for (a) and 1 for (b).

analyses result in different numbers of objects. For example, a heap sensitive analysis

may specialize heap locations to obtain better results but the increase in objects will

likely inflate the number of points-to relations even though the results may be better. To

demonstrate this, Figure 2.1 shows analysis results where all the loads in (a) all access

the same object and the loads in (b) access distinct objects. The points-to count for both

is 3 even though they are clearly different results.

The most concrete measure of accuracy is the effect some result has on a client.

First, this requires the existence of a client that can leverage the results which creates a

chicken-and-egg dependence. Without first obtaining more accurate results it is unlikely

that someone will have developed a client that can truly leverage the benefits. A related

problem is that benefit to one client is not necessarily indicative of benefit to another. The

most complex issue, however, is that the most interesting clients are themselves complex

beasts and may not have a well behaved response to variations in analysis results. For

11

example, a scheduling client may, due to approximations in its algorithms, provide a

better result when guided by less accurate pointer analysis result.

Extrapolated measurements lie between raw and client based ones. In a sense, they

are a primitive, well-behaved clients. One example of an extrapolated measurements is

pair-wise dependences (PWDep), a measure of the number of dependences found when

some set of program expressions are compared. However, PWDep has a few nonobvious

drawbacks, specifically:

1. Nonlinearity - The term “pair-wise” means that some set of expressions are used

to perform a n2 set of comparisons. Because of this nonlinearity the scope of the

chosen expression set heavily influences the result calculated, diluting differences,

and may mislead researchers trying to interpret the results. For example, if 10

expressions are selected for comparison and, for one set of results, 6 out of 45

comparisons are dependent and, for another, 5 out of the 45 are dependent the

PWDep is 13.3% and 11.1%, respectively, an absolute difference of about 2%. Had

five expressions, dependent on each other but independent of the other 10, been

included into the calculation, the PWDep would become 16 out of 105 (15.2%)

and 15 out of 105 (14.2%), an absolute difference of only 1%. The small expansion

in set size substantially diluted the change in PWDep. A good example from the

literature is Das et al. [10]. This work uses a measure termed Alias Frequency

which is identical to PWDep except that it includes read-read “dependences” (any

two expressions that alias). The lower bound alias frequency computed over the

12

scope of an entire function for the benchmark 132.ijpeg is about 6% while Das’s

algorithm provides 18% and Steensgaard’s 19%. Their conclusion is essentially that

12% is fairly close (or 5% when averaged across their benchmark set). At best it

is difficult to interpret the meaning of 12%. However, over a function scope it is

likely due to a large change in the results. Consider that, given 200 expressions, if

none alias the alias frequency is 0% and if 64 completely alias the frequency is 10%

(2016 aliases out of 19 900 comparisons).

2. Client Specificity - While not a true client, PWDep assumes that one cares only

about dependences. Two expressions that appear to read a common datum are

independent. A more accurate analysis process may determine that the expressions,

in fact, read from different locations. However, this will have no impact on the

PWDep even though a client that helps with debugging or attempts to layout data

for cache locality may benefit from this determination. Figure 2.1 gives an excellent

example of this, where the PWDep for both (a) and (b) is zero even though the

results are quite different. (This is the primary benefit of alias frequency over

PWDep as it does not suffer from this issue.)

This dissertation relies upon an extrapolated measure called accesses-per-object, ApO.

ApO has similarities both to raw points-to relations and to pair-wise dependences. ApO

is calculated by counting the number of expressions that appear to access (load from or

store to) a particular program object. This count can be used directly or averaged across

the number of objects. Unlike PWDep, ApO relies upon a simple mapping from objects

13

��� ���

�

� �

�����		
���� ���		
����

���

�

�

� �

�

���		
����

�����		
����

���

�����		
����

���

Figure 2.2 Example used to show how to calculate accesses per object in the presence
of differing amounts of heap specialization. In (a), in a successful attempt at
obtaining a better result, object A has been specialized into two objects B, with
100 accessors, and C, with only two accessors. In (b), B has been specialized
without benefit into D and E, each still having 100 accessors.

to accessors and does not suffer from nonlinearity. Since it treats load and store accesses

equally, it is less client specific. In comparison to raw points-to, ApO can be calculated

in a way that permits comparisons between results in which the number of modeled heap

objects differs.

Figure 2.2 depicts two possible analysis outcomes and differs only in how much heap

specialization was performed. In (a), object A has been specialized into two objects B,

with 100 access-or, and C, with only two accessors. The specialization of A has shown

benefit because B and C diverge in how they appear to be accessed. In (b), B is further

specialized into D and E, each having 100 accessors. This specialization was not beneficial

because D and E are still identical. Since the specialization attempt for (b) provides no

benefit, the results are essentially equivalent. The measure of accuracy used should reflect

this equivalence.

14

If calculated näıvely, the ApO for (a) would be average-of(100,2), or 51, and for (b)

it would be average-of(100,100,2), or 67. Though equivalent, the unbalanced cloning of

a heavily accessed object has skewed the average upward making (b) appear worse than

(a). For specialized objects ApO should be calculated as a series of averages where a

parent’s value is the average of its children. Using this approach, the ApO for (a) would

still be average-of(100,2). However, for (b), a value for B would be computed first as

average-of(100,100) and this value averaged with the value for C. The final value would

be average-of(average-of(100,100),2), or 52, identical to that obtained for (a).

2.2.3 Benchmarks

Empirical evaluations throughout this dissertation are benchmarked against the ap-

plications listed in Table 2.1. Table 2.1 lists all (nonrepeating) C benchmarks from

SPECint92, SPECint95, and SPECint2000, the largest benchmarks from Mediabench,

and three independent applications. It includes a description and some basic program

characteristics. Many results will be shown across the entire suite. However, for brevity,

a subset will be used when it is sufficient to make the desired point.

2.3 Andersen’ Style Assignment Modeling

The decision to design an Andersen’s style (as opposed to a Steensgaard’s style)

analysis impacts the design of many pointer analysis algorithms as well as the resultant

15

Table 2.1 Benchmarks used for empirical evaluation, including the abbreviation used in
graphs, the source benchmark suite, lines of code, number of indirect call sites,
and a brief description. *The indirect function call in 197.parser is due to the
stdlib procedure qsort().

Benchmark Abbrv Suite LOC (K) Ind CS Description

008.espresso 008 SPECint92 13 15 PLA logic optimization

023.eqntott 023 SPECint92 20 11 Bool eqn to truth table

099.go 099 SPECint95 45 0 “Go” game player

124.m88ksim 124 SPECint95 33 3 Motorola 88k simulator

129.compress 129 SPECint95 18 0 Compression

130.li 130 SPECint95 23 4 Lisp interpretor

132.ijpeg 132 SPECint95 26 644 JPEG photo decoder

134.perl 134 SPECint95 40 12 Perl interpretor

164.gzip 164 SPECint2000 24 2 Compression

175.vpr 175 SPECint2000 33 2 FPGA place and route

176.gcc 176 SPECint2000 222 141 GNU compiler

181.mcf 181 SPECint2000 18 0 Mass-transit vehicle scheduler

186.crafty 186 SPECint2000 35 0 Chess game player

197.parser 197 SPECint2000 27 1* English syntactic parser

253.perlbmk 253 SPECint2000 74 58 Perl interpretor

254.gap 254 SPECint2000 76 1281 Group theory

255.vortex 255 SPECint2000 69 15 Obj-oriented database

256.bzip2 256 SPECint2000 21 0 Compression

300.twolf 300 SPECint2000 36 0 Place and route

gsmdec gsmd Mediabench 22 6 Sound decompression

gsmenc gsme Mediabench 22 6 Sound compression

jpegdec jpgd Mediabench 24 600 JPEG photo decoder

jpegenc jpge Mediabench 23 654 JPEG photo encoder

h263dec 263d Mediabench 22 0 H.263 video decoder

h263enc 263e Mediabench 23 0 H.263 video encoder

mpeg2dec mg2d Mediabench 25 0 MPEG-2 video decoder

mpeg2enc mg2e Mediabench 23 0 MPEG-2 video encoder

mpg123 mpl3 Independent 24 33 MPEG-2 layer 3 audio decoder

jpeg2kdec jg2k Independent 43 27 JPEG-2000 part-1 standard

mpeg4dec mpg4 Independent 66 0 MPEG-4 video decoder

16

efficiency and accuracy of the pointer analysis framework. The importance of this decision

warrants both motivation and explanation.

Research publications, such as [11–13], have shown that unification based pointer

analyses are very scalable. Object merging necessary to restrict points-to set size to one

provides a strong bound on the quantity of analysis information as well as performing a

form of preemptive redundancy removal. However, the same restrictions that guarantee

scalability can also lead to unrealizable data flow and, in the end, less accurate results.

Inclusion based analyses maintain appropriate subset relationships due to assignments

and therefore preserved the expected data flow between objects. For example, given the

assignments a:=b and a:=c, an inclusion based analysis explicitly preserves the facts that

points-to(a) ⊇ points-to(b) and points-to(a) ⊇ points-to(c). The following will

walk through the primary reasons why an inclusion based analysis was chosen.

First, an inclusion based pointer analysis can provide more accurate and intuitive

results. The typical justification is that a more faithful model of program data flow

may result in fewer dependences and an immediate increase in software performance.

While possible, this statement assumes that existing tools can take advantage of better

information and overlooks benefits like providing a more realistic view of data flow to

program understanding and debugging tools and reducing the time to perform analyses

and transformations.

Consider the excerpt from jpegdec shown in Figure 2.3. The common use of variable

dest will result in a unification based analysis merging the five objects assigned into

17

1: switch(format) {
2: case BMP: dest = jinit_bmp(&cinfo); break;

3: case GIF: dest = jinit_gif(&cinfo); break;

4: case PPM: dest = jinit_ppm(&cinfo); break;

5: case RLE: dest = jinit_rle(&cinfo); break;

6: case TARGA: dest = jinit_targa(&cinfo); break;

7: }
8: (*dest->start_output)(&cinfo, dest);

9: (*dest->start_output)(&cinfo, dest);

Figure 2.3 Excerpt from jpegdec showing code that can benefit from an Andersen’s style
analysis.

dest at lines 2-6. However, the objects created by the jinit XXX() procedures contain

very different pointer information and unrealizable data flow created as this merging

cascades to other objects. An inclusion based analysis will preserve these distinct objects.

Furthermore, a technique described in Section 7 can be used to further refine these results

by leveraging the correlation between the datum controlling the indirect function call

*dest and the parameter dest.

A broad comparison of accuracy is shown in Figure 2.4. Figure 2.4(a) and (b) show the

reduction in accesses-per-object observed if an Andersen’s style analysis is used instead

of a best-case formulation of Steensgaard’s. Due to a design constraint of Fulcra, the

analysis used a Steensgaard’s bottom-up process but an Andersen’s style top-down phase.

Figure 2.4(a) models the heap per-call-site while (b) uses a more accurate model.

Over half of the benchmarks show a substantial improvement in accuracy for an

Andersen’s style analysis versus the Steensgaard’s style even though the Steensgaard

data was able to leverage field, context, and heap sensitivity to keep objects separate.

18

����� �����

	
	

	
�
�

	

�
�
�

�
�

�
�
	

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�

�

�

�

�

�

�

�
�
�

�
�
�

�
�
�

�
�
�

�
	
	

�
�
�
�

�
�
�
�

��
�
�

��
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
��

��
�
�

�
�
�
�

�
�
�

	

	��

	��

	��

	��

	��

	��

	��

	�

	�

�

(a)

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
	

�
	
�

�
�
�

�
�
�

�
�
�

�
�
	

�

�

�

�

�

�

�

�
�
�

�
�

�

�
�

�

��
�
�

��
�
�

�
�
�
�

�
�
�
�

�
�
�

�
�
�

�
��

��
�
�

�
�
�

�
�
�

�

���

���

���

���

��

���

��	

���

���

�
���� �����

(b)

Figure 2.4 Comparison of accuracy between a Steensgaard’s and Andersen’s formulation
for a context, field, and heap sensitive analysis. Graphs (a) and (b) display
a lower-bound on the percentage reduction in accesses-per-object obtained by
using an Andersen’s formulation where (a) models the heap per-call-site and
(b) uses a more accurate heap model. The data is a lower bound because
the experiment used a Steensgaard’s bottom-up process but, due to a design
constraint of Fulcra, an Andersen’s top-down.

19

Another reason for the selection of a inclusion-based algorithm is the hope that the

resultant accuracy will be more resilient to imperfections in the analysis process. No

pointer analysis is perfect, and unrealizable data flow will always exist. Even though a

program’s true data flow should not result in the object merging, a pointer analysis’s

imperfect abstract view of data flow may force it to do so.

The final reason is that the costs and benefits are largely unproven. This final point,

which could be labeled academic curiosity, provides valuable upper-bounds on accuracy

to help guide the construction of true hybrid analyses. Along these lines, very few

frameworks have combined similar degrees of accuracy and, of these, Fulcra is many times

faster and far more configurable, thus allowing for greater design space exploration.

There are domains in which a unification-based analysis will be a better choice. How-

ever, the trade-offs are not well understood. Furthermore, as this dissertation shows,

Fulcra is often extremely fast (milliseconds to a few seconds) for many nontrivial appli-

cations. If similar applications are of interest to a developer, the use of this formulation

is worry-free.

2.4 Basics of Context Sensitivity

Modern programming practices encourage code reuse, which often results in programs

composed of a complex network of procedure calls. For static analysis, this exacerbates

the problem of unrealizable interprocedural data flow [14]. Context-sensitive analyses

20

are often able to avoid unrealizable data flow due to procedure calls, thereby delivering

a higher degree of accuracy than their context-insensitive counterparts.

In the literature, there have been many approaches to context-sensitive pointer anal-

ysis. Some analyses [6, 15–18] mimic dynamic execution, repeating call-return sequences

until the analysis reaches a global fixed point. While some amount of memoization is pos-

sible, in essence a procedure must be reanalyzed for every call path to which it belongs,

leading to serious scalability issues. More recent work [7, 13, 19–21] formulates pointer

analysis as a two-phase computation. This formulation has the advantage that it can

be designed to analyze a procedure at most twice when given a fixed acyclic call graph.

This dissertation takes a two-phased approach. Chapters 3 and 4 provide more details.

Regardless of the mechanism, the end goal of a context sensitive analysis is to ob-

tain pointer analysis results equivalent to that obtained if a program’s call graph were

explicitly expanded, analyzed, and the results applied back to the original program. Full

expansion converts data flow along call paths through shared procedures into explicitly

separate data flow. Consider the example code shown in Figure 2.5(a). A context in-

sensitive analysis is incapable of separating the data flow between Yank() and Zulu()

from that between Xray() and Zulu(). This leads to the unrealizable results a:=2 and

b:=1. The code in Figure 2.5(b) is obtained by specializing the two calls to Zulu().

No procedures are shared and a simple analysis of program yields only the desired, con-

text sensitive results a:=1 and b:=2. The application of the results back to the original

21

Yank() {
Zulu(&a,1)

}

Xray() {
Zulu(&b,2)

}

Zulu(p,q)

*p := q

}

(a)

Yank() {
Zulu1(&a,1)

}

Xray() {
Zulu2(&b,2)

}

Zulu1(p1,q1)

*p1 := q1

}

Zulu2(p2,q2)

*p2 := q2

}

(b)

Figure 2.5 The code in (a) can benefit from a context sensitive analysis and (b) shows
how complete call graph expansion explicitly separates interprocedural data
flow thereby obtaining context sensitivity. This provides a conceptual baseline
for a context sensitive pointer analysis.

program involves only making p:=p1 ∪ p2 and q:=q1 ∪ q2. Otherwise, the results are

unchanged.

Provided this baseline, context sensitivity can be divided into two pieces termed

bottom-up and top-down context sensitivity. Bottom-up context sensitivity provides a

procedure F a result equivalent to the full expansion of all call paths rooted at F . Top-

down context sensitivity provides a procedure F a result equivalent to the full expansion

of all call paths terminating at F . Both are necessary to obtain a truly context-sensitive

result. The publications [22, 23] and this dissertation provide the first efficient application

of bottom-up and top-down context sensitivity for C programs.

22

2.4.1 Bottom-up context sensitivity

Bottom-up context sensitivity can be obtained by visiting procedures in a reverse-

topological order, forming compact models, or summaries, for each procedure and re-

placing all calls to the procedure with a specialized copy of its summary. The use of

summaries is analogous to expanding the call graph in that interprocedural data flow is

specialized. However, summaries may be far more compact than the replication of entire

procedures and enable a more efficient implementation. The constructed summaries can

be either context specific or context independent.

A context specific summary is constructed for a particular alias relationship among a

procedure’s inputs (parameters or global variables). Summarizies for a particular calling

context can be formed as a simple relation in terms of only the procedure’s inputs.

However, the summaries are not globally valid and can only be used for call sites in

which the inputs have matching alias relationships. New summaries must be constructed

for each kind of input encountered. Algorithms that mimic dynamic execution, such

as [6], form context specific summaries.

Context independent summaries can be applied universally and are as accurate as

context specific summaries. The use of context independent summaries means that a

procedure need only be summarized once. The original procedure is a trivial example of

a context independent summary. Unlike context specific summaries, it is not always pos-

sible to construct context independent summaries in terms of only a procedure’s inputs.

This is an extremely important point and one that is often overlooked. Figure 2.6(a)

23

whiskey(w,x,y,z) {
*x := &a;

**y := z;

*a := w;

}

if *x and *y don’t alias

**y := z

if *x and *y alias

**y := z

*z := w

(a) (b) (c)

Figure 2.6 (a) Code example for which a context independent summary cannot be formed
in terms of only function inputs, (b) side-effects if *x and *y do not alias, and
(c) if *x and *y alias, **y := z and *x := &a combine to for the data flow
a := z and the subsequent side effect *z := w.

shows a procedure whiskey whose context independent summary must include terms

other than simple expressions of its inputs. Procedure whiskey()’s side-effects are de-

pendent on whether or not *x and *y alias, shown in Figure 2.6(b) if they do not and

and Figure 2.6(c) if they do. The context independent summary for whiskey() cannot

be reduced from the original procedure. The algorithms in this dissertation form context

independent summaries.

2.4.2 Top-down context sensitivity

At its essence, top-down context sensitivity provides a result identical to the individual

application of each of a procedure’s calling contexts. This can be achieved by fully

expanding all call paths leading to and including the procedure, but, as with any call

graph expansion, this can become extremely expensive.

Because top-down context sensitivity has had little coverage in literature, Figure 2.7

presents a code example, two failed approaches to top-down context sensitivity, and one

24

Victor() {
Uni1(&a,1,&a);

Uni2(&b,2,&a);

}

Uni(p,q,r) {
*p := q;
y := *r;

}

(a)

Calling Context

a:=1, b:=2

p:=&a,&b

q:=1,2

r:=&a

Uni(p,q,r) {
*p := q;
y := *r;

}

Analysis Result

a:=1,2

b:=1,2

y:=1,2

(b)

Calling Context

a’:=1, b’:=2

p:=&a’,&b’

q:=1’,2’

r:=&a’

Uni(p,q,r) {
*p := q;
y := *r;

}

Analysis Result

a’:=1’,2’

b’:=1’,2’

y:=1’,2’

(c)

Calling Context

a:=1, b:=2

p:=&a,&b

q:=1,2

r:=&a

Uni(p,q,r) {
y := *r;

}

Analysis Result

a:=1

b:=2

y:=1

(d)

Figure 2.7 Example explaining top-down context sensitivity (a) code example, (b) an
approach leading to a loss of context sensitivity, (c) an approach maintaining
only bottom-up context sensitivity, and (d) a truly top-down context sensitive
result.

25

valid approach that does not require full call graph expansion. Figure 2.7(a) shows a code

example in which Victor() calls Uni() twice. Similar to the example in Figure 2.5, the

procedure calls and the first two parameters result in a:=1 and b:=2. A third parameter

has been added which is &a for both calls to Uni() and is read but not modified by

Uni().

Figure 2.7(b)-(d) show only the top-down step for Uni() to the analysis process and

assume that a context sensitive result has already been derived for Victor(). The bracket

assignments above Uni() is its calling contexts and the bracket assignments to the right

of Uni() are the results of the particular top-down attempt.

Figure 2.7(b) näıvely applies Uni()’s calling context and derives both unrealizable

results for a and b leading to the result that y could be either 1 or 2. This approach

resulted in a context-insensitive solution for both Victor() and Uni().

Figure 2.7(c) depicts a more common tactic to the top-down pointer analysis phase.

