(© 2006 by Hillery Catriona Hunter. All rights reserved.

MATCHING ON-CHIP DATA STORAGE TO MEDIA AND
TELECOMMUNICATION APPLICATION PROPERTIES

BY
HILLERY CATRIONA HUNTER

B.S., University of Illinois at Urbana-Champaign, 1999
M.S., University of Illinois at Urbana-Champaign, 2002

DISSERTATION

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy in Electrical Engineering
in the Graduate College of the
University of Illinois at Urbana-Champaign, 2004

Urbana, Illinois

MATCHING ON-CHIP DATA STORAGE TO MEDIA AND
TELECOMMUNICATION APPLICATION PROPERTIES

Hillery Catriona Hunter, Ph.D.
Department of Electrical and Computer Engineering

University of Illinois at Urbana-Champaign, 2004
Wen-mei W. Hwu, Adviser

This describes hardware and software necessary for compiler-controlled power savings
in embedded data storage systems. Recent techniques for saving dynamic and static
power in specialized SRAM arrays are leveraged to provide port, latency, and sleep
configurability. Using advanced interprocedural pointer analysis to provide complete
resolution of potential memory accesses, the compiler choses a power-saving configuration
for each program data object. Data objects are then grouped according to the number
of needed ports and desired access latency.

Both the hardware and software design of configurable SRAM was driven by a data
intent characterization of telecommunication and media applications. This characteriza-
tion is described, along with description of its application to other methods for power
savings in embedded systems.

For configurable SRAM, data storage savings in the range of 29% static power and
6% dynamic power are achieved without sacrificing code performance. When slight per-
formance degradation can be tolerated, the compiler uses profile feedback to realize an

average of 51.7% static and 9.4% dynamic power reduction.

iii

To my parents.

v

ACKNOWLEDGMENTS

I would first like to acknowledge the guidance of my adviser, Professor Wen-mei Hwu,
and thank him for allowing me to pursue computer architecture studies in his IMPACT
research group. My committee members, Gary Eden, Steve Lumetta, and Sanjay Patel,
have also provided invaluable feedback and encouragement along the way.

Thanks are due to the many past and current members of the IMPACT research
group, whose work has contributed to the infrastructure which enabled this research.
I would specifically like to thank Erik Nystrom for a very productive collaboration to
analyze the effects of interprocedural pointer analysis, Shane Ryoo for his overhaul of
the memory profiling framework, and John Sias for innumerable bug fixes. Jame Player,
Ron Barnes, Sain-Zee Ueng, and Ian Steiner have also helped with last-minute deadlines
and generally provided much-needed humor and levity.

Lastly, I would like to recognize the National Science Foundation, IBM Corpora-
tion, Semiconductor Research Corporation, DARPA/MARCO GSRC Center, University
of Illinois, and Department of Electrical and Computer Engineering for their financial

support of my graduate studies.

TABLE OF CONTENTS

LIST OF TABLES e e e 1
LIST OF FIGURES e 1
INTRODUCTION . . o e e e e e e e 1
1.1 Embedded Domain Background 4
1.2 Contributions e 6
1.3 OVEIVIEW . . o o e 7
CONFIGURABLE SRAM DESIGN i 8
2.1 Building Blocks: SRAM Subarrays and Macroblocks 9
2.2 Port Configuration e 14

2.2.1 Overhead of port configuration 17

2.2.2 Power savings of port configuration 17
2.3 Latency Configuration 18

2.3.1 Overhead of latency configuration 19

2.3.2 Power savings of latency configuration 19
24 Sleep Mode 22
2.5 Setting and Storing Configurations 24
2.6 Amortizing Configuration Cost 25
2.7 Comparing Configurable SRAM Power to Customized Approaches 28
2.8 Application Data Configuration Example 30
COMPILING FOR CONFIGURABLE SRAM 36
3.1 Compilation Challenges. i 36
3.2 Framework Overview 39

3.2.1 Studied application suite., 42

3.2.2 Terminology 42
3.3 Interprocedural Pointer Analysis 44

3.3.1 Pointer analysis accuracy 52

vi

3.3.2 Optimistic interprocedural pointer analysis: function indirection .. 55

3.4 General Principles for Differentiated Access 56
3.4.1 Object relationships 56
3.4.2 Cost and benefit 58

3.5 Prototype Implementation. L. 60
3.5.1 Heapandstackdata................................. 60
3.5.2 Implemented algorithm L L oL 62
3.5.3 Algorithm bounds 66
3.5.4 Physical constraints L 69
3.5.0 Multiprogramming and caching Lo oL 71
3.5.6 General applicability, 73

3.6 Profile Assistance L 75

EXPERIMENTAL OUTCOMES i 80

4.1 Experimental Set-Up 80
4.1.1 Modeled architecture L. 80
4.1.2 Code optimization 81

4.2 Classically Optimized Codes 83
4.2.1 Performance effects of pointer analysis 83
4.2.2 Schedule distributions. o o L 84
4.2.3 Power savings 87
4.2.4 Optimistic pointer analysis 90
4.2.5 Power—performance balanced schedules. 95

4.3 Object and Configuration Statistics 97

4.4 Synergy of Aggressive ILP Optimization with Power Savings 99

4.5 Validating Results: General Sensitivity 106

4.6 Summary of Findings 110

DATA INTENT CHARACTERIZATION i 112

5.1 Algorithmic Properties 113
5.1.1 Example data objects 116
5.1.2 Data intent categories. L 121

5.2 Application of Intent to Buffering 126

5.3 Application of Intent to Sleep Control 132
5.3.1 Compilation for sleepy memory 135
5.3.2 General applicability, 141

RELATED WORK e 143

6.1 Cache Adaptation. 143

6.2 Cache Sleep 145
6.2.1 Hardware sleep management 145
6.2.2 Compiler-controlled cache sleep 146

6.3 Embedded Compiler Technology for Memory Optimization 147

vii

6.4 Scratchpad Allocation 148

6.5 Custom Partitioned Data Layouts 150
6.6 Data Relayout for Cache Performance 152
6.7 Performance/Power Trade-Offs: Other Approaches 154
6.8 Technology: Leakage Control 155
6.9 Pointer Analysis 156
6.10 Memory Characterization 156
SUMMARY AND FUTURE WORK 160
REFERENCES e 164
VA 174

viii

LIST OF TABLES

Table Page
1.1 Embedded/DSP processors: dynamic data cache versus on-chip SRAM power. 3
1.2 Power and energy terminology and domain-specific concerns. 5
2.1 Average number of run-time accesses per global and heap object; Afc(h)

IPA; inputl from Table 4.1. 27
2.2 Summary of techniques for port and latency configuration. 28
3.1 Benchmarks studied. 43
3.2 Static and dynamic power savings per SRAM configuration type.. 59
3.3 Data object counts and accessibility; no function inlining. 67
3.4 Profiler outputs and uses. 76
4.1 Input sets. . ..o e 82
4.2 Data sizes and access distributions, no function inlining. 98
5.1 Data object categories. 123

X

LIST OF FIGURES

Figure

2.1

2.2
2.3
2.4

2.5
2.6
2.7
2.8
2.9
2.10
2.11

3.1
3.2
3.3

3.4

Standard methods for cutting SRAM access energy: reducing total array

size and port count; values computed using CACTI 3.0 [12].
Baseline subarray SRAM architecture..
SRAM ports and configurability. L o oo

Conceptual view of Configurable SRAM. (a) SRAM configurable at a mul-
tiline macroblock [14] granularity, (b) a “hot” (high power) configuration
that saves an estimated 22.8% leakage power, and (c) a cooler configura-

tion saving 55.6% leakage power.
6T SRAM cell: primary leakage paths [18].
Self reverse biased SRAM (SRB) [9].
SRAM control mechanism.
Power comparison of various SRAM approaches.
Mapping the g721dec application to configurable SRAM..
9721dec: determining 1P-1C storage for /0 data in_buffer and in_bits.. ..
g9721dec: accommodating 1P-3C storage for LT arrays fitab and witab. . ..

IMPACT infrastructure. e e
Compiler flow.

Pointer analysis accuracy for the mpeg4dec function GetContextInter. For
the same memory operations, arcs represent potential object accesses, as
determined by (a) an accurate Afc(h)formulation, and (b) a straightforward
Steensgaard implementation (S). Note that many more objects appear to

be accessed in (b).

Pointer analysis accuracy for the h263dec function idct. For the same mem-
ory operations, arcs represent potential object accesses, as determined by
(a) an accurate Afe(h) formulation, and (b) a straightforward Steensgaard

implementation (S)..

Page

10
12

3.5
3.6

3.7
3.8

3.9
3.10
3.11

4.1

4.2

4.3

4.4

4.5

4.6
4.7

4.8

4.9

4.10
411

4.12
4.13
4.14
4.15

Pointer analysis representations.
Average number of 1oads and stores accessing heap and nonheap objects
for six IPA combinations. A = Andersen. S = Steensgaard. f = field-
sensitive. ¢ = context-sensitive. h = heap-sensitive.,
Typical telecommunication application construction.
Fraction of independent objects for four IPA formulations. S = a straight-
forward Steensgaard implementation. Afc(h) = an accurate formulation.
zS = an optimistic formulation with an inaccurate foundation. zAfc(h) =
an optimistic formulation with an accurate foundation.
Example operation flexibility and object relationships.
Object scheduling bounds and trade-offs.
mpgl23 III dequantize sample function: unbalanced conjoined object
access distribution.

Modeled VLIW architecture issue slots.,
Performance changes realized by classical optimization after various IPA
formations. A = Andersen. § = Steensgaard. f = field-sensitive. ¢ =
context-sensitive. h = heap-sensitive.,
No tolerance, classically optimized schedules: percentage run-time accesses

to various configurations. L L
No tolerance, classically optimized schedules: percentage total data bytes

in various configurations. e
SRAM power savings for data objects allocated to configurable SRAM af-
ter various IPA formations. A = Andersen. S = Steensgaard. f = field-
sensitive. ¢ = context-sensitive. h = heap-sensitive.
Distribution of object placement decisions..
Comparing SRAM power savings for data objects scheduled following con-
servative and optimistic analyses. A = Andersen. S = Steensgaard. f =
field-sensitive. ¢ = context-sensitive. h = heap-sensitive. z = zero-weight
EXCIUSION. o e
Detailed comparisons of data power savings from zero-weight pointer anal-
ysis based on accurate (zAfc(h)) and inaccurate (2S5) formulations.
Comparison of zero-weight pointer analysis object dependence markings to
real multi-input memory access behavior..
Contribution of independent data objects to total SRAM power savings.
Increase in single- or no-access object counts for Afc(h) versus zero-weight
zAfe(h) pointer analysis.
Moderate slowdown: access distributions to various configurations.
Moderate slowdown: data bytes stored in various configurations.
SRAM power savings with moderate performance degradation (< 5%).
Increase in data space to due alignment of each configuration type to
128 byte and 256 byte macroblock bounds. 0 ...

xi

92

85

85

90

4.16

4.17

4.18

4.19

4.20

4.21

4.22

4.23

4.24

4.25

4.26

4.27

4.28

4.29

4.30

4.31

4.32

4.33

5.1
2.2

9.3
5.4
9.9
2.6

Performance improvement of ILP-optimized code.. 100

Code size expansion for aggressive ILP optimization. 100
Percentage run-time accesses to various configurations: ILP-optimized code,
no performance degradation tolerated. Lo L L L. 102
Percentage total data bytes in various configurations: ILP-optimized code,
no performance degradation tolerated. oo L oL 102
Data power savings for ILP-optimized code, no performance degradation
tolerated. 102
Moderate slowdown: percentage run-time accesses to various configura-
tions: ILP-optimized code, no performance degradation tolerated. 103
Moderate slowdown: percentage total data bytes in various configurations:
ILP-optimized code, no performance degradation tolerated. 103
Moderate slowdown: data power savings for ILP-optimized code, no per-
formance degradation tolerated. Lo L. 103
Net instruction and data power savings for ILP-optimized code relative to
classical optimization. 104
Moderate performance tolerance: net instruction and data power savings
for ILP-optimized code relative to classical optimization................ 104
% Per formance improvement : % Power increase ratio for ILP versus
classical optimization. 105
% Per formance improvement : % Power increase ratio for ILP versus
classical optimization, moderate performance tolerance. 106
General sensitivity to port count: single cycle memory access; increasing
port count from left to right; classically optimized code. 108
General sensitivity to port count: three cycle memory access; increasing
port count from left to right; classically optimized code. 108
General sensitivity to memory latency: two ports for all data; increasing
latency from left to right; classically optimized code.. 108
General sensitivity to port count: single cycle memory access; increasing
port count from left to right; ILP-optimized code. 109
General sensitivity to port count: three cycle memory access; increasing
port count from left to right; ILP-optimized code. 109
General sensitivity to memory latency: two ports for all data; increasing
latency from left to right; ILP-optimized code. 109
Typical ASIC telecommunication/media flow. 114
9724 dec access patterns for all accessed global objects, correlated with the
function call trace.. 115
Example state (ST) array: gsmdec gsm_state.v. 117
Example look-up table (LT) array: g721dec power2. 118
Example coefficient (CO) array: gsmdec LARp. 120
Example temporary (TP) array: jpegdec workspace. 121

xii

2.7
2.8
2.9
5.10
0.11
5.12
5.13

5.14

2.15
2.16
5.17
5.18
5.19
2.20

7.1

9724 dec memory traffic phasing: arrays categorized according to Table 5.1. .. 122

Run-time distribution of intent categories. 125
Dynamic and static function ownership of objects. 126
Data access models. e 127
Memory buffer view. 130
Register view: computational sources. 130
Run-time memory traffic captured by allocating key arrays to an on-chip

“memory view” buffer. L 133
Performance improvement from allocation of key arrays to an on-chip “mem-

ory view” buffer. 133
Power savings from access to an on-chip “memory view” buffer. 133
Instructions for compiler-managed owner-based sleep. 136
Sleep operation statistics. 138
Sample sleepy memory allocation and utilization. 139
Macroblock utilization with “caller-induced” sleep. 140
Total utilization of all data space with caller-induced sleep. 141
Domain space. 161

xiii

1 INTRODUCTION

Traditional scaling trends indicate that as CMOS process technology improves and fea-
ture sizes shrink, leakage currents will soon vie with capacitive switching for dominance
of overall microprocessor power consumption. In most design domains, these increased
subthreshold drain-source currents demand that static power be brought under control,
while dynamic power budgets are pushed to their limits by performance requirements.
Traditional power mitigation techniques take a brute-force approach by changing tran-
sistor design or reducing system-wide voltage. Because processors have become more
complex and application complexity will continue to grow for the foreseeable future,
new, more sophisticated, power management mechanisms are needed to reign in both
static and dynamic power.

In the embedded space, processors were traditionally small and specialized, but for
consumer devices, increases in application breadth and complexity have necessitated
multi-issue architectures, supplied by correspondingly large amounts of on-chip, mul-
tiported, data storage. Relative to logic, the proportion of power consumed for data
storage is of increasing concern. Currently, up to 50% of high-end embedded device

power is dissipated in on-chip data storage [1]. Many previous works have focused on

embedded cache power consumption [1], [2], but as indicated in Table 1.1, a large num-
ber of embedded processors have significant amounts of on-chip, noncache SRAM, which
may consume a large amount of data storage power.! Some of these product SRAMs
are partitioned or banked, but the sheer size of provided on-chip noncache storage still
makes access cost quite high relative to data cache access.

The fourth column of Table 1.1 shows the dynamic power cost of access to each
product’s noncache SRAM relative to the cost of accessing its data cache. If an equal
number of accesses occur to SRAM and data cache, this represents the fraction of dynamic
on-chip data power consumed in noncache SRAM. In an SRAM, static power is consumed
proportional to the number of cells in the storage array. If designed with similar transistor
sizing, i.e., having the same leakage per data storage cell, the cache and SRAM sizes for
each processor result in the relative data array static power consumption shown in the
last column of Table 1.1. The consistently high cost of noncache SRAM clearly shows
that there is need for consideration of noncache power in this design space.

As will be discussed further in the following section, unique characteristics of the em-
bedded domain must be taken into account for designs in this space. Ideally, a low-power
embedded memory system would maximize power reduction by providing differentiated
service according to data access needs (giving fast access to critical loads and using

low-power storage for less important data); use software control for predictability and to

'Data cache and noncache SRAM sizes are derived from processor datasheets, and dynamic power
estimates calculated using XCACTTI [3]. Array banking, cache associativity, and number of access ports
are taken into account in the relative dynamic power calculations, and a 0.13-pm technology is assumed.

Table 1.1 Embedded /DSP processors: dynamic data cache versus on-chip SRAM power.

Processor D-Cache Size | SRAM Size | Relative Power Cost SRAM Static
of SRAM Access Power Contribution

Atmel AT91RM3400 (ARM) 0 96 kB 100% 100%
Atmel AT91RM9200 (ARM) 16 kB 16 kB 11.9% 50%
Atmel AT91FR40162 (ARM) 0 256 kB 100% 100%
Blackfin ADSP-BF533 32 kB 36 kB 55.7% 53%
Blackfin ADSP-BF533 0 68 kB 100% 100%
Hitachi SH7750S (SH4) 16 kB 0 0% 0%
Hitachi SH7750S (SH4) 8 kB 8 kB 44.0% 50%
Infineon TC1130 4 kB 92 kB 83.4% 96%
Motorola MCF5216 2 kB 64 kB 92.5% 97%
Motorola MPC8540 32 kB 256 kB 57.6% 89%
Power405GPr 16 kB 4 kB 21.8% 20%
Power405GP 8 kB 4 kB 30.0% 33%
STMicro NOMADIK 16 kB 48 kB 55.2% 75%
TI’C6701 0 64 kB 100% 100%

TI °C6204 0 64 kB 100% 100%
Xilinx ML310 XC2VP30 0 340 kB 100% 100%

maintain applicability for real-time systems; and provide explicit control over cycle degra-
dation, to allow optimization of system-level power. As explored in previous work, power
can be saved by providing customized data storage arrays with varied port and latency
properties [4], but this compromises the generality and reusability of both hardware and
software. This work instead uses recent SRAM technologies to configure access latency
and port counts in the field. A dual-ported, software-managed SRAM is assumed as a
baseline, and the capability to increase access latency or shut-down either port in multi-
line configuration regionsis provided. Access differentiation is available to data stored in a
noncache, software/compiler-managed SRAM. This combination of SRAM port, latency,
and sleep control with compiler technology for automatically realizing power savings has

been termed configurable SRAM, or C-SRAM.

1.1 Embedded Domain Background

Introduction of third generation (3G) telecommunication and media standards has
accelerated development of hand-held wireless devices. Consumer demand has incited
competition for rapid turn-around times, and application size and throughput require-
ments of 3G codes have challenged traditional labor-intensive methods of embedded de-
velopment. These factors have made hand assembly coding prohibitively expensive and
led to increased adoption of high-level language (HLL) programming. As a result, the
importance of HLL analysis and compilation have dramatically increased.