Instead of sharing an object like a between the procedures, Figure 2.7(c) provides Uni()

a private copy of the calling context. While y obtains the same unrealizable result,

Victor()’s a and b are isolated and remain accurate. The end result is only bottom-up

context sensitive.

Figure 2.7(d) shows an approach, which will be covered in detail in Chapter 3, that

shares objects as in Figure 2.7(b) but deletes the side-effect causing assignment *p:=q

before applying the calling context. This preserves the results derived in Victor() while

26

obtaining only the realizable result in Uni(). The result is fully context sensitive with-

out requiring individual application of each calling context (i.e., full expansion of the

call graph). The approach in Figure 2.7(d) is similar to the process advocated by this

dissertation.

A final comment is that top-down context sensitivity is incompatible with unification

based analyses. The goal of top-down context sensitivity is to provide an analysis result

equivalent to one where the procedure’s inputs where considered individually. However,

a unification based analysis cannot represent the values of a particular input separately.

Given a setup similar to that shown in Figure 2.7(d), a unification based analysis will

merge a with b and 1 with 2. Since 1 and 2 can no longer be differentiated, a will

appear to contain either, as if Victor() has been analyzed context insensitively, and y

will appear to obtain both.

2.4.3 Recursive procedure calls

The baseline used for a context sensitive analysis has been explained as a fully ex-

panded call graph. However, in the presence of recursion complete call graph expan-

sion is impossible. In such cases, recursive interprocedural data flow is treated context-

insensitively.

Recursion is found by detecting SCCs in the call graph. All procedures within an

SCC are merged into a common metaprocedure. The metaprocedure maintains distinct

formal parameters for each member procedure and distinct call sites to procedures outside

27

the SCC. However, all call sites to members of the SCC are converted to direct copy

assignments between corresponding actual and formal parameters.

With call graph cycles collapsed, the call graph is left acyclic. It is against this acyclic

call graph that the baseline for context sensitivity is derived. However, it is possible to

treat recursion context-sensitively, or at least partially so. This has been done for data

flow analysis of languages lacking aliasing [24] and an approach to this for a formulation

based on this dissertation is shown in Chapter 7.

2.5 Heap Sensitivity

Many programs allocated objects on the heap through call to routines similar to

malloc(). Many important and distinct data structures may be allocated from a common

static call to an allocation routine. Heap sensitivity in pointer analysis attempts to

separate distinct heap objects by modeling specialized instances of heap objects.

Figure 2.8(a) is a small example derived from a JPEG photo decoder. For this ex-

ample, fields colorc and prepare are at the same positions within their respective data

structures. Procedure alloc() is a custom wrapper around the standard allocation

routine malloc(). If executed, two heap objects would be allocated, one created in

color deconverter() and the other in master decompress(). While the indirect func-

tion call within main() can only call prepare(), it will appear to call rgb cc() as well, if

the pointer analysis does not differentiate the heap object for cinfo->convert from the

28

main() {
color_deconverter(cinfo);

master_decompress(cinfo);

(*cinfo->master->prepare)(cinfo);

}
color_deconverter (cinfo) {

cinfo->convert = alloc();

cinfo->convert->colorc = rgb_cc;

}
master_decompress (cinfo) {

cinfo->master = alloc();

cinfo->master->prepare = prepare;

}
alloc() {

return malloc();

}

�������

�	
����
�
�
�
�

��	��

������

�
�

�
�

�������

�	
����
�
�
�
�

��	��

������

�

(a) (b)

Figure 2.8 Example showing the benefit of specializing heap objects. (a) Example based
on a JPEG photo decoder/encoder, and (b) two models of the heap where the
upper figure performed no specialization and the lower created two specialized
objects.

one for cinfo->master. Figure 2.8(b) shows the two scenarios where the upper figure

models a shared heap object and the lower two special heap objects.

Heap specialization is performed during the bottom-up phase of the two-phase com-

putation where call chains are walked backward from callees to callers. It begins by

assigning a unique heap object for each allocation routine. As the procedure summary of

a callee is inserted into a caller’s call site, a fresh (specialized) heap object is introduced

for each heap object in the summary.

The specialization process can become expensive if performed needlessly because a

heap object may be created for every call path terminating in an allocation routine. The

following works discuss reducing this overhead [23, 25] and Section 4.7 covers additional

details of the heap specialization.

29

�������

����	
������

������������

	����

��

��

��

��

��

Figure 2.9 Graphical representation of a the lineage for specialized heap objects from the
code example in Figure 2.8(a).

Future discussions will use a concept of heap lineage. Heap lineage is parent-child re-

lationship between heap objects created during the bottom-up specialization process.

Referring back to Figure 2.8(a), the heap object modeled for the analysis of proce-

dure alloc() is the parent of the two objects modeled for the analysis of procedures

master decompress() and color deconverter(). For the example, five heap objects

may actually be modeled. Figure 2.9 shows a graphical representation of their lineage.

2.6 Indirect Function Calls

The pointer analysis discussions thus far have assumed the existence of a program

call graph. Minimally, a call graph is necessary to know which program expressions

to analyze. However its importance is elevated when attempting to perform a context

sensitive analysis.

30

In the absence of indirect function calls, construction of a call graph entails a simple

and transitive traversal of function calls, starting from the top-level procedure (for ex-

ample, main()). Indirect function calls complicate the process because a pointer variable

now controls call targets, making call graph construction dependent upon the pointer

analysis that uses it. This creates a cyclic dependence between pointer analysis and call

graph construction.

There are conservative and optimistic approaches to managing this cyclic dependence.

A conservative approach frees call graph construction from pointer analysis by forming

an over approximation of the call graph. This over approximation can be obtained by

allowing each indirect function call to call all possible function targets, by using prototype

information to prune targets, or by performing some other analysis [5, 26]. Using all

possible targets is likely very inaccurate, while pruning using function prototypes is

inaccurate at best and likely incorrect.

Optimistic approaches embrace the cyclic relationship by iterating between call graph

construction and pointer analysis. The process begins by constructing a call graph com-

posed of only direct calls. Pointer analysis is performed, and, if new indirect function

targets are discovered, another round of call graph construction and pointer analysis is

performed.

When used within a context sensitive environment, optimistic approaches can, them-

selves, be subdivided into those that perform call site hoisting [13] and those that perform

summary updating [19, 20, 22]. The example in Figure 2.10(a) will be used to demonstrate

31

tango() {
u:=*v;

sierra(u,q);

}
sierra(s,q) {

r:=*s;

romeo(r,q);

}
romeo(p,q) {

o:=*p;

(*x)(o,q)

}

tango() {
u:=*v;

r:=*u;

o:=*r;

(*x)(o,q);

}
sierra(s,q) {

r:=*s;

o:=*r;

(*x)(o,q);

}
romeo(p,q) {

o:=*p;

(*x)(o,q)

}

tango() {
u:=*v;

}
sierra(s,q) {

r:=*s;

}
romeo(p,q) {

o:=*p;

(*x)(o,q)

}

(a) (b) (c)

Figure 2.10 Code example (a) is used to demonstrate the difference between (b) call
site hoisting and (c) summary update approaches to optimistic call graph
construction within a context sensitive analysis.

the pros and cons of each approach. During the bottom-up process call site hoisting forms

summaries that embody externally visible indirect call sites. Just as with side-effects,

the summaries hoist specialized copies of indirect function calls into callers. This is

the most accurate mechanism for handing indirect function calls within a context sen-

sitive environment because call targets can be context specific. However, as shown in

Figure 2.10(b), it can also be very expensive because summaries must account for the

worst-case side-effects of a call target. This can lead to unnecessarily large summaries

since the real targets may have few side-effects.

32

Summary updating speculates that a call target has no side effects and, if shown to be

incorrect, must update any generated summaries to include newly discovered side-effects.

Figure 2.10(c) shows an update based bottom-up process where the indirect procedure

call does not have a side-effect. In effect, call site hoisting takes the worst case cost up

front while summary updating assumes the best case and expands from there.

This dissertation uses call graph updating because, in general, most procedures have

few if any side effects and what effects they have are largely localized within the call

graph. Section 4.4 presents a technique that reduces the number of iterations, and

therefore updates, by accelerating the call graph discovery process.

2.7 Field Sensitivity

Many C programs use aggregate data structures composed of multiple subcomponents

or fields. A pointer analysis framework can choose to ignore field accesses, i.e., perform a

field insensitive analysis. Field information can be used to provide better resolution into

the use of aggregate data structures. For example, given a structure st it may isolate

accesses to st.f1 from those to st.f2. There are a large variety of mechanisms through

which some form of field sensitivity can be achieved.

Approaches to field sensitivity can be roughly divided into those that use field names

and indices, thereby achieving machine independent analysis results [27–29], and those

that use field offsets, thereby relying upon a concrete mapping of data structures to

memory [6, 19, 30]. Orthogonal to this categorization, approaches can also be partitioned

33

{
struct {

int *f1, *f2;

char g1,g2,g3,g4;

int *f4 } a;

struct {
int *f1, *f2;

int *f3 } b;

u := &a;

u := &b;

a.f1 := &x;

a.f4 := &y;

b.f1 := &z;

b.f3 := &w;

}

Insensitive Steensgaard

pt(a)={x,y}; pt(a.f1)={x,z};
pt(b)={z,w}; pt(a.f4)={y,w};

pt(b.f1)={x,z};
pt(b.f3)={y,w};

Based Indexed Offset

pt(off.0)={x,z}; pt(a.0)={z}; pt(a.0)={x};
pt(off.8)={w}; pt(a.6)={y}; pt(a.12)={y};
pt(off.12)={y}; pt(b.0)={z}; pt(b.0)={z};

pt(b.2)={w}; pt(b.8)={w};

Figure 2.11 A sample program and the points-to results that can be obtained for five
approaches to field sensitivity: Insensitive, Steensgaard, Based, Indexed, and
Offset.

into those that maintain only a single global aggregate object [30], those that begin from

from assembly [31], those that target a language other than C (such as Java [26, 32, 33]) or

a more well behaved subset of C, and those that provide a mixture of static and dynamic

type checking [34].

Figure 2.11 shows sample code sequence and the points results obtained by five dif-

ferent styles of field sensitivity. Insensitive is a field insensitive analysis, Steensgaard is a

field name based analysis proposed in [28], Based is a field only model from [30], Indexed

is a index based approach from [27], and Offset an offset based approach. Note that, for

this example, Indexed and Offset yield the same results though for different reasons.

34

Use of field names to provide field sensitivity provides results independent of a partic-

ular target machine. If field names are used in a näıve way (essentially assuming a type

safe language), false data flow may appear through similarly named fields and real data

may be missing along intended paths. Yong et al. [29] and Steensgaard [28] take similar

and robust approaches to this problem. If data flow is determined to exist between two

data structures, the flow is field sensitive for the compatible prefix of the data structures

while subsequent, incompatible fields are collapsed. Yong et al. provide a broad coverage

of issues and include an offset-based model for comparison.

Pearce et al. [27] present a field index based approach. Instead of explicit field names

or physical offsets, they number the fields and use these indices to match data flow.

While at a vulnerable point between field name based and offset based approaches, the

work provides an excellent discussion of the existence of cycles of pointer arithmetic and

provides a faithful modeling of the arrow operator (as implicit pointer arithmetic).

While machine dependent, offset based approaches provide a more exact model of

possible data flow. The offset-based approaches by Wilson and Lam [6] and Cheng

and Hwu [19] have goals most similar to that presented in this dissertation. Wilson’s

framework avoids casting issues through complete reliance on field offsets and includes a

model for arrays and some pointer arithmetic. Different from this work, Cheng leveraged

potentially unsafe type filtering to accelerate the analysis process and lacks a model for

pointer arithmetic.

35

A unique approach to field sensitivity was taken by Ghiya et al. [30] which, instead

of modeling a single field and separate structure objects (the traditional view of field

insensitivity), chooses to lump all structure objects together and maintain separate fields.

This trades one form of imprecision for another but does not address the complications

of maintaining full field sensitivity.

Chapter 5 of this dissertation covers many of the complications in obtaining a field

sensitive result. It provides a detailed discussion of safety, provides a baseline model for

an offset based field sensitive pointer analysis, and presents algorithms for achieving field

sensitivity within a context sensitive analysis.

2.8 Flow Insensitive Analysis

To focus the undertaking enough to allow for extensive development and experimen-

tation within other pointer analysis facets and because true flow sensitivity can substan-

tially increase analysis time, design decisions and algorithms for this dissertation focus

on a flow insensitive analysis process. However, Fulcra needs little adaptation to leverage

SSA-based partial flow-sensitivity. The following introduces a rudimentary form of the

framework used to perform the pointer analysis.

The analysis framework is based on a constraint graph whose nodes represent objects

and edges represent assignments. For the sake of this work, the term constraint will be

used to refer to an assignment as represented by the constraint graph.

36

Copy u := v

Address u := &v

Load u := *v

Store *u := v

Figure 2.12 Four core constraints for a field- and flow-insensitive analysis.

u := v v := &w

u := &w

u := &v ∗ u := w

v := w

u := ∗v v := &w

u := w

Figure 2.13 Three derivation rules for a field- and flow-insensitive analysis.

At its simplest there are four assignment constraints, shown in Figure 2.12. Assign-

ments in C programs can be easily broken down into these four constraints. The only

caveat is that some assignments require the addition of temporary variables and multiple

constraints. For example, the expression u := **v must be broken into the following

two constraints u := *tmp and tmp := *v.

Provided a constraint graph, the three derivation rules in Figure 2.13 can be used

to obtain a closure on the constraint graph. This closure is the result of the context-

insensitive, flow-insensitive, field-insensitive analysis. Constraints created directly from

program expressions will be called explicit, while those derived from the analysis process

will be called either derived or implicit.

37

Note that both copy and address constraints may be derived. For the bulk of this

dissertation, the important output of the pointer analysis process is the set of all address

constraints because the points-to set of an object is simply the reverse direction of the

address constraints (e.g., the assignment of the address of v into u, u := &v, is equivalent

to u points to v).

38

3. THEORETICAL CONTEXT SENSITIVE MODEL

Regardless of the mechanism through which context sensitivity is actually achieved, the

end goal is to obtain pointer analysis results equivalent to those obtained if a program’s

call graph was explicitly expanded before analysis. However, this expansion quickly

becomes intractable for even small programs. For example, call graph expansion for

small programs from SPEC2000 results in millions of variables while larger programs

expand into trillions. Specific data for this is shown in Figure 3.1(a). However, using

techniques motivated by the model in this chapter and detailed in Chapter 4 the benefits

of full expansion can be obtained by only communicating a compact form of procedural

side-effects to callers, and the resultant growth is shown in Figure 3.1(b). The cost of

context-sensitivity no longer grows exponentially with program depth but grows and

recedes with the characteristics of the procedures. If necessary, refer back to Section 2.4

for a discussion of the basics of context sensitivity.

This chapter presents an approach to obtaining context sensitive results in the form

of a two-phase analysis. First Section 3.1 provides an overview of concepts that form the

theoretical foundation for the design advocated in this dissertation. Additional coverage

of this theoretical model can be found in [22, 23]. Section 3.3 describes the limitations of

the theoretical model if implemented and applied to real world programs. Details of the

actual analysis model used follow in Chapter 4.

39

�����������	
��������� ���	�

�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�

�

�

�

�

�

�

�

�

�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�

�

��

���

���

���

����

���

����

� � � � � � � �

(a)

�

��

���

���

���

���

� � � � � � � 	

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
	
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
	
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
	
�

�����������	
�������� ������

(b)

���

���

���

���

���

��	

��

���

�	�

�		

Figure 3.1 Effective procedure size when context-sensitivity is achieved using (a) a ex-
plicitly expanded call graph and (b) when the effects of callees are represented
through the use of compact procedural summaries.

40

3.1 Model Two-Phase Context Sensitive Algorithm

The high-level rationale behind the two-phase process is best demonstrated by re-

examining the code example from Figure 2.5(a). The addresses of a and b are from two

different call sites to Zulu() and do not interact in any real execution of the program.

However, using a context insensitive analysis, their inputs from Yank() and Xray() ap-

pear to interact at *p:=q. The expression *p:=q is a side-effect of Zulu(). Understanding

side-effects is critical to understanding context sensitivity. In particular, removing the

sharing of side-effects along different call paths is the central goal of a context sensitive

analysis.

As discussed in [22] and proved in [23], no unrealizable data flow can occur if a

program lacks procedural side effects. Even though a single procedure may be shared by

multiple call paths and, thus, have many different input calling contexts, without side

effects interaction among contexts is impossible. For side-effect free programs, there is

no difference between a context sensitive and insensitive analysis.

In reality, most programs have procedural side effects. Therefore, to exploit this find-

ing, the two-phase analysis process initially proposed in [22] hoists specialized copies of

the procedural side effects from callees into callers and, then, deletes the original side

effect causing assignments from the callees. The continued hoisting of side effects into

procedures higher in the call graph will eventually reach a procedure in which the once

side-effect-causing assignments no longer have effects visible outside of their new owner

41

and, thus, are no longer side effects. This upward specialization proceeds until the pro-

gram is free of all side effects. With this conversion complete, a context-insensitive style

analysis can compute a result equivalent to a context sensitive analysis of the original,

side-effect containing program. To recap:

1. The bottom-up phase transforms a program into a form that lacks procedural side

effects, yet preserves the same overall pointer behavior. The transformation takes

place by creating summaries that exactly model the side effects of the original

procedure and then inlining specialized copies of the summaries into each call site

of that procedure.

2. The top-down phase consists of a single run of the context-insensitive analysis.

Since, after the bottom-up phase, the program is free of side effects, the context-

insensitive analysis does not experience any unrealizable interprocedural data flow.

3.2 Transforming a Program into a Side-Effect Free Form

Side-effect hoisting takes place through the creation and inlining of procedural sum-

maries. The purpose of a summary is to compactly model all of the side-effects of the

original procedure including any visible side effects from its transitive callees. From the

perspective of pointer analysis, every call to foo() can be replaced by a specialized copy

of summary(foo()).

Summary construction is performed through a reverse-topological traversal of the

acyclic-rendered call graph. Summarization of leaf procedures is performed first. With

42

their summaries constructed, the original side-effects are deleted. Next, specialized copies

of the summaries are inlined into their callers, effectively transforming some of those

callers into leaf routines themselves. This process continues until all call sites have been

replaced by explicit summaries and all side-effects deleted.

Summary size is the single most important factor governing the scalability of the

bottom-up phase. Without explicit intervention, summary sizes can grow explosively as

the side-effects of callees are incorporated into callers. The following techniques aid in

compacting the summary necessary to model the original side-effects.

3.2.1 Criticality

All potential side-effect derivations are identified based on a concept called criticality.

Informally speaking, an assignment is critical if it has the potential to cause a side effect.

Two properties, holding and opacity, are prerequisites to locating critical assignments.

A variable is holding if it may contain a reference to a memory location external to

the procedure. For example, a procedure’s formal parameters are holding as well as any

variable to which a parameter is assigned. In essence, the holding property simulates the

effect of a generic, worst-case calling context and helps mark all assignments that may

interact with objects external to the procedure. With the knowledge of which variables

hold external references, assignments of the form *u := v, where both u and v hold, are

critical.

43

whiskey(w,x,y,z) {
r := z;

s := &a;

*x := s;

t := *y;

*t := r;

*a := w;

}

summary-whiskey(w,x,y,z) {
s := &a;

*x := s;

t := *y;

*t := z;

*a := w;

}

(a) (b)

Figure 3.2 Code example (a) for which a context independent summary cannot be formed
in terms of only function inputs and (b) a possible summary retaining a ref-
erence to a.

However, Section 2.4 noted that it is not always possible to form a single, context

independent summary in terms of only the procedure parameters. The code example

from Figure 2.6 is reproduced in Figure 3.2 but modified to fit the constraint model

described in Section 2.8. The assignment *a := w will cause a side effect only if the *x

and *y alias. Detecting that *a := w is critical and the “conditional” inclusion of its

side-effect into the summary is solved by the concept of opacity.