While application development in HLLs (primarily C) greatly speeds time-to-market,
it constitutes a fundamental shift in programmer mind-set. An assembly programmer
aims to optimally map algorithms to processor resources, but a C programmer must ex-
press kernel operations in terms of functions, pointers, and data structures, often with
little knowledge of how the compiler will schedule operations and allocate data on the tar-
get platform. Though use of more regular architecture styles for digital signal processors
has made them better compiler targets [5], there are still many difficulties in schedul-
ing code for DSPs. Inefficient HLL data usage and generic procedure invocations may
make it difficult, or even impossible, for a compiler to automatically detect optimization
opportunities and schedule for special features like circular buffers, packed vector par-
allelism, or nonstandard memory hierarchies and partitions. Some compilers implement

these optimizations with programmer directives; however, if HLL source is obtained from

Table 1.2 Power and energy terminology and domain-specific concerns.

Term

Source

Problem

Trend / Domain Constraint

Static Power

Subthreshold source-drain leakage currents

Growing contribution to total power for sub-
micron technologies

Management mechanisms must be simple for this
domain (e.g., software management instead of
hardware detection)

Dynamic Power

Switching (charge and discharge of
capacitances)

Formerly largest contributor to total power

Correlated to design complexity
designs should be minimal

added logic in future

Total Power Static Power + Dynamic Power Tot. power should be minimized in this domain | Increases across processor and SRAM generations
Peak Power Theoretical Max(Static Power + Dynamic Cooling and packing are designed for peak Inclusion of thermal probes or other general-purpose
Power) at some time point power to guarantee thermal failure prevention | domain mechanisms to detect crisis can be too
expensive
Energy (Total Power) * Time Battery life Always a fundamental design constraint

a vendor, addition of directives is difficult because the vendor’s code structure and al-
gorithms are unfamiliar. Future embedded processing enhancements need to avoid these
manual development steps — mechanisms should be good compiler targets; the applica-
tion programming model should not need modification; and provided resources should
closely match the properties and needs of telecommunication and media applications so
that usage and benefits are as intuitive as possible.

Table 1.2 provides basic definitions of power-related terms used throughout this disser-
tation. Static and dynamic power are concerns for microprocessor design in any domain.
In the consumer device space, however, total power consumption and application exe-
cution time have a direct effect on battery life. Due to both real-time considerations
and overall cost, power management designs should also be built upon relatively simple
control mechanisms, adding minimal cost and uncertainty to the system. These factors

drive the compiler-managed approach taken in this dissertation.

1.2 Contributions

The configurable SRAM approach provides software-managed data power savings
with (1) no change in the programming model; (2) a mode for maintaining predictable
performance; (3) inclusion of heap and stack data; and (4) low microarchitectural cost.
We are aware of only one other technique for compiler-managed data power savings [6],
and it has few of these characteristics. This dissertation describes an SRAM architecture
for configuration, necessary compiler analysis components, and a prototype compiler
implementation for data power savings. The compiler’s ability to guide power savings is
evaluated for twenty-two telecommunication and media applications, and synergy with
traditional and aggressive code optimizations is explored.

A number of previous works have addressed power consumption in the memory sub-
system, but many had significant limitations due to their avoidance of the difficulties
associated with pointer use in high-level language codes. Compiler-managed scratchpad
buffers have been used, for example, for spill code [7]; proposals have been evaluated
primarily on the basis of kernels, and so do not consider programs with high-level lan-
guage pointer usage; or studies achieve power savings through modifications to hardware
caches [1], thus incurring unpredictable performance degradation, which is not appropri-

ate for real-time and performance-constrained embedded environments.

1.3 Overview

Configuration of SRAM port count and access latency is described in Chapter 2.
Discussion includes recent circuit-level techniques leveraged for power savings, microar-
chitectural methods for configuration storage, and comparison of SRAM configuration
to other customized methods for data storage power savings. Automated techniques
for joint operation scheduling and data placement have been integrated into an existing
compiler framework, and are described in Chapter 3. Generality of the implemented
algorithms; the role of interprocedural pointer analysis; and techniques for management
of heap and stack data are discussed. The resulting utilization of various storage configu-
rations, net power savings results, and trends are presented in Chapter 4. Savings across
different code optimization levels are presented, and the benefits of various methods for
compile-time feedback direction are evaluated.

The notion explored in this dissertation, i.e., differentiated data access servicing,
originated from a detailed characterization of telecommunication and media application
properties, and represents an attempt to match storage properties and power consump-
tion to fundamental algorithmic needs. A characterization of data intent is presented in
Chapter 5, along with possible applications of this characterization to other power and
performance optimizations in the memory subsystem. An overview of related work is

given in Chapter 6, and conclusions and future work are outlined in Chapter 7.

2 CONFIGURABLE SRAM DESIGN

Technology improvements have made transistors increasingly inexpensive to incorporate
into a chip design, but a new obstacle has been encountered: the cost not of fabricating
a feature, but of maintaining it, i.e., the power cost of additional transistors. CMOS
SRAM arrays are composed of rows and columns of single-bit cells, with each cell being
constructed of three, four, or most commonly, six, transistors. Relative to CPU logic,
SRAM arrays are simple, regular structures. They consume, however, an increasing
proportion of chip real estate (upwards of 50% [8]), making them a prime target for
power reduction as transistor maintenance cost increases.

The SRAM used in this work results in a marginal increase in data storage structure
size, but reduces the maintenance cost of a large software-managed array through ex-
plicit control of fine-grain power modes. These modes are provided by leveraging recent
circuit-level techniques for power savings in unified SRAM arrays, including self reverse
biasing [9], floating bitlines [9], [10], and Vg4 throttling [11]. Each has been previously
applied for hardware-controlled cache sleep, but to increase predictability of both access
time and energy consumption, they are instead used here in a collaborative software-

hardware approach. As specified by software, multiline regions are configured for the

= 07

£ ol | —— 1RWPort =

B 45| (== 2RWPots _—

;‘3 0.4 /.,/

; 03 — /

2 02 —

5 . *

w 0.1 *«—

JER ‘ ‘

a 8KB 16KB 32KB
SRAM Size

Figure 2.1 Standard methods for cutting SRAM access energy: reducing total array size
and port count; values computed using CACTI 3.0 [12].

duration of program execution. Access latency is predictable, and multiple applications
and application upgrades can easily be accommodated.

The chapter provides an overview of low-power, short-latency SRAM design method-
ology, then describes specific techniques to enable port, latency, and sleep control. A
low-overhead control mechanism for multiline SRAM configuration is presented, and a
conceptual view of the power trade-offs of various low-power data storage design styles
is provided. This chapter concludes with an example of mapping application data to

configurable SRAM.

2.1 Building Blocks: SRAM Subarrays and Macroblocks

With each processor generation, on-chip memory capacity has increased in size, ne-
cessitating novel circuit-level approaches to keep area, speed, and power within design
budgets. For standard design, dynamic access cost can be decreased by reducing total

SRAM size, increasing access latency, or reducing port counts. Figure 2.1 shows these

LSU, CPU LSUg

DATA B

DATAA
ADDRESS B
—
ADDRESS A
DataA = Datah J=—
< o ™ o
w B w 3
8 S |- 8 <}
o 2 o E
é] >
W,
L
S S U ostag |
e L [omoA
< %] g
w 3 w 8
8 gla 8 g
2 m 2 R
(=} m, a »,
> DataB L[DataB

Figure 2.2 Baseline subarray SRAM architecture.

trends for size and port counts, as generated using CACTI 3.0 [12] with 0.13um tech-
nology. Due to the strong correlation of array size with dynamic access power, ASIC
(application-specific integrated circuit) and ASIP (application-specific instruction proces-
sor) designs commonly use partitioned SRAMs which each store one or several application
variables [13]. For programmable processors this presents neither a feasible programming
model, nor a scalable circuit design methodology. Instead, design complexity should be
minimized by providing power savings within a uniform SRAM array design, rather than
providing a collection of physically partitioned low-power memories.

Within a uniformly addressable storage space, subarray partitioning provides a means
for favorably trading off power, area, and timing. A microarchitectural diagram of a
dual-ported, noncache SRAM data array design is shown in Figure 2.2. To reduce access
latency and power consumption, the wordlines and bitlines in the figure are each divided

once, so there are four subarrays with separate decoders. Bitlines are shorter, reducing

10

the length of capacitive wires switched on each access, and wordlines are divided, reducing
the number of cells activated by a given address. Subarrays have an A port and a B port,
each fed with an address from a processor load-store unit (LSU). As a baseline, this work
assumes an SRAM access latency of one cycle, so a new request may be issued to each of
PortA and PortB once per CPU cycle. The implemented compiler technology, however,
handles SRAM latencies of any number of processor cycles (see Section 3.5.2).
Subarrays alone, however, are not sufficient to tackle modern power and timing diffi-
culties. The macroblock approach takes partitioning one step further without requiring
replication of decode logic [14]. According to this methodology, both the bitlines and
wordlines of the memory array are broken into segments, forming blocks of memory stor-
age cells placed adjacent to one another to create an array of the desired size. This
chessboardlike means of array construction allows one to view the array as easily par-
titionable both vertically (like traditional banking) and horizontally (into contiguous
multiline regions). Figure 2.3(a) shows the conceptual subdivision of an SRAM sub-
array from Figure 2.2 into macroblocks of cells. In addition to further partitioning of
bitlines and wordlines, sense amplification and bitline precharging are localized. Mac-
roblock partitioning is designed for power and access latency reduction, but provides a
logical multiline granularity for controlling the configuration of SRAM regions. Banked,
or vertically partitioned, cache and memory structures are increasingly common in the lit-
erature and in practice [15]. However, to our knowledge, the use of horizontal partitions

has not been explored for differentiated power savings (aside from hardware-managed

11

CPU LsU CPU
LSU, B LSU, LSUg
A A A
DATAB DATA B
DATAA DATAA
ADDRESS B 1 ¥ ADDRESS B v
ADDRESSA ¥y ADDRESSA ¥y J
ADRSI[3:2]
? Wgrd A SeLed . 7™ WordASelect
T k) T
14 Data}Words ! 14 Data!Words |
| m g iHHi g iHIHH UM
=> All Lines On I
Loc Sense Amps & BL Pre-Charge Loc Sense Amps & BL Pre-Charge
s Ape ST Pt . I L5 S AT 11
| =) =Lines On
[Goosoms e s P =) =Lines Off | |,

v
DECODE A

Loc Sense Amps & BL Pre-Charge

Global Sense Amps
TV TI

14 Data!Words !

v v

- £3
Word B Select

(a) Macroblock detail for single subarray

g9 3a092%3a
I

DECODE A
€ 3009%3a

£

3 3 T
Word B Select ADRS|[3:2]

(b) Port-configured subarray

Figure 2.3 SRAM ports and configurability.

sleep control of individual cache lines [16]). Layout-level implications and snapshots of

the macroblock design style are beyond the scope of this work, but are available in [9].

Zhang et al. [1] indicate that for current low-power designs, caches account for up to

50% of a microprocessor’s energy. While this value is realistically at the upper end of

current embedded on-chip memory energy consumption, it emphasizes the importance of

data power and energy in the design process. In addition to dynamic power, static (or

leakage) power is of increasing concern. Previous work in the area of low-power cache

design has found static leakage power to be 30% of total power in a 0.13-pm process [17].

In accordance with ITRS technology scaling estimates, Zhang et al. [1] indicate that

static power may soon increase to be 50% of total power consumption. Configurable

SRAM

B - shor i, 2Por

Short Lat., 1 Port

Short Lat., 2 Port

Short Lat., 2 Port

Long Lat., 2 Port

Short Lat., 1 Port

Long Lat., 2 Port Long Lat., 1 Port
4 Long Lat., 1 Port
\configuration hot cool
granularity configuration configuration
() (b) (©)

Figure 2.4 Conceptual view of Configurable SRAM. (a) SRAM configurable at a multiline
macroblock [14] granularity, (b) a “hot” (high power) configuration that saves
an estimated 22.8% leakage power, and (c) a cooler configuration saving 55.6%
leakage power.

SRAM aims to address both these contributors to on-chip energy consumption through
port and latency reduction in the field.

Figure 2.4 shows a conceptual view of configurable SRAM. Figure 2.4(a) depicts eight
units of the multiline macroblock [14] configuration granularity. When not configured,
the SRAM is dual-ported and short latency, thus not very power efficient. Figure 2.4(b)
shows a configuration with five short latency, dual-ported macroblocks; one short latency
single port macroblock; one long latency, dual-ported macroblock; and one long latency,
single port macroblock. This results in an estimated static power savings of 22.8% over
the baseline fast, dual-ported design, and the dynamic power cost of access to data in long
latency regions is also reduced. However, if the compiler can exploit more code flexibility,
the cooler configuration shown in Figure 2.4(c) can be used. This configuration specifies

that more macroblocks be placed in each low-power configuration type, and results in

13

an estimated 55.6% static power savings over the baseline design. Derivation details of

these power savings are given in subsequent sections.

2.2 Port Configuration

If two different versions of SRAM are built, one dual-ported and the other with a
single port, there is no control needed for port “customization” and no added hardware
cost. The SRAM arrays themselves are not configurable, but the compiler or programmer
may choose to allocate objects to an array with multiple ports or an array with a single
port. This is the approach taken in previous work [13].

A standard six-transistor SRAM cell is pictured in Figure 2.5. At the cell level, a port
consists of two bitlines to read the cell’s single-bit content (BitLine and BitLine) and a
wordline for addressing the cell. Before a cell’s contents may be read, both BitLine and
BitLine are precharged to the supply voltage, Vyy. Ninety-three percent of leakage passes
through the two paths drawn: Vz;—to—ground and precharged-bitline-to—ground [18].
For speed, the cell access transistor, M1, and the nMOS pulldown, M2, are designed with
low threshold voltage (V;), causing high leakage currents across them. This work targets
the bitline-ground path in a configurable manner.

Characterization studies we performed indicate that while overall application perfor-
mance may moderately react to a drop in available memory resources, there is significant
variation in the needed number of resources across an application. For loads not sensi-

tive to the number of ports, i.e., computation is not slowed when the compiler’s scheduler

14

Figure 2.5 6T SRAM cell: primary leakage paths [18].

has fewer available memory ports, unneeded ports may be turned off. Essentially, if all
accesses to a data object can be guaranteed to use only one of two available ports, the
unneeded port can be turned off for the cells holding that object.

A simple method for turning a port off is to allow its corresponding bitlines to float.
Floating bitlines are not precharged at each access cycle and reduce bitline-ground leak-
age current because the values stored in SRAM cells set the bitlines to a midrail voltage
(a value somewhere between the supply Vg and ground). This midrail voltage is optimal
for reducing leakage current across the cell access transistors. This means, however, that
these cells cannot be read, so their corresponding port is effectively “off.” Floating bit-
lines were applied to the instruction cache and register files in [10], and in their proposal
for self reverse biasing, Bhavnagarwala et al. [9] include a technique that allows SRAM
bitlines to float.

Compiler techniques can provide guarantees as to when ports will be needed and
supply information for software control of port turn-off. Because ports are explicitly
disabled, configurable SRAM could go a step beyond bitline floating and also turn off the

subdecoder logic for a configured port’s macroblock. Available cache power estimation

15

tools do not accurately model decoder power, so this added power savings is not figured
into C-SRAM power estimations. Because row decode delay is commonly on the critical
access path [19], row decoder transistors are sized for access speed (have low V}). Decode
logic is thus prone to leakage, and is likely to benefit from explicit software control.

At the microarchitecture level, Figure 2.3(b) shows an example port configuration of
a subarray as follows: Region 1-PortA off, PortB on; Region 2-both ports on; Region
3-PortA on, PortB off; Region 4-both ports off. As will be described in Chapter 3,
the compiler’s object placement decisions are constrained by data access characteristics
and relationships among objects. Regions 1 and 3 have opposite ports open so as to
allow simultaneous access to two different objects, each of which resides in a port- and
power-reduced region.

Floating bitlines were applied to the instruction cache and register files in [10], but the
literature lacks a control mechanism that allows their application to data storage without
performance penalty. Some recent SRAMs have been designed with selective subarray
precharge, which allows bitlines to float in subarrays which do not contain the currently
requested data. Early decode of upper address bits is used to signal bitline precharging
in a single subarray per data request. Such early decode and selective port wake-up adds
to the total access time for all SRAM contents. In the general-purpose domain, this delay
has been found to be inviable for level-one caches [20]. For configurable SRAM, we sought
to provide a port turn-off mechanism with minimal timing penalty and granularity finer

than the subarray (the macroblock). Port usage is explicitly managed by the compiler

16

and remains stable for the entire application run, so wake-up need not be designed into

C-SRAM cycle time.

2.2.1 Overhead of port configuration

As previously indicated, Bhavnagarwala et al.’s [9] self reverse biasing (SRB) included
bitline floating. Implemented in a commercial-quality design, SRB was found to have
only a 3% area overhead. Because bitline floating is only a small part of the total SRB
mechanism, its area cost is minimal. Heo et al. [10] appear to consider the area penalty
of bitline control to be negligible and do not evaluate it. For configurable SRAM, the
primary cost is not in hardware, but rather in implementation of flexible machine de-
scription and decision mechanisms so that the compiler can (a) understand the available
memory resource configurations, (b) decide whether to turn ports off for a particular pro-
gram variable, (c) schedule individual operations to access variables using only available
ports, and (d) respect interprocedural pointer behavior which causes aliasing of program

data. Solutions to these problems will be described in Chapter 3.

2.2.2 Power savings of port configuration

Studies have shown that on average, 70% of stored data bits are zero [21]. When
bitlines are allowed to float, this percentage will set the bitlines to a midrail voltage
indicated in [10] to reduce subthreshold leakage sufficiently to cut total static power in a
dual-ported SRAM by 45%. One-half this value (22.5%) will be assumed to be the static

power savings for turning off a single port, but it should be noted that additional savings

17

would be realized from gating a port-configured region’s subdecoders. The presented
results are conservative in that they do not account for savings from gating subdecoders

and wordline drivers.

2.3 Latency Configuration

Typically, processor performance is highly sensitive to the latency of first-level mem-
ory. Without the ability to analyze load sensitivity to access latency and accordingly
control data placement, there would be little reason to want to degrade SRAM/cache
performance. In fact, many dynamic voltage scaling (DVS) approaches attempt to scale
the V4 supplied to CPU logic, not memory, during times when distant cache misses are
being serviced [22], [23]. The analysis described in Chapter 3 instead allows latency to be
increased in SRAM sections designated to hold data objects that are not (or are rarely)
accessed on a critical schedule path. This differentiates accesses required to be fast and
those that can be slowed with little or no performance impact, providing significant
dynamic and static power savings.

This work assumes such differentiation can be provided using DVS and SRB. In
addition to the dynamic power savings of DVS, SRB cuts leakage by 80%, and can be
implemented in a programmable circuit, i.e., turned on and off [9]. Both DVS and SRB
increase data access time. To simplify circuit implementation cost and configuration
logic, this work assumes one latency step, so there are two possible memory operation

latencies.

18

2.3.1 Overhead of latency configuration

Figure 2.6 shows the circuit added to the local bitline and sense amp region of each
macroblock in order to enable SRB. As mentioned, the area penalty of this circuitry,
including that for bitline floating, is measured by Bhavnagarwala et al. [9] to be 3%.
DVS for sleep mode is estimated in [11] to have somewhat less than 5% SRAM area
overhead and have little impact on the SRAM array’s power consumption [11]. With
respect to fabrication cost, use of DVS will require a second metal layer. This, however,
is no different than previous approaches to cache power reduction, such as the “drowsy
cache,” which uses a multiplexed low voltage line to create a hardware-managed low-

leakage state [11].

2.3.2 Power savings of latency configuration

To calculate the power savings of long latency accesses, [19] provides an approximation
of SRAM access time 7:

- N CsitLine
access KI(%)(‘/;id _ ‘/;

)2 AVvBitL’ine dif ferential (2 . 1)

Some current commercial on-chip SRAMs provide single cycle access, including the At-
mel AT91FR40162 (an ARM-based system with 256 kB SRAM) [24] and the Freescale/
Motorola MCF5216 (64 kB SRAM) [25]. A baseline single cycle access latency and a
three cycle low-power latency are assumed for the majority of the results described in

Chapter 4. A study of scheduling opportunities at greater latencies is also presented in

19

BL VDD BLB

BL VDD BLB
VGND VGND
i 4w L Iy B 1
NW <4 w Nwp NW
R e PRI
S g8 & M= &
Sub-Array
g N
= R R
| I | [i
GND SRB

(a) Baseline cell / subarray circuitry.

VGHD g »
SRE +
LTt
Ly 4 :
SLP §
GHD i —#— -

(b) Added logic for programmable self reverse biasing.

Figure 2.6 Self reverse biased SRAM (SRB) [9].

20

Section 4.5. The TSMC! low-power 90-nm process technology with standard V; tran-
sistors has a baseline Vg3 = 1.2 V with nMOS and pMOS V; = 0.45 V [26]. Power
savings due to latency scaling from one to three cycles is computed from Equation (2.1)
as follows:

When 2% = 3, (2.2)
Tfast

(Vadshort — Vi)?

=3, so 2.3
(Vaarast — Vi)? (2:3)
Vaashort = 0.88V (2.4)
Powershort
P saved = 1 — ———— 2.5
OWET gqved Power 1o (2.5)
Powergynamic < Vaa®, 80 (2.6)
V2
Powerggpea = 1 — % (2.7)
ddLong
0.882
Powerggpea =1 — 1.92 = 46% (28)

If either general-purpose or high-speed TSMC process parameters are used, dynamic
power reduction is greater (51% for general design and 54% for high speed technology),
but this work aims to demonstrate compiler-controlled power savings on top of a low-
power baseline design.

The static power reduction due to enabling self reverse biasing in long latency con-

figurations is assumed to be 80% [9], although additional leakage savings are anticipated

!Taiwan Semiconductor Manufacturing Company, Ltd., http : //www.tsmc.com.

21

from voltage scaling. In addition to leakage power, SRAM cell stability, i.e., the ability
to maintain correct data as a bit, and surrounding bits, are read and written and dis-
ruptions are encountered from the environment, is projected to be a problem in future
technologies. Stability is worsened by low Vg,/V; ratios. If the parameters described
above are not feasible for a given implementation and fabrication environment, there is
still significant room for power savings by (a) reducing the V4 drop (e.g., for V; = 0.45
V, maintaining a Vy4/V; ratio of 2 at Vygpeng still realizes a 44% drop in dynamic power);
or (b) using a lower threshold voltage (e.g., as specified for the TSMC general-purpose
technology V; = 0.45 V). Sense amplifier design is complicated by voltage scaling, but [19]
demonstrated SRAM functioning at 0.9 V-1.6 V with a novel glitch-free sense amp de-

sign. A single sense amplifier can thus be designed to handle operation at Vygreng and

Vadshort-

2.4 Sleep Mode

Because both DVS and SRB are incorporated to enable port and latency configura-
tion, sleep mode comes “for free” by voltage scaling a macroblock and turning off both
ports. In current embedded processor design, noncache data and instruction memory siz-
ing are determined based upon a summation of the needs of the anticipated application
suite. When a traditional SRAM memory is sized to accommodate multiple applications,

the whole memory is on, and all data is held ready, regardless of which application is

22

[~] CONFIG
DATA ¥ 3 L) wse
29 APort Off[BPoit Off] Latshey | Multi-line def SKIP 4 * MACROBLOCK SIZE . ‘M;fl‘;‘;',‘)”k
1 bit 1 bit 1 bit Macroblock ADRS § , .
set_psr CONFIG, 1 A | O
SRB nzil,) g NI
o H
% DVS LOOP: 08 L
T on P load R1, ADDRyu, cowss o
N VDDH' h{\‘]_’ Power Line store ADDR,. ., Rl M
4111 o9 add ADDR, .., ADDR, ., SKIP
] .| (BLFloat; WL & add ADDRyr, couers, ADDRoyrs coners, 4
a Decode Gating), brlt LOOP ADDR, ADDR,
1113 (BL Float; WL & 3% —
E Decode Gating), set_psr CONFIG, 0 DATA [31:29] CONFIG
(a) Configuration storage cells and logic for each multi-line region (b) Setting the configuration control bits

Figure 2.7 SRAM control mechanism.

executing. If a sleep configuration is provided, regions not belonging to the currently
executing application can be put to sleep.

For the target application space, there are many objects for which a clear correlation
exists between data usage and a particular high-level language routine. This occurs due
to underlying properties of telecommunication and media algorithms, in which process-
ing occurs in computational blocks, each of which has its own filter and transformation
coefficients, state variables, and look-up tables. When translated from a mathematical
representation to high-level language, this results in ownership of data objects by par-
ticular functions, indicating that performance is guaranteed to not be impacted if these
objects are put in a low-power sleep state when their owner functions are not executing.
Our experiments indicate that software sleep control based on this ownership property
could realize data sleep time within 10% of hardware techniques such as the “drowsy

cache” [11].

23

2.5 Setting and Storing Configurations

The macroblock level control logic (Figure 2.7(a)) for controlling configurability is
only slightly more complicated than that proposed in [11] for sleep control alone. The
proposed mechanism requires three one-bit cells per macroblock (A Port 0ff, BPort
0ff, and Latency [Long]) and, more importantly, only adds a single configuration line
(CONFIG) to the SRAM array. A single-cell, per-line drowsy bit and associated logic
were calculated by [11] to impact data array area by 2%; since the C-SRAM mechanism
requires three bits per region (8-32 lines), its impact on overall area should be less than
2%. Also, since C-SRAM configuration is determined on a per-application basis, not
dynamically at short intervals, configuration logic speed is less important for C-SRAM,
and so may be designed with low-leakage (slow) transistors so as to have a negligible
impact on overall static power consumption.

As shown in the pseudo code of Figure 2.7(b), to configure a region, the CONFIG
line is set via a processor status register. A general register (R1 in (b)) is then set to
contain the configuration bits, and this value is sent to the control cells via a conventional
store operation. Address decoding is commonly a three-stage process [11]. The stage
of address decoding that selects a macroblock is used to select the target configuration
cells. A 32-bit data line is assumed to configure eight multiline regions, leaving room for
up to four configuration bits per macroblock, although only three are used in our current
design. Each configuration store receives a different set of four bits from the DATA line.

In the Figure 2.7(b) pseudo code, the R1 data is received from the DATA bus and used to

24

set the configuration bits of the pictured macroblock and three subsequent macroblocks.
After all regions have been configured via sequential store operations, the CONFIG bit is

returned to zero.

2.6 Amortizing Configuration Cost

The time and power necessary to charge and discharge capacitances impose configura-
tion costs on any mutable circuit component. While voltage scaling achieves significant
dynamic and static power savings, its cost occurs when cells are brought back to the
standard Vj; from a lower operating voltage. Where C; is the internal capacitance of an
SRAM cell, the energy loss from charging cells at a low voltage Vzyr, up to a high voltage
Vian 18

Esaved = line_size_in_bits * C; x (Vagw — Vaar)? * Terk (2.9)

The energy dissipated in waking a 128-bit sleeping voltage-scaled cache line was previ-
ously found to be equivalent to its static energy consumed during 200 cycles [11]. The
0.18um amortization time for floating bitlines was also found to be 200 cycles in [10].
While these values do decrease for smaller technologies with lower supply voltages, con-
sidering configuration overhead is an important factor for any adaptive or configurable
system.

For embedded processors, battery life (and thus energy consumption) will always be
a fundamental design constraint. In this context, the danger of an automatic hardware

configuration mechanism to control sleep, cache way shut-down, or other data storage

25

properties is that the initiation cost may not be fully amortized over the time spent in
a low power configuration, or throttling mechanisms to prevent performance degrada-
tion may constrain actual power savings. Because C-SRAM configurations are set at the
application level, where there are many execution cycles and hundreds of thousands, or
millions, of accesses to each data object, amortization constraints are easily met. For ex-
ample, processing 318 global system for mobile communications (GSM) enhanced full rate
(EFR) speech decoder frames (g724dec benchmark — 6.26 s) entailed 3.9 million memory
accesses. Similarly, processing 108 s of 128 kbits/s MP3 music (mpg?23 benchmark) re-
quired 750 million memory accesses. Additionally, because reconfiguration is amortized
across many operations and many cycles, this relaxes circuit design constraints, and may
allow circuit designers to provide greater power savings than those possible for short-lived
configurability controlled by hardware mechanisms.

Detailed listings of the average number of run-time accesses to global and heap data
are provided in Table 2.1. For most applications, objects are used hundreds of thousands
of times over the course of a short input (see Table 4.1 p. 82 for definitions of the input1
used here for evaluation). The ¢724 GSM-EFR cellular codec input length, for example,
is 285-frames, or 5.6 s. mpg123is listed in Table 2.1 as a benchmark with heap utilization,
but for inputl’s conditions, only one malloc() site is reached. Use of dynamic memory
in this benchmark requires options such as downloading a file from an http:// site, or
use of an mmap-based routine for accelerating parent-child process data transfer. Realistic

application implementations specialized for particular processing or usage environments

26

Table 2.1 Average number of run-time accesses per global and heap object; Afc(h) IPA;

inputl from Table 4.1.

Application | Average Number Run-Time | Average Number Run-Time
Accesses per Global Object Accesses per Heap Object
adpcmdec 103 412.4 —
adpcmenc 103 412.4 —
g721dec 1451 186.7 —
g721enc 1622 598.7 —
9724 dec 82 920.4 —
g724enc 338 174.1 —
autcor00 44.5 —
conven00 4508.4 —
fbital00 2346.3 —
oo 2513.9 —
viterb00 3004.2 —
gsmdec 19 988.5 1 958 790.5
gsmenc 74 467.3 7 564 550.5
h263dec 112 051.3 1 582 541.3
h263enc 549 235.0 11 406 784.4
mpeg2dec 102 290.5 748 000.0
mpeg2enc 133 796.8 23 981 431.5
mpeg/dec 546 696.4 8 205 706.6
Jjpg2Kdec 122.8 2 530 268.7
mpg123 88 577.1 0.0
Jpegdec 115.5 410 945.5
jpegenc 811.1 796 292.0

27

Table 2.2 Summary of techniques for port and latency configuration.

Circuit Contributed Added Components Power Saved Area Cost

Technique Configurability

Bitline float Port turn-off Precharge gating and | 22.5% leakage / port Bitline float + SRB =
control 3%

Self reverse | Leakage reduc- | SRB signal, nFET, | 80% leakage Bitline float + SRB =

biasing tion when latency | pFET 3%

increased
DVS Dynamic power | DVS signal, second Vy; | 46% dynamic power <2%

reduction when | line
latency increase

SRB + DVS | Sleep Components included | 80% static power; with | No additional area (in-
for port and latency | another control line, en- | cluded in port and la-
configuration hanced SRB can provide | tency configuration)

90% “deep sleep” power
reduction

would be implemented without heap use. The low mpgl123 heap access values are thus
not of concern with regard to amortization of configuration cost. Average access counts
for the Embedded Microprocessor Benchmark Consortium (EEMBC) [27] benchmarks
(autcor00-viterb00) are low, but this is to be expected because they are kernels, and
in a real processing environment, would be enclosed within a larger application. For
kernels, access averages scale with input size and number of kernel iterations, so data

configurations are easily amortized over the course of execution within a full application.

2.7 Comparing Configurable SRAM Power to Customized Approaches

Table 2.2 summarizes the proposed C-SRAM circuit techniques and their power and
area implications. In total, area overhead is anticipated to be less than 5%. To evaluate
the power benefit of C-SRAM, Figure 2.8 visually summarizes the power differences be-
tween the configurable SRAM approach and previous proposals for data power savings.

The front of each power “bucket” is divided into the principal contributors to dynamic

28

%)
b
z
o
he}
o
=
0]
<

(%))
2 d
: Decode| = Decode ?
3 2
(I s o
(I Q B
Decode ' s
1 <
T P>
(a) 64KB Unified (b) 32 + 16 + 16KB (c) 64KB Single- (d) 64KB Unified
Dual-Port SRAM Customized, Physically Access, Single-Port, Dual-Port SRAM,
Partitioned, Single-Port 3-cycle Latency Previous Sleep
SRAMSs Configured SRAM Approaches

Figure 2.8 Power comparison of various SRAM approaches.

29

per-access SRAM power, as scaled according to results facilitated by XCACTTI [3]. Static
power levels are denoted on the sides of each bucket. The single-access dynamic power
advantage of customized, physically partitioned memories is clear in Figure 2.8(b), where
instead of a unified 64-kB SRAM (Figure 2.8(a)), three smaller memories comprise the
total storage area. As shown, physical partitioning realizes significant dynamic power
savings. However, such customized partitioning sacrifices hardware generality and re-
quires complex programming, compiler, or operating system models, and is therefore not
a feasible solution for programmable embedded systems. Figure 2.8(c) shows the dynamic
and static power implications of a configurable SRAM array customized for single-ported,
long-latency access. As far as we are aware, previous approaches to realizing data stor-
age power savings at run time have only targeted leakage, primarily through invocation
of sleep modes; as is clear here, there are also meaningful dynamic savings to be had
via latency configuration. While some previous hardware-controlled sleep approaches
do marginally raise dynamic power consumption, Figure 2.8(d) shows that conceptually
there will be negligible change in dynamic power for sleep-based power savings, while

leakage alone is likely reduced on average by 75% [11].

2.8 Application Data Configuration Example

Figure 2.9 shows a mapping of the g721dec application to configurable SRAM. The
g721dec call graph is shown in Figure 2.9(a), where each block contains a single sub-

routine and the data objects it accesses from global data space. The mapping of these

30

data objects to configurable SRAM without performance degradation is pictured in Fig-
ure 2.9(b). The designation nP — mC indicates the number (n) of ports used in each
region, and the number (m) of Cycles needed for a load access. Function stack space
(local variables) is left in the generic SRAM region with two ports and 1 cycle load
latency.

The first configured segment is occupied by power2, a math look-up table used by the
quan routine. Like many look-up tables in this application space, power2 is not interactive
with other objects, but is conjoined to several arrays. Only one load operation accesses
power2, but this operation has little slack, so power2 appears in a 1P-1C region—port
count is customized, but access latency remains low.

The integers in_buffer and in bits are used for application input/output to and
from a file. Figure 2.10(a) shows scheduled code from the unpack_input function which
determines the SRAM configuration needed for in_buffer. The machine description for
this schedule reflects the default SRAM configuration—two memory ports and a one-cycle
load latency. Dependences between operations in this schedule are drawn with black
lines.

This is a control-code type region in which nonparallel bit manipulations are per-
formed, so the dependence height (highlighted in gray) is four cycles, but overall slot
utilization is low. What remains to be examined is the latency sensitivity of the loads to
in buffer and in bits. In Figure 2.10(a), operation 1d0 accesses stack space (a 2P-1C

region), so the load to in_buffer could be moved up into Cycle 1. However, though it

31

main CONFIGURE fitab, witab, dgintab .:-
Stk: 176B CONFIGURE power2
: [main ()] SRAM Parameters:
JSR g7_2x._init (0 32-bit data size,
[g72x_init ()] 16B line length
Y RET —
(" unpack_input) g721_decoder [main ()]
g72x_init state| | _ Stack:64B _ ... Stack: 1208 __| JSR unpack () 1024 KB 1K Stack Space
Stack: 488 e) ' WAKE in_buffer, in_bits 2P-1C
[unpack ()] SLEEP (other tasks)
RET =
SLEEP in_buffer, in_bits
- ' A [main ()] At
predictor_zero| |oredictor_pole| | step_size reconstruct JSR g721_decoder () T ISR
Stack: 80B | | Stack:56B | | Stack: 48 B ftack: 48 BJ WAKE fitab, witab, dqintab 1P -1C | in_bits (4B); in_buffer (4B)
[9721_decoder ()] [Port A On]
JSR predictor_zero () SLEEP (other tasks)
SLEEP fitab, witab, dgintab OFF
[predictor_zero ()] fitab (64B) — 4 lines
fmult update JSR fmult () witab (64B) — 4 lines
Stack. 56 B Stk. 120 B [fmult ()] 1P-3C dglintab (645) _ 4lines
JSR quan ()
WAKE power2 SLEEP (other tasks)
[quan ()] 27
w RET
: SLEEP power2 Unused OFF
Stack: 48 B [fmult ()]
RET
(a) Call tree (b) Function call trace with (c) Configured SRAM

CONFIGURE in_buffer, in_bits Wr

segment sleep control

Figure 2.9 Mapping the ¢g721dec application to configurable SRAM.

Slot0 Slot1 Slot2 Slot3 MemA MemB Slot6 Slot7

Slot0 Slot1 Slot2 Slot3 MemA MemB Slot6 Slot7

1o | y JENEN. [T]
i - —— 2I°m|°pz7l,a |
Sl T [GGl [T] 3fonlon] | Jodll [|
a0 T [| D] T T] 4wl [[Lifo] |

(a) Latency sensitivity of in_buffer load.

(b) Sensitivity of in bits load.

Figure 2.10 g721dec: determining 1P-1C storage for IO data in buffer and in bits.

32

is not directly on the critical path (in gray), the 1oad from in buffer is very close to it
(via the dependence to op2), so increasing its latency to three would increase schedule
height. This operation is thus sensitive to latency, i.e., forces an increase in schedule
height, above a load latency of two.

The sensitivity of in_bits can be seen through the code in Figure 2.10(b). The
load from in_bits is also sensitive to latencies above two, because even if moved to the
first cycle, the chain of dependences following it (shown in green) would cause overall
schedule height to increase. This has an interesting consequence: because the loads to
in_buffer and in_bits are latency sensitive, and their data objects must thus remain in
a 1C region, they are slightly removed from the critical scheduling path (highlighted in
gray) and may be issued in separate cycles. This enables the same port (A) to be used
to access both of them, and means that they may both be placed in the same 1P-1C
segment, without any negative performance consequence.

The arrays fitab, witab, and dqlntab are all look-up tables accessed by a single
function, g721_decoder. Figure 2.11(a) shows the only code that accesses fitab and
witab. The schedule shown originates from the two C code lines:

1: dgsez = sr - se + sez;

2: update (4, y, witab[i] << 5, fitab[i], dq, sr, dgsez, state_ptr);

As highlighted in gray in Figure 2.11(a), the critical operation dependence chain mandates
a schedule height of five cycles. However, the 1oad operations to fitab and witab lie

off this critical path, and the store operations are to stack space, i.e., to data in the

33

Slot0 Slot1 Slot2 Slot3 MemA MemB Slot6 Slot7 Slot0 Slot1 Slot2 Slot3 MemA MemB Slot6 Slot7

1 l sx'd sxt [sxt [sxt STO l mov l ‘ 1 l sxt l sxt [sxt [sxt STO l mov l ‘
W= ;

2 [sub l Isl [] [sT1 I sT2 []\ ‘ 2 [sub | [/ sT1
l/ \ 3Cyc|es)(P

3la] [| Q\\L\\ 3laa] A | 2D N_[]
l N L X Cyces

4l [[T T T INNW 4[===D [[[[¥ |

— N\ by =
s | [[[ss] [el s [[| [ss] [[sR]
(a) Original 2P-1C schedule. (b) New 1P / 2P; 3C / 1C schedule.