A variable is opaque if its contribution to actual data flow is uncertain without specific

knowledge about the procedure’s calling context. All variables declared outside of the

procedure being summarized are opaque. Clearly there is no way to know, local to

the procedure, how these variables interact with each other. A local variable can, itself,

become opaque if its address interacts with an opaque variable. For example in Figure 3.2,

the flow of &a through s := &a and *x := s causes a to become opaque because *x may

be an external, and therefore opaque, location. It it not known how *x relates to any

44

u:=∗v holding(v)

holding(u)

u:=v holding(v)

holding(u)

∗u:=v v:=&w holding(u)

opaque(w)

u:=&v opaque(u)

opaque(v)

param(u) ∨ opaque(u)

holding(u)

u:=&v opaque(v)

holding(u)

(a)

∗u := v holding(u)

critical(∗u := v)

u := v opaque(u)

critical(u := v)

u := ∗v opaque(u)

critical(u := ∗v)

u := &v opaque(u)

critical(u := &v)

(b)

Figure 3.3 Symbolic derivation of side effects: (a) symbolic effects of calling contexts,
and (b) determination of criticality.

other expression that references an opaque location, like *y, making the contribution of

a or, any use of a such as *a, to data flow unknown. Note that all opaque variables must

also be regarded as holding.

The complete derivation rules for holding and opacity, as published in [22], are shown

in Figure 3.3(a). Using these two concepts, criticality is extended to also include assign-

ments involving opaque variables. Figure 3.3(b) shows the complete derivation rules for

criticality.

With a opaque, the condition inclusion of the side effect for the summary of whiskey()

is handled by considering both *x := s and *a := w, along with *t := r, as critical

and using them to seed summary creation. In the end, the the summary of whiskey()

will include all of the original procedure with the exception of compacting away the copy

45

assignment through r and is shown in Figure 3.2(b). The side-effects of the summary

retain their dependence on calling context and faithfully model the original procedure.

Recall that opaque variables are treated as being external. For this reason, all modifi-

cations of an opaque variable are considered critical and cut from the original procedure.

The procedure may still retain assignments that only read from the opaque variable.

However, after cutting critical assignments and inlining specialized versions of the sum-

maries, modifications to the opaque variable are no longer performed within the original

procedure but, instead, only within its callers; yet reads may still occur within the orig-

inal procedure. For example, the opacity of a made *x := s critical in Figure 3.2. This

means that *x := s will be deleted from the original procedure. Yet it is through *x :=

s that a obtains its value leaving a and derivations that read from a incomplete.

Since opaque variables are treated as external, this gap is filled by making an opaque

variable an implicit extra parameter to the procedure. In addition to deleting the critical

assignments from whiskey(), its call is now modeled as whiskey(w,x,y,z,a). All call

sites for whiskey() are extended to be whiskey(-,-,-,-,an), where an is the specialized

version of a from the summary. The original a will now obtain all values from its

specialized versions, as it should.

46

traced(∗u := v) u := w holding(w)

traced(∗w := v)

traced(∗u := v) u := ∗w holding(w)

add(∗u := v) ∧ traced(u := ∗w)

(a) stuck left-hand

traced(∗u := v) v := w holding(w)

traced(∗u := w)

traced(∗u := v) v := &w

add(∗u := v) ∧ traced(v := &w)

traced(∗u := v) v := ∗w holding(w)

add(∗u := v) ∧ traced(v := ∗w)

(b) stuck right-hand

traced(∗u := v) input(u) input(v)

add(∗u := v)

(c) stuck both sides

traced(u := v) v := &w

traced(u := &w)

traced(u := v) v := ∗w holding(w)

traced(u := ∗w)

traced(u := v) v := w holding(w)

traced(u := w)

traced(u := v) input(v)

add(u := v)

traced(u := &v)

add(u := &v)

(d)

traced(u:=∗v) v:=w holding(w)

traced(u:=∗w)

traced(u := ∗v) v := ∗w holding(w)

add(u := ∗v) ∧ traced(v := ∗w)

traced(u := ∗v) input(v)

add(u := ∗v)

(e)

Figure 3.4 Backtracing for (a), (b), (c) store, (d) plain and address, and (e) load assign-
ments.

3.2.2 Backtracing

Once located, critical assignments seed a process called backtracing which creates the

actual summaries by compactly completing any necessary data flow from the procedure’s

inputs to the critical assignments.

The bulk of the backtracing process is straightforward. Referring back to the exam-

ple, the critical assignment *x := s and its input s := &a cannot be more concisely

47

represented, so both are added to the summary. However, *t := r and r := z yield *t

:= z. This models the original data flow while reducing overall summary size. Since their

total contribution to data flow is known, all nonopaque variables, with the exception of

parameters and temporaries required by the constraint model, can be compacted away.

However, because it is unclear how opaque variables contribute to the final data flow,

all potential modifications of opaque variables must be reflected in the summary. The

complete backtracing derivation rules are shown in Figure 3.4.

With the summaries formed, the critical assignments are deleted from the original

procedure, leaving it free of side effects while maintaining the effect of the original as-

signments.

3.3 Limitations of Theoretical Model

The model described has both an elegance in its approach to context sensitivity,

reducing it to the task of transforming a program into an equivalent yet side-effect free

form, as well as practical shortcomings that obstruct its direct use in an pointer analysis

framework.

One unfortunate characteristic of this approach to context sensitivity is that it is an

explicit transformation. While the concept of converting a program into a side-effect free

form is useful for proofs it is also permanent and inflexible. This becomes particularly

apparent when one considers that, in the presence of indirect function calls, the analysis

process is iterative and must restart from each new call graph. The explicitness of

48

the transformation imposes a strict order between the bottom-up and top-down phases

requiring each iteration to delete of all derivations, reinsert the deleted side-effects, and

perform a renewed bottom-up process. Effectively, this reruns the analysis process every

time the top-down phase discovers a call graph update.

The approach presented in this dissertation breaks this dependence between the

bottom-up and top-down processes. It transforms the explicit deletion of critical assign-

ments into an implicit one and permits the complete retention of all previously derived

pointer relationships. With the capability to run the bottom-up and top-down phases in

any order, even simultaneously, a more efficient call graph discovery process can be used

that requires fewer iterations, sometimes none, in the presence of indirect function calls.

As mentioned earlier, program expansion due to the explicit inclusion of summaries

and therefore summary size is the primary contributor to the cost of the bottom-up

process, if not to the entire analysis process. However, the works [22, 23] make little

mention of the effects of global variables and large recursive call graph cycles. Global

variables are always opaque because they exist outside the scope of a procedure; their

final contributions to side-effects are unknown until the analysis is complete. Handled

näıvely, global variables build up within the summaries and the resultant dead weight

can bring the bottom-up process to a halt. Furthermore, the cost of summarization is

a function of the procedure size, and recursive cycles, as described in Section 2.4, are

treated as one large metaprocedure. If particularly large, the cost of their summarization

can dominate the analysis time.

49

The same approach that simplifies the iterative analysis process also enables a seam-

less model for selective context sensitivity. Selective context sensitivity means that some

variables can be treated in a context-sensitive manner while others in a context-insensitive

one. In addition to being an interesting and little investigated concept, it can be used to

completely remove the overhead of global variables from the summarization process with-

out loss of analysis accuracy. Furthermore, it provides a flexible mechanism in which to

handle the summarization of program recursion and to control heap specialization, both

critical to a real pointer analysis implementation.

Another topic not covered by the original model is the coexistence of field sensitivity

and context sensitivity. While seemingly orthogonal and bringing its own trade-offs and

complexities, field sensitivity complicates the construction of context-sensitive pointer

analysis algorithms and makes the process far more resistant to efficient computation.

The rules governing criticality detection, summarization, and redundancy removal be-

come far more involved. Furthermore, procedural summarization becomes sensitive to

an explosion in size. This dissertation covers the details necessary to allow the peaceful

coexistence of both field sensitivity and context sensitivity.

Finally, because the ideas in this dissertation exist within an implemented pointer

analysis framework, many of the discussions and algorithms try to communicate enough

details to facilitate easy use by other designers of pointer analysis systems. While Fulcra

is, to this author’s knowledge, the most efficient pointer analysis system of its kind to

date, its development has been incrementally driven by experimentation and discovery.

50

Thus, there is room for the subsequent development of a more flexible and efficient

framework. This dissertation will hopefully provide a blueprint to guide the component

design many other frameworks.

51

4. CONTEXT SENSITIVITY

Chapter 3 walked through an approach to context-sensitivity which provides a satisfying

conceptual model but has many shortcomings when one desires to transform the model

into an efficient implementation. This chapter starts by revisiting the concept of interpro-

cedural data flow and its relationship to context-sensitivity. It then proposes an analysis

framework based on qualified constraints, i.e., constraint attributes that influence the

derivation process, and which forms a comprehensive, flexible, and efficient backbone

to the context-sensitive analysis process. Finally, it presents detailed algorithms for the

analysis framework and experimental evaluation of the approach.

4.1 Interprocedural Data Flow Revisited

With respect to context sensitivity, two major concepts have been discussed so far:

1. Regardless of the mechanism through which context sensitivity is actually achieved,

the end goal is to obtain pointer analysis results equivalent to those obtained if a

program’s call graph were fully expanded, analyzed context insensitively, and then

the results for each instance of a procedure annotated back to the original.

2. No unrealizable interprocedural data flow can occur if a program lacks procedu-

ral side effects. Even though a single procedure may be shared by multiple call

52

paths and, thus, have many different input calling contexts, without side effects

the different contexts cannot interact.

Chapter 3 walked through how [22, 23] leveraged these ideas by creating an explicit trans-

formation from a program with side effects into an equivalent, side-effect free one. While

elegant, it turns out that such a brute force explicit transformation is both problematic

and, in fact, unnecessary.

Figure 4.1 will be used to walk through examples of interprocedural data flow as it

pertains to context sensitivity. Figure 4.1(a), (b), and (c) all depict the same call graph

in two forms. The solid lines represent calls. The first (left) is a typical depiction of a call

graph where A() calls B() and C() which each, in turn, call D(). The second (right) is a

fully expanded call graph where procedure D() has been broken into its two instances D1

and D2(). In each call graph, gray circles represent some variable within the respective

procedure and dotted lines represent data flow between the variables. The desire of an

efficient context-sensitive analysis is to efficiently context-sensitively analyze a program

in the form of the left call graph without resorting to analyzing the call graph to the

right.

All pointer derivations start with constraints generated directly from the program

itself, or explicit constraints. Explicit constraints are combined with each other to yield

implicit constraints which may be subsequently combined with other explicit and implicit

constraints. At some point, a context-insensitive analysis program must generate an

implicit constraint not generated had a fully expanded call graph been analyzed. To

53

���

��� ���

���

��� ���

�
�
��

�
�

�
�

���
�

�

�
�
��

�
�

�
�

(a)

���
�

���
�

�
�
��

���
� �

�
��

�
�

�
�

��� ���

��� ���

(b)

���
�

���
�

�
�
��

���
� �

�
��

�
�

�
�

��� ���

������

(c)

Figure 4.1 Three fundamental forms of interprocedural data flow: (a) local data flow
from u to v termed horizontal, (b) interprocedural data flow from caller B()

to callee D() termed downward, and (c) interprocedural data flow from callee
D() to caller B() termed upward.

54

locate the point of failure, Figures 4.1(a), (b), and (c) walk through the three forms of

interprocedural data flow and map the scenarios to both the original view of the program,

left diagram, and the fully expanded version, right diagram.

The first scenario is intraprocedural data flow, and such derivations will be called

horizontal derivations. Figure 4.1(a) shows a stylized model for this data flow. In the

original call graph the constraint flows from u to v. However, when mapped to the ex-

panded call graph, the effect is data flow from both instances of u to both instances of v.

The dataflow through v1:= u1 and v2:= u2 are clearly valid because an intraprocedural

constraint derived in one instance should be derived for all instances. While seemingly

problematic, v1:= u2 and v2:= u1 are, in fact, valid and do not effect the end results.

When the points-to results are annotated back to the original procedure D(), all special-

ized instances of each variable are collapsed into a single representative. For example,

once the analysis is complete a query about the contents of v is a query against the

cumulative contents of its instances,v1 and v2. Thus, if only local data flow exists, the

eventual combination of the two instances of v and u means that there is no benefit

in ever keeping them separate. Thus horizontal data flow can be safely computed on

original, nonexpanded procedures.

The second scenario is interprocedural data flow from callers to callees, called down-

ward derivations. Figure 4.1(b) shows a stylized model for this data flow. In the original

call graph the constraint flows from u, in B(), to v, in D(). In the expanded call graph,

this maps to data flow from u, in B(), to both instances of v, even though v2() belongs

55

to the C()’s instance of D(). Data flow due to the constraint v1:= u is valid. Similar to

the horizontal data flow, v2:= u is valid as well because, again, the annotation back to

the original procedure D() will effectively recombine the instances of v. Downward data

flow can also be safely computed on the original, nonexpanded procedures.

The third scenario is interprocedural data flow from callees to callers, called upward

derivations. Figure 4.1(c) shows a stylized model for this data flow. In the original call

graph the constraint flows from v, in D(), to u, in B(). In the expanded call graph, this

maps to data flow from both instances of v to u. The data flow from v1 to u is valid

since D1() is the instance matching B(). However, data flow from v2 to u is unrealizable.

The variable u should not obtain the contents of v from C()’s call to TTD(). Unlike for

the horizontal and downward cases, no instances of u exist in C() whose inclusion with

the instance of u in B() will validate this data flow. This initial point of failure when

analyzing the unexpanded call graph is the derivation of upward constraints.

There are two key insights that can be taken from this observation:

1. The first instance of an upward constraint is always an upward copy constraint.

This is easily shown as store and load constraints are never derived and new address

constraints cannot be derived without a copy constraint.

56

2. All upward copy constraints result from critical assignments. 1 Unrealizable data

flow is not due to the critical assignments themselves but, instead, due to the use

of the resultant upward copy constraints to make further derivations.

These insights mean that two options exist for preventing unrealizable data flow that

do not entail the deletion of critical assignments following summarization.

• Option 1 - Don’t derive upward copy constraints

• Option 2 - Don’t derive upward address constraints (i.e., derive upward copy con-

straints but don’t use them)

For now, assume the use of option 1. If the original program is analyzed but upward

constraints are disallowed, the result would be a strict subset of a context-sensitive analy-

sis where all side-effects were ignored. This is clearly not the goal, but is extremely close.

The goal of the bottom-up summarization process detailed in Section 3.1 was to hoist

side-effects from callees for the creation of specialized, local copies in callers. However,

it had to explicitly delete the original side-effect producing assignments to prevent them

from corrupting the result.

If the same bottom-up summarization process were used, but instead of deleting

side-effect producing assignments upward constraints were disallowed, the same context-

sensitive result could be obtained. Furthermore the dependence that existed between

the bottom-up and top-down phases is now broken. A global derivation step can be

1Upward copy constraints can also result from procedure return statements. This case is very similar
to critical assignments and discussion will be left for Section 4.8

57

performed at any time and the only side-effects taken into account will be those already

captured by the included summaries. If a call graph update is discovered forcing the need

for another iteration, all implicit constraints can be recycled as long as the summarization

process looks at only explicit and implicit horizontal constraints. A benefit that leverages

the independence of the two phases is covered in Section 4.4.

4.2 Partial Context Sensitivity

The three forms of interprocedural data flow – horizontal, downward, and upward –

are sufficient to describe a flexible approach to context sensitivity. In fact, the derivation

of upward data flow appears important only in that it should be avoided. However, with

the addition of one other kind of data flow, upward copy constraints become a valuable

asset and yield a far more general analysis process.

While equivalent, if option 2 is selected instead of option 1, the following two obser-

vations can be made:

1. With the creation of upward copy constraints, the only difference between obtaining

a context-sensitive result and an insensitive result is whether or not the upward copy

constraints are used for subsequent derivations.

2. If some upward copy constraints were selectively used, a partially context sensitive

result would be obtained.

At first, it may seem wasteful to contaminate an otherwise context sensitive result by

using upward copy constraints. However, if done methodically, such use is, in fact,

58

invaluable. If (1) a set of upward constraints corresponding to a particular critical as-

signment were selected for use, (2) all address constraints that result from their use were

recorded, and (3) all subsequent derivations made use of every upward constraint they

encountered, then the critical assignment would not have to be included in the sum-

mary. The consequence of the three actions is the treatment of a particular side-effect

context-insensitively.

The distinction between context-sensitive data flow, data flow that can use upward

constraints, and context-insensitive data flow, that must be communicated through sum-

maries, is made via a new kind of derivation, called a global derivation. By allowing

global constraints to freely flow upward, it is unnecessary to include the effects of data

flow through context-insensitive variables into summaries. While this may lead to unre-

alizable derivations it can also reduce the overhead of the cost summarization process.

Figure 4.2 shows the effect of global constraints and partial context-sensitivity using

a stylized depiction of the interprocedural data flow. The call graph in Figure 4.2 shows

only the expanded version of the call graph. The variable g in F() is being treated context

insensitively. In doing so, g effectively spans all instances of F(). For the example, it

is assumed that the contents of g interact with a side-effect visible to calling procedures

E(), C(), and A(). The contents of g flow freely interprocedurally to both z and y and,

subsequently, to x the need for a summary. The data flow continues, downward now,

to both instances of v in D(). As previously discussed, downward flow is always valid.

However, note that data flow from v2 into u should not occur (just as in Figure 4.1(c)).

59

�
�
���

�
�� �

�
�
���

�
��

�
�

�
��

�
���

�

�
�
��

�
�

	
�
���

�

�
���

�

Figure 4.2 Example data flow caused by the use of a globally qualified constraint.

While the global constraints due to g can flow freely upward any downward derivations

must lose this freedom. From another point of view, loss of context-sensitivity in F()

should only cause the unrealizable interaction of data flowing from its callers E(), C(), or

A(). It should not cause unrealizable mixing between A() and B() through D(). Benefits

of leveraging partial context sensitivity are detailed in Section 4.5.

4.3 Qualified Constraints

Qualifiers, essentially annotations, on constraints are used to guide the derivation pro-

cess. As outlined in Sections 4.1 and 4.2, there are four qualifiers: Horizontal (HS) quali-

fiers communicate purely intraprocedural data flow, Downward (DN) communicate inter-

procedural data flow from callers to callees, Upward (UP) communicate inter-procedural

data flow from callees to callers, and Global (GBL) communicate inter-procedural data

60

Initial Qualifiers

v:=&w ci(w)

GBL

formal-actual-param(v:=w)

DN

formal-actual-return(v:=w)

UP

all others

HZ

Q-Matrix u := &w

kind(u) HZ DN GBL

cs

*u:=v HZ HZ UP GBL
v:=*u HZ HZ DN GBL

v := u

HZ HZ DN GBL
DN DN DN DN
UP spurious GBL
GBL GBL GBL GBL

ci

*u:=v HZ GBL GBL GBL
v:=*u HZ GBL GBL GBL

v:=u

HZ GBL GBL GBL
DN DN DN DN
UP GBL GBL GBL
GBL GBL GBL GBL

Figure 4.3 Initial conditions and derivation rules for qualifier-based context sensitivity.

flow context-insensitively. Horizontal and Downward constraints are sufficient if one

only wants a simple, though potentially expensive context-sensitive analysis framework.

The addition of Upward and Global qualifiers permits a more flexible, partially context-

sensitive analysis process. This section presents the details for using a qualified constraint

model to compute a flexibly context-sensitive analysis result.

The derivation rule governing constraint qualifiers can be concisely represented (and

even implemented) using the qualifier matrix shown in Figure 4.3. The first part of

the figure shows the rules for assigning initial qualifiers to constraints. Almost all initial

qualifiers are horizontal. There are three exceptions. First, copy assignments representing

mappings from actual parameters of a caller to the formal parameters of a callee procedure

are downward. The analogous copy assignment from the return statement of a callee

to the assigned return variable of the caller obtains an upward qualifier. Finally, if a

61

technique described in Section 4.5 to reduce the summarization overhead due to global

variables is used, address constraints for global variables obtain a global qualifier.

The derivation matrix shows the new qualifier obtained given a particular address con-

straint, copy/load/store constraint, and common variable. The kind(u) reflects whether

u is being treated in a context-sensitive or -insensitive way. The marking “spurious”

means that the derivation is not allowed to proceed. For example, if a downward ad-

dress constraint u:&w is combined with a downward copy constraint v:=u, an address

constraint v:=&w is derived with a downward qualifier regardless of u being treated in a

context-sensitive or -insensitive way.

To make better sense of the derivation rules, the matrix can be broken down into a

few smaller parts. The upper half is for a context-sensitive analysis and the lower for a

context-insensitive analysis. Since load and store constraints are never derived, they are

always horizontal. The following covers the key points:

• Horizontal constraints combined with each other result in more horizontal con-

straints because intraprocedural constraints cannot, by themselves, derive inter-

procedure ones.

• A derivation involving a downward constraint, with one exception, always derives

another downward constraint. If an assignment flows from a caller to a callee,

the result of a combination with either a horizontal or another downward will still

result in data flow from a caller to some subsequent callee. The exception is when

a downward address constraint u:=&w combines with a store constraint *u:=v. By

62

dereferencing u the data flow reverses direction resulting in the only derivation of

an Upward constraint.