Figure 2.11 g721dec: accommodating 1P-3C storage for LT arrays fitab and witab.

2P-1C region. This allows for the schedule adjustments shown in Figure 2.11(b): the
loads to fitab and witab use PortA in separate cycles; the 1s1 operation dependent on
the witab load is moved two cycles later, to Cycle 4; and the load to fitab is moved
to Cycle 2, thus accommodating a three-cycle latency before the jsr operation. These
arrays are thus assigned to the 1P-3C region, in which both port availability and latency
are customized for reduced power consumption.

A function call trace for the highlighted section of Figure 2.9(a) is shown in Fig-
ure 2.9(b). A sample method for sleep control has been inserted into the trace at the
function granularity. This method groups and wakes objects by function ownership (ex-
clusive use) of data objects by subroutines, relating back to the algorithmic underpin-
nings of this telecommunications application. Regions corresponding to each function
are awoken at jsr operations and put to sleep when the corresponding ret operations
are issued. It should be noted, however, that sleep control did result in one unique data
layout decision in Figure 2.9(c), namely, the separation of in bits and power2 in the
1P-1C region. The array power2 has 15 elements, and should normally only require 60

bytes of space, or 3 % lines. However, power2 is accessed by a different function than

34

the I/O data objects, and so for the sake of sleep control, in bits and in buffer would
be placed in a separate region. Invoking a sleep state at the function granularity results
in a reduction of total memory on-time of about 30% for a sample run of the ¢721dec
application, at the cost of reduced space efficiency from alignment of same-owner data
to macroblock bounds.

At the end of each configured region in Figure 2.9(b) is a space marked Sleep. Since
the configurable SRAM space is shared among applications, multiple live datasets may be
present at any given time. By turning off both ports and reducing supply voltage, the data
space of the nonactive applications may easily be put into sleep mode, which preserves
data while significantly reducing leakage. In addition, the SRAM array is closed with
an Off section presumed to be in a low-power, non-data-retaining mode. This additional
area represents over-design of the SRAM capacity for the purpose of accommodating
additional data resulting from standards upgrades or the addition of new applications to

the executable suite.

35

3 COMPILING FOR CONFIGURABLE SRAM

Code generation and optimization for instruction-level parallel processors have tradition-
ally focused on improving program performance. In that context, static analyses were
primarily designed to answer dependence queries which enabled code motion for increased
parallelism. For future technologies, however, power concerns are surpassing performance
demands, and new compiler techniques are needed to tackle the power challenge. This
chapter describes use of advanced interprocedural analysis to enable differentiated data
access, and presents a prototype compilation framework for automated data power sav-

ings.

3.1 Compilation Challenges

The first challenge of compilation for environments with differentiated data access
is safety. For this discussion, transformations and scheduling decisions made by the
compiler will be considered safe if they result in code valid for all inputs. The more
subtle implications of transformations which may degrade performance beyond a real-

time bound will be addressed separately in Section 3.6.

36

Conventional sequential programs have unit assumed latency (UAL): each operation
is assumed to have been completed before the next operation is issued. When statically
determining multiple operations for a very long instruction word (VLIW) architecture,
nonunit assumed latency (NUAL) is more commonly used. NUAL exposes operation
latencies explicitly to the compiler, which prevents interlocking by scheduling operations
only when their inputs are ready. To obtain more efficient schedules, classic multi-
issue digital signal processors (DSPs) have used NUAL EQ (equals) models, in which
operation latencies may vary, but are guaranteed to match a specification [28]. This
restriction sacrifices code compatibility if operation latencies are reduced and also makes
compiler scheduling for differentiated access more difficult. Specifically, EQ code will be
unsafe unless all objects accessible from a single operation appear in storage with the
same latency and all accessors of a given object are scheduled with the same latency
assumptions.

The NUAL LEQ scheduling model assumes that operations may complete before
their indicated latency [29], [30]. Not only does this simplify implementation of precise
interrupts, but for differentiated data access, it also means that data objects accessible
from the same static operation may be placed in storage with different latencies. If the
operation is scheduled for long latency access and instead accesses an object in a short
latency storage region, LEQ code will still be correct. The LEQ model has been adopted
for the StarCore DSPs [31], and is used in this work to ensure safety while increasing the

compiler’s ability to realize data power savings.

37

The LEQ scheduling model relieves some pressure on determination of data access
latency, but when hardware recovery mechanisms are not provided, a complete under-
standing of program memory usage is still necessary to ensure safety. In particular, if port
wake-up and interlocking are not provided, an undefined value is returned from SRAM
if a request accesses a floating port. This work includes the use of optimistic pointer
analyses which result in an incomplete view of memory behavior, and so assumes that
recovery mechanisms are present in hardware (Section 3.3). However, it also includes use
of an accurate formulation of interprocedural analysis, which ensures safety and increases
power savings because recovery mechanisms need not be invoked.

The second challenge of compilation for embedded power savings is performance.
Resource conflicts should be avoided (Section 3.4.1); dynamically allocated data should be
handled with minimal overhead (Section 3.5.1); and performance-oriented optimizations
should be synergistic with power savings (Section 4.4). Ultimately, it is particularly
important for the embedded domain that it be possible to realize power savings without
sacrificing performance predictability (Section 3.6).

Lastly, balancing the cost and benefit trade-offs of various configurations would be an
excessive burden on an assembly programmer, and the high-level language programmer
should not be expected to manage data layout. The compiler should automate the process
of data power management. Much previous compiler analysis and dynamic optimization
work has aimed to understand memory access patterns and re-organize them to improve

caching characteristics. This indirectly realizes power savings because memory traffic

38

more frequently hits in the upper levels of a processor’s memory hierarchy. Configurable
SRAM, however, does not require applications to have regular access patterns; it only
requires that there be regularity in the data usage, i.e., that sections of the memory space,
or data objects, be used in a definable manner. With regard to compilability, one appeal
of the proposed approach is thus that it does not require complex pattern analysis.

For configurable SRAM, the compiler can automate power management by leveraging
and selectively creating memory operation flexibility to exploit power-saving data storage
restrictions. By integrating data placement and power control with the operation sched-
uler, data power savings has been achieved in a free-standing, back-end module, which
does not require modification of optimizing phases of the compiler. This allows arbitrary
optimization levels, and frees the HLL programmer from data power management re-
sponsibilities. The compilation path developed works for general code, so no application

modifications are necessary, and fast data access is provided when needed.

3.2 Framework Overview

The compiler technology described has been implemented in IMPACT [32]. IMPACT
provides an infrastructure for studying instruction-level parallelism (ILP), and includes
compiler modules for analysis and optimization, as well as tools for profiling, emulation,
and simulation. The IMPACT modules used for code analysis and generation are shown

in Figure 3.1.

39

+ C code — Pcode IR
Input__ | EpG || Priatten || PPTfi| 5] pinline IPA P-to-L
Program (Control)

+—— Lcode IR—— Annotated Lcode ———

Scheduled
Scheduling Assembly

Profile
Control

Profile
(Ctrl & Mem)

Figure 3.1 IMPACT infrastructure.

One of the goals of this work was to realize power savings without requiring program-
mers to augment code with pragmas or provide directives during compilation. This was
achieved, and all benchmarks used for evaluation are written in standard C. The Edison
Design Group (EDG) front-end is used, producing Pcode, IMPACT’s abstract syntax tree
(AST) front-end intermediate representation (IR). Pcode control flow profiling provides
annotation of function and code block execution weights, used later to guide function
inlining (in the Pinline module) and zero-weight exclusion analysis in the JPA module.
Various formulations of interprocedural pointer analysis may be performed in the IPA
module, as described in greater detail in Section 3.3. The AST notation is converted to
IMPACT’s assemblylike back-end IR, Lcode, in the P-to-L module. Classical optimiza-

tions [33] are performed by Lopti, and code may then follow one of two paths. Emulation

40

may be used to provide only a control flow profile, feeding aggressive ILP control trans-
formations such as superblock [34] and hyperblock [35] formation in Lblock. If instead
code is to be evaluated after only classical optimization, it is emulated and both con-
trol flow and memory profile information are collected. These profiles serve as input to
the code generator, which includes operation and data placement algorithms. Modules
modified and implemented for this work are shaded in red; yellow modules are used, but,
for the most part, unmodified; and blue modules perform transformations which impact
the compiler’s ability to realize data power savings, as will be detailed in Sections 4.2
and 4.4.

Figure 3.2 provides a conceptual view of the contributions various compilation mod-
ules make toward placement of data in differentiated storage. At the top left of the
figure, interprocedural pointer analysis resolves not only are pointer relationships, but
assigns data objects unique identifiers, and tags objects with their size in bytes. This
IPA information guides a series of performance enhancing optimizations, as well as the
scheduling process. Memory profiling is optional, but when run, provides access weights
for each program data object and helps to estimate the size of live heap allocated data.
Finally, on the far right, the instruction scheduler uses operation slack and object use
information to obtain either a schedule without anticipatable performance degradation,

or a power-performance balanced schedule.

41

Interprocedural 2 Ports?

Pointer Analysis 1Port? Which Port?
Unique Object Operation 1 Cycle Access?
Identifiers Memory Slack 3 Cycle Access?
Object Sizes Profiler ["——t) e eaa
Standard ’ |m—————— ' . I Power/ .
i Instruction O6jeét
C yAccess Weights! Scheduler Performance|
I R _Balance ! Placement
Performance Usage
Enhancement Concurrency

Classic and ILP
Optimizers

Figure 3.2 Compiler flow.

3.2.1 Studied application suite

Throughout the following chapters, reference will be made to a studied suite of
telecommunication and media applications; they are listed in Table 3.1. These applica-
tions originate from an academic benchmarking suite (MediaBench [36]); the European
Telecommunications Standards Institute (ETSI [37]); an industry standard suite for em-
bedded processor evaluation, EEMBC [27]; an open-source JPEG-2000 Partl project
(JasPer [38]); and other independent authors. The size of each benchmark, measured in

lines of C code, is listed in the LOC column in Table 3.1.

3.2.2 Terminology

The available storage configurations and accompanying compiler algorithm leverage
both operation slack (as manifested in the ability to tolerate added load operation la-
tency) and memory slot tolerance (as demonstrated through memory slot issue choice).

By exploiting these forms of code flexibility present in telecommunication and media

42

Table 3.1 Benchmarks studied.

Benchmark Source LOC | Description
adpem{dec|enc} | MediaBench | 0.3K | Intel/DVI ADPCM codec

g721{declenc} | MediaBench | 1.5K | Voice compression according to CCITT G.721 standard
9724{ dec|enc} ETSI 6K,11K | GSM 06.60 EFR speech transcoding, state-of-the-art dig-
ital cellular communication
gsm{declenc} | MediaBench 5K Lossy sound compression according to the GSM 6.10
RPE-LTP standard

jpeg{declenc} | MediaBench 7K Independent JPEG Group photo decoder/encoder
h263{dec|enc} | Independent | 5K, 8K | H.263 video decoder/encoder, Telenor implementation
mpeg2{ dec|enc} | MediaBench | 9K, 7K | MPEG-2 video decoder

mpeg4dec MoMuSys 50K MPEG-4 simple profile video decoder
mpg123 Independent 11K MPEG-2 Layer 3 audio decoder
jpg2Kdec JasPer 27K JPEG-2000 Part-1 standard (ISO/IEC 15444-1) refer-
ence decoder
autcor00 EEMBC 1K Autocorrelation: code-excited linear predictive (CELP)
filter transfer function matching
conven00 EEMBC 1K Convolutional encoder: V.xx modem output stream en-
coding to enable error det/cor
foital00 EEMBC 1K Bit allocation: data distribution into ADSL frequency
bins
1ftoo EEMBC 1K Fast Fourier Transform: 256-point complex decimation
in time algorithm
viterb00 EEMBC 1K Viterbi decoder: embedded IS-136 channel coding

applications, the compiler can derive both dynamic and static power savings with ei-
ther no performance degradation or with a small tolerance of performance degradation,
which allows higher power savings while maintaining a favorable ratio of power savings
to application slowdown [39]. The compiler’s ability to bound performance degradation
preserves applicability to real-time applications.

Placement of program data objects into storage sections with varied properties, in
conjunction with operation scheduling, is discussed in subsequent sections as the object
scheduling problem. Object scheduling determines the number, type, and size of prof-

itable data storage sections for a given application. It is constrained by two factors:

43

available schedule flexibility (slack + memory slot tolerance) and tolerable performance
degradation. Slack, one component of flexibility, may be loosely defined as the number
of cycles an operation can be moved earlier or later without affecting the total schedule
height of the enclosing region. Load slack, previously exploited in performance-oriented
scheduling techniques, is used together with memory slot issue choice to accommodate
slower or restricted port accesses. If no operation flexibility were available, object schedul-
ing would consist only of observing data usage and looking for cases where a particular
constraint can be applied without penalty. For realistic applications, however, slack is
present, and when an architecture provides multiple load-store units (and data ports),
memory slot issue choices also become available.

In describing code properties, object relationships will be discussed. Objects may be
(1) congjoined by virtue of being accessible from a common static operation (they are
in the same pointer analysis points-to set), or (2) interactive in being accessed from
within a common scheduling region, (e.g., a single basic block, loop, superblock [34], or
hyperblock [35]). Objects which are neither conjoined nor interactive with any other

object will be referred to as independent objects.

3.3 Interprocedural Pointer Analysis

Scheduling for configurable SRAM relies on interprocedural dependence analysis for

safe assignment of program data objects to on-chip storage regions with little or no

44

performance degradation. Six different interprocedural pointer analysis (IPA) techniques

are used in various combinations throughout this work:

1. Andersen style (A) [40]

2. Steensgaard style (S) [41]: If a single location points to two different objects, An-
dersen will continue to track the objects separately, while Steensgaard will unify
them, tracking them as a single object. Steensgaard thus forces the points-to set
size to one, a form of lossy alias result compression.

3. Context sensitivity (¢) : A context-sensitive algorithm is able to keep data flow
along different call paths separate. For example, should functions A and B both
call C, a context-insensitive algorithm may show false data flow from A into B, by
way of C.

4. Field sensitivity (f): A field-sensitive algorithm is able to distinguish between fields
of an aggregate object. In a field-insensitive analysis, the C-language expressions
x.f1 and x.f2 are equivalent to x.

5. Heap sensitivity [42] (h) : Heap sensitivity enables an algorithm to distinguish
between different heap allocated objects even though allocated by the same call to
malloc().

6. Zero-weight path exclusion (z): All zero-weight expressions are excluded from the
pointer analysis. While not valid for general dependence analysis, Section 3.6 will

detail its utility for placement of objects into a configurable SRAM.

45

Conceptually, the goal of a pointer analysis system is to describe the potential targets
of each pointer. Information about pointer accesses gives the compiler a view of an appli-
cation’s memory activity and can be critical for tasks like register promotion, scheduling,
memory data flow, debugging, and verification. It is also central to automated software
management of data access properties.

While the goal of pointer analysis is straightforward, the realization of this goal is
complicated by the variety of possible formulations, each with its own strengths and
weaknesses with respect to accuracy and scalability. Accuracy measures how closely the
derived pointer relationships match those actually realizable by the program. Scalability
measures the applicability of an algorithm to a range of programs with a variety of
characteristics (size is not the only consideration — a 10 million line program lacking
pointer use is easy to analyze). The challenges inherent to the IPA problem, along with
the usefulness of its results, have led to a large body of research [43], [44].

This work uses the interprocedural pointer analysis introduced in [45]. The algorithm
is very accurate, yet has also been shown to work very efficiently for large programs having
complicated pointer usage. It is an Andersen style, offset-based field-sensitive, fully
context-sensitive, heap object specializing pointer analysis. Indirect calls are handled
by forming an optimistic call graph and then iterating between pointer analysis and
call graph updates until the solutions converge. External library calls are represented by

procedure stubs that mimic the appropriate pointer behavior. For the studied application

46

‘objlsﬂ‘ ‘objlelS‘ ‘objlsls‘ J obj 23872 ‘

\

X
/|
X
[
|
\
\\\
\
\
‘
|

ch 1
\
ch10/ |

®(

"“s‘

=[] [;_EI = [
H&x‘— ‘v'»' N »
\‘ﬁ\‘z = o
A =

1

g

Figure 3.3 Pointer analysis accuracy for the mpeg4dec function GetContextInter. For
the same memory operations, arcs represent potential object accesses, as de-
termined by (a) an accurate Afc(h) formulation, and (b) a straightforward
Steensgaard implementation (S). Note that many more objects appear to be
accessed in (b).

suite, the time to perform field-sensitive, context-sensitive, heap-sensitive Andersen style
analysis (Afch) ranged from less than 0.01 s to 1 s on a 2.8-GHz Pentium 4 system.
The degree of difficulty involved in obtaining accurate pointer analysis results is often
highly dependent on the coding style and language features used in a program being
analyzed. Across a suite of applications, the necessary pointer analysis options may
vary, and in some instances the selection can make a dramatic difference in the quality

of alias information. Figure 3.3 provides a graphic illustration of differences in analysis

47

accuracy. Memory operations in an MPEG-4 decoder function are shown as elipses, and
the data objects they access appear as a horizontal row of rectangles at the top of the
figure. Arcs between operations and objects indicate potential accesses, as indicated by
two different pointer analysis formulations: Figure 3.3(a) shows information resulting
from an accurate Afch analysis, while the more chaotic relationships in Figure 3.3(b)
result from a Steensgaard algorithm similar to that published in [41]. It is clear that
an inaccurate analysis can result in orders of magnitude increase in the number of data
objects that appear to be targeted by each load or store.

Using the same representation (elliptical operations tied to rectangular objects), Fig-
ure 3.4 shows pointer analysis results for the h263dec idct function. Operation schedule
slack was computed as early_time — late_time for a scheduling run with an eight-wide,
two memory slot VLIW machine model, and used to color the operation—object arcs. Red
arcs represent potential access by an operation with less than two cycles of slack; solid
black lines correlate with three to five cycles of slack; and dotted lines are drawn from
operations with six or more slack cycles. The difference between accurate (Afch, Fig-
ure 3.4(a)) and inaccurate analysis (S, Figure 3.4(b)) is not as striking for this function
as it was for GetContextInter in Figure 3.3. However, this idct function was chosen to
demonstrate three important points. First, the inaccurate analysis indicates that objects
154 and 205 are conjoined at many operation sites (see the double object arcs coming
from operations at the very bottom of Figure 3.4(b)). In source code, the two objects

are unrelated, and this is clearly a false alias. Conjoined object 154 is correctly removed

48

by the accurate analysis (no double arcs in Figure 3.4(b)), resulting in fewer constraints
during object scheduling. Second, though the path of some arcs is difficult to follow,
this function also provides a demonstration of object interactivity. Specifically, all three
objects reachable through operations in this function are interactive in extended basic
block 14, i.e., the fifth row of operations in Figure 3.4(a) access objects 96, 97, and
205. Lastly, the top row of operations in Figure 3.4(a) all access program object 205,
a structure holding input, output, and intermediate data for frame processing. Though
all seven operations access the same object, their arcs are of three different colors, in-
dicating increasing amounts of slack from right to left. The access properties of object
205, however, are constrained by its accessors with the least amount of slack (zero, one,
and two cycles), so during object scheduling the structure will be placed in a high-power
storage region (single cycle, dual-ported).