• Upward constraints can only be used by Global (context-insensitive) constraints.

• Use of Global constraints in a derivation almost always result in other global con-

straints. Once a derivation is context-insensitive, it can flow freely upward to

callers, horizontally with procedures, as well as combine with other global con-

straints. However, “context” is regained whenever data flow goes from a caller

to a callee. This is always the case, global or not. The use of a downward copy

constraint always results in another downward constraint, even for global address

constraints.

4.3.1 Qualified constraint example

The following example will be used to walk through the derivation process for the

simple program first introduced in Figure 2.5. A version of this program modified to

fit the constraint model is shown in Figure 4.4(a) and the analysis process is shown in

Figure 4.4(b). For this example all variables will be treated in a context-sensitive manner.

The initial constraints consist of all constraints created explicitly from the program text.

Constraints c1 through c5 are purely intraprocedural and thus horizontal. Constraints c6

through c9 model actual to formal parameter passing and are downward.

This bottom-up summarization phase will replace the calls to Zulu() with its side-

effects. Zulu()’s side-effect is *p := q which maps to constraints c10 and c11 when

63

Yank() {
1: z := &a;

2: y := &1;

3: Zulu(z,y)

}

Xray() {
4: x := &b;

5: w := &2;

6: Zulu(x,w)

}

Zulu(p,q)

7: *p := q

}

Initial Constraints
HZ (c1 z := &a, c2 y := &1,

c3 x := &b, c4 w := &2, c5 *p := q)
DN (c6 p := z, c7 p := x, c8 q := y, c9 q := w)

Bottom-Up Summarization Constraints
Summary of Zulu() found to be *p := q

Call at line 3 replaced with HZ (c10 *z := y)
Call at line 6 replaced with HZ (c11 *x := w)

Derived Constraints
From Yank()

c1 + c10 → HZ (c12 a := y)
c12 + c2 → HZ (c13 a := &1)
c1 + c6 → DN (c14 p := &a)
c2 + c8 → DN (c15 q := &1)

From Xray()

c3 + c11 → HZ (c16 b := w)
c16 + c4 → HZ (c17 b := &2)
c3 + c7 → DN (c18 p := &b)
c4 + c9 → DN (c19 q := &2)

From Zulu()

c5 + c14 → UP (c20 a := q)
c5 + c18 → UP (c21 b := q)
c20 + c15 → spurious
c20 + c19 → spurious
c21 + c15 → spurious
c21 + c19 → spurious

(a) (b)

Figure 4.4 Illustration of the use of qualifiers in a context sensitive analysis process.
(a) Example program and (b) the initial conditions and constraint derivation
process.

64

substituted for the actual parameters. The derivations made during the intraprocedural

and top-down derivation processes for Yank() and Xray() are shown explicitly and de-

rived the desired relations a := &1 and b := &2. The side-effect of Zulu() causes the

derivation of two upward copy assignments. However, the side-effect is effectively dis-

abled since all variables are being treated context-sensitively disallowing the combination

of downward and upward constraints.

4.3.2 Qualified constraint mix

Table 4.1 shows the mix of qualifiers seen for context-sensitive analyses of the ap-

plication suite. The percentage of upward constraints is always very small. This is the

result of two factors. First, only copy constraints can be upward and address constraints

usually far outweigh copy constraints. Second, to an extent, upward constraints reflect

the amount of data flow due to nonglobal side-effects in an application. It makes sense

that there would be a large quantity of intraprocedural, caller-to-callee, and global data

flow further reducing the percentage of upward constraints measured.

4.4 Modified Two-Phase Algorithm

Section 4.1 introduced the idea that, by using qualified constraints, dependence that

existed between the bottom-up and top-down phases disappears. This means that a

low-cost partial solution can be obtained at any time by performing a global, top-down

derivation. The result is partial in the sense that some (if not all) procedural summaries

65

Table 4.1 Mixture of constraint qualifiers observed.

Benchmark % HZ % DN % UP % GBL

008.espresso 5 64 2 29
023.eqntott 42 40 4 15
099.go 41 54 0.1 5
124.m88ksim 34 52 1 13
129.compress 46 37 0 17
130.li 10 6 0.3 84
132.ijpeg 40 54 5 2
134.perl 2 16 3 80
164.gzip 38 51 1 9
175.vpr 29 43 4 25
176.gcc 2 22 0.8 75
181.mcf 43 37 5 15
186.crafty 31 56 1 13
197.parser 18 33 2 48
253.perlbmk 1 4 0.1 95
254.gap 4 11 0.4 85
255.vortex 4 48 0.6 48
256.bzip2 44 50 0.6 47
300.twolf 25 33 2 40
gsmdec 42 46 1 10
gsmenc 42 46 1 10
jpegdec 38 55 6 1
jpegenc 39 55 4 2
h263dec 34 56 1 8
h263enc 38 58 3 1
mpeg2dec 35 54 0.8 11
mpeg2enc 31 63 0.5 5
mpg123 40 47 1 12
jpeg2kdec 23 70 7 0.5
mpeg4dec 14 81 5 0.4

66

may not yet exist. It is low cost in the sense that all derivations made would have had

to be made at some point and they do not interfere or complicate subsequent steps in

the analysis process. The process of obtaining an early, partial solution will be called a

solution preview, though note that, while it is a preview, the results are not discarded.

One overhead of a summarization-based context-sensitive analysis is the cost of re-

summarization of procedure along call paths to locations where new indirect function call

targets are discovered. If an oracle provides an accurate call graph, a procedure would

never have to be resummarized. Any process that accelerates the discovery of call tar-

gets, in particular before the bottom-up summarization phase, can reduce the cost of the

analysis process. While an oracle does not usually exist, any, even partial, information

that can help resolve indirect function call targets is beneficial. A solution preview does

exactly this.

4.4.1 Solution preview

The typical two-phase analysis process is modified to first iteratively perform a solu-

tion preview (i.e., make all possible derivations without performing any summarization).

Many indirect function call targets are passed downward from caller to callee so, often,

some targets can be resolved without the complete model of procedural side-effects. If

new targets are discovered, the call graph is updated and the solution preview is ex-

tended to include the new procedures. The process continues until no more targets are

discovered.

67

Next, a typical bottom-up summarization step is performed. Following this, the so-

lution preview process repeats. Once a summarization step has been performed, the

analysis process is complete if the solution preview does not discover new targets (i.e.,

the solution preview is in fact the solution). In many cases, only one bottom-up sweep is

necessary even though an application contains indirect function calls. Table 4.2 lists the

number of iterations using a typical two-phase analysis algorithm and the number nec-

essary when call graph discovery is accelerated using solution previews. Data is omitted

for programs lacking indirect function calls.

4.4.2 Constraint recycling

Qualified constraints also allow the complete retention of derivations from one analysis

iteration to the next. Downward derivations pertain only to the top-down process. Global

and upward derivations are for context-insensitive derivations. Furthermore, constraints

are never deleted, as in the model described in Chapter 3. Therefore, all derivations

can be retained as long as the bottom-up summarization phase looks at only horizontal

derivations. By doing so, the number of derivations tends to quickly taper off from one

iteration to the next. Table 4.2 shows the resultant speedup obtained by an implemen-

tation that recycles its constraints between iterations against one that must rederived

everything each iteration. Note that the cost can be more than double because constraints

must both be deleted and rederived.

68

Table 4.2 Comparison of the number of iterations necessary for a traditional two-phase al-
gorithm and one leveraging a solution preview, along with the analysis speedup
when constraints are recycled.

Benchmark Orig Iter New Iter Recycle Speedup

008.espresso 2 1 -
023.eqntott 2 1 -
099.go - - -
124.m88ksim 4 3 2.4
129.compress - - -
130.li 4 3 2.2
132.ijpeg 7 4 3.2
134.perl 2 1 -
164.gzip 2 1 -
175.vpr 2 1 -
176.gcc 4 3 1.7
181.mcf - - -
186.crafty - - -
197.parser 2 1 -
253.perlbmk 4 3 3
254.gap 4 2 2.1
255.vortex 3 2 2.8
256.bzip2 - - -
300.twolf - - -
gsmdec 2 1 -
gsmenc 2 1 -
jpegdec 7 4 2
jpegenc 6 4 2.7
h263dec - - -
h263enc - - -
mpeg2dec - - -
mpeg2enc - - -
mpg123 3 2 2.2
jpeg2kdec 4 2 1.1
mpeg4dec - - -

69

Quebec() {
1: a := &oscar;

2: b := &nov;

3: Papa(a,b)

}

Papa(c,d) {
4: (*c)(d);

}

Oscar(e) {
5: (*e)();

}

Nov() { }

Figure 4.5 Sample program used to demonstrate the benefits of a modified two-phase
algorithm.

4.4.3 Example

The code in Figure 4.5 will be used to illustrate this process and its benefit. For both

clarity and brevity, the procedures used for the example show only assignments related

to call graph generation.

The program consists of a direct call from quebec() to papa() which calls oscar()

indirectly, which then indirectly calls nov(). If analyzed in a typical two-phase approach,

an initial call graph would be built consisting of quebec() and papa(). The first bottom-

up process would ensue and, following it, a top-down phase would derive c := &oscar

and that the indirect call at line 4 calls oscar(). The call graph would be updated and a

second bottom-up and top-down phase would be performed. Now, e := &nov would be

70

derived and the call graph extended to include the indirect call from line 5 in oscar()

to nov(). A third and final bottom-up and top-down phase would be performed. In the

end, three expensive bottom-up analysis steps must be performed.

Instead, the modified two-phase process requires only a single bottom-up phase. As

before, an initial call graph would be built consisting of quebec() and papa(). The

solution preview from the top-down derivations would show that c := &oscar and that

the indirect call at line 4 calls oscar(). A second solution preview starting at oscar()

would show that e := &nov and would discover the the indirect call from line 5 in

oscar() to nov(). A third solution preview at nov() would not reveal any new calls.

The first and only bottom-up process would be performed ignoring any of the downward

derivations, such as c := &oscar, and would be followed by a final top-down phase.

4.5 Applying Partial Context Sensitivity

Section 4.2 introduced the idea of controlling the amount of context sensitivity by

treating side-effects involving some variables in a context-sensitive manner while the

side-effects others in a context insensitive way. This selection is made before the summa-

rization of a procedure containing data flow explicitly involving the variable. A variable

can go from context-sensitive to context-insensitive but not the reverse because context-

insensitive derivations will have already been made.

Side-effects that directly or indirectly involve a context-insensitive variable get com-

municated through the context-insensitive derivation of global constraints and, thus,

71

Yank() {
1: z := &a;

2: y := &1;

3: Zulu(z,y)

}

Xray() {
4: x := &b;

5: w := &2;

6: Zulu(x,w)

}

Zulu(p,q)

7: *p := q

}

Initial Constraints
HZ (c1 z := &a, c2 y := &1,

c3 x := &b, c4 w := &2, c5 *p := q)
DN (c6 p := z, c7 p := x, c8 q := y, c9 q := w)
Bottom-Up Summarization Constraints
Summary of Zulu() found to be nothing
Calls at line 3 and 6 effectively deleted
Derived Constraints
From Yank()

c1 + c6 → DN (c14 p := &a)
c2 + c8 → DN (c15 q := &1)
From Xray()

c3 + c7 → DN (c18 p := &b)
c4 + c9 → DN (c19 q := &2)
From Zulu()

c5 + c14 → UP (c20 a := q)
c5 + c18 → UP (c21 b := q)
c20 + c15 → GBL (c22 a := &1)
c20 + c19 → GBL (c23 a := &2)
c21 + c15 → GBL (c24 b := &1)
c21 + c19 → GBL (c25 b := &2)

(a) (b)

Figure 4.6 Illustration of the derivation process when the variable q is treated context
insensitively in (a) an example program and (b) the initial conditions and
constraint derivation process.

these side-effects do not have to be included into summaries. Ignoring the possibly neg-

ative accuracy impact of treating some parts of a program context-insensitively, this

provides a way to selectively reduce summarization overhead.

The same program from Figure 4.4(a) will be used to demonstrate the effect of mark-

ing a variable for context-insensitive treatment. Figure 4.6(a) reprints the example

and Figure 4.6(b) walks through the new analysis process where q is treated context-

insensitively. Since q is the only source to the side-effect in Zulu() the bottom-up

72

summarization phase yields an empty summary and the calls to Zulu() are effectively

deleted.

During the top-down phase, q and p obtain both &1 and &2 via downward constraints

and the upward constraints c20 and c21 are derived just as before in Figure 4.4(b). How-

ever, since q is CI, the c20 and c21 derive global constraints resulting in c22 through c25,

which complete a context-insensitive result.

While Figure 4.6 showed that summary size can be reduced by marking some variables

as CI, it also showed that this may have a negative impact on the accuracy of the result.

However, side-effects directly or indirectly involving global variables cannot benefit from

context sensitivity, making their inclusion into summaries both costly and superfluous.

The effects of nonglobal variables are specialized for a particular call site. Specialization

essentially renames the variable to isolate its data flow. However, a global variable has

global scope and it cannot be renamed, meaning that data flow involving some global

variable G in a summary will still involve G for every instance of that summary. Global

variables are context-insensitive by their very nature.

Fulcra’s ability to leverage selective context sensitivity allows it to mark all global

variables as CI, thereby removing them from the cost of summarization yet providing

an identical result. The isolation of global variables from summarization is called Global

Variable Isolation or GISO. Table 4.3 shows a select set of analysis times without and

with GISO and shows that GISO significantly decreases the cost of performing a context-

sensitive analysis.

73

Table 4.3 Analysis time necessary when global variables are included into summaries.

Benchmark Without GISO (noheap)

008.espresso INF 6
130.li INF 4
132.ijpeg 70 6
134.perl INF 20
176.gcc INF hrs
253.perlbmk INF hrs
254.gap INF 800
255.vortex 200 38
300.twolf 5 1

Even with GISO, the cost of performing a context sensitive analysis is still quite

high for the applications 176.gcc, 253.perlbmk, and 254.gap. This cost is due to the

overhead of summarizing very large metaprocedures due to immense recursive cycles

involving hundreds of procedures.

Recall from the background in Section 2.4 that recursion is handled by merging all

procedures involved in a recursive cycle into a single, large metaprocedure. The cost of

the summarization process has a worst-case cubic complexity with procedure size but,

due to the nature of most procedures, is generally linear. Given the common-case of

linear, if 100 procedures are merged together a procedure 100 time the size must be

summarized once for each merged procedure, a 100-fold increase in cost. This means

that the minimum impact of recursion involving a n procedures is roughly a factor of n

and a worst-case of increase of a factor of n4.

Selective context sensitivity can be used to mark procedures in the recursive cycles

as context insensitive, thereby eliminating their summarization overhead. Data specific

74

to this will not be shown here since the comprehensive data in Section 6 includes this

feature. However, it reduces the cost of analysis of TT176.gcc and 253.perlbmk from

hours to seconds.

4.6 Summaries Containing Opaque Variables

Chapter 3.1 described how, if opaque variables are encountered during the summa-

rization process, procedure parameters are extended to include the opaque variables as

additional parameters. This permits opaque variables to obtain their appropriate values

while enabling the deletion of all critical assignments involving opaque variables.

While the use of qualifiers removes the necessity to delete constraints, the summa-

rization of opaque variables presents an analogous problem. Refer back to procedure

whiskey() from Figure 3.2. When combined with a downward address constraint from

some caller, for example x := &m, the assignment *x := s results in an upward copy

constraint m := s. Since m := s is upward it cannot be combined with the horizontal

address constraint s := &a preventing a from obtaining its value.

The derivation blocking due to upward constraints creates the same problem that the

deletion of critical assignments caused for the theoretical model. Similar to adding opaque

variables to a procedure’s parameters, a downward copy constraint is added from all

specialized copies of opaque variables (created by summary instantiation) to their original

instance in the callee procedure. In whiskey() this entails adding a downward constraint

75

a := an, where an is a specialized instance of a due to the inlining of whiskey()’s

summary.

Furthermore, because the qualified model supports partial context sensitivity, an up-

ward constraint is also added from the original to the specialized versions. This provides

dataflow for context-insensitive derivations to proceed from the original to specialized

instances. In whiskey() this entails adding the upward constraint an := a.

4.7 Modeling Heap Specialization

Section 2.5 introduced the general methodology behind the specialization of heap

object and how such specialization can improve the accuracy of the pointer analysis

result. Since different call paths to an allocation routine may create distinct heap objects,

the fundamental goal is to speculatively model different heap object for each call path

and thereby expose any differences.

The difficulty with heap specialization is balancing the gains that can be obtained if

enough specialization is performed against the large cost of overspecializing. Algorith-

mically, it would be trivial to create a specialized heap object for every call path. If

performed exhaustively, this might require the modeling of billions of objects. However,

if one considers how programs are written, it is unlikely that there are even a few hundred

truly distinct kinds of heap allocated objects. Thus, out of billions of possible paths a

very small fraction should require specialization to obtain accurate results.

76

void main() {
if(connection_machine) { unlap1(-1); }
if(doglobal) { unlap2(-2); }

}

void unlap(int flag)

{
int *left_queue = malloc3();

int *right_queue = malloc4();

int *center_queue = malloc5();

for(i = 1 ; i <= cell_count ; i++) {
left_queue[] = ...

right_queue[] = ...

center_queue[] = ...

}
...

}

Figure 4.7 Example derived from 300.twolf. All the objects in this example have purely
local effects; thus, specialization is not necessary.

4.7.1 Lossless specialization limits

As originally described in [25], the summarization process, buttressed by the qualified

constraints and global variable isolation, provides three implicit mechanisms for limiting

the amount of heap specialization. The first limit is that heap objects that do not

interact at all with external data flow cannot benefit from specialization. Because they

are not holding, such heap objects never become involved in the summarization process.

Consider the example in Figure 4.7. In this example, arrays left queue, right queue,

and center queue are created only for local use and thus do not escape unlap. Therefore,

further specialization of the arrays (differentiating those in unlap1 and unlap2) will

unnecessarily incur overhead since each specialized version will be identical.

77

main() {
int a = dummy (1);

int b = dummy (2);

}

dummy (int m) {
int *obj = malloc(sizeof int);

*obj = m;

return *obj;

}

Figure 4.8 Example demonstrating the effect of compaction for nonescaping objects.

Even if a heap object may hold an external reference, this is not sufficient to make

it benefit from specialization. The second mechanism is that heap objects used purely

as intermediate containers do not get included into summaries. Procedure dummy in

Figure 4.8 creates an object of int type, assigns m to it, then returns its contents. From

the perspective of caller main, only the net effect of callee dummy is important. Therefore,

instead of specializing the entire callee, only its summary needs to be specialized. Since

the object does not escape dummy, all its data flow can be represented in a compact

form, i.e., return m. In this form, the same overall effect is achieved without specializing

the heap object. From the perspective of dummy, the object can acquire either 1 or 2.

Specialization cannot change this fact.

While the exposure of a heap object to a caller is often an opportunity to improve

accuracy through specialization when the object escapes only through a global variable,

there is no benefit. This results for the same reason that global variables do not benefit

from context sensitivity. Global variable isolation allows global variables to be correctly

78

typedef struct node { char n_type; struct node *n_next; } NODE;

NODE *newseg;

void main(void) {
NODE *n1 = newnode1(1);

NODE *n2 = newnode2(2);

classify (n1->n_type);

}

NODE *newnode(int type) {
NODE *nnode;

if (newseg == NIL) { findmem(); }
nnode = newseg;

newseg = nnode->n_next;

nnode->n_type = type;

return (nnode);

}

void findmem() { newseg = calloc(1,ALLOCSIZE); ... }

Figure 4.9 Example derived from 130.li. In this example, since objects escape only
through global variables, specialization does not aid accuracy.

excluded from summaries. This exclusion also ends specialization for heap objects that

interact only with a global variable.

Consider the example in Figure 4.9. In this situation, the program uses a custom

global allocation pool. The heap objects assigned into n1 and n2 are stored and fetched

from a global allocation pool rooted at newseg. Specialization for newnode1 and newnode2

will not aid accuracy in a flow-insensitive analysis because global variable newseg will

acquire both heap objects. Therefore, n1 and n2 end up pointing to both heap objects.

79

4.7.2 Lossy specialization limits

By eliminating fruitless paths, these mechanisms significantly reduce the cost of per-

forming heap specialization. However, this is still not always sufficient. Two additional,

potentially lossy, mechanisms exist to further reduce overhead. The ability to mark ob-

jects for context insensitive treatment applies to specialized heap objects as well. At

any point during the specialization process, a heap object can be marked CI, thereby

ending its specialization at that point in the call path (yet retaining any benefits from

specialization that has taken place so far). Fulcra supports a option which can be set

to limit the number of times a heap object is specialized. Once the limit is reached, the

subsequent specialization attempts are marked CI and will no longer be included into

summaries. While very useful for experimentation, this is a manual setting.

The other mechanism automatically recombines specialized heap objects for which

specialization appears to have failed (i.e., the objects are nearly identical). At predefined

intervals in the analysis process, this mechanism performs a quick partial comparison of

existing heap objects. If two are roughly 95% similar then they are recombined. While

still expensive, this mechanism helps reign back in the cost of fruitless specialization

attempts.

The need for heap recombination was particularly noticed when heap specialization

was attempted in the absence of field sensitivity and when the compiler performed large

amounts of real inlining. Select data is shown in Table 4.4. Performing heap sensitive

80

Table 4.4 Excessive heap specialization occurs when 132.ijpeg and jpegenc are analyzed
field-insensitively and can occur in 176.gcc when the amount of inlining in
increased. The following shows both the cost of such excessive specialization
on analysis time and how heap recollapse helps reign in these costs.

Benchmark Config without with recollapse

132.ijpeg hk, inline INF 96
jpegenc hk, inline INF 112
176.gcc h1, noinline 126 55
176.gcc h1, inline 130 56
176.gcc h1, moreinline INF 715
176.gcc hk, noinline 661 348
176.gcc hk, inline INF 342
176.gcc hk, moreinline INF 865

field-insensitive analysis can result in a large number of heap objects that differ little be-

cause the lack of field sensitivity is corrupting the result. Without heap recombination,

132.ijpeg and jpegenc would not complete, whereas with it they required only a couple

of minutes. Similar trends are shown for 176.gcc. Inlining performed by the compiler

effectively performs a part of a context sensitive analysis using summaries composed of

entire procedures. This presents a problem for heap specialization because such whole

scale replication bypasses the summarization’s ability to prune away fruitless heap spe-

cialization. Heap recombination provides a mechanism to undo, from the perspective of

the pointer analysis, some of the specialization performed by the compiler.

4.8 Key Algorithm Pseudo-Code

To close the discussion on context sensitivity, the following presents pseudo-code

and derivation rules for the primary components. The algorithm for the fast two-phase

81

DO
Top-down performed first and iteratively
to obtain a solution preview and discover call graph
DO

delta = get-new-constraints(program)
solve-constraints(delta)
change = call-graph-update(program)

WHILE (change)

Bottom-up phase
sorted-fn = topo-sort(program.callgraph)

FOR (each fn in sorted-fn, last-to-first)
create-and-apply-summaries(fn)
delta = get-new-constraints(fn)
solve-constraints(delta)

ENDFOR
change = call-graph-update(program)

WHILE (change)

Figure 4.10 Pseudo-code for the modified two-phase analysis process leveraging solution
previews.

process is described first, followed by the algorithms central to procedure summarization.

When combined with the qualified constraint derivation algorithms presented earlier, a

complete context sensitive pointer analysis system can be constructed.

4.8.1 Fast two-phase algorithm

Pseudo-code for the two-phase pointer analysis process using solution previews is

shown in Figure 4.10. It consists of two major parts. The first iterates between extending

the solution preview and call graph discovery. The second performs the bottom-up

summarization step. The routine get-new-constraints returns a list of any constraints that

have yet to be processed. Routine solve-constraints applies the appropriate derivation

82

rules to the provided constraints in a work list driven fashion. Finally, the routine create-

and-apply-summaries creates summaries for any callees for which summaries have yet to

be made and inlines specialized copies of each callee’s summary.

4.8.2 Holding, opacity, and criticality

Figure 4.11 lists extended derivation rules for holding, opacity, and criticality. The

rules include procedure returns and the properties propagates, propagates-ret, and holding-

esc. The properties propagates and propagates-ret mark variables whose contents might

flow into externally visible variables (a variables contents might propagate outside the

procedure). The property propagates-ret specifically marks variables whose contents

might exit via a procedure return statement. The check return-valid(v) returns true only

if it is valid for a reference to variable v to return from the procedure. This is typically

true only for heap objects. The property holding-esc is similar to holding except that it

exists solely for those nodes holding references to opaque variables.

4.8.3 Summarization

Figure 4.12 shows the top-level algorithm for performing procedural summarization.

A node n in the constraint graph is permanent, perm(n), if it will be included into the

summary. All formal parameters, the return, and opaque variables are permanent by

default. All critical constraints are enqueued into a work list for backtracing. Back-

tracing is attempted for each constraint edge in the work list along both their sources

and destinations. Once backtracing has been attempted, if the source and destination

83

param(u) ∨ opaque(u)

holding(u)

return(u)

propagates-ret(u)

u:=v propagates(u)

propagates(v)

u:=v propagates-ret(u)

propagates-ret(v)

u:=v holding(v)

holding(u)

u:=*v holding(v)

holding(u)

*u:=v holding(u)

propagates(v)

u:=&v propagates(u)

opaque(v)

u:=&v propagates-ret(u) return-valid(v)

opaque(v)

u:=&v opaque(v)

holding-esc(u)

∗ u := v holding(u) holding(v)

critical(∗u := v)

∗ u := v holding(u) holding-esc(v)

critical(∗u := v)

u := v opaque(u) holding(v)

critical(u := v)

u := ∗v opaque(u) holding(v)

critical(u := ∗v)

u := &v opaque(u)

critical(u := &v)

(a) (b)

Figure 4.11 Extended derivation rules for (a) holding, opacity, and (b) criticality. Though
not explicitly shown, only horizontal constraints should be considered.

84

summarize-constraint-graph(constraint-graph cg)
determine hold, opacity, criticality, etc..
Keep nodes for inputs and outputs
FORALL (nodes n in cg)

IF (param(n) OR return (n) OR opaque(n))
perm(n)

ENDIF
ENDFOR
Enqueue all critical constraints
FORALL (edges e in cg)

IF (critical(e))
queue-process(e)

ENDIF
ENDFOR
Attempt to backtrace along source and dest of constraints
FORALL (queue-process(e))

backtrace(e,source-node(e));
backtrace(e,dest-node(e));
Add constraint to summary once source and dest have been selected
IF (perm(source-node(e)) AND perm(dest-node(e)))

add-to-summary(e);
ENDIF

ENDFOR
END-summarize-constraint-graph

Figure 4.12 Top-level algorithm for procedural summarization.

nodes of the constraint are both permanent no further backtracing was possible and the

constraint is added to the summary.

The backtracing algorithm, in Figure 4.13, attempts to compact the edges along its

source or destination node n. If done blindly, the backtracing can be overzealous in com-

pacting away constraints in an attempt to remove redundant nodes before determining

that a node must be retained due to some subsequently visited, uncompactable con-

straint. To avoid many poor backtracing choices, the algorithm first calls compact-effect

to see if the constraint edge can be compacted along all inputs to n. If all inputs cannot

be compacted, no input is compacted. The second call to compact-effect either compacts

all input edges to n or, if one or more fails compaction, compacts none but instead adds

the appropriate constraints to the work list for further backtracing.

85

backtrace(edge e1, node n)
IF (perm(n))

return
ENDIF
Test if the constraint can be compacted along all inputs
If not, keep the node for all constraints
FORALL(e2 inputs of n)

w = source-node(e2)
IF (!hold(w) OR !HZ(e2))

skip
ENDIF
IF (compact-effect(e1 ,e2,n,TESTMODE) == NOCOMPACT)

perm(n);
ENDIF

ENDFOR

Perform the constraint compaction and enqueue relevant constraints
FORALL(e2 inputs of n)

w = source-node(e2)
IF (!hold(w) OR !HZ(e2))

skip
ENDIF
compact-effect(e1 ,e2,n,REALMODE)

ENDFOR
END-backtrace

Figure 4.13 Algorithm for backtracing a constraint edge along either a source or destina-
tion node.

compact(edge e1, edge e2, node n, mode)
(enew , ret-effect, ret-compact) = compact-core(e1 ,e2)
IF (ret-effect == HASEFFECT)

IF (perm(n) OR ret-compact == NOCOMPACT)
Constraints cannot be compacted, enqueue input constraint
IF (mode == REALMODE)

queue-process(e2)
ENDIF
return NOCOMPACT

ELSE
IF (mode == REALMODE)
Constraints can be compacted, enqueue resultant constraint(s)

queue-process(enew)
ENDIF
return COMPACT

ENDIF
ELSE

return NOEFFECT
ENDIF

END-compact

Figure 4.14 Top-level constraint compact algorithm.

86

u:=v v:=w

enew : u:=w HASEFFECT

u:=v v:=*w

enew : u:=*w HASEFFECT

u:=*v v:=w

enew : u:=*w HASEFFECT

u:=*v v:=*w

NOCOMPACT HASEFFECT

*u:=v v:=w

enew : *u:=w HASEFFECT

*u:=v v:=*w

NOCOMPACT HASEFFECT

*u:=v v:=&w

NOCOMPACT HASEFFECT

*v:=u v:=w

enew : *w:=u HASEFFECT

*v:=u v:=*w

NOCOMPACT HASEFFECT

Figure 4.15 Constraint compaction rules for compact-core().

The compaction of two constraints, shown in Figure 4.14, consists mostly of the core

compaction rules. The rest of its function is to return NOCOMPACT and enqueue

the input edge if the constraints could not be compacted together; otherwise, it returns

COMPACT and enqueues the new, compacted constraint.

Figure 4.15 lists the compaction rules for the routine compact-core() called from com-

pact() from Figure 4.14. The state HASEFFECT simply means that the two constraints

represent some form of data flow. The state NOCOMPACT means that the constraints

could not be further reduced.

87

5. FIELD SENSITIVITY

For the last several decades, many pointer analyses with significant variation in accuracy

and scalability [6, 7, 13, 16, 17, 19–21] have been proposed for the C language. The C

language offers few type safety guarantees giving C programmers extensive latitude in

their use (and abuse) of types. Due to this lack of standard, formal type semantics, C

pointer analysis frameworks are often built upon different sets of semantic assumptions.

The choice of abstraction made by the analysis designer greatly affects the safety of the

resultant pointer information and the efficiency of obtaining the result.

Type unsafety becomes a particular concern when pointer analysis uses field infor-

mation to provide better resolution into the usage of aggregate data structures. Conven-

tional wisdom dictates that field sensitivity yields a significant improvement in accuracy

for a wide range of programs. On the other hand, the type unsafety of the C language

complicates the design of a field-sensitive pointer analysis.

Section 5.1 discusses the issues that an analysis designer needs to consider when

designing a safe field-sensitive pointer analysis for C. In particular, it discusses the need

to select a model that accommodates the common instances of type unsafeness while

not descending to so low a level of abstraction as to render results useless. It poses a

practical set of requirements on valid program execution that most bug-free programs

88

satisfy. Based on this motivation, Section 5.2 presents a core model for field sensitivity

that is flexible enough to accommodate type unsafe programs.

Further compounding the situation, field sensitivity complicates the process of ob-

taining a context-sensitive analysis result. In particular, obtaining compact procedure

summaries require more complicated derivation rules, are less apt to compact well, and

can, in fact, explode in size if the algorithms are not designed well. Section 5.3 discusses

the complications of designing a jointly context-sensitive field-sensitive framework and

presents solutions based on the framework described in Chapter 4.

Finally, Section 5.4 presents useful simplifications and approximations designed to

provide more efficient constraint resolution and Section 5.5 evaluates these techniques.

5.1 Field Sensitivity and Safety

A pointer analysis is considered safe if it computes pointer information that accounts

for all possible executions of the input program. Unlike that designed for type-safe

languages such as Java, the pointer analysis designed for the C language can assume

only token restraints have been enforced on the manipulation of typed objects. In such

cases, to be as safe as possible, the pointer analysis must minimize its reliance on unsafe

assumptions about type usage. This issue becomes a particular concern when designing

a field-sensitive pointer analysis.

Using two examples motivated from real programs, we demonstrate that (1) to obtain

any useful pointer analysis results some restriction must be imposed on what accounts

89

for a possible execution of the input program and (2) overrestriction must be avoided to

increase the safe applicability of the pointer analysis.

The first example, motivated by 099.go, demonstrates how an unrestricted model

can dilute analysis results and make them useless. The second example, motivated by

memcpy, a widely used routine in the C standard library, demonstrates that an overly

restricted model could sometimes miss important realizable data flow. Consider the

following code1:

Example 1:

void danio(int i) {

int a; int b[1]; int c;

c := b[i];

}

void otto() {

int d;

danio(...);

}

For this example, it is impossible to provide complete safety and useful analysis infor-

mation at the same time. Assuming that all local variables are allocated on the call

stack, unless a tight range of i can be proven, the expression b[i] could alias to a, b,

c, i or even to d. While nothing can prevent a programmer from engineering an access

1Note that all examples will assume a typical 32-bit machine having 32-bit pointers and integers.
Nevertheless, the methods presented in this paper work for other pointer and integer sizes.

90

outside of b, in reality such data flow is most likely a bug. A similar situation occurs

in the SPECint95 benchmark 099.go where the expression g:=board[mvs[msptr-1]] in

play safe() evaluates to g:=board[-10]. Since board is a global array and g is later

used as an index, a different global data layout can cause a segmentation fault. Necula

et al. [35] reported that similar situations are observed in other SPEC benchmarks.

On the other hand, a low-level modeling of data flow is sometimes unavoidable to

capture all realizable data flow. Consider the following code:

Example 2:

int x;

void pleco() {

struct st_t {int f; int *ptr;} s1, s2;

s2.ptr := &x;

mycopy((char*)&s1, (char*)&s2, 8);

}

void mycopy(char *dst, char *src, int n) {

for (i:=0, j:=0; i<n; i++, j++)

dst[i] := src[j];

}

Procedure mycopy() performs a simple memory copy from the object pointed to by src

into the object pointed to by dst. In this case, part or all of structure s2 will be copied

into s1. Based on an unsafe assumption about types, a pointer analysis might ignore the

91

passage of s1 into mycopy() because of the type cast to char*. Alternatively, it might

ignore the assignment dst[i] := src[j] because it is a character copy. Omission of

either leads to the absence of the copying and the points-to relationship between s1.ptr

and x. To compound the problem, the pointer analysis may instead model dst[i] :=

src[j] as a block copy action. However, this requires an extra analysis on the loop to

determine the correlation between i and j; without such analysis, the pointer analysis

should conclude that any offset in dst may obtain any address stored within src.

Therefore, pointer analysis must faithfully adhere to a useful model, which is general

enough to provide safe results for the vast majority of programs, yet restricted enough

to allow for useful and timely results. The solution requires consideration of a number

of C features:

1. Casting. In C, types may change without the change in raw data. Pointer analysis

will frequently miss real data flow if it is reliant upon tests for “compatible” types,

where data flow involving “incompatible” types is assumed false and filtered away.

2. Unions. While not preferred coding practice, data may flow into one field of a union

and out another. Omission of this path may lead to missing data flow.

3. Structure-structure block copy. When one multibyte structure is copied into an-

other, the compiler inserts a block copy. It could be modeled incorrectly as a

sequence of copies, one for each field in the data structure. Consider the following

code:

92

Example 3:

struct st_t1 {int *a; int *b;} s1, s2;

struct st_t2 {short c,d,e,f;} *p1, *p2;

p1 := (struct st_t2 *)&s1;

p2 := (struct st_t2 *)&s2;

*p1 := *p2;

Since st t1 and st t2 are the same size, st t2 could be used to copy s2 to s1. If

fields are copied individually, the framework may miss the copy of a and b because

neither is covered by c, d, e, or f. A safer option is to model the statement as a

block copy of 8 bytes, accurately modeling the flow of pointer information regardless

of type casting.

4. Pointer Arithmetic. Taking the address of an arrow operator can lead to implicit

pointer arithmetic. For example:

Example 4:

struct st_t {int *a; int *b;

int *c; int *d; } *ptr, s;

ptr := &s;

loop() { ptr := &ptr->b; }

Assignment ptr := &ptr->b is equivalent to ptr := ptr + 4 and the loop around

it means that ptr may point to any field offset, s.a, s.b, s.c, or s.d. Similarly, a

93

programmer may explicitly calculate an offset into a multibyte data structure. In

such cases, field accesses occur without explicitly naming fields.

5. Heap. It is not always possible to statically know the size much less the type of

a particular dynamically allocated chunk of memory. This introduces additional

unknowns.

6. Arrays. As depicted by the first example, array bounds are in general difficult to

determine. In some cases, even the indexing pattern may be unknown due to the

substantial interaction with other data structures, as in Example 2.

Most of the above challenges are in violation of various C standards. While it is

valid to heavily restrict the accepted input programs, doing so would substantially limit

the framework’s applicability and, for example, would eliminate many programs in a

benchmark suite like SPECint.

In this regard, our goal is two-fold: (1) To present a useful model that is known to

be conservative with respect to commonly used C behavior. This model correctly covers

all of the C features listed above. (2) To present and evaluate a practical field-sensitivity

framework that supports the model. Our model is not without limitations. We have

settled on three important restrictions on input programs:

1. No arithmetic calculation can be used to go from one distinct object to

another. For example, a program’s correctness should not be reliant upon *(&a

+ 8) aliasing with b, as in Example 1. Likewise, the program must not assume

that one heap allocation can be reached through the arithmetic manipulation of

94

another allocation’s pointer. Since static bounding of indices is often unfruitful,

relaxing this qualification in the presence of arrays or pointer arithmetic would

render results hopelessly conservative. This does not preclude pointer arithmetic

within a given structure or array, however.

2. Valid pointers cannot be materialized from nonpointers. A pointer value

may be copied in chunks as in Example 2; a pointer value may not, however, be

created spontaneously from a collection of constants or other data flow not rooted in

an address operation. While beyond the scope of this dissertation, this restriction

could be relaxed as long as references to fixed addresses can be identified, This

relaxation would be useful for analyzing non-user programs. However, complete

removal of this restriction would require all numerical values to be treated as pointer

values accessing objects of unkown size. The natural conservatism of the analysis

process could then lead to a number of false dereferences to non-pointers which

would likely compound and degenerate the usefulness of the results.

3. The whole program is available. As with the second restriction, this can be

relaxed, in which case the problem becomes one of deriving or providing a useful

summary of the possible effects of missing program componenets. While feasible

this again lies outside the scope of this dissertation.

Given these restrictions, the first focus is to present a general model for field sensitivity

capable of safely modeling all C programs obeying the above limitations.

95

5.2 Constraint Specification

The flow of pointer values in a program is modeled as the interaction of five kinds of

assignments with memory objects. The following subsection details the representation

of objects and assignment constraints and the derivation rules used to derive further

constraints. Constraint resolution involves construction of the initial constraint graph

and application of the derivation rules until convergence. A short example is included.

Important implementation issues are covered in Section 5.4.

5.2.1 Object model

The C language does not enforce a strong type system and C programmers often

neglect even the most salutary typing conventions; thus, reliance on type compatibility

in analysis can easily lead to incomplete, and therefore erroneous, conclusions. Our safe

analysis, on the other hand, models objects from a machine perspective. To this end, all

program objects, regardless of type, are represented as a pair, (id, z), where id identifies

an object and z its size. Every memory location used by a program can be mapped to

an id. There is a one-to-one mapping between named, statically allocated, objects and

an id while a single id may represent many anonymous, dynamically allocated, objects.

Since the compiler explicitly allocates space for named objects, it has full knowledge

of the size of named objects. Thus, accesses beyond an object’s bounds can be considered

false, allowing the filtering out of their data flow. However, it is not always possible to

statically determine the size of anonymous objects. One might erroneously set the size of

96

these objects to the maximal declared type size, but, in C, the largest allocated object size

may be larger than the maximum declared type size. Consider the following expression,

modeled after the 176.gcc rtx data structure:

struct data_t { int *a, int *b };

struct base_t { int *ptr, data_t end[0] } *st_ptr;

st_ptr = malloc(sizeof(base_t) + sizeof(data_t));

z := ((data_t*)(&st_ptr->end))->b;

The expression &st ptr->end is used to mark the end of the data structure. The cast

to data t* allows access to fields outside of base t*. The maximum declared type size

is 8 bytes while the maximum allocated object is 12 bytes.

Since it is not always possible to statically determine the size or intended type of

particular anonymous objects, they must be modeled as having unbounded size (i.e.,

not setting an a priori limit on an object’s size). Section 5.4.1 discusses how this is

approximated in our implementation.