A pointer analysis framework is typically used to obtain a conservative approximation
of the actual pointer behavior. For example, it will likely determine that a variable A
points to a variable B when, in reality, no program input will result in such a situation.
However, a conservative result will never omit a realizable relationship. This completeness
is necessary to preserve the correctness of many compiler transformations. However, the
new IMPACT framework optionally allows a modified pointer analysis algorithm that
generates optimistic results; i.e., they are a subset of the realizable pointer behavior.
This is done via zero-weight path exclusion, in which all zero-weight expressions (based

on a control flow profile) are excluded from pointer analysis. It is important to note that

49

0¢

"(g) uoryejULUI
-o[dwit pree8susa)g premIojjysdrer)s e () pue ‘uolje[NULIO} (1)2f} 9leINdde ue
(e) £q peuruia)ep se ‘sassedde 108[qo Terjuejod juesaidar sore ‘suorjerado A10
-WOW dWRS 9} 10 "20PT UOIIOUNJ 29PLIGY Oy} 10} AdRINIIR SISA[RUR ISIUIO] ¢ 9IN3T

T —
I
[7099999900000900909Q
e SO
/TR AR
‘ (

|

ch14

I
ROPPPYPPRARDPPPPIPIRRTREE
/9009989
qRRA88
[8pPppp
—HE

op 149

D
|~

the pointer analysis process always excludes provably unreachable program code. Zero-
weight exclusion analysis additionally eliminates code not touched during a particular
execution profile.

Pointer analysis is commonly described in terms of points-to sets, or the locations that
a given pointer may reference. This representation is shown in Figure 3.5(a), where red
arcs are drawn to indicate the data objects a pointer declared as int *p may access. For
dependence checking, such points-to sets can be converted into dependence arcs between
operations. An intraprocedural operation dependence representation was previously used
in IMPACT to describe pointer analysis results [46]. Data storage management, however,
requires interprocedural information, and knowledge of all data objects which individual
operations may access. To accomplish this, the compiler’s back-end now retains a rich
form of pointer analysis results through the use of dependence objects. A dependence
object is a virtual location that maps to one (or in the case of dynamically allocated
data, many) real, disjoint data objects in storage when the application is run. For this
data power management work, such an object may be an array; a scalar; a structure; or a
union, and may reside in local, global, or heap space. As pictured in Figure 3.5(b), static
load and store operations are marked with a list of all dependence objects that they may
access. In the compiler’s intermediate representation (Lcode), these dependence object
arcs also include the accessed offset into the object and size of the access. Accurate pointer
analysis (Figure 3.5(c)) will result in fewer operation—object arcs, and an optimistic

analysis (Figure 3.5(d)), like zero-weight path exclusion, will further reduce the number

ol

int *p = [pata] {Data)

load p load p S/~ ~xDatd load p

store p store p store p
(a) Points-to Sets (b) Operation - Object Arcs (c) Accurate Analysis (d) Optimistic Analysis

Figure 3.5 Pointer analysis representations.

10000

1000

100

10

N

g721{e/d} g724{e/d}

EEMBC
adpcm{e/d}

Figure 3.6 Average number of 1loads and stores accessing heap and nonheap objects for
six IPA combinations. A = Andersen. S = Steensgaard. f = field-sensitive. c
= context-sensitive. h = heap-sensitive.

Average number of loads/stores per object

[Heap Objects [Non-heap Objects

of operation—object arcs. In Figure 3.5(d), optimistic analysis has eliminated the dotted
pair of arcs marked by accurate analysis, so the remaining (solid) arcs do not comprise
a complete representation of program memory behavior. For a given input, however, the
zero-weight exclusion analysis is correct. In fact, cross-input touched code behavior is
quite similar for telecommunication and media applications [47], [48]. As will be shown
in Section 4.2.4, zero-weight analysis is thus complete, or near-complete, for most inputs

in this domain.

3.3.1 Pointer analysis accuracy

For a selection of the studied codes, Figure 3.6 shows a log-scale plot of the aver-

age number of loads and stores that access each dependence object after applying

52

various combinations of pointer analysis techniques. The metric plotted indicates the
number of static operations in the compiler’s back-end representation which may access
each dependence object. Objects are divided into nonheap and heap categories, and six
combinations of the described pointer analysis options are shown. The configuration
string on the x-axis is composed of a c if context-sensitive, an fif field-sensitive, an A if
heap-sensitive, an A if Andersen’s style, and an S if Steensgaard’s style.

Analysis was performed for all benchmarks listed in Table 3.1, but only a subset
is shown due to the marked similarity of results for benchmarks with relatively trivial
pointer behavior. Codec pairs with similar properties are grouped and beneath the ¢721
benchmarks in Figure 3.6 are grayed names of benchmarks that behave similarly. The
pictured count of static operations per object is useful in (a) indicating the resolution
that can be achieved by pointer analysis, i.e., the number of false aliases eliminated when
more accurate pointer analysis is used; and consequently, (b) forecasting the amount of
scheduling freedom available to traditional operation optimization and scheduling or to
object scheduling (as will be described in Section 3.4.1).

The benchmarks show a varying sensitivity to the quality of the pointer analysis used.
Many of the selected telecommunication applications have only trivial pointer behavior;
thus, any combination of analyses works equally well. This can be seen in the data for the
9721s, q724s, adpcms, and all of the EEMBC suite. One noticeable factor is that these
benchmarks also lack significant heap usage. While the analysis configuration affects

the results for both heap and nonheap objects, it is generally more difficult to obtain

93

quality information about heap object usage. The benchmarks h263dec, the mpeg2s,
and mpg123 need the ability to distinguish heap objects but are otherwise insensitive to
the distinguishing of contexts and fields. The remaining benchmarks show substantial
benefit from the most accurate combination of techniques. For example, the jpegs and
mpeg4dec all show at least an order of magnitude reduction in apparent accesses to an
object between the best and the next best configurations.

The importance of heap sensitivity to achieving accurate, yet efficient interprocedu-
ral pointer analysis of SPEC programs with dynamic memory allocation is discussed
in [42]. Traditional embedded systems did not include virtual memory management and
had very simplistic operating systems. Recently, however, dynamic memory allocation
for embedded systems has been discussed in the literature [49], [50] and included in a
few commercial products [51]. Correspondingly, the studied application suite is clearly
divisible into two parts: approximately half the applications (telecommunication applica-
tions) do not use heap-allocated variables, while others, in particular video codecs (e.g.,
the mpegs and h263s), rely relatively heavily on dynamically allocated space. For these

applications, heap sensitivity is essential to accurate pointer analysis.

3.3.2 Optimistic interprocedural pointer analysis: function indirection

Figure 3.7 depicts a typical form of telecommunication and media application con-
struction in C: arcs between functions represent control flow; arcs drawn with arrows

represent data flow. A top-level function (f_top) is responsible for buffering input from

54

Input
File

STRUCT

[l

Figure 3.7 Typical telecommunication application construction.
a file and initializing and allocating variables. From this top-level routine (or routines), a
series of computation kernels (f1, £2) are invoked repeatedly until all input data are pro-
cessed, mimicking the block flow of an algorithm as drawn in signal processing form. Two
of the functions depicted, £2 and £3, are reached via an indirect function call (through
the pointer funcx). If a control flow profile indicates that £3 is never called from funcx,
the effects of £3 will be ignored during optimistic pointer analysis. This type of behavior
occurs frequently in the studied application set (for example, in the ¢721 applications, in
which *dec_routine is used to select among the g721, g723_24, and g723_40 standards
included in a single code package). When scheduling data objects for the ¢721s, the zero-
weight exclusion of g723 effects is valid and will not result in an invalid object schedule,

for g721 code.

95

3.4 General Principles for Differentiated Access

3.4.1 Object relationships

When making object placement decisions, the compiler is aware of all program mem-
ory usage, and so encounters interactions among various program data objects. Relation-
ships among data objects can constrain object placement and make this decision process
more difficult. As previously defined, the relationship between a pair of data objects is
determined in two dimensions: objects may be (1) conjoined by virtue of being accessible
from a common static operation, or (2) interactive in being accessed from within a single
scheduling region. Placement of data not conjoined to or interactive with any other ob-
jects may be performed in isolation. Their placement in a particular configuration will
not affect scheduling decisions for other objects. In contrast, if one in a set of conjoined
objects is placed in a port-restricted region, all other members of the set much be acces-
sible through that port. Similarly, if objects are interactive in a scheduling region, the
placement of one into a long latency region will consume slack that might have been used
to schedule another long latency load operation.

The accuracy of interprocedural pointer analysis can have a significant effect on the
number of independent objects available. Figure 3.8 shows the number of independent
objects for four formulations: inaccurate conservative S, accurate conservative Afc(h),
inaccurate optimistic 25, and accurate optimistic zAfc(h) analysis. The greatest differ-
ences in numbers of independent objects are seen between conservative and optimistic

analyses. For some applications, the large differences in inaccurate and accurate accessor

o6

1.0
0.9
0.8
0.7
0.6
0.5
04
0.3
0.2

1 01 Jﬂﬂﬁﬂﬁﬁﬁ

wen
£%

Fraction Independent Objects

» » ® » « o
@ [? ? Rs Qs Qs R5|"sRs

<3
mpeg4d

B
NS

Afc]
zAfc

LRL [PLR, £9 @ “pQ £ 5
<Nz | ™ = N =™ < g

<=3
h263d

§R§
<3
mpeg2e

3
mpeg2d

£
=

Afc

2!
<

2Afc
zAfc

£
z
N

zAfc |

s
g721e

zAfe

<3
ipg2Kd

<3
h263e

=q
SNS

g724d fbital00| fft00 | viterb00

adpcmd| adpcme | g721d g724e conv00 gsmd | gsme mpg123| jpegd | jpege

Figure 3.8 Fraction of independent objects for four IPA formulations. S = a straight-
forward Steensgaard implementation. Afc(h) = an accurate formulation. 2S5
= an optimistic formulation with an inaccurate foundation. zAfc(h) = an
optimistic formulation with an accurate foundation.

o N
7 Y N B Dependence
1d: (param:): <> Slack
objs A, C
Scheduling
Region
Yy
h 4
— J

Figure 3.9 Example operation flexibility and object relationships.

counts seen in Figure 3.6 do not significantly affect object independence. Media applica-
tions, however, such as mpeg2enc, jpg2Kdec, and mpg123, do generally see larger numbers
of independent objects for more accurate analysis, so because the more accurate Afch
analysis can change the ease and correctness of object placement, its use is advisable.
In Figure 3.9, the 1oad operation ld; accesses a location pointed to by parameter; of
its function. Pointer analysis determines that the location accessed may be either data

object A or C. A and C are thus conjoined, and object scheduling decisions must respect

o7

the fact that they may be accessed from a common static operation. The scheduling
region shown also contains an access to a third object, B, from lds. The scheduling
decision for object B has no constraints placed on it from conjoined objects, but it is
interactive with A and C because they are accessible from the same scheduling region,
share a common dependent, the add operation, and B’s accessor, ld,, is dependent on
ld;. Accessor ld; has a significant amount of slack; assuming other accessors of A and C
also have sufficient slack, objects A and C could likely be placed in a long-latency storage
region to save dynamic and static power. This decision, however, delays the dependent
ldy in the schedule, and consumes enough slack to prevent placement of B in long-latency

storage.

3.4.2 Cost and benefit

Performance degradation has a direct impact on the energy consumed to execute
an application because either run time is increased or cycle time must be shortened to
compensate for the slowdown.! For some systems, neither option will be tolerable, so the
implemented object scheduler’s threshold for acceptable performance degradation can
be set to zero, which will not change application performance. Where systemwide DVS
is available, this may be the favored scheduling mode. However, if some performance

degradation is tolerable, a first-order approximation of the cubic relationship between

IShorter cycle times increase the power component of Energy = Power time as supply voltage is
raised to speed circuit operation.

o8

Table 3.2 Static and dynamic power savings per SRAM configuration type.

Single-Port Dual-Port Single-Port
Long Latency | Long Latency | Short Latency
(3 cycles) (3 cycles) (1cycle)
Static Power Savings (Continuous) 80% 80% 22.5%
Dynamic Power Savings (Per Access) 46% 46% 0%

power and voltage? indicates that a technique may be considered “power-aware” if the
ratio between power savings and performance degradation is at least 3.0 [39]. This leeway
to degrade performance allows the scheduler to make object placement decisions that save
power at the expense of increased schedule height. In this case, cost and benefit metrics
are needed to guide placement of data objects in low-power storage.

At schedule time, cost can be measured as both (a) schedule height increase and (b)
anticipated increase in execution cycles according to a control flow profile. The benefit
of latency and port configurations may be prioritized according to static and dynamic
power savings: (1) increasing latency and restricting access to a single port saves the most
power; (2) increased latency alone also saves both static and dynamic power; and (3) port
restriction primarily provides static power reduction. This prioritization is derived from
the power savings for each SRAM configuration, summarized in Table 3.2, and derived

in Chapter 2.

2P0we"' = QActivityFactor * CEffectiveC’apacitance * ded * FOperatingFrequency- The fre-
quency component of power is commonly approximated as being linearly proportional to voltage:
F = KproportionConstant * Vdad, and if uniprocessor performance can be assumed to scale linearly with fre-
quency, Per formance = IPC x FoperatingFrequency, making Per formance o« Frequency o« Voltage.
Since Power o V3, the first-order approximation indicates that percentage performance increase must
be at least three times the power increase for a technique to be power-aware.

99

Configurations for individual objects should be prioritized according to the power
savings realized (a) in particular configuration regions, and (b) for particular object
usage patterns. Specifically, the static power differences for various configurations result
in a static power cost proportional to object size. Dynamic power, on the other hand, is
incurred relative to the number of 1oad and store accesses to an object at run time. For
object scheduling, dynamic power cost is anticipated using a memory profile to measure
accesses for a sample input or inputs. Use of memory profile information is discussed in

further detail in Section 3.6.

3.5 Prototype Implementation

To evaluate the effectiveness of C-SRAM in matching algorithmic needs and prop-
erties, a prototype C-SRAM compiler has been implemented in IMPACT. This section
describes how stack and heap data were handled, the implemented greedy scheduling
algorithm, the compiler’s role in a multiprogramming environment, and the generality of

the implemented algorithms.

3.5.1 Heap and stack data
3.5.1.1 Promotion of stack variables

In the studied application set, many local variables (stack objects) are pseudoglobal:

they exist for most of the program duration and are used heavily by multiple functions

60

(passed by reference). To increase effectiveness of the object placement algorithm de-
scribed in Section 3.5.2, the compiler first promotes arrays, structures and unions from
local stack allocation to static global variable space. This enables such variables to be
scheduled into a low-power region without requiring partitioning of the stack. All other
stack data are excluded from the placement process and thus kept in nonconfigured (i.e.,

high power, dual-ported, short latency) storage.

3.5.1.2 Heap objects

Some image and video applications (e.g., JPEG and MPEG implementations) make
heavy use of heap-allocated objects. For these applications, excluding heap objects from
placement into low power SRAM regions would significantly limit potential data power
savings. Because heap allocated objects are created dynamically, many previous ap-
proaches to software data management (e.g., for compiler-managed caching or scratch-
pad placement), have not been able to handle heap data. For C-SRAM, a specialized
implementation of the memory allocation procedure, such as malloc(), is used to force
placement of heap objects into low-power SRAM regions.

The implementation chosen includes a parameter that determines the power con-
figuration from which each malloc() will allocate objects. Each static malloc() may
allocate to a different SRAM region, but all run-time data objects allocated from a sin-
gle static call to malloc() must go to the same port and latency configuration. For

applications with only a single call to malloc (), this constrains all heap objects to the

61

configuration needed by the object with the most stringent restrictions. Despite this
restriction, many heap objects can be allocated into low-power regions, particularly to

tolerate port restrictions.

3.5.2 Implemented algorithm

For default object scheduling, a list instruction scheduler is used on extended ba-
sic block scheduling regions. Algorithm 1 describes the steps implemented for object
scheduling. Comments are enclosed in curly braces.

Prior to object scheduling, local variables are promoted, machine-independent opti-
mizations are performed, and the IR is annotated with profile feedback. The profiler
also ranks objects by their access weight and provides this information to the object
scheduler. As scheduling begins, a resource representation is created from a description
written in the IMPACT hmdes2 machine description language [52]. After this baseline re-
source availability is known, the scheduler creates a list of possible SRAM configurations,
prioritized according to power savings potential.

Operation scheduling is first performed to calculate a baseline schedule for all regions
(lines 8-11). This baseline assumes the fastest, but highest power, SRAM configuration:
all objects may be accessed through both ports, with a single cycle load latency. This

best-case schedule height is recorded, along with an anticipated execution time based on

62

Algorithm 1 Implemented scheduling steps for configurable SRAM.

17:
18:
19:
20:
21:
22:
23:
24:
25:
26:

27:

28:

29:
30:
31:
32:
33:
34:
35:
36:

37

38:
39:

Promote local variables
Perform desired level of machine-independent optimization
Profile memory access counts for all objects
Rank program data objects according to total access weight
Set baseline scheduling parameters: execution and memory resources, SRAM latency, performance
tolerances (CycleT ol and HeightT ol)
Set valid data configurations
Set power priority of valid configurations
for each function {Baseline run} do
Create a baseline schedule, assuming use of all ports at the fastest available latency
Record estimated baseline cycle time (CurrentCycles) and exact schedule height
(CurrentHeight)

: end for
: for each object{Testing runs} do

for each function do
for each scheduling region do
for all SRAM configurations do
Mark memory opers with access restrictions of current test and previously committed
decisions
if decisions already committed for conjoined objects invalidate the current test then
Skip this test
end if
Schedule operations
Record estimated cycle time (T'estCycles) and exact schedule height (T'estHeight)
end for
end for
end for
while no decision made {Committing global scheduling decisions} do
Look at next lowest power valid SRAM configuration

TestCycles—CurrentCycles
CurrentCycles

Calculate CyclePenalty =
Calculate HeightPenalty = TestH %iﬁi;g%:fg’;tfl cight
if CyclePenalty < CycleT ol && HeightPenalty < HeightTol then
Commit schedule
end if
end while
if CycleTol > 0 || HeightTol > 0 then
Update CurrentCycles, CurrentHeight with post-commit values
end if
end for
for each function{Final run} do
Create a final schedule, respecting all object configuration decisions made during testing runs
end for

63

control flow profile weights. Anticipated execution time, CurrentCycles, is calculated as

CurrentCycles = Z Z FlowW eight * FlowScheduleCycle (3.1)

VBlocks VFlows

A flow may be either a branch or fall-through path, and FlowScheduleCycle is
counted from the beginning of the enclosing code region, i.e., for a fall-through path,
FlowScheduleCycle will be the region’s schedule height. Because IMPACT does not
currently provide meld scheduling [53] and assumes interlocking, it must be noted that
this accounting method neglects operation latencies which dangle beyond the end of a
scheduling region.