5.2.2 Derivation rules

The model used to represent pointer data flow in a program consists of the following

five assignment constraints. All offsets and sizes are byte oriented.

97

Plain ut

z
:= vs Assign the z bytes starting at v

offset s to u offset t

Load ut

z
:= ∗vs Assign z bytes from the locations

pointed-to by v offset s to u offset t

Store ∗ut

z
:= vs Assign z bytes from v offset s to

the locations pointed-to by u offset t

Addr ut := &vs Assign the address of v offset s to

u offset t

Skew ut := vs + k Add k to the offset of each location

pointed-to by v offset s and assign

these resultant addresses to u offset t

The constraint solution algorithm works by propagating address constraints along

assignments, creating new address constraints by adding to existing ones, and deriving

new plain assignments by combining address and load or store constraints. The core

solution process is similar to that used in Foster et al. [20]. The proposed field sensitivity

model adds the complexity of determining if two constraints overlap in any meaningful

way and the materialization of this overlap in any derived constraints.

The constraint solution process involves the following four derivation rules:

Address Propagation

ut1
z

:= vs1 vt2 := &ws2 s1 <= t2 < s1 + z

ut1+(t2−s1) := &ws2

98

Address Arithmetic

ut1 := vs1 + k vt2 := &ws2 t2 = s1 valid(w, s2 + k)

ut1 := &ws2+k

Load From Address

ut1
z

:= ∗vs1 vt2 := &ws2 t2 = s1

ut1
z

:= ws2

Store To Address

∗ ut1
z

:= vs1 ut2 := &ws2 t2 = t1

ws2
z

:= vs1

The function valid(object, offset) is true if the offset is less than z, the object’s allocated

size. It will always return true for dynamically allocated objects because their size is

unbounded.

A visual model for the address propagation derivation is shown in Figure 5.1. The

address of offset s2 of W is being assigned into offset t2 of V. The z consecutive bytes

starting at offset s1 of V are being copied as a block into a region of U starting at t1.

The address will flow through the block copy only if t2 is within the range being copied.

The expression t2− s1 is the relative offset of the address within the block being copied,

thus adding it to t1 results in the target offset in U. Also note that partially overlapped

assignments do not introduce problems for the model because an access to an address is

named only by its starting offset. For example, writes of &a into offset 4 of object X and

99

�
�

�
�

�
�

�
�

��
����

�

�

�

� � �

�

��
�
��
�

	

�

�

��
�

�

Figure 5.1 Illustration of the address propagation derivation.

&b into offset 5 of object X do not conflict. Accesses to offsets 4 and 5 will obtain &a and

&b, respectively.

5.2.3 Example

Figure 5.2(a) illustrates a constraint graph for the source in Example 2 from Sec-

tion 5.1. Objects are marked with the id and size pair from Section 5.2.1. Constraints

are annotated in the form k(s, t). Each assignment is of kind k, one of: address &, skew

+, plain =, load =*, or store *=. The pair s and t are the source and target offsets,

respectively. Note that the modeling of the C expression dst[] := src[] required the

use of two constraints and the temporary tmp.

Figure 5.2(b) depicts the result of applying the derivation rules from Section 5.2.2

on the initial constraint graph. For example, the arithmetic cycle +1(0,0) at src in

combination with the address constraint from s2 to src produces seven additional address

constraints. For visual clarity, ellipses are used when constraints spanning a range are

derived; e.g., &(0,0)...&(0,7) represents all target offsets from 0 to 7, inclusive. One

result of the solution process is that any offset of s1 may contain a reference to x.

100

�������

�������

�	��
�

��������

�������

����
�

��������

������

��������

��������

��������

��������

������

������

�������

�������

�	��
�

��������

�������

����
�

��������

��������

��������

������

��������

��������

���������������

���������������

������ ���������

������ ���������

���������������

Figure 5.2 Example: (a) Initial constraint graph for code of Example 2, and (b) solution
to constraints.

The example demonstrates the derivation of a safe result for a complex scenario.

However, it also shows that the complete enumeration of constraints can lead to a large

number of constraints. This and other efficiency issues will be addressed in Section 5.4.

5.2.4 Safety issues

This section revisits the safety issues outlined in Section 5.1 to show how the proposed

safe field sensitivity system accommodates each of them.

101

1. Casting. While types are used by the compiler for the allocation of named objects

and for address calculations, they are not used by the pointer analysis and, thus,

pose no problems.

2. Unions. Physical offsets are used for accessing fields, thus unions are conservatively

modeled.

3. Structure-Structure Block Copy. Multiple-byte assignments are modeled as such,

using the size of assignments (Example 2 and Figure 5.2).

4. Pointer Arithmetic. The skew constraint is used to explicitly model all address

arithmetic. This may result in cyclic computation of data structure offsets intra-

and interprocedurally. The skew k in the skew constraint is derived from source

code expressions. If the source expression can be reduced to the addition of an

integer value, k is set to this value; otherwise, k is set to a conservative size of 1,

or, in the case of arrays, element size.

5. Heap. Heap objects are modeled with an unbounded size. 2 Since type information

is not used, unknown type and layout of heap objects do not pose a problem.

6. Arrays. Array are largely covered under the pointer arithmetic case above. How-

ever, for expressions of the form array[i] where i is unknown, an arithmetic cycle

with a skew k, where k is the array’s element size, must be added explicitly. Such

cycles can be seen on dst and src in Figure 5.2(a).

2This could be made less conservative by using the size when it can be definitively determined from
the call to malloc(). See Section 5.4 for more details.

102

Mike(p) {

1: a0
16
:= p0;

2: b0
16
:= a16;

}

Figure 5.3 Example for which field-insensitive computation of the holding property re-
sults in a conservative result.

5.3 Interaction with Context Sensitivity

Chapter 4 detailed a qualified constraint approach to obtaining a context sensitive

pointer analysis. The bottom-up phase of the analysis computed procedure summaries

to permit the hoisting of side-effects from callees to callers. There are two major steps

to the summarization process; in particular, the properties of holding and opacity are

computed for constraint graph nodes and critical constraint assignments are located to

seed a backtracing process. The existence of field offsets can complicate both steps and,

if performed näıvely, may result in summary size explosion.

5.3.1 Holding, opacity, and criticality

Within a field insensitive environment, a variable is holding if it might contain a

reference to a memory location external to the procedure, and a variable is opaque if

its contribution to actual data flow is uncertain without specific knowledge about the

procedure’s calling context. Both were defined in terms of an entire variable. However,

within a field sensitive environment, offsets must be considered to avoid an overapprox-

imation of holding and opacity properties. Consider the code example in Figure 5.3. A

103

field insensitive determination of holding and opacity will lead to b holding. However,

when offsets and assignment sizes are accounted for there is, in fact, no data flow from

the parameter to b.

This presents two options for determining these properties. First, the holding and

opacity derivation rules can be extended to compute the intervals over which the property

exists. In Figure 5.3, a would hold over the interval [0−15] and thus b could not obtain the

holding property from a interval [16−31]. The key downside to computing the exact result

is that it makes a previously simple computation much more complex. Furthermore, this

produces a more complicated set of information for the backtracing process to consume.

The second option is to simply compute the properties field-insensitively and live with

the overapproximation. If overapproximation translated directly into larger summaries,

a field-sensitive computation would be the best choice because keeping summary sizes is

a critical goal. However, even if provided an overapproximation of holding, opaqueness,

and criticality, the backtracing process, which is field sensitive, naturally prunes out

false data flow. For this reason, the determination of holding and opacity and therefore

constraint criticality are based on the field insensitive derivation rules and algorithms

presented in Section 4.8.

5.3.2 Backtracing and summarization

The backtracing process for the summarization within a field-sensitive environment

is similar in concept to the field insensitive process described in Section 4.8. In fact, only

104

two algorithms require modification. First, the backtrace algorithm in Figure 4.13 has

three additional lines of code. Second, the core compact rules in Figure 4.15 are extended

to become field sensitive.

Figure 5.4 shows the new backtracing routine. The additions to the field-sensitive

version are shown in bold. The condition prevents the backtracing algorithm from at-

tempting to explicitly expand arithmetic cycles which can result in explosive growth in

summary size.

Figures 5.5 – 5.8 present the new compaction rules when modified to accommo-

date field sensitivity based on copy, skew, load, and store constraints, respectively.

The BOUND(s, m, e) function simply checks to see if s <= m <= e. While exten-

sive, many have calculations in common. There are two forms of the BOUND checks,

BOUND(t2, s1, t2 + z2) and BOUND(s1, t2, s1 + z1), along with corresponding relative

offset calculations, s2 + (s1 − t2) and t1 + (t2 − s1).

The derivation rules for 5.5(d) and 5.8(b) are the only two compaction steps that

result in two constraints instead of one. For 5.5(d), u:=v and v:=*w are being compacted

together resulting in u:=*w. However, if the source offset for v in u:=v is larger than the

target offset for v in v:=*w then the source of u:=*w should be increased correspondingly.

One might try to reflect this fact by resolving to u:=*ws2+shift. However, this does not

shift the source of *w in u:=*w but, instead, changes the field of w that gets dereferenced

which is clearly not the goal. Instead, the objective is to shift the source of any assignment

derived by *w. This effect can be represented by adding the shift value to any address

105

backtrace(edge e1, node n)
IF (perm(n))

return
ENDIF
Test if the constraint can be compacted along all inputs

If not, keep the node for all constraints

FORALL(e2 inputs of n)
w = source-node(e2)
IF (!hold(w) OR !HZ(e2))

skip
ENDIF
Do not explicitly expand arithmetic cycles

IF (skew-edge(e2) AND source-node(e2) == dest-node(e2))
perm(n);

ENDIF
IF (compact-effect(e1 ,e2,n,TESTMODE) == NOCOMPACT)

perm(n);
ENDIF

ENDFOR

Perform the constraint compaction and enqueue relevant constraints

FORALL(e2 inputs of n)
w = source-node(e2)
IF (!hold(w) OR !HZ(e2))

skip
ENDIF
compact-effect(e1 ,e2,n,REALMODE)

ENDFOR
END-backtrace

Figure 5.4 Algorithm for field-sensitive backtracing a constraint edge along either a source
or destination node.

106

(a)

(b)

(c)

(d)

(e)

ut1
z1
:= vs1 vt2

z2
:= ws2 BOUND(t2, s1, t2 + z2)

enew : ut1
min(z1,z2−(s1−t2))

:= ws2+(s1−t2) HASEFFECT

ut1
z1
:= vs1 vt2

z2
:= ws2 BOUND(s1, t2, s1 + z1)

enew : ut1+(t2−s1)

min(z2,z1−(t2−s1))
:= ws2 HASEFFECT

ut1
z1
:= vs1 vt2 := ws2 + k BOUND(s1, t2, s1 + z1)

enew : ut1+(t2−s1) := ws2 + k HASEFFECT

ut1
z1
:= vs1 vt2

z2
:= *ws2 BOUND(t2, s1, t2 + z2)

enew : {ut1
min(z1,z2−(s1−t2))

:= *t, t := ws2 + (s1 − t2)} HASEFFECT

ut1
z1
:= vs1 vt2

z2
:= *ws2 BOUND(s1, t2, s1 + z1)

enew : ut1+(t2−s1)

min(z2,z1−(t2−s1))
:= *ws2 HASEFFECT

Figure 5.5 Core field-sensitive copy constraint compaction rules.

(a)

(b)

(c)

ut1 := vs1 + k1 vt2
z2
:= ws2 BOUND(t2, s1, t2 + z2)

enew : ut1 := ws2+(s1−t2) + k1 HASEFFECT

ut1 := vs1 + k1 vt2 := ws2 + k2 (t1 == t2)

enew : ut1 := ws2 + (k1 + k2) HASEFFECT

ut1 := vs1 + k1 vt2
z2
:= *ws2 BOUND(t2, s1, t2 + z2)

NOCOMPACT HASEFFECT

Figure 5.6 Core field-sensitive skew constraint compaction rules.

(a)

(b)

(c)

ut1
z1
:= *vs1 vt2

z2
:= ws2 BOUND(t2, s1, t2 + z2)

enew : ut1
min(z1)

:= *ws2+(s1−t2) HASEFFECT

ut1
z1
:= *vs1 vt2

z2
:= ws2 + k2 (s1 == t2)

NOCOMPACT HASEFFECT

ut1
z1
:= *vs1 vt2

z2
:= *ws2 BOUND(t2, s1, t2 + z2)

NOCOMPACT HASEFFECT

Figure 5.7 Core field-sensitive load constraint compaction rules.

107

(a)

(b)

(c)

(d)

(e)

(f)

(g)

(h)

*ut1
z1
:= vs1 vt2

z2
:= ws2 BOUND(t2, s1, t2 + z2)

enew : *ut1
min(z1,z1−(s1−t2))

:= ws2+(s1−t2) HASEFFECT

*ut1
z1
:= vs1 vt2

z2
:= ws2 BOUND(s1, t2, s1 + z1)

enew : {t := *ut1 + (t2 − s1), *t
min(z2,z1−(t2−s1))

:= ws2} HASEFFECT

*ut1
z1
:= vs1 vt2 := ws2 + k2 BOUND(s1, t2, s1 + z1)

NOCOMPACT HASEFFECT

*ut1
z1
:= vs1 vt2

z2
:= *ws2 (BOUND(s1, t2, s1 + z1) ∨ BOUND(t2, s1, t2 + z2))

NOCOMPACT HASEFFECT

*ut1
z1
:= vs1 vt2 := &ws2 (s1 == t2)

NOCOMPACT HASEFFECT

*vt1
z1
:= us1 vt2

z2
:= ws2 BOUND(t2, s1, t2 + z2)

enew : *ws2+(t1−t2)
z1
:= us1 HASEFFECT

*vt1
z1
:= us1 vt2 := ws2 + k2 (t1 == t2)

NOCOMPACT HASEFFECT

*vt1
z1
:= us1 vt2

z2
:= *ws2 BOUND(t2, s1, t2 + z2)

NOCOMPACT HASEFFECT

Figure 5.8 Core field-sensitive store constraint compaction rules.

108

incoming to w. The compaction step 5.5(d) results in the dereference u:=*t and a skew

of the source t:=w + k. The reasoning for 5.8(b) is very similar.

5.4 Effective Implementation

The model described in Section 5.2 fully enumerates assignment constraints for every

access to an object. While safe and high resolution, a direct implementation of this would

be, at best, inefficient. This section addresses the modeling of anonymous objects with

unbounded size and the compression of the constraints through the detection and use of

strides.

5.4.1 Anonymous objects

As explained in Section 5.2.1, anonymous objects must be modeled as having un-

bounded size. An enumerative and exact approach to this would invalidate any termi-

nation guarantees. As an approximation, the representation of objects is extended to

allow an object to wrap around onto itself. This is achieved through the addition of a

modulus m to the state of an object. All accesses to an offset f are converted to accesses

to f % m. Figure 5.9 illustrates the effect where (a) shows a fully enumerated result

and (b), (c), and (d) use moduli of 4, 3, and 2, respectively. The fully enumerated result

in (a) reflects a traversal of 4-byte sized elements in s by ptr. With a modulus of 4

the representation preserves the pattern of traversal. By choosing a modulus of 3 the

representation now conservatively indicates that ptr can point to any byte position. The

109

�������

���

��� ��� ���

��	

�

��	

�

��	

�

��	

�

������� ������

�����������	�������������

���

���

Figure 5.9 Effect of modulus on view of a multibyte structure.

choice of a modulus may impact the accuracy, but, since fields are never omitted (only

combined), it never affects correctness. Selection of a particular modulus is covered in

Section 5.4.3.

5.4.2 Modeling strides

With finite objects, the critical remaining inefficiency is the explicit enumeration of

all patterned accesses. The following example will be used to illuminate the problem and

the possible solutions:

struct {int a; short b,c; } st[3];

void foo() {

for (i:=0, ptr:=(char*)&st; i<24; ptr++,i++) {}

x := st[j].b;

}

Figure 5.10(a) depicts the resultant address constraints for this example. This very

simple code sequence results in 24 address constraints into ptr and three into x. These

110

���

������ ������ �������

�	
�������

��
�������

���

��������

������

�������

�������

������

�	
��������

��
������� ��������

������
��������	���

��

�	
��������

��
������� ��������

������
����	
����

�����

�	
�������

��
������� ��������

����	
����

�����

��� ��� ���

Figure 5.10 (a) Enumerated solution, (b) strides on constraints, (c) strides on objects,
and (d) hybrid approach.

24 constraints correctly model the fact that ptr can point to any of the 24 byte positions

of st. Full enumeration is not a scalable approach. A key simplification is the use of

a stride to reduce the number of constraints. Note that the use of a stride improves

efficiency, but is not required for correctness, as, by default, the model enumerates the

constraints.

If it is known that a strided access exists, there are two mechanisms in our system

through which this stride can be modeled. The first and most flexible option is to

annotate the source and target offsets of constraints with stride information. This is

shown in Figure 5.10(b) where the solution requires only two constraints, one with a

stride of 1 and the other of 8.

While expressive, the use of strides on constraints can cause the analysis to become

very slow. Referring back to Section 5.2.2, each derivation involves a check for overlap be-

tween the target of the defining constraint and the source of the consuming constraint. If

overlap exists, the amount of overlap is used to generate the new constraint. The overlap

calculation is one of the most frequent in the pointer analysis framework numbering in

the 100s of millions for many SPECint2000 benchmarks, such as 255.vortex and 254.gap.

111

With arbitrary strides on constraints, this high frequency calculation entails obtaining

the intersection of stride1 ∗ i+offset1 and stride2 ∗ j +offset2 in the form stride3 ∗

k+offset3. This operation is further complicated by the access size z which may require

the intersection to generate multiple constraints. For example, intersecting two size 2

assignments one with stride 4 and the other stride 5, results in 20 ∗ i size 2, 20 ∗ i+5 size

1, and 20 ∗ i + 16 size 1. The possibility of such constraint fragmentation along with the

potential overhead of performing this operation millions of time makes arbitrary use of

stride information on constraints unreasonably expensive as a sole solution.

A second, very efficient mechanism applies the stride directly to the object. This

process leverages the same modulus extension used to make anonymous objects wrap

onto themselves. Setting the modulus m of an object to the desired stride has the effect

of applying the same stride to every constraint that interacts with the object. However,

if multiple strides s1...sn must be applied to the same object, the object obtains the

greatest common denominator of s1...sn. In Figure 5.10(c), the mixed strides result in a

stride of 1 being applied to st, reducing the accuracy of the accesses by x. While efficient,

the mixing of strides can result in substantial loss of accuracy to large, multibyte data

structures. In Figure 5.10(c), x is now assumed to point to any of the bytes positions in

st.

A mixture of both approaches is used to avoid the individual weaknesses of each op-

tion. Strides are partitioned into coarse-grain, those with a stride greater than the size of

a pointer, and fine-grain, those with a stride of pointer or subpointer size. Coarse-grain

112

strides are applied to objects. While updating an object’s modulus may require adjusting

existing constraints, it does not change the derivation rules in Section 5.2.2 and does not

adversely affect analysis time. Fine-grain accesses are reduced to the universal stride

offset 0, stride 1, and are applied to the constraints. Fine-grain accesses become a local-

ized loss of field sensitivity and intersections involving them are trivial to compute. The

use of a universal stride on edges prevents fine-grained accesses from adversely affecting

coarse-grained accesses. A result from this combined approach is shown in Figure 5.10(d).

Section 5.5.1 will present an empirical justification of this hybrid approach.

5.4.3 Detecting strides

In order to apply any of the simplifications from Section 5.4.2, it is necessary to

know a strided access exists, preferably before such an access has caused enumeration of

constraints.

We apply two complementary approaches. The vast majority of all strided accesses

result from intraprocedural cyclic computation. Cycle detection performed before the

analysis process can find such cycles inexpensively. If found, the stride is computed as

the greatest common denominator of the ks for all skew constraints involved in the cycle.

All objects in the cycle are then marked with the stride. If, during the analysis process,

an address constraint is derived with a left-hand targeting an object marked with a stride,

the stride is applied in accordance with the rules presented in the previous section. This

approach proactively applies strides before any enumeration takes place. At a high-level

113

the goal is similar to Fähndrich et al. [36], though arithmetic cycles are not collapsed as

in, just annotated.

Since this preemptive approach is intraprocedural, cycles that span multiple proce-

dures will not be found. Conceptually, one could just extend the cycle detection to span

the program-wide constraint graph. However, the expense of such a global check and the

very infrequent occurrence of such cycles make this a heavy handed approach. Instead,

a simple online (i.e., active during the analysis process) monitor looks for impending

constraint explosion due to the enumeration of a strided access. If detected, the monitor

approximates and applies the stride. Because the stride has been partially enumerated,

the application of the stride involves collapsing these enumerated constraints.