Objects are greedily scheduled according to their overall profiled access counts, so
as to increase potential dynamic power savings. First, the highest ranked, unplaced
object is selected (line 12). For each region from which the object may be accessed, new
region schedules are computed to evaluate the effects of placing the current object into
a restricted SRAM configuration. Five configurations need to be considered for each
object: (1) long latency and just PortA, (2) long latency and just PortB, (3) long latency
and both ports, (4) short latency and just PortA, and (5) short latency and just PortB
(lines 15-20). As code is scheduled for each configuration, the impact of the current test
on schedule height and estimated cycle time is recorded (line 21).

As the algorithm progresses and objects are placed into configured space, some con-
figuration options may no longer be valid, due to choices made for objects conjoined with

the current one. For example, if the object currently under consideration has a conjoined

64

object that was previously scheduled to a PortA-only region, when this is discovered,
tests of Latency-and-PortB and PortB-only are eliminated from the valid configurations
for the current object (lines 17-18).

Once valid region schedules have been generated, statistics are summarized for all
scheduling regions. Starting with the configuration that saves the greatest power, the
program-wide Cycle Penalty (line 27) and HeightPenalty (line 28) of this configuration
are compared against the allowable tolerances, C'ycleT'ol and HeightT ol, respectively. If
no performance degradation can be tolerated for the particular scheduling run, a strict
no schedule height increase restriction is enforced for all object scheduling decisions,
meaning that if HeightPenalty # 0, another configuration must be considered. If no
schedule meets the specified tolerances, the object must remain in the default, full-power
configuration. After a scheduling decision is made for an object (“committed” — line
30), CurrentCycles and CurrentHeight are updated and the process continues with the
next highest ranked object.

The scheduling option search space decreases as the scheduler progresses, since both
port and latency configuration options may be invalidated and slack consumed by pre-
vious decisions. Because objects are selected and committed sequentially, the object
scheduling search space will never explode, and is simplified when greater pointer analy-

sis accuracy reduces the total number of object access sites.

65

3.5.3 Algorithm bounds

General scheduling problems are NP-hard. Worst-case run time for list operation
scheduling is O(n?), so an exhaustive enumeration-based approach to joint object—operation
scheduling would have an unacceptable run time. To avoid this, the implemented sched-
uler uses the greedy algorithm described in the previous section.

The run time of object scheduling is dominated by the number of program objects
(second and third columns of Table 3.3) and static memory access operations (fourth and
fifth columns of Table 3.3), not just program size (third column of Table 3.1). Column
4 in Table 3.3 shows the average number of accessors per object for accurate Afc(h)
analysis, while the much greater numbers of access sites per object in column 5 result
from inaccurate S analysis. Averages for benchmarks with high numbers of access sites
are generally dominated by one or two objects with many access sites. The high jpg2Kdec
average, for example, is caused by jpc_mgstates, a 1560 byte array of structures, with
93 load sites in classically optimized Afe(h) code.

Figure 3.10(a) shows average data power savings for different types of objects and
scheduling modes. To simplify the graph and this discussion, dynamic and static power
are assumed to contribute equally to total data storage power, so the savings percent-
age shown is (Static_.Power_Saved + Dynamic_Power_Saved)/2. In Chapter 4, power
saved is broken into its static and dynamic components. When no performance degra-
dation is tolerated, decisions made for independent objects are optimal because they

do not consume slack or port resources other data might need. Power savings from

66

Table 3.3 Data object counts and accessibility; no function inlining.

Application Num. Num. Avg. Num. | Avg. Num. Avg. Num.
Global Heap Static Static Dynamic
Objects, Objects, Accessors Accessors Accesses
Afc(h) IPA | Afc(h) IPA | per Object, | per Object, per Object
Afe(h) IPA S IPA Table 4.1 inputl
adpcmdec 5 — 2.20 2.20 103 412.40
adpcmenc 5 — 2.40 2.40 103 412.40
9721dec 21 — 5.62 5.62 1 451 186.67
g721enc 19 — 5.79 5.79 1 622 598.74
9724dec 96 — 6.55 12.31 82 920.43
9724enc 174 — 6.14 12.96 338 174.05
autcor00 20 — 3.25 3.25 44.45
conven(0 20 — 3.45 4.20 4508.45
fbital00 21 — 2.52 2.52 2346.33
ftoo 22 — 4.59 4.59 2513.91
viterb00 24 — 5.67 5.67 3004.21
gsmdec 137 2 7.41 13.58 47 884.90
gsmenc 137 2 7.76 13.92 182 238.29
h263dec 147 6 11.40 12.18 169 717.57
h263enc 103 28 11.55 13.70 2 869 932.58
mpeg2dec 208 4 7.86 9.84 114 473.65
mpeg2enc 158 11 11.07 203.21 1 686 009.75
mpeg4dec 267 27 12.54 277.2 1 250 074.91
jpg2Kdec 106 3 21.53 3172.77 69 759.80
mpgl23 259 1 13.80 211.12 88 236.38
jpegdec 1377 2 3.04 49.70 711.38
jpegenc 1433 2 2.50 69.69 1919.76

67

2P_L1=0.0 Perf. Degradation

00 c

: 70.00 — 0% 5

g ~ 60.00 5% 5

o1P_L3 = O 5000 A% B

u TotTol w e : 5

o O 1P_L3 5% @

0 TotZeroWt = < 40.00 a

=) 20% o

u] IndepZerth o (] 30 00 | TotTol 1P_L3] (&)

B TotNoTol (3] t, ' TotZeroWt -25% %
e IndepZeroW!

@ IndepNoTol g © 20.00 noepzerotit -30% §

2 D 10.00 TotNoTol % B

—_ 0.00 IndepNoTol _40% o

2P_L1=0.0 Pow Saved

(@) (b)
Figure 3.10 Object scheduling bounds and trade-offs.
independent object configurations thus represent an optimal lower bound on the algo-
rithm’s power savings. This savings (5.4% for classically optimized code) is shown at
the bottom of Figure 3.10(a) in the IndepNoTol category. Scheduling decisions made for
non-independent objects add an additional 10.4% to total power savings (TotNoTol). As
previously described, optimistic zero-weight IPA significantly loosens scheduling restric-
tions and noticeably increases the number of independent objects. This is reflected in the
much higher amount power savings attributable to independent objects (IndepZero Wt).
When schedule degradation can be tolerated, power savings are again higher, reaching
31.1% in the TotTol category in Figure 3.10(a). At the upper bound of power savings is
the case in which all program data is in a single-ported, long-latency configuration. The
1P_L3 category at the top of this graph reflects code scheduled for a machine with only
one slot and a three cycle memory latency. In this case, maximum data power savings

are assumed: 80% static and 46% dynamic, yielding 63% savings.

68

When memory resources are restricted, for a given level of code optimization, power
savings will be inversely proportional to performance. As shown in Figure 3.10(b),
scheduling programs with only a single, long latency port results in an average 34%
performance degradation. Using the 3x power : performance guideline, and taking
overall system power consumption into account, the power-performance trade-off of this

upper power savings bound is not favorable.

3.5.4 Physical constraints

Decisions made for conjoined or interactive data may put constraints on other objects.
If a conjoined object is placed in a port-restricted region, all objects to which it is
conjoined must be accessible through the selected port. Otherwise, at run time, the
schedule may result in an attempt to access an object through an unavailable port. A
data port can be woken up by precharging its bitlines when an attempted access is
detected, but this causes a processor stall. Data power consumption is also impacted
because the second set of bitlines must be charged. Despite the negative performance
and power effects, such situations do not cause incorrect functionality. A second physical
consideration is that a long latency load operation may block the SRAM data output
driver at a later cycle than for the standard data access latency. This was not found
to be a common occurrence for the studied applications and object schedules, so the

implemented scheduler assumes that if necessary, the output drivers could be replicated to

69

handle this exception condition. This would, however, be a consideration for a commercial
C-SRAM implementation.

By eliminating untouched code when analyzing pointer behavior, zero-weight pointer
analysis leaves the impression that fewer objects can be accessed from program loads and
stores. This generally increases the compiler’s ability to place objects into low power
regions. No change to the scheduling algorithm is necessary to leverage the optimistic
zero-weight pointer analysis results. However, because the marked object usage is only
representative of the input(s) used for profiling, the microarchitecture must ensure pro-
gram correctness, while handling any unexpected accesses. Specifically, if dependences
are missed and a datum needed in a single cycle at a particular load site is in a 3-cycle
region, the processor must stall while the datum is accessed. The IMPACT scheduling
model, however, assumes an EPIC-style processor which includes interlocking. Inter-
locking must thus already be provided to handle memory accesses with longer run-time
latency than specified in the machine description, so use of optimistic IPA does not add
a further constraint to this aspect of memory interface design.

While it does add cost to a design, current SRAMs are frequently pipelined so that
accesses may be issued under an outstanding multi-cycle request. The implemented C-
SRAM scheduler assumes that short-latency accesses may complete while a long-latency
operation is outstanding. The accesses, however, are guaranteed to be to separate re-
gions, and because macroblock partitioning entails localization of sense amplification and

bitline precharge, this should be possible. Detailed evaluation of circuit-level feasibility of

70

this type of access pipelining is an item for future work. As necessary for the circuit im-
plementation, this could involve implementing a scheduler resource model to avoid these
short—under-long access cases. From inspection of current object schedules, however, we

do not anticipate that results will be significantly affected.

3.5.5 Multiprogramming and caching

When considering multiprogramming and caching, three factors relate to C-SRAM:
(1) whether an object is currently in SRAM storage; (2) whether an object may ever be
in SRAM; and (3) whether virtual memory is used in the system.

In embedded multiprogramming environments, programs commonly share data stor-
age, and a processor is designed or chosen based upon the total needs of the anticipated
application suite. This model is necessary to ensure predictable data access and is used
for real-time systems with relatively small data footprints. If all data, whether from mul-
tiple programs or a single application, will not fit in the available SRAM space, dynamic
scratchpad allocation algorithms can be used to swap data in and out of SRAM. Such
algorithms require that the compiler use cost and benefit functions to decide which data
should be in SRAM and then accordingly initiate transfers. For a given input profile, the
literature provides an optimal dynamic scratchpad allocation algorithm [54]. The imple-
mented compiler provides automated power management of data once it is in C-SRAM,

so is complementary to previous scratchpad work. If the necessary size of regions with

71

each C-SRAM configuration changes as an application executes, a dynamic allocation
cost function should be easily extended to include reconfiguration cost.

Again, for the sake of predictability, and to store data not used in a straight-forward
LRU fashion, embedded processors which do have a hardware cache generally also have
a sizable software-managed SRAM. Product examples include Infineon’s TC1130, with
4 kB hardware-managed cache and 92 kB software-managed SRAM, or the Freescale/
Motorola MPC8540, with a 32 kB L1 hardware-managed cache and 256 kB additional
SRAM which may be managed by software. The standard programming methodology for
these mixed systems requires that data objects be specified as cacheable or uncacheable.
Data selected as cacheable can be easily removed from the object configuration process,
and our methodology will still facilitate power savings for data kept in noncache SRAM.

Operating system overhead and loss of predictability also preclude virtual memory
management from use in most current embedded systems. However, as previously men-
tioned, page-based memory systems have been discussed in the literature and included
in some recent products. Configurable SRAM easily supports a page-based memory sys-
tem. C-SRAM configurations can be changed at run time, so for either software-swapped
scratchpad or virtual memory managed pages, regions can be configured according to the
compiler’s specification as it is brought into SRAM.

Pages should be sized to a multiple of the macroblock granularity and placed at
an aligned macroblock bound. This ensures that the number of available configuration

regions per page is known a priori. Configuration bits can then be stored in a page header,

72

specifying the power states assumed by the compiler when scheduling the enclosed data.
To minimize page swap time, pages should be brought into configurable SRAM in high-
power mode, i.e., with short latency access available to all architected ports. The less
than or equals (LEQ) scheduling model ensures that code scheduled for long memory
latency will still be correct at the higher SRAM speed. As time and resources allow,
the power state of each macroblock may be configured according to the page header’s

specification.

3.5.6 General applicability

The implemented framework is parameterizable as follows:

e Arbitrary machine model: this entails not only changes in instruction issue
width (number of operations per instruction word), but also the available combi-

nation of resources and operation latencies.

e Dimensions of latency configuration: There may be an arbitrary number of
available latencies, e.g., 1, 3, and 10 cycles, thus adding additional dimensions to

the configuration space.

e SRAM access latency: either the base (high-power) or configured (low-power)

latencies may be changed.

e Port restrictions: access may be restricted to an arbitrary memory slot or com-

bination of slots.

73

e Performance degradation: the compiler can create arbitrarily large amounts
of slack. In addition to use for creating power-performance balanced schedules,
this could be used to achieve greater power savings in systems with deadlines, but
without processor DVS. If it is known, for example, that an application has a large
amount of slack before its deadline for processing a frame, and system-level DVS
is not available to compensate for this, the compiler could be allowed to consume
available execution time (up until the deadline), thus increasing power savings
within the application deadline. If a system had sufficient instruction storage, the
compiler could create schedules of increasing length and power savings, with the
executed code and data configuration being chosen at run time according to system

and input properties and deadline lengths.

e Stack and heap data: local variable promotion and object scheduling of heap

objects are both easily disabled, if not appropriate for the target environment.

In addition to the compiler’s ability to support various dimensions and properties of
SRAM configuration, the memory operation flexibility exploited for configurable SRAM
could also find application for other technologies. Memory technologies currently being
adopted, such as on-chip embedded DRAM (eDRAM), add new dimensions to the current
cache/SRAM /off-chip DRAM hierarchy and require a similar decision process, which
differentiates data objects based upon access properties and performance goals. These
decisions are currently made by hand, and joint eDRAM/SRAM systems could benefit

from automated data partitioning.

74

Another related partitioned memory system consists of separate X and Y SRAMS,
and is used in classical DSPs. These structures are intended as the source of two separate
datastreams, and the canonical X/Y partition places filter tap coefficients in the X mem-
ory and signal (filter input) data in the Y memory. Given the similarity of port restriction
to division of data between two single-ported structures, the implemented C-SRAM al-
gorithm was tested for X/Y data placement. It was found to be effective for filter-based
telecommunication applications. For media programs, however, each application was
found to have data conjoined to multiple disjoint object sets. Such conjointedness re-
quires either (a) placing all sets of objects linked by overlapping points-to sets into the
same memory, which caused causing severe imbalances in X/Y usage; or (b) duplicating
the overlapping objects and issuing dual stores on each write (one store operation to

each memory).

3.6 Profile Assistance

Table 3.4 lists the annotations provided by each profiling mechanism used in the
process of scheduling for differentiated data access. Placement of the Pprofile, Lemulate,
and Lprofile modules in the context of the IMPACT compiler framework was shown in
Figure 3.1. To summarize, profile feedback is leveraged for increased power savings in

the prototype C-SRAM compiler in the following three ways:

75

Table 3.4 Profiler outputs and uses.

Compiler Module Gathered Information Use
Function callsite weights Function inlining (Pinline)
Pprofile Code block weights Zero-weight exclusion interprocedural pointer
analysis
Lemulate/Lprofile: | Code block and branch weights Aggressive ILP optimization (Lblock)
Control Mode Estimated performance degradation during joint

code generation and data placement

Global object access weights Relative ranking of objects for greedy placement
(Section 3.5.2) and determination of dynamic
power benefit (Section 3.4.2)

Lemulate/Lprofile: | Heap object access weights and allocation | Relative ranking of objects for greedy placement
properties (Section 3.5.2) and determination of dynamic
power benefit (Section 3.4.2); Implementation of
custom malloc() (Section 3.5.1)

Memory Mode Stack usage characteristics Size characterization for placement of non-
promoted stack data in high-power storage (Sec-
tion 3.5.1)

Operation object access distributions (for | Study of consistency of cross-input behavior
each static operation, an input-specific his-
togram of access to multiple accessible ob-
jects)

Control flow profiling:

1. Zero-weight exclusion interprocedural pointer analysis eliminates side effects in un-
touched code blocks during determination of program memory behavior. This IPA
uses a control flow profile provided to the front-end IR by Pprofile.

2. Power savings can be favored at the cost of slight program slowdown. In this mode,
the compiler uses a control flow profile to estimate performance changes resultant
from data access decisions which increase code region schedule height.

Memory profiling:

3. Previous work in controlling on-chip data storage power has only directly addressed
static power consumption (via sleep modes). The compiler algorithm presented in
this work uses a greedy algorithm to chose configurations first for high access weight
data objects, as determined by a memory access count profile. Not only is static

76

power saved by configuring data access properties, but this method also increases
dynamic power savings potential, one of the unique features of the configurable

SRAM approach.

A comprehensive back-end memory profiler, including mechanisms for tracing object
access patterns, temporal use of data, and instruction use, was employed for the char-
acterizations which helped define configurable SRAM design (see Chapter 5). Details of
this profiler are available in [48] and [55]. To realize more favorable compilation time
for object scheduling, a leaner memory profiler was integrated with IMPACT’s control
flow profiler in the Lemulate and Lprofile modules. This profiler, as indicated under the
“Memory Mode” section of Table 3.4, tallies accesses to objects and records heap and
stack allocations.

Profiling, and in particular memory profiling, is a relatively costly compilation step.
In the embedded domain, the deployment_count : compilation ratio is very high, so
adoption of a compiler technique is generally more dependent on net performance or
power consumption, rather than changes in compilation time. For this reason, it has
been assumed in this work that a light-weight memory profile is acceptable. If not

permissible, several options are available:

1. Access counts may be estimated using control flow weights and static memory oper-
ation counts in combination with TPA “may access” information. The disadvantage
of this technique is that access counts of globally conjoined objects (conjoined at

all access sites) will not be distinguishable. Figure 3.11 shows an example of this

77

problem. Where map [sfreq] [2] is referenced (lines 19, 20, B, and F), mapbuf2 will
always be accessed due to the assignment at line 9. However, even field-sensitive,
context-sensitive, zero-weight IPA will still mark mapbufO and mapbufl as possi-
bilities because standard IPA formulations do not distinguish array elements. As
marked in lines D and H, memory profiler accounting distinguishes among these
objects and allows an accurate ranking of mapbuf2 as a frequently accessed, more
power-sensitive, object than mapbufO or mapbufi. The inaccuracy of a control-
flow-based memory estimation has been observed to be gross for this application

suite, so this method has not been evaluated.

2. Objects can be ranked and scheduled according to their memory footprint. Because
data size is proportional to leakage power consumption, this provides an object
ranking based on static power. Power savings of scheduling decisions made on this
basis were found to be within several percentage points of those made with the run
time access ordering. Data sizes are known in the front-end of the compiler, so for
zero-tolerance scheduling with an accurate analysis basis, this would allow rapid

object scheduling, without either control or memory profiling.

Each form of profile assistance has been found beneficial for realizing increased power
savings. The ability of the prototype compiler to schedule objects for various C-SRAM
configurations, as well as the utility of profile feedback in improving power savings, are

quantitatively evaluated in Chapter 4.

78

1: static int *map[9][3];

2: static int mapbufQ[9] [152];
3: static int mapbuf1[9][156];
4: static int mapbuf2[9] [44];
65: function: init layer3d (...) {
6: e

T: map [j] [0] =mapbufO[j];

8: map[j] [1]=mapbufl[j];

9: map [j] [2] =mapbuf2[j];
10:

11: }

12: function: III_dequantize sample (...) {

13: ce

14: if (block_type != 2) {
15: int *m = map[sfreq] [2];
16: int mc = 0, cb = 0;
17: ce

18: if (Ime) {

19: mc = *mt++;

20: cb = *mt+;

21: if(cb == 21)

22:

23: }

24: }

25:

26: }

(a) Pseudo-C code

A: Block 168 [ExecutionWeight 6988]:

B load_int (r 33), (r 31 + 0)

C [IPA: Uses mapbufO, mapbufl, mapbuf?2]

D: [MemProf: mapbufO Weight O, mapbufl Weight O, mapbuf2 Weight 6988]
E: addu (r 31), (r 31 + 8)

F: load_int (r 30), (r 12 + 0)

G [IPA: Uses mapbuf0O, mapbufl, mapbuf?2]

H [MemProf: mapbufO Weight O, mapbufl Weight, O mapbuf2 Weight 6988]
I addu (r 12), (r 12 + 8)

J br_eq (r 31), 21, Block 170

(b) Profile annotated assembly (IMPACT Lcode of lines 19-21 in (a))

Figure 3.11 mpg123 III _dequantize _sample function: unbalanced conjoined object ac-
cess distribution.

79

4 EXPERIMENTAL OUTCOMES

Each of the proposed dimensions of configuration has been found profitable for power
savings. This chapter describes our embedded processor model, and then discusses object
schedules for classically optimized code. The power implications of obtained schedules are
summarized, and the effects of interprocedural pointer analysis accuracy and optimism
are presented. Optimism is shown to improve power savings, as does allowing slight
performance degradation. The chapter concludes with a study of general sensitivity
to global latency and port restrictions, and analysis of the effects of aggressive ILP

optimization on data power savings.

4.1 Experimental Set-Up

4.1.1 Modeled architecture

Benchmarks used for the presented experiments are scheduled for a baseline eight-
wide unified VLIW architecture, with function unit distribution similar to that of the
Texas Instruments 'C64x processors [28]. Figure 4.1 shows the fixed assignment of func-

tional units to slots. The modeled processor has eight integer ALUs, two of which can

80

0 1 2 3 4 5 6 7

Imul/F | Imul/F| lalu lalu lalu lalu lalu lalu
MemA|MemB| Br

Figure 4.1 Modeled VLIW architecture issue slots.

issue integer multiplies; one branch unit; and two floating-point units. Arithmetic op-
erations have a latency of 1 cycle; multiplies, 2 cycles; divides, 8 cycles; and floating
point arithmetic, 2 cycles. By default, 1oads have a 1-cycle latency, and the processor
has two load-store units. Intrinsic operations' are used to represent DSP instructions in
the compiler, as specified in the ETSI’s ¢724 benchmarks. The inputs used are listed in

Table 4.1.

4.1.2 Code optimization

Unless otherwise noted, control profile guided inlining is applied with an estimated
touched static code size expansion ratio of up to 1.2. Classical compiler optimization is
also performed on all code before operation and object scheduling, and includes constant
and copy propagation, dead code removal, loop invariant code removal, and redundant
load elimination. For the ILP optimized results in Section 4.4, superblock [34] and hyper-
block [35] formation are performed, forming single entry, multiple exit predicated regions.
Loop peeling, loop unrolling, predicate promotion, and several other ILP-enhancing op-

timizations are performed. Although full predication has not yet been implemented on

!Intrinsics are used to describe digital signal processor operations such as saturating arithmetic,
normalization, and multiply-accumulation which are not found in general purpose instruction sets. They
are function calls which are converted to host processor instructions for simulation.

81

Table 4.1 Input sets.

Applications Inputl Input2

adpem{dec|enc} | MediaBench default: clinton.pcm | MiBench training input:
small.pcm

9721{dec|enc} MediaBench default: clinton.pcm | MediaBench — alternate input:
S.16.44.pcm

9724{dec|enc}

285 frames of a synthetic har-
monic signal; pitch delay varies
slowly from 144 to 18.5 samples

224 frames of male speech, active
speech level: -18.7dBov

gsm{dec|enc}

MediaBench default: clinton.pcm

MiBench training input: small.au

Jpeg{dec|enc}

227x149 (5.6k) color image

233x174 (6.9k) color image

h263{ dec|enc}

74 frames (cla7.263)

74 frames (mad13.263)

mpeg/dec

60 CIF frames (foreman.ctl)

20 CIF frames (stefan.ctl)

mpeg2{dec|enc} | 4 CIF frames (I-B-B-P - | 129 frames (1I-128P — ccm1.m2v)
meil6v2.m2v)

mpgl23 3 secs 96kbs music 108 secs 128bps music

Jpg2Kdec 1024x768 color image | 1024x768 color image
(shed_in_field.jp2) (smokey light.jp2)

Kernels

autcor00 xpulsei.dat xsinei.dat

conven(0 xk5r2d.dat xk4r2d.dat

fbital00 xtypSNRi.dat xstepSNRi.dat

fftoo xtpulse256i.dat xspn256i.dat

viterb00 getti.dat togglei.dat

an embedded or DSP processor, it is assumed that a low-cost predication mechanism,

such as that proposed in [56] could be used.

Unless otherwise noted, the pointer analysis used is an Andersen style, field-sensitive,
context-sensitive pointer analysis, with heap sensitivity where appropriate (Afc(h)). Dur-
ing optimization, alias analysis information can be used to remove redundant memory
operations. Because the impact of interprocedural pointer analysis accuracy and opti-
mism are studied, optimization variance can result in code differences which obfuscate
IPA’s impact on object scheduling. To prevent this, where codes originating from multi-

ple IPA formulations are compared against one another, optimizations requiring memory

82

1.06
1.05 4 -«— Afc baseline | Afch baseline —» -
1.04 -
1.03 4
1.02 4

amrrmtr o pd e oo

Normalized Execution Time

e\o\z\,“_’ 8\02\‘8 e\:\é_‘:\: ..‘_"‘-C‘E‘-:‘E e\c\é\:_: ..‘_"-C‘E‘-:‘-: E‘S‘E‘:‘-: e_‘:E:E e\:\é\:\:

<¥T3 S¥W3 S8IFE <8S5E <3Sf% =3%ff <3%R% =3%%f <E%i8

adpcm{d/e} g721dec gsmdec jpegdec jpegenc h263{d/e} mpeg2dec mpeg4dec jpg2Kdec
g721enc autcor00 g724{d/e} mpg123 gsmenc

conven00 fhital00
fft00 viterb00

Figure 4.2 Performance changes realized by classical optimization after various IPA for-
mations. A = Andersen. S = Steensgaard. f = field-sensitive. ¢ = context-
sensitive. h = heap-sensitive.

dependence information have been disabled. For optimistic IPA, missing memory depen-

dences could result in incorrect code, so such optimizations are always disabled.

4.2 Classically Optimized Codes

The suite of classical transformations used for optimization closely resembles the state
of current DSP compilation. This code is used here for baseline evaluation of C-SRAM

efficacy.

4.2.1 Performance effects of pointer analysis

As described in conjunction with Figure 3.6, there are applications in the studied suite
for which an order-of-magnitude change in the size of the points-to graph is observed
when some interprocedural analysis options are enabled. Interestingly, after classical
optimization, these changes have little effect on net performance. Figure 4.2 shows the

relative performance of benchmarks classically optimized after several types of pointer

83

analysis. Results are normalized to the most accurate form of applicable analysis, Afc or
Afch. Where benchmarks have similar performance characteristics, they are labeled in
gray below another application.

Because around half of these benchmarks have relatively simplistic pointer behavior,
pointer analysis quality does not significantly impact net performance benefit gained
through classical optimization. If IPA is to be used only for classical optimization of
the subset of benchmarks with simple pointer behavior, then most any algorithm will
be sufficient. However, the simple behavior also means that there is no analysis cost
advantage to using a less accurate algorithm. Because the C-SRAM scheduler requires
pointer analysis for memory understanding and converts this to data power savings, its
interaction with ITPA information is different than that of performance optimizers. The

following sections include results which explore the utility of accurate and optimistic IPA.

4.2.2 Schedule distributions

Exact power saved from each C-SRAM configuration will change with circuit technol-
ogy and implementation. To abstract from the specific power calculations in Chapter 2,
schedule distributions are first presented without consideration of their specific power
implications. We first consider object schedules without performance degradation; opti-
mistic [PA and performance-degraded schedules are evaluated in subsequent sections.

When performance degradation cannot be tolerated, the compiler is able to identify

a significant number of objects to be placed in port-restricted configurations, and a

84

Dynamic Object Schedule Distribution - "Perfect" Performance

= m None
0/ _| |
80% — O] Stack
60% o PortB
40% - 2 [— L @ PortA
% \
/ Latency
20% - %
% LatB
0 /0 T T T T T T T T Lat A
8 2 8 8 8 8 g8 2 g8 2 8 2 8 ¢ 8 2 8 8% 8 &
T ¢ 5 £ § £§ T 6 T &8 T ¢ T &8 T & B T, & ¢
E E ¢ ¢ = Y T 5 &8 & E E 28 8 9 9 > 2 s ¢
] e = g =S [N N [9 8 o @ @ @ g £ =
g £ & o o> o o o 9 © = = o o o > <
]] © £ £ £

Figure 4.3 No tolerance, classically optimized schedules: percentage run-time accesses to
various configurations.

Object Size Distribution - "Perfect" Performance

= 0 m None
O Stack
L | | |mPortB
O PortA
. : 7 - i || |mLatency
% 7 % Y b
% , ', , 2 7 |ELatB
% : Y 72 22 7 A V) o . 7/ é v /Z
© 0O 9o 9o o o o © o o o 2] © 0o © 0O © ® o o |BlatA
@ c & & o © o c ® £ o c D c @ c @ &N oS >
=] [= [= £ = [o (7] =] [= [} o [k=] - o ©
IS £ Q @ = — - < < £ 1 [} 5] N [< [= B >
S 8§ £ £ & SR EE R g 3 8EE v 2 2 2 2 3
g £ 3 o * > & &% B o o & & % 8§ & & 5 <&
] © © 1S £ 15

Figure 4.4 No tolerance, classically optimized schedules: percentage total data bytes in
various configurations.

moderate number for placement in long-latency regions. Figure 4.3 shows the percentage
of run-time accesses which hit in each configuration, and the byte-wise data footprint
distribution is given in Figure 4.4. LatA and LatB indicate that data are in a long-
latency region with only PortA or PortB active; Latency denotes a dual-ported, slow
region; PortA and PortB specify full-speed, single-ported regions; and Stack or None
accesses and data bytes go to dual-ported, short-latency SRAM.

Two points are of particular interest here:

85

1. Despite the strict zero performance degradation restriction, the compiler does find
use for all five data configurations. In general, however, significant need does
not arise for placement of objects in opposing port configurations (LatA, Lat, and
PortA are the primary configurations used). While many of the LatA and PortA
objects can also be placed in LatB and PortB regions, PortA was given preference
when schedule height was unchanged. This was done to demonstrate that for
an environment in which either (a) high performance demands, or (b) real-time
deadlines force a zero tolerance bound, expense could be saved by only providing

turn-off for one port, not both.

2. Configuration utilization varies noticeably when viewed from the perspective of
run-time access counts (Figure 4.3) or object footprints (Figure 4.4). Both are
important: access count distributions relate to dynamic power savings, while ob-
ject size correlates with static power consumption. Vivid differences between the
two distributions, such as those for the gsms and ¢721s, result from concentrated
application access to a small number of data objects. For most benchmarks, when
objects were ranked by access frequency, their relative access weights dropped ex-
ponentially by factors of approximately two. Configurations for high-weight objects

thus disproportionately contribute to the access count distributions.

86

100

n .

= B Dynamic Power

= 80 @ Static Power

n

S A am

S 60 s

=

&

S 40 i

(=2}

=

< —tHAAHA R A H =

S

e o H 101100 L A UMD 00000 panma atang AAVAL [0AER MAAAY oumg
ozge] vzgs [PRgg [PE2g [PR3E [PRE [PRes [E2e |0RLE (P28 |29 w;gfg m<3,_:§ m‘,g:_é m<uo§ m‘,&.ﬁg w&oog méﬁg wz&:g mdﬁg w:(g:_:g m<‘%‘2(§
adpcmd |adpcme | g721d | g721e | g724d | g724e | autcor |conven| fbital | fft | viterb | gsmd | gsme | h263d | h263e |mpeg2d |mpeg2e | mpegdd |jpg2Kd |mpg123 | jpegd | jpege

Figure 4.5 SRAM power savings for data objects allocated to configurable SRAM after
various IPA formations. A = Andersen. S = Steensgaard. f = field-sensitive.
¢ = context-sensitive. h = heap-sensitive.

4.2.3 Power savings

Figure 4.5 shows dynamic and static SRAM array power savings corresponding to
application object placement decisions made after various combinations of IPA options.
Reductions in data power are shown for data placement decisions made after five types of
pointer analysis, indicated as c if context-sensitive, fif field-sensitive, h if heap-sensitive,
A if Andersen, and S if Steensgaard. The number of IPA arcs is essentially reduced from
left to right in each benchmark’s cluster of results.

A value of 40% static power savings in Figure 4.5 represents a 40% decrease in static
power alone. Both static and dynamic power are shown in the same column, but the
two values are independent (if no SRAM data power were consumed, the column total
would be 200%). On-chip data storage has been indicated to consume upwards of 50%
of total processor switching power [1], and in future technologies energy dissipation from
leakage (static power) may equal that of switching (dynamic power) [10]. While it is

thus important to consider both components of total power consumption (static and

87

dynamic), their relative contributions to total SRAM and total system power will differ
across technologies, so their reductions are shown independently.

Power savings should generally increase as data objects are placed in low-power con-
figurations based on increasingly accurate, and increasingly optimistic, pointer analyses.
There are several factors which level the savings seen in Figure 4.5. First, because
many telecommunication applications have trivial pointer usage, and heap objects from
the same malloc() site must be allocated together, IPA information useful to the object
scheduler may not vary significantly across analysis types. Second, as previously stated,
it was necessary to disable optimizations based on dependence information so as to have a
consistent code baseline and be able to observe the effects of IPA only on object schedul-
ing. When the optimizer is allowed to use dependence information, redundant memory
operations are frequently removed, particularly when heap sensitivity is used. This alters
the object scheduling problem: constraints change because the number and location of
object reference sites is modified, and the relative contributions of individual objects to
total dynamic power consumption shift because access sites are removed. The result-
ing schedules do then have power savings differences visible in IPA comparison graphs.
Lastly, in some cases the scheduler is able to realize a better distribution of objects (more
objects in long-latency, single-ported regions) at the cost of some of the objects origi-
nally in comparatively high power regions (single-ported). In consuming sufficient slack

to place more objects in long-latency, single-ported regions, other objects may need to be

88

[) N R O None
08 1 1 [[[e mininizni=inE —THoPons
] W Lat

06 | [1 e —h

1 O I I L O LatP
04 1 {1 1 T e O S [ey —
02 T —{ 1 1 e L —
0
°z|zlglals vz 2g]s v 5| “ %2253
N < 3 < 3
conven00 ipg2Kdec mpg123

Figure 4.6 Distribution of object placement decisions.

removed from the single-ported region, thus balancing out visible power changes across
IPA combinations.

With regard to this final point, the scheduling decisions made across IPA formula-
tions can be different in important ways. For the same codes, Figure 4.6 shows several
sample distributions of object placement decisions, where, by number of objects in each
configuration, it is clear that IPA results have changed scheduling decisions. At the top of
the conven00 bars for Steensgaard analysis, the number of unconfigured objects is fairly
small. For Andersen-style analysis, this count increases, but there was actually a net gain
in power savings. With Andersen-style IPA, the number of access sites for a high access
weight, large object was reduced, enabling its move from a None to PortA configuration.
In the process, three other less important objects were downgraded to None, bringing up
the None category count, but resulting in overall power savings.

The most noticeable cases of power reduction with increased IPA accuracy are mpeg/dec

and conven00, which see static power drops of 4% and 14% due only to the accuracy of

89

120
@ B Dynamic P
g 100 ynamic Fower
= O Static Power
(S
n
= 80
[
s
& 60 —
%)
(2]
£ 40l (m
<
8 A
E “1HI I WWWW 7 W 7
oua._uw Nn2NRE [LNE [, ﬂ:” nL2NL [g Ugi_ﬁc’a_ Rl [ngnl[wanswnwans m:mﬂcmcg;zmﬂcwllwll n“man.c .r:xn.:”H HH
<R x| | < <R R R R R R R R R R R R T YRR
adpcmd| adpcme| g721d | g721e | g724d | g724e | autcor | conven| fhital fft viterb | gsmd | gsme | h263d | h263e| mpeg2d| mpeg2e| mpegdd| jpg2Kd| mpg123| jpegd | jpege

Figure 4.7 Comparing SRAM power savings for data objects scheduled following con-
servative and optimistic analyses. A = Andersen. S = Steensgaard. f =
field-sensitive. ¢ = context-sensitive. h = heap-sensitive. z = zero-weight
exclusion.

memory usage information. Improved IPA accuracy thus may, not must, improve C-
SRAM power savings. With the fast analysis framework used for this work, it is worth-
while to always use the best analysis, so as to capture these opportunities for improving

results.

4.2.4 Optimistic pointer analysis

Figure 4.7 shows the positive impact TPA optimism has on object scheduling. Against
the S and Afc(h) results from Figure 4.5, the gains of zS and zAfe(h) are clear. Where
z-based static power savings increases, but there is little or no change in dynamic power
across analysis types (e.g., for the EEMBC benchmarks), infrequently (or never) accessed
objects have been moved from short to long latency storage, where static power savings
is quite significant. The autcor00 benchmark, for example, contains references to three

bR INNA4

different input types, “sine,” “speech,” and “pulse.” For each input type, there are three

90

120
100 [0 Static Power ||
W Dynamic Power

80
60

Percentage Power Savings
8

20 -
0 L
°gRE “ERE "ERE “§
N < < < < <
conven(00 h263enc mpg123 jpegdec jpegenc

Figure 4.8 Detailed comparisons of data power savings from zero-weight pointer analysis
based on accurate (zAfc(h)) and inaccurate (25) formulations.

corresponding arrays (input_buf, test_buf, and t_buf) used as input and checking data.
For a given program run, only one set of buffers will be used, but the other buffers are
potentially accessible through pointers. Zero-weight exclusion during pointer analysis
allows the unaccessed buffers to be placed in long-latency storage, because they no longer
appear in the code as conjoined to the buffers actually used.

Zero-weight interprocedural analysis noticeably reduces the total number of depen-
dence arcs present in an application. However, for data power savings, it is still important
that this optimistic analysis have an accurate foundation. For a selection of the stud-
ied benchmarks, the zAfc(h) results in Figure 4.8 highlight the additional power savings
benefit (over zS) which may be achieved when an accurate analysis (Afc(h)) underlies
the zero-weight algorithm.