The online monitor works as follows. Given a node u, the monitor computes n, the

number of address constraints for which u is the source, and t, the number of unique

targets of these constraints. The value of t may be less than n because a single target

may point to multiple offsets of u. If u is not accessed in a cyclic fashion, the ratio n/t

should be very close to 1. If the monitor obtains a ratio greater than 1.5, a stride is

calculated for u and applied appropriately. The operation of the monitor can become

expensive if it acts frequently; its frequency of operation, however, can easily be controlled

by leveraging the fact that a ratio n/t cannot surpass 1.5 until 1.5t − n more address

constraints have been added to u.

114

In practice, it is relatively rare for the monitor to discover cycles and strides not

covered by preemptive cycle detection. Such cases are often the result of false data flow.

Figure 5.11 shows an interesting example from 134.perl.

Part 1 of Figure 5.11 shows a hash table procedure hfetch(), meant for strings,

being used by stabent() to hash nonstrings. Procedure hfetch() returns a pointer to

global variable str undef as a not-found condition. However, it would be incorrect for

str undef to be returned by stabent() so it checks for this and returns Nullstab in

its place. The pointer analysis sees a possible return of str undef because it does not

consider control flow or control conditions. Thus, the global defstab appears to point-to

str undef.

In part 2, str free() contains a similar check for str undef to avoid freeing global

variable str undef. Again, the analysis sees a possible flow of str undef into the free

list froot and, subsequently, a possible return through str new().

Parts 1 and 2 lead to part 3 creating a arithmetic cycle. Procedure do grep() passes

&defstab->stbp val into savesptr(). Because of part 1, this could be str undef + 4.

Procedure savesptr() takes its incoming parameter and assigns it into *str. Because of

part 2, *str aliases to str undef. Thus, cumulatively, str undef may obtain str undef

+ 4. Should str undef point to an object it will point to all offsets of that object.

The machine-level model results in the derivation of additional data flow. Section 5.5.2

will discuss the implications of this extra data flow. While undesired (given omiscient

knowledge), this data flow is required in faithfulness to the machine-level model.

115

STR str_undef;

STAB *defstab;

/* PART ONE */
STR *hfetch() { return &str_undef; }
STAB *stabent() {

STAB *stab = (STAB*)hfetch();

if (stab == (STAB*)&str_undef)

return Nullstab;

return stab;

}
int main() { defstab = stabent(); }

/* PART TWO */
void str_free(STR *str) {

if (str == &str_undef)

return;

froot = str;

}
STR *str_new() { return froot; }

/* PART THREE */
void savesptr(STR **sptr) {

str = str_new();

*str = sptr;

}
int do_grep() {

savesptr(&((*defstab)->stbp_val));

}

Figure 5.11 Source code extracted from the benchmark 134.perl that results in a false,
arithmetic cycle.

5.5 Empirical Results

The first goal of the evaluation is to show that the proposed approach to safe field-

sensitivity described in Section 5.2 can be made efficient using the techniques from Sec-

tion 5.4. To this end, we implemented three versions of the safe field-sensitivity: Enumer-

ative (ENUM) directly implements the derivation rules from Section 5.2.2; Object-only

(OBJ) applies strides to only objects detailed early in Section 5.4.2; and Full (FULL)

applies coarse-grain strides to objects while fine-grain strides are applied to constraints,

as proposed at the end of Section 5.4.2.

116

The second goal is to evaluate the efficiency and accuracy of safe field-sensitivity,

specifically FULL. FULL will be compared against a field insensitive (FI) implementation

that is inherently safe but not very accurate and a more traditional field sensitive (UNS)

implementation that is not safe, but more accurate (“resolves smaller points-to sets”)

than FI. UNS models the effects of all field accesses, including implicit pointer arithmetic,

but ignores explicit pointer arithmetic and array indexing. The results will show that

FULL is much more accurate and faster than FI. They will also show that FULL is

almost as fast as UNS though it does, in some cases, lose ground on accuracy (“resolves

larger points-to sets”).

5.5.1 Effect on efficiency

The following compares the efficiency of FI and UNS to the ENUM, OBJ, and FULL.

It also includes data on the arithmetic cycle detection and the effect of online monitoring

for detecting cycles.

Enumeration Mode. Table 5.1 lists the analysis time for four benchmarks using FI,

UNS, ENUM, OBJ, and FULL. Complete enumeration of the constraints drastically in-

creases the analysis time, sometimes by a factor of 1000. The additional cost is solely

due to the increase in the number of constraints. This mode exhibits a lack of scala-

bility for even these modestly sized benchmarks and motivates the use of a compressed

representation, such as OBJ or FULL.

117

Table 5.1 Analysis time (seconds) comparing a field insensitive and a typical field sen-
sitive algorithm against the proposed safe field sensitivity implemented using
full enumeration, strides on objects, and strides on constraints and objects.

Benchmark FI UNS
Safe FS

ENUM OBJ FULL

008.espresso 133 8 >1800 81 8
132.ijpeg 135 0.5 13 875 0.6
197.parser 0.3 0.3 606 0.3 0.2
mpeg4dec 5 1.5 >1800 10 2

Object-Only Mode. The column OBJ shows the analysis time when strides are ap-

plied only to objects. The benchmarks 008.espresso, 197.parser, and mpeg4dec show

substantially improved analysis times over ENUM. 132.ijpeg exhibits an interesting re-

action to the change. While previously performing well for ENUM, its analysis time

increased dramatically when strides were applied to objects.

The degradation in 132.ijpeg’s analysis time is explained by Table 5.2, which shows

the average number of static loads that appear to access named and heap objects (for

more discussion of this metric, see Section 5.5.2). For 132.ijpeg, there is roughly a 100-

fold increase in the number of loads perceived to access each program object. Compared

to ENUM, this is a substantial degradation in the accuracy. The degradation is caused

by the OBJ’s response to a pointer-sized strided access to a critical, large data structure.

This fine-grain access is applied to the object as a whole, leading to a loss of field-

sensitivity for that data structure and, subsequently, a substantial over approximation of

the call graph.

118

Table 5.2 Effect of using ENUM and OBJ on accuracy. Columns lds/obj show the average
number of static loads that appear to access a particular object. The average
is shown separately for named and heap objects. OBJ results in substantial
loss of accuracy for 132.ijpeg.

Benchmark
ENUM OBJ

(lds/obj) (lds/obj)
Nmd Heap Nmd Heap

008.espresso 1.4 27 1.4 131
132.ijpeg 1.7 6.9 109 1353

Full Mode. We have seen that neither object strides alone nor constraint enumer-

ation are satisfactory solutions. FULL implements a “hybrid” approach presented in

Section 5.4.2. In particular, coarse-grain strides are applied directly to the objects, while

fine-grain accesses are applied to constraint edges through the use of a universal stride.

Applying fine-grain strides to constraints helps prevent fine-grain accesses from degrading

the accuracy of large data structures, as occurred with 132.ijpeg for OBJ.

Figure 5.12 shows the fraction increase (decrease) in analysis time when comparing

UNS and FULL to a FI baseline. The four benchmarks 008.espresso, 130.li, 132.ijpeg,

and jpg2Kdec show dramatic analysis speedups when either field sensitive algorithm is

used. This is due to a bad interaction between FI and CS where CS replicates heap

locations in an attempt to better isolate interactions while FI creates “leaks” that render

the numerous heap locations no longer isolated. Essentially, CS causes the problem size

to grow while FI corrupts the result. In fact, the benchmark jpg2Kdec failed to complete

within 30 min for FI. To aid interpretation of the data, the field sensitive time for these

four benchmarks has been included and is shown in brackets near the x-axis.

119

��

����

�

���

�

���

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
	

�
	
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
	

�

�

�

�

�

�

�

�
�
�

�
�
�
�
�

�

�
�
�
�

�
�

��
�
�
�
�

�

�
�
�
�
�

�

�
�
�

��� ��� ��� ��� ��� �� 	�� �
 ��� ��� ��� ��� ��� ��� ��� ��� �	� �� ��� ��� ��� ��� ��	 �� �

�
��
�
��
�
�
�
��
��
�
�
�

��
�
��
�
�
�!

�
��
��

"�
#�
�

�$
�

��
�

��
�
�

�
�
�
�

%

��������

��� ���� ���� ���

#&'()�*)�+����#

,)'()�*)�+����#

-&* �-..

Figure 5.12 Fraction increase (decrease for negative) in time when comparing UNS and
Safe FS FULL to a FI baseline. FI Baseline times are shown between the
benchmark labels and the graph. Benchmarks 008.espresso, 130.li, 132.ijpeg,
and jpg2Kdec show dramatic analysis speedups when any field sensitive algo-
rithm is used. To aid interpretation of the data, the approximate FS times
for these four benchmarks are shown in brackets near the x-axis.

FULL shows the largest fractional increase in analysis time for the benchmarks

181.mcf and 255.vortex. The total time for 181.mcf is around 1 ms, so this change

is inconsequential. The increase for 255.vortex is largely due to a loss of accuracy which

will be detailed in Section 5.5.2. Generally speaking, Safe FS FULL results take no longer

than traditional UNS results.

Cycle Detection. Figure 5.13 shows the fraction of variables found to be involved

in local arithmetic cycles, the fraction of objects to which a stride was applied, and the

fraction of points-to edges to which a universal stride was applied. On average, about

7% of all variables are involved in pointer-arithmetic cycles. This large percentage makes

it clear why, from the perspective of safety, it is important to appropriately model cycles

and to handle their consequences efficiently. The addresses of many objects become

involved in these arithmetic cycles, resulting in the application of a coarse-grain stride

120

�
��
�
��
�
�

	
	

	
�
�

	

�
�
�

�
�

�
�
	

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�

�

�

�

�

�

�

�

�

�
�
�

�
�
�

�
�
�

�
�
�

�
	
	

�
�
�
�
�
�
�

�
�
�
�
�
�
�

��
�
�
�
�
�
�

�
�
�
�
�
�
�

�
�
�

�������� !��

����������!"#���

$�����!�������

��!%�����

$�����!�������!��

"�� ������

	

	&�

	&�

	&�

	&�

	&�

	&�

	&�

	&

Figure 5.13 Fraction of variables involved in skew cycles, fraction of objects to which a
stride was applied, and the fraction of points-to edges to which a stride was
applied.

to 23% of the objects and a universal stride to 18% of all address coinstraints. A large

fraction of program data flow interact with one of these cycles, further illuminating why

explicit enumeration of strided accesses can explode.

Online Monitoring. Section 5.4.3 walked through an interprocedural arithmetic cycle

in 134.perl that exists for both UNS and FULL. Experiments on 134.perl showed that

this cycle leads to a significant increase in the number of constraints and the analysis

process no longer completed within the alotted 30 min. Online monitoring detects the

impending constraint explosion and reduces the analysis time to about 40s.

5.5.2 Effects on accuracy

This section presents the impact of Safe FS FULL on the quality of the resultant

pointer information. For a measure of accuracy, we use the number of loads the analysis

determines may access a particular object. An average is taken across all objects to

121

�
��
�
��
�
�
�
	

��
�

�
��
�
�

�
�

	
�
�
�
�

�
�
�
�
�
��
�
�

�
�

�
�
�
�
�
�

�
�
��
�
��

��
�

�
�

�
�
�
�
	�
�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

!�
�
�
�
"
�
�
�

#
�
�
�
�
�
�

$
%
&

�

�'�

�'�

�'�

�'�

�
()*

)�#��

()*

+���

�(,,

)�#��

�(,,

+���

Figure 5.14 Fractional decrease in the number of loads perceived to access program ob-
jects when compared to the results from a FI baseline. The benchmark
jpg2Kdec failed to complete for FI and thus its FS data has been excluded.

obtain an average loads-per-object. An analysis result is better if it reduces loads-per-

object. We also compute a similar metric with respect to stores, but these have been

omitted since the trends were similar.

Figure 5.14 shows the fractional decrease in loads-per-object for UNS and FULL when

compared to the results from a FI baseline. Note that the benchmark jpg2Kdec failed to

complete within the alotted 30 min for FI mode; thus, its FS data has been excluded. The

impact of FULL on accuracy is mixed. In many instances, FULL has little effect on the

results. However, the benchmarks 253.perl, 254.gap, and 255.vortex show a significant

loss of accuracy. The use of a global pool allocator for 253.perl and 254.gap causes a single

abstract location to represent almost all heap allocated objects. Subsequent application

of a mix of strides to this object effectively results in a loss of field sensitivity for most

heap references. The heap locations allocated by 255.vortex are immediately accessed by

expressions similar to ++ChunkAddrPtr and := *(++ChunkAddrPtr) which leads to most

122

Table 5.3 Effect of Safe FS FULL on CI and CS results. FULL impacts the analysis
time (a) of CI more that CS for 132.ijpeg and 008.espresso and degrades the
accuracy (b) of CI more that CS for 132.ijpeg and 130.li.

Benchmark UNS Safe FS FULL

008.espresso
CI 0.2 12
CS 8 207

132.ijpeg
CI 0.7 13
CS 0.5 0.6

(a)

Benchmark
UNS Safe FS FULL

lds/obj lds/obj
Named Heap Named Heap

132.ijpeg
CI 6 1087 42 2205
CS 1.7 6.9 1.7 11

130.li
CI 60 557 76 712
CS 50 395 50 395

(b)

heap accesses obtaining a universal stride, as can be seen for 255.vortex in Figure 5.13.

Again, this leads to a loss of field sensitivity for heap references.

5.5.3 Interaction between FULL and CI, CS

Table 5.3 compares the effect of Safe FS FULL mode on CI and CS results. Ta-

ble 5.3(a) compares analysis time and Table 5.3(b) accuracy. In these instances, the

impact of FULL mode on a CS algorithm is less than its impact on a CI one. This result

is not unexpected, since a CS algorithm generates fewer false relationships and thus fewer

strided accesses to objects. Since a context sensitive algorithm can better isolate the data

123

flow between objects, it can also be more resilient to a more conservative model of field

sensitivity.

124

6. COMPREHENSIVE EMPIRICAL STUDIES

6.1 Efficiency

Figure 6.1 compares the amounts of time necessary to perform four different kinds of

pointer analysis. At a minimum, all analyses use a per-call-site heap model. The blue

line (diamond marker) plots the analysis time necessary to perform a simple context-

and field-insensitive pointer analysis. For a few benchmarks, such as 130.li and 132.ijpeg

this is the slowest analysis. These benchmarks are a good example of how the cost of

extra derivations can result in a simple, inaccurate analysis being more expensive than

an accurate one.

The pink line (square marker) represents a field-sensitive analysis and the green line

(triangle marker) a field- and context-sensitive analysis. Both of these analyses are

very fast. For these two pointer analyses, the benchmarks 176.gcc, 253.perlbmk, and

254.gap stand out as the most costly benchmarks requiring about 25, 100, and 70 s,

respectively, for the field- and context-sensitive analysis. The analysis time for the rest

of the benchmarks range from 0.01 to about 5 s.

The orange line (cross marker) plots the analysis time when exhaustive heap special-

ization is performed. This has the biggest impact on 008.espresso, 134.perl, 176.gcc, and

255.vortex. All of these benchmarks show a large increase in the number of modeled

heap objects and, therefore, a corresponding increase in analysis time. 008.espresso and

125

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
	

�
	
�

�
�
�

�
�
�

�
�
�

�
�
	

�

�

�

�

�

�

�

�
�
�

�
�

�

�
�

�

��
�
�

��
�
�

�
�
�
�

�
�
�
�

�
�
�

�
�
�

�
��

��
�
�

�
�
�

��� ��� ���� ���� ���� ������

�
�
�
��
�
��
�
�
�
�!
�
�
"
#
�
�
�
$

�

�

�

	

���

��

�
�

Figure 6.1 Time necessary for Fulcrato perform four different analyses: field-insensitive,
field-sensitive, field- and context-sensitive, and field-, context-, and heap-
sensitive.

255.vortex require roughly 25 and 20 s, respectively. 134.perl and 176.gcc jump to almost

400 s. Depending on the importance of exhaustive heap specialization, Fulcra supports

the placing a hard limit on the amount of specialization performed. If a limit of two heap

generations is used, the analysis time necessary for 134.perl and 176.gcc drops to 50 and

60 s, respectively, and is shown by the orange ovals in the figure.

To provide better resolution on the cost of different pointer analysis configurations,

Figures 6.2 and 6.3 show relative increases in analysis time. Figure 6.2 compares a field-

sensitive analysis to a field-insensitive analysis. Overall, by better modeling actual data

flow, field-sensitivity tends to decrease analysis time.

126

�

���

�

���

�

���
�
�
�

�
�
�

�
�
�

�
�
	

�
�
�

�
�
�

�
�
�

�
�
	

�

	

�
�
�

�
�

�
�
�

�
�

�
�
�

�
�
�

�
�
�

�
�
	

�
�
�

�
�

�
�
�

�

�
�

�

�
�

��
�
�

��
�
�

�

�
�

�

�
�

�
�
�
�

�
�
�
�

�
�
��

��
�
�

�
�
�
	

�
�
�

��
�
��
�

�
��
�
��
�
�
��

�
�
��
�

Figure 6.2 Factor increase in analysis time for a field-sensitive, context-insensitive anal-
ysis over a field-insensitive analysis.

Figure 6.3(a) and (b) plot the relative increase in analysis time for context-sensitive

and heap-sensitive analyses against a field-sensitive but context-insensitive analysis. On

average, context-sensitivity adds about 40% to the analysis time, but can triple analysis

time in some instances. Note, however, for jpg2Kdec and 181.mcf the baseline analysis

times are less than or near 1 s. A large fraction of the increase is likely due to differing

baseline overheads between the two analyses.

Heap specialization shows a more significant cost, about 2x on average if 134.perl is

excluded. However, it is clear that 134.perl, 176.gcc, and 255.vortex are impacted the

most with 134.perl standing out. The issue with 134.perl is that heap specialization

creates many heap locations that, in the end, differ little from each other. Unfortunately,

the heap recombination is unable to resolve the problem before expending a lot of analysis

time.

127

���

���

���

���

���

���

���

���

���

�	

�	�

���

���

���

��	

�
�

�
�

�

�
�

���

���

���

����

����

����

����

���

���

���

����

���

���

�

�
�
 �

�
�
 �

�
�
 �

��������������������� ��

(a)

���

���

���

���

���

���

���

���

���

�	

�	�

���

���

���

��	

�
�

�
�

�

�
�

���

���

���

����

����

����

����

���

���

���

����

���

���

� � � � �

�
�

�
�

�
�

������������������������

�
�
�

(b
)

F
igu

re
6.3

F
actor

in
crease

in
an

aly
sis

tim
e

for
(a)

a
fi
eld

-sen
sitive,

con
tex

t-sen
sitive

an
d

(b
)

a
fi
eld

-sen
sitive,

con
tex

t-sen
sitive,

an
d

h
eap

sen
sitive

an
aly

sis
again

st
a

b
aselin

e
fi
eld

-sen
sitive,

con
tex

t-in
sen

sitive
an

aly
sis.

128

Benchmark Fulcra Cheng Foster
008.espresso 24 9 995
023.eqntott .02 2 12
129.compress .01 1 2
130.li .50 1332 9981
176.gcc 50-350 hours -
253.perlbmk 120 months -

Table 6.1 Pointer analysis times for benchmarks common to multiple publications.

To provide a frame of reference for Fulcra’s analysis times, Table 6.1 presents data for

benchmarks common to Cheng and Hwu [19] and Foster et al. [20] publications. With the

exception of Cheng’s analysis of 008.espresso, Fulcra is orders of magnitude faster than

both. The extra analysis time required for 008.espresso is likely due to Fulcra’s more

complicated modeling of field-sensitivity and a safer modeling of heap objects. Cheng’s

implementation makes extensive use of types to filter out unrealizable data flow but can

lead to incorrect analysis results. Despite this, the analysis time swells substantially for

176.gcc and 253.perlbmk while remaining under control for Fulcra.

6.2 Accuracy

Figure 6.4 compares the accesses-per-object obtained by five different analysis con-

figurations. As in the timing runs, all configurations minimally model per-allocation site

heap specialization h0. The letter f means field sensitive, c context sensitive, and h ex-

haustively heap sensitive. The dark bars mark the most accurate configuration and also

provide visual separation between benchmarks. Because of the large range of results for

129

�

��

���

����

�����

�
�

��
�

�
�
�

��
�
�

��
�
�
�

��
�

�
�
�

��
�
�

��
�
�
�

��
�

�
�
�

��
�
�

��
�
�
�

��
�

�
�
�

��
�
�

��
�
�
�

��
�

�
�
�

��
�
�

��
�
�
�

��
�

�
�
�

��
�
�

��
�
�
�

��
�

�
�
�

��
�
�

��
�
�
�

��
�

�
�
�

��
�
�

��
�
�
�

��
�

�
�
�

��
�
�

��
�
�
�

��
�

�
�
�

��
�
�

��
�
�
�

��
�

�
�
�

��
�
�

��
�
�
�

��
�

�
�
�

��
�
�

��
�
�
�

��
�

�
�
�

��
�
�

��
�
�
�

��
�

�
�
�

��
�
�

��
�
�
�

��
�

�
�
�

��
�
�

��
�

��� ��� ��� ��� �	
 �	� ��� ��� �

 ��� ��� ���� ���� ���� ����

�
�
�
�

�

��
�
��
�
�
��
�
�

Figure 6.4 Effect of different analysis configurations on the number of access-per-object
observed.

some benchmarks, a logarithmic scale is used. There are two important points. First,

in many cases the analysis configuration can cause an order of magnitude, if not orders

of magnitude, difference in the result accuracy. Second, in some cases there is little dif-

ference until the most accurate form of the analysis is performed. By themselves, field-,

context-, or heap- sensitivity are not individually sufficient but, instead, a convergence

of the three is necessary to realize the gains.

Figures 6.5 and 6.6 provide additional resolution into the impact of different analysis

configurations on accuracy. Each plots the fractional decrease in accesses-per-object

observed and separates the statistic for named and heap objects.

Figure 6.5 shows the decrease in accesses-per-object for a field-sensitive algorithm

over a field-insensitive one. On average, field-sensitivity results in a 20% reduction in

accesses-per-object. However, the actual results tend to be polar, with a few benchmarks

130

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
	

�
	
�

�
�
�

�
�
�

�
�
�

�
�
	

�

�

�

�

�

�

�

�
�
�

�
�

�

�
�

�

��
�
�

��
�
�

�
�
�
�

�
�
�
�

�
�
�

�
�
�

�
��

��
�
�

�
�
�

�
�
�

�

���

���

���

���

��

���

��	

���

���

�

���� �����

Figure 6.5 Decrease in access-per-object observed for a field-sensitive, context-insensitive
analysis over a field-insensitive analysis.

benefiting little and others showing substantial reductions. Figure 6.6(a) shows the frac-

tion decrease for a context-sensitive algorithm against a context-insensitive one (both are

field-sensitive). Context-sensitivity alone shows large improvements for only six bench-

marks. However, when heap specialization is performed the results improve dramatically,

as shown in Figure 6.6(b), with roughly half of the benchmarks showing substantial re-

ductions in accesses-per-object. The average decrease goes from 10% named and 15%

heap without heap sensitivity to 15% named and 40% heap with it.

131

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
	

�
	
�

�
�
�

�
�
�

�
�
�

�
�
	

�

�

�

�

�

�

�

�
�
�

�
�

�

�
�

�

��
�
�

��
�
�

�
�
�
�

�
�
�
�

�
�
�

�
�
�

�
��

��
�
�

�
�
�

�
�
�

�

���

���

���

���

��

���

��	

���

���

�

���� �����

(a)

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
	

�
	
�

�
�
�

�
�
�

�
�
�

�
�
	

�

�

�

�

�

�

�

�
�
�

�
�

�

�
�

�

��
�
�

��
�
�

�
�
�
�

�
�
�
�

�
�
�

�
�
�

�
��

��
�
�

�
�
�

�
�
�

�

���

���

���

���

��

���

��	

���

���

�
���� �����

(b)

Figure 6.6 Decrease in access-per-object observed for (a) a field-sensitive, context-
sensitive and (b) a field-sensitive, context-sensitive, and heap sensitive analysis
against a baseline field-sensitive, context-insensitive analysis.

132

7. FUTURE DEVELOPMENT

7.1 Summary Refinement

The summaries formed by Fulcra are complete, context independent summaries. This

means that summarization can be performed once for a particular procedure and uni-

versally used. However, it is possible that the set of contexts encountered throughout

the entire program is smaller than the set of all possible contexts. If such conditions are

common, the solution preview capability can be leveraged to determine the set of known

contexts. This context information could be used in place of the holding property to

mark the parts of a procedure that contain external references and, hopefully, lead to the

creation of a smaller summary.

These partial summaries are still context independent. They are not for a particular

call path context but are formed for all observed call path contexts instead of all possible

call path contexts. The cost is that, should the bottom-up process result in a change to

the input contexts, new summaries may need to be generated. The philosophy behind

this idea is similar to counter-example directed refinement, a popular scheme in model

checking [37].

133

red(p) {
heap1 := &heap2;

s := &heap1;

*p := s;

y := &heap3;

*p := y;

}

(a)

red(p) {
heap1 := &heap2;

s := &heap1;

*p := s;

}

(b)

Figure 7.1 Code example (a) for which more aggressive redundancy removal could obtain
a smaller summary (b) by leveraging the fact that heap location heap1 is a
superset of heap3.

7.2 Redundancy Removal

One theme throughout this dissertation is the importance and benefits of keeping

summaries small. The redundancy removal algorithm used is essentially that proposed

in [23]. While good, the algorithm is not as aggressive as it could be.

Consider the example in Figure 7.1(a). The location &heap1 is a provable superset of

the location &heap3; thus, the summary could be reduced to the code in Figure 7.1(b).

However, since &heap1 and &heap3 are not identical the standard redundancy removal is

not capable of this transformation.

There are also opportunities to expose additional redundancy in the presence of ag-

gregate objects using a process termed fragmentation. Consider the code in Figure 7.2(a).

With the structure st left intact, there is no opportunity for redundancy removal. How-

ever, if the structure can be fragmented into two pieces, shown in Figure 7.2(b), lines 1

and 3 become redundant with lines 4 and 5.

134

{
...st.f1 := a;

st.f2 := b;

c := st.f1;

x := a;

c := x;...}

(b)

{
...1:tmp1 := a;

2: tmp2 := b;

3: c := tmp1;

4: x := a;

5: c := x;...}

(b)

Figure 7.2 Code example (a) for which structure fragmentation could expose additional
redundancy by transforming the code to that shown in (b).

7.3 Hybrid Inclusion-Unification

Fulcra already contains select applications of a unification style analysis process. For

example, redundancy removal is performed both on procedure summaries and, prior to

analysis, the procedures themselves. Redundancy removal performs unification when it

is provable that such unification will not change the result. Furthermore, heap recom-

bination presented in Section 4.7 performs unification on heap objects when they are

statistically very similar. There is opportunity for a more general and statistical ap-

proach to unification. This could improve the scalability of the analysis while leaving it

less fragile to a cascade of unification steps.

7.4 Context Sensitive Recursion

In most frameworks, recursion is handled in a context insensitive manner. Recall

that, before summarizing a procedure, the summaries for its callees are specialized and

inlined. In the presence of a call graph cycle, complete callee summaries cannot be

guaranteed available. This means that an algorithm would have to iterate around the

135

��������	
�����

����	
����� �������	�����������

��	�	��	��

�

����

���

����

���

����

���

����

���

����

�

���

���

�

���

�

�

���

�
�

!

��
�
�
	�
�
	"

�
�
�
�
�
	#
�
$	

�
��

�

"
�
�
%&
�
��
	'
�(
�
)
�
�

�
�

�
*

����%�

Figure 7.3 Effect of context-sensitive recursion on analysis time and accuracy of 130.li.

cycle, continually expanding summaries until a steady state is reached. Not only could

summaries become very large, but, in an Andersen’s style formulation or if heap cloning

is performed, this process may diverge and never complete.

Fulcra’s ability to selectively turn off context sensitivity could be used as a throttle

to keep summaries small during attempts at recursive context sensitivity. In the worst

case, the cycle would end up being treated context insensitively. In the best case, no

throttling would be necessary. Using a rudimentary implementation, Figure 7.3 shows

that recursive context sensitivity benefits the analysis of program 130.li.

136

1: switch(format) {
2: case BMP: dest = jinit_bmp(&cinfo); break;

3: case GIF: dest = jinit_gif(&cinfo); break;

7: }
8: (*dest->start_output)(&cinfo, dest);

Figure 7.4 Excerpt from jpegdec where an analysis result can benefit from the correlation
between the indirect call at line 8 and its parameter, both involving variable
dest.

7.5 Control Correlation

While motivating the use of an Andersen’s style formulation, Section 2.3 alluded to

the possibility of improving upon the analysis results for code from jpegdec, previously

shown in Figure 2.3. An excerpt from this example is shown here in Figure 7.4.

At line 8, an indirect function call is controlled by the object pointed-to by dest.

Furthermore, the second parameter to this call is also dest. Even though the framework

is flow-insensitive, it is possible to leverage the fact that, while dest may contain a

number of references, it can contain only one at any given moment. For example, assume

that dest may point to object A with a start output field of callA() and object B

with a start output field of callB(). By leveraging the known correlation between the

indirect call site and the second parameter, procedure callA() can only obtain A as its

input parameter and callB() can only obtain B.

Such code sequences often occur in programs written to be configurable. For the

program jpegdec, leveraging this correlation can result in substantial improvements in

accuracy.

137

7.6 Partial Programs

The algorithms presented assume the existence of an entire program. In a non-

experimental environment, programs are often composed of separately compiled libraries

or modules. Pointer analysis will often have to be performed on program fragments with

missing callers, callees, or both. The lack of callers or callees makes it important to

differentiate the pointer information that is complete from that which is incomplete.

If a caller is missing, this can be done by applying a special, artificial input to each

unknown parameter or accessible global variable. From a modeling perspective this would

be an address constraint from a node that points to itself. During constraint solution

process, the reach of this input would be resolved as well.

Missing callees can be handled in a similar fashion. A special constraint can be

applied to the actual parameters at the missing callee’s call site and to accessible global

variables. The incompleteness of global variables would flow context insensitively due

to the global qualifier and the potential effect on a callee could be recorded concisely

in the procedural summary. Note that, from a summarization perspective, it is enough

to know that some unknown effect exists. It is not important to try and model the

particulars of that effect; thus, there may be additional compaction opportunities during

the backtracing and redundancy removal step.

138

8. CONCLUSION

This dissertation detailed a qualified constraint based approach to context-sensitivity

that provides the backbone for an efficient and flexible pointer analysis framework. Fur-

thermore, it detailed how to leverage the qualified constraint framework to obtain heap

sensitivity as well as five mechanisms that Fulcra employs to contain the costs of heap sen-

sitivity. A flexible form of field sensitivity capable of safely modeling type-unsafe C was

presented along with the algorithmic modifications necessary to obtain a jointly context-

and field-sensitive framework. Finally, a comprehensive evaluation demonstrated that,

for the applications used for evaluation, the algorithms provided all analysis results in

under eight minutes with most requiring a second or less. Using the most aggressive

analysis configuration, the accuracy of the results for many applications showed orders

of magnitude improvement over previous work.

139

REFERENCES

[1] M. Hind and A. Pioli, “Which pointer analysis should I use?,” in Proceedings of
International Symposium on Software Testing and Analysis, 2000, pp. 113–123.

[2] M. Hind, “Pointer analysis: Haven’t we solved this problem yet?,” in Proceedings of
the ACM SIGPLAN-SIGSOFT Workshop on Program Analysis for Software Tools
and Engineering, 2001, pp. 54–61.

[3] L. O. Andersen, “Program analysis and specialization for the C programming lan-
guage,”, Ph.D. dissertation, Datalogisk Institut, University of Copenhagen, 1994.

[4] B. Steensgaard, “Points-to analysis in almost linear time,” in Proceedings of the
ACM SIGPLAN/SIGACT Symposium on Principles of Programming Languages,
1996, pp. 32–41.

[5] A. Milanova, A. Rountev, and B. Ryder, “Parameterized object sensitivity for
points-to and side-effect analyses for Java,” in Proceedings of International Sym-
posium on Software Testing and Analysis, 2002, pp. 1–11.

[6] R. P. Wilson and M. S. Lam, “Efficient context-sensitive pointer analysis for C
programs,” in Proceedings of the ACM SIGPLAN Conference on Programming Lan-
guage Design and Implementation, 1995, pp. 1–12.

[7] R. Chatterjee, B. G. Ryder, and W. A. Landi, “Relevant context inference,” in Pro-
ceedings of the ACM SIGPLAN/SIGACT Symposium on Principles of Programming
Languages, 1999, pp. 133–146.

[8] R. Cytron, J. Ferrante, B. K. Rosen, M. N. Wegman, and F. K. Zadek, “An efficient
method of computing static single assignment form,” in Proceedings of the ACM
SIGPLAN/SIGACT Symposium on Principles of Programming Languages, 1989,
pp. 25–35.

[9] R. Hasti and S. Horwitz, “Using static single assignment form to improve flow-
insensitive pointer analysis,” in Proceedings of the ACM SIGPLAN Conference on
Programming Language Design and Implementation, 1998, pp. 97–105.

[10] M. Das, B. Liblit, M. Fähndrich, and J. Rehof, “Estimating the impact of scalable
pointer analysis on optimization,” in Proceedings of the Static Analysis Symposium,
2001, pp. 260–278.

140

[11] D. Liang and M. J. Harrold, “Efficient computation of parameterized pointer infor-
mation for interprocedural analyses,” in Proceedings of the Static Analysis Sympo-
sium, 2001, pp. 279–298.

[12] M. Das, “Unification-based pointer analysis with directional assignments,” in Pro-
ceedings of the ACM SIGPLAN Conference on Programming Language Design and
Implementation, 2000, pp. 35–46.

[13] C. Lattner and V. Adve, “Data structure analysis: A fast and scalable context-
sensitive heap analysis,” University of Illinois at Urbana Champaign, Tech. Rep.
UIUCDCS-R-2003-2340, 2003.

[14] T. Reps, S. Horwitz, and M. Sagiv, “Precise interprocedural dataflow analysis via
graph reachability,” in Proceedings of the ACM SIGPLAN/SIGACT Symposium on
Principles of Programming Languages, 1995, pp. 49–61.

[15] M. Emami, R. Ghiya, and L. J. Hendren, “Context-sensitive interprocedural points-
to analysis in the presence of function pointers,” in Proceedings of the ACM SIG-
PLAN Conference on Programming Language Design and Implementation, 1994,
pp. 242–256.

[16] M. Hind, M. Burke, P. Carini, and J.-D. Choi, “Interprocedural pointer alias anal-
ysis,” ACM Transactions on Programming Languages and Systems, vol. 21, no. 4,
pp. 848–894, 1999.

[17] W. Landi and B. G. Ryder, “A safe approximation algorithm for interprocedural
pointer aliasing,” in Proceedings of the ACM SIGPLAN Conference on Programming
Language Design and Implementation, 1992, pp. 235–248.

[18] E. Ruf, “Context-insensitive alias analysis reconsidered,” in Proceedings of the ACM
SIGPLAN Conference on Programming Language Design and Implementation, 1995,
pp. 13–22.

[19] B.-C. Cheng and W.-M. Hwu, “Modular interprocedural pointer analysis using ac-
cess paths: design, implementation, and evaluation,” in Proceedings of the ACM
SIGPLAN Conference on Programming Language Design and Implementation, 2000,
pp. 57–69.

[20] J. S. Foster, M. Fähndrich, and A. Aiken, “Polymorphic versus monomorphic flow-
insensitive points-to analysis for C,” in Proceedings of the Static Analysis Sympo-
sium, 2000, pp. 175–198.

[21] D. Liang and M. J. Harrold, “Efficient points-to analysis for whole-program analy-
sis,” in Proceedings of the European Software Engineering Conference and the ACM
SIGSOFT Symposium on Foundations of Software Engineering, 1999, pp. 199–215.

141

[22] E. M. Nystrom, H.-S. Kim, and W.-M. Hwu, “Bottom-up and top-down context-
sensitive summary-based pointer analysis,” in Proceedings of the Static Analysis
Symposium, 2004, pp. 112–138.

[23] H.-S. Kim, “Context-sensitive pointer analysis based on procedural summaries,”,
Ph.D. dissertation, University of Illinois at Urbana-Champaign, 2004.

[24] J. Rehof and M. Fähndrich, “Type-based flow analysis: from polymorphic subtyping
to CFL-reachability,” in Proceedings of the ACM SIGPLAN/SIGACT Symposium
on Principles of Programming Languages, 2001, pp. 54–66.

[25] E. M. Nystrom, H.-S. Kim, and W.-M. Hwu, “Importance of heap specialization
in pointer analysis,” in Proceedings of the ACM SIGPLAN-SIGSOFT Workshop on
Program Analysis for Software Tools and Engineering, 2004, pp. 43–48.

[26] A. Rountev, A. Milanova, and B. Ryder, “Points-to analysis of Java using annotated
constraints,” in Proceedings of the ACM Conference on Object-Oriented Program-
ming Systems, Languages, and Applications, 2001, pp. 43–55.

[27] D. J. Pearce, P. H. J. Kelly, and C. Hankin, “Efficient field-sensitive pointer analy-
sis for C,” in Proceedings of the ACM SIGPLAN-SIGSOFT Workshop on Program
Analysis for Software Tools and Engineering, 2004, pp. 37–42.

[28] B. Steensgaard, “Points-to analysis by type inference of programs with structures
and unions,” in Proceedings of the ACM SIGPLAN 82 Symp. on Compiler Con-
struction, 1996, pp. 136–150.

[29] S. H. Yong, S. Horwitz, and T. Reps, “Pointer analysis for programs with structures
and casting,” in Proceedings of the ACM SIGPLAN Conference on Programming
Language Design and Implementation, 1999, pp. 91–103.

[30] R. Ghiya, D. Lavery, and D. Sehr, “On the importance of points-to analysis and
other memory disambiguation methods for C programs,” in Proceedings of the ACM
SIGPLAN Conference on Programming Language Design and Implementation, 2001,
pp. 47–58.

[31] S. Debray, R. Muth, and M. Weippert, “Alias analysis of executable code,” in Pro-
ceedings of the ACM SIGPLAN/SIGACT Symposium on Principles of Programming
Languages, 1998, pp. 12–24.

[32] Q. Lhoták and L. J. Hendren, “Scaling java points-to analysis using SPARK,” in Pro-
ceedings of the ACM SIGPLAN 82 Symp. on Compiler Construction, 2003, pp. 153–
169.

[33] J. Whaley and M. Rinard, “Compositional pointer and escape analysis for Java
programs,” in Proceedings of the ACM Conference on Object-Oriented Programming
Systems, Languages, and Applications, 1999, pp. 187–206.

142

[34] J. Condit, M. Harren, S. McPeak, G. C. Necula, and W. Weimer, “CCured in the real
world,” in Proceedings of the ACM SIGPLAN Conference on Programming Language
Design and Implementation, 2003, pp. 232–244.

[35] G. C. Necula, S. McPeak, and W. Weimer, “CCured: Type-safe retrofitting of legacy
code,” in Proceedings of the ACM SIGPLAN/SIGACT Symposium on Principles of
Programming Languages, 2002, pp. 128–139.

[36] M. Fähndrich, J. S. Foster, Z. Su, and A. Aiken, “Partial online cycle elimination in
inclusion constraint graphs,” in Proceedings of the ACM SIGPLAN Conference on
Programming Language Design and Implementation, 1998, pp. 85–96.

[37] E. Clarke, O. Grunmberg, S. Jha, Y. Lu, and H. Veith, “Counterexample-guided
abstraction refinement for symbolic model checking,” Journal of the ACM, vol. 50,
no. 5, pp. 752–794, 1997.

143

AUTHOR’S BIOGRAPHY

Erik Nystrom was born in Colorado Springs, Colorado. He was the fifth of six children

to Perry Everett Nystrom and Elizabeth Ann Nystrom. He grew up in Raleigh, N.C.,

where he attended North Carolina State University. During his undergraduate studies

he worked for both Nortel Networks and IBM and was the holder of both the Lockheed-

Martin and Barry M. Goldwater National Scholarships. He graduated Summa cum Laude

from North Carolina State University with a B.S. in Computer Engineering and was

the first recipient of NCSU’s Outstanding Computer Engineer Award. For his graduate

studies, Erik attended the University of Illinois at Urbana-Champaign, where he received

an M.S. and a Ph.D in Electrical Engineering in 2002 and 2005, respectively. During his

graduate studies, he worked for Intel and was the holder of both the National Science

Foundation and Intel Doctoral Fellowships.

144