If zero-weight analysis missed many object access arcs that occur at run time (for
inputs other than the one used for front-end control flow profiling), its use for object

scheduling could have detrimental performance effects. Specifically, if an accessor was

91

] ‘A
57 Afch IPA Dependence Object Arcs per Static Load Operation [/ Z
/ A A
o 440 Input 2 % 77
S @ zAfch IPA 2 77
S 37 |m Inputt 2 77
g < Z 7 7 71 17
=] Z ’ 7 Z, Z1 |Z
=Z 1 ; ~ % 7 Y 2 7 7 7 7 7 7 /) 7
21 17 Zh |7 7 ml m / 1 VB
(5] o (5 o o o [=1 (=] o [=] o o (S o o o (& o (S o
[} o [} o [} c (=] o (=] o [}} < (%) [[} < [} N ('} [=
< [} © [S D 3 [= © Ke] < [} =y D =] [} i=J ~ p= [}
€ £85I XX 8|9 = o E | E |V VNN T D DD
s ¢ R B R R 5 2 &£ 2 8 o & &§ 2 2 2 & & 2
[«% o > > [e)) [=)) g o bl > o o) = = o o o £ —_— =
T T o
8 ® E E E

Figure 4.9 Comparison of zero-weight pointer analysis object dependence markings to
real multi-input memory access behavior.

not marked by the analysis, and a datum scheduled for access in a single cycle at that
load site is in a three-cycle region, the processor must stall while the datum is accessed.
If two simultaneous accesses to a one-port region occur at run time, a smaller (one-cycle)
port wake-up penalty is incurred. In this case, however, data power consumption is also
impacted because the second set of bitlines must be charged.

Figure 4.9 shows two columns for each benchmark. The left is a stacked column
composed of three components. Its foundation is the average number of objects accessed
by each static load operation during a single run of the program (Inputl, a training run).
Added to Inputl’s object accesses are the additional, different, objects accessed for an
evaluation run using Input2. The last component represents the objects marked by the
optimistic zAfc(h) pointer analysis that are not accessed for the two sample runs. The
right column is the average number of dependence objects marked on each load by the
most accurate form of conservative analysis used, Afc(h). Figure 4.9 shows why zero-

weight analysis is profitable for object scheduling: the object dependence arcs zAfc(h)

92

draws closely match the memory behavior for benchmark inputs other than those used
for the control flow profiling which drives zero-weight block exclusion.

As explained in Section 3.5.2, data configuration decisions made for objects which are
neither interactive nor conjoined with other objects are made independently of decisions
for other objects. Object scheduling is least constrained for (1) independent objects
(because they do not consume slack or port resources that might have been allocated to
another object) and (2) objects with only a single static access site. For a selection of the
benchmarks studied, Figure 4.10 shows how the amount of power savings attributable
to independent objects differs between accurate Afc(h) and optimistic zAfc(h) analysis.
Zero-weight analysis clearly reduces constraints on the object scheduling problem, and
allows many more independent object placement decisions.

A single-access object may occur, for example, when a look-up table is read-only or, for
zero-weight analysis, when loop-initialized data is never used. When zero-weight pointer
analysis is used, there may be objects to which no static operations have dependence
arcs. Figure 4.11 shows the fraction of total global and stack objects with zero and one
access sites for the most accurate pointer analysis combination used — Andersen, field-
sensitive, context-sensitive, heap-sensitive (Afc(h)) — and the corresponding zero-weight
path exclusion analysis (zAfc(h)). Zero-weight analysis significantly increases the number

of unconstrained or lightly constrained objects.

93

Percentage Power Savings -- Independent Objects B Dynamic Power
[Static Power

-
N
o

ings

V

-
=]
S

0
=3
]
]
i

[=2]
o
|

Percentage Power Sa
o8
D Il
]

P
o

=
]

T T
£ £

S 3 = =
adpcmd |adpeme | g721s | g724s | autcor00| fft00 | gsms | h263d | h263e | mpeg2d | mpegdd | jpg2Kdec| mpgi23| jpegd | jpege

m
) L | 55
% %% 2%

zAfch momm

Afch

zAfch
Afch
zAfch !

Afch P

zAfch @

Afch =
zAfch

zAfch mmm

Afch b

Afc
Afch 3
Afch =
zAfch
Afch =
Afch [

T T T T T T
£ (85|53 g

Figure 4.10 Contribution of independent data objects to total SRAM power savings.

1 71 O zAfc(h)
@ 0.9 1 Afc(h) -
S 081m .
s S T -
o 07 T R _
[7,] —_
W T . N
[<}]
§Muuk— . I
S 04 - - e
S
5 03411 S . N - =
-
=}
S 02—+] U
[= L L
S o4 41 H - B .
°
s 0 Py
[&] [&] (&) [&] (=] o (=] (=] [&] o (&) (&) [$] o [&] (&)
L 8 g [<}) o [<}] o o O o 9 [=] [<F) [= [<}] [== 8 g 8 [} N [<F) [
€E ET S I X 8 o £ 5 E EQ Q@ AN T ¥ D OOD
ESRNR8cs:E 25588 %poyegs
S 8 oo o9 85 ¢ - S oo & 838 8 2 E 25
© © i g€ E E —

Figure 4.11 Increase in single- or no-access object counts for Afc(h) versus zero-weight
zAfe(h) pointer analysis.

94

4.2.5 Power—performance balanced schedules

As a first-level approximation, a technique may be considered “power-aware” if the
ratio between percentage power savings and performance degradation is at least 3.0 [39].
When system-level circumstances permit performance degradation, the compiler uses a
control flow profile to anticipate the net performance effects of restricting ports or in-
creasing access time of individual objects. Configuration distributions for a moderate
performance degradation threshold are shown in Figures 4.12 (run-time access counts)
and 4.13 (fractions of total data size). Percentage performance decay is shown as a
black bar below the footprint distributions in Figure 4.13. For this moderate bound,
each benchmark’s performance is required to be within 5% of the best-case (2P-1C)
schedule. Degradation is not uniform because for some applications, forcing additional
restrictions requires “creation” of slack that pushes performance past the specified tol-
erance. Net power savings are shown in Figure 4.14. These results correspond to the
nondegraded Afc(h) results shown in Figure 4.5. Allowing this slight slowdown most no-
ticeably increases opportunity for object placement in long latency regions, accounting
for the increase in dynamic power savings relative to the undegraded schedules.

The average 2.7% degradation for the “moderately” degraded schedule corresponds
in Figure 4.14 to an anticipated data power savings of 31% (51.7% of static power, 9.4%
dynamic power, assumed to contribute equally to total SRAM power in future tech-
nologies [10]). Assuming that on-chip data storage consumes 50% of overall processor

power [1], the system-wide power:per formance ratio falls well above the threshold of

95

=Slowdown

[Stack
[PortB
@ PortA
m Latency

Dynamic Object Schedule Distribution - Moderate Performance Tolerance

UMOPMO|S

N N\ %_ abesany

=K | oogsaun
TN | ¢216dw

IR | ospybadw
Y | ousgBedw

NN | oepzhedw

Y | 0opveL6

[ous|g.Lb

29p| L6
004

oorena;

00UBAUOD

00409}ne

auswodpe

Figure 4.12 Moderate slowdown: access distributions to various configurations.

LatA

Latency
LatB

m PortA

SN obeseny

O

[TEY

00G4aYA
Y ¢z1bdw
Y 99pyhadw
S ouazbadw

\ 9spgbadw
Juaggey

Ee=====m N

Y J9pggey

Y ouawsh

IMIDODOODESSY %epwsbh

[T duspesb
Y 99ppe.Lb
oualg/b

29p|gLb

[CCEYIIIYY 0034

Y 00renaj

00U3AUOD

Obiject Size Distribution - Moderate Performance Tolerance

Y 00400}ne

CTTT Y

Y %epwoadpe;

100%
80% -
60% -
40% -
20% -

0% -

suswaodpe

Flgure 4.13 Moderate slowdown: data bytes stored in various configurations.

Percentage Power Savings: < 5% Performance Degradation

B
v&(\v&v
& S
&

B Dynamic Power
[Static Power

& 6&00 @600
g

Figure 4.14 SRAM power savings with moderate performance degradation

O & W &
¥ & ¥ &
S & a0
Q‘b&oé’\&

T
o o ©9 © o o o &%
N & ® © F « 2%
- -

sBulnes Jamod abejuasiad

).

< 5%

(

96

beneficial power-savings techniques. This power benefit relies on an already low-power
design style, and low-power TSMC process parameters are used for calculating antici-

pated dynamic power savings.

4.3 Object and Configuration Statistics

Benchmark stack, global, and heap variable usage is summarized in Table 4.2. Access
distributions are given for classically optimized code; Table 4.2 percentages indicated as
0.00 are fractions smaller than five one-thousandths. After local variable promotion, the
stack size for each application is very small at any given time, never exceeding 1.1 kB, so
the amount of mandatory high-power storage is minimal (second column of Table 4.2).
Program accesses are primarily to global space for the telecommunication applications
without dynamic memory allocation, and to heap for more complex codecs.

mpeg4dec and h263enc are good examples of codes with high heap turn-over, i.e.,
their maximal live heap sizes are much greater than the total amount of heap space
allocated throughout program execution. While they do perform frame-wise processing,
due to coding style, jpegdec, jpegenc, h263dec, mpeg2dec do not as efficiently utilize heap
allocated space. The total footprint of each application, however, still easily fits within
128 kB, 256 kB, or 512 kB of data storage. The low mpg123 heap usage is a relic
of the program’s implementation for desktop-domain computing, and was addressed in

Section 2.6.

97

Table 4.2 Data sizes and access distributions, no function inlining.

Application | Max. Tot. | Tot. Tot. Max. % % %
Stack Global Heap Live Access | Access | Access
Size Size Size Heap to to to
(kB) (kB) (kB) Size (kB) | Stack | Globs | Heap
adpcmdec 0.1 2.9 — — 0.00 100.00 —
adpcmenc 0.1 2.9 — — 0.00 100.00 —
9721dec 0.2 0.7 — — 1.20 98.80 —
g721enc 0.2 0.7 — — 1.18 98.82 —
9724dec 0.3 12.1 — — 2.02 97.98 —
g724enc 0.3 21.3 — — 4.27 95.73 —
autcor00 0.2 15.7 — — 0.11 99.89 —
conven00 0.1 12.9 — — 0.00 100.00 —
fbital00 0.2 8.6 — — 0.00 100.00 —
ftoo 0.3 20.2 — — 0.00 100.00 —
viterb00 0.2 6.3 — — 0.18 99.82 —
gsmdec 0.4 16.2 0.7 0.7 0.92 40.76 58.32
gsmenc 0.5 16.2 0.7 0.7 0.66 40.01 59.33
h263dec 0.4 313.2 185.5 185.5 0.11 63.36 36.52
h263enc 0.4 330.8 33 426.3 313.7 0.02 15.04 84.93
mpeg2dec 0.6 21.7 372.2 372.2 0.22 87.48 12.30
mpeglenc 0.8 9.3 1220.7 1220.7 0.44 7.39 92.18
mpeg4dec 1.1 976.1 | 114 5134 5140.9 1.62 39.07 59.30
Jpg2Kdec 1.1 92.0 12 095.6 11 852.8 0.02 0.17 99.81
mpgl123 0.3 240.3 33.0 33.0 0.08 99.92 0.00
jpegdec 0.4 20.5 30.7 30.7 0.62 16.12 83.26
Jpegenc 0.4 24.6 143.9 143.9 1.23 41.67 57.10

After object configurations are chosen, data must be grouped into macroblocks ac-

cording to configuration properties. The overhead of this alignment restriction is shown

in Figure 4.15 for classically optimized code scheduled without performance tolerance

into two macroblock sizes: 128 bytes and 256 bytes.

For a 16 byte SRAM line size,

this corresponds to eight-line and 16-line macroblocks. For most applications, the align-

ment overhead is trivial. Applications with a small dataset, e.g., the ¢721s, adpcms, and

98

25 @ 256B/ublock
20 | | 128B/ublock

gsmdec
gsmenc
h263dec
h263enc

% Added Space for ublock Alignment
i =
' \

adpcmdec
adpcmenc
g721dec
g721enc
g724dec
g724enc
autcor00
conven00
fbital00
fftoo
viterb00
mpeg2dec
mpeg2enc
mpeg4dec
jpg2Kdec
mpg123
jpegdec
jpegenc

Figure 4.15 Increase in data space to due alignment of each configuration type to 128 byte
and 256 byte macroblock bounds.

EEMBC kernels, are most effected by the alignment restriction, because they use only a
small part of several configurations (e.g. 16 bytes of 256 bytes to hold a single object).
Given low usage of opposing ports, it is worthwhile to consider providing only one port

configuration for these applications, i.e., eliminating the LatB and PortB options.

4.4 Synergy of Aggressive ILP Optimization with Power Savings

Aggressive ILP optimization requires code replication of various forms: operations
are duplicated and predicated on opposite predicates, loops are replicated during un-
rolling and peeling, and superblock and hyperblock tails are created for side exits from
the main code block body. A “classic” DSP processor has little instruction storage, so
other than software pipelining and limited function inlining, ILP optimizations have not
traditionally been used in the embedded domain [5]. The performance benefit of code

scheduled with moderate loop unrolling, peeling, and hyperblock formation bounds is

99

©

2

7

a 2.5 — —

S - —

O 2+

]

s % e i
S N 0

%1 \\D\D\\\\\\D\\\\\\\\\\\D\\
S O 0 VL VL2 9 9 9 9 © L YV Y O B B O M O O O
@ ® £ & £ © £ © & & ¢ © & £ & £ & £ © & N o £ I
[T @ T @ T Q@ 5 £ ® £E 2 T @ T @ T 9 T T [B 9
o £ E - — ¥ ¢ 9 o £ 5 £ E ® ® N4 &N ¥ ¥ o o o <
§ 58I SR EEE EE 88993 OB
o £ £ o » » » 3 6 - S oo d & 8 8 8 8 E & &
= S T 3 £ £ £ =

Figure 4.16 Performance improvement of ILP-optimized code.

PR —

=

o 30

S

o

[4 —

-82.0 Dﬁ]]

<90 | 0o [i B | I - =[O E

[3) . T

= O O L L L L O o O O O O L0 O 0 O 0 O O ™M O O O

s ® S @& €€ © £ © © & © © ®©& £ @&©& £ © € @0 & N o £ I

b7 T & BT 9 T ¢ 5 £ ® £EFE 2§ T ¢ T & T & T T [BT S
£ £ -~ ~— < <t [-— e e 1S (32 (32 N N < v [=2] (=) (=)
S 6 ¥ N &N o4 2 > 3 L2 6 © © v D D au o O D

D S S =1 c &= = N N [[g o £ o o

S & o o o o g 9 > © © & £ o a o & _ =
® ® ° E E E &

Figure 4.17 Code size expansion for aggressive ILP optimization.

shown in Figure 4.16. This speedup comes at the cost of the code size expansion shown
in Figure 4.17.

Both the performance and power penalties associated with code size expansion can
be mitigated through careful use of loop buffers [56]. In that work, we found that a
dynamically scheduled loop buffer (one in which loops are swapped in and out at run
time, under compiler direction) could realize significant dynamic power savings for fetch
of ILP optimized code

Likewise, ILP optimization can have a favorable effect on data storage power, if SRAM
may be compiler-managed to fit data access properties and needs. However, creation of
larger scheduling regions and addition of speculative memory operations can significantly
change the amount of slack and flexibility available to the object scheduler, so the effects

of ILP optimization are not always positive. Figures 4.18 and 4.19 correspond with the

100

size and access distributions shown previously for classically optimized code. Without
performance tolerance, these object schedules realize the data array power savings in
Figure 4.20. For completeness, Figures 4.21, 4.22, and 4.23 show distributions and power
savings for a corresponding moderate performance tolerance of less than 5%.

Given the significant code size and performance changes, it is not sufficient, how-
ever, to evaluate ILP-optimized versus classically-optimized data power savings without
considering instruction and overall system power. Combining the code size and data
differentiation impact of ILP optimization, the net combined instruction and data power
ratios in Figure 4.24 are realized. Without performance tolerance, aggressive ILP opti-

mization does not always yield a profitable power point relative to classically optimized

ILP—Optimizedinstruction+data power

. 1S
Classanlinstruction+data power

code (for many benchmarks in Figure 4.24, the ratio of
less than one). With moderate performance tolerance (<5%, Figure 4.25), results are
more consistently favorable.

Addition of unpredictability is inherent to the ILP optimizations performed here —
speculation introduces load latency uncertainty, and performance will be hindered when
execution leaves a profile-based trace chosen for hyperblock or superblock formation.
Assuming that this drawback can be tolerated, i.e. the system has soft, not hard, real-
time deadlines, when performance improves and data+instruction power decreases, ILP
optimization is worthwhile. Cases where performance improves but power increases must

be more closely evaluated. As described in Section 3.4.2, the percentage performance

101

¢0T

‘poIRIS0)}

uorjeperdop oourwiojed ou ‘9pod pozrwrjdo-Jr[10} sSuiaes zomod eye(] 0z oIn3rq

% Data Power Savings

88888
= =R
adpcmdec |
adpcmenc 7
autcor00 |
conven00 |
fhital0o | m

g721dec |

100 :b
\

g721enc |

g724dec [

g724enc 7

gsmdec

gsmenc

h263dec |

h263enc |

jpegdec |
jpegenc |
jpg2Kdec |
mpeg2dec |

mpeg2enc

mpeg4dec |
mpg123 |
viterb00 |

Average |

1

paydnels o
pay olweuAq m

“poeIa]0) uoryepeisep soueuriojrad ou

‘9poo poziurpdo-J[:SUOIIRINSHUOD SNOLIBA UI S91AQ BIRD [R)0) 08RIUIIDJ GT F oINS,

adpcmdec ‘ ‘
adpcmenc &S
autcor00 §
conven00
fbital00
11]
g721dec [SSSNSSRSSSRNTT]
L
g72ienc N
]
g724dec NT 7]
L]
g724enc SN 7777
I
gsmdec SN
gsmenc
h263dec
h263enc -
jpegdec
jpegenc §
jpg2Kdec
mpeg2dec |
mpeg2enc [SSSN
mpegéddec \-
mpg123
viterb00
Average =SS
NE B 0 O m
55535387
PBEE g2

"pareid[o} uoryeperdep soueuriojrad ou

‘opoo paziurrjdo-J] :SUOIeINSYUOd SNOLIBA 0F SISSIIIE dUWII}-UNIT 95eJUadI8J QT F INJ1 |

adpcmdec
adpcmenc
autcor00
conven00
fbital00
fft00

g721dec 1§

g721enc
g724dec

%001

|
Y,
L

g724enc =S
L

gsmdec
gsmenc
h263dec
h263enc
jpegdec
jpegenc
jpg2Kdec
mpeg2dec
mpeg2enc
mpeg4dec
mpg123
viterb00
Average

Vielm

Kouaye @

¥oeys O

SUON B

€01

"poRId[0) uoIRpRISIP SOURUI

-10319d ou ‘opod poziwrydo-JT 10] ssuraes 1omod Bjep UMOPMO[S 91RIIPOIN £7 T oIn3L

% Data Power Savings

(=2

%0
L %02

L %0%

L %0
- %08
%001

adpcmdec |
adpcmenc 7
autcor00 |
conven00 |
fhital00 | =
100 |
g721dec |

g721enc |

g724dec |

||
1
g724enc | r
gsmdec 7

gsmenc

h263dec |
h263enc |

jpegdec |
jpegenc 7[|
jpg2Kdec 7[|
mpeg2dec 7[|

mpeg2enc

1

mpeg4dec |

mpg123 |
viterb00 |

Average |

pay onels m
pay diweulq m

adpcmdec
adpcmenc

autcor00 |

I
WO

™

Size Distribution

%09
%08
%001

L
]

adpcmdec

adpcmenc

RNNNNNNNNNNY

RNNNNNNNEN |

=
R
c
=
@
=~
[\
N
[a—
=
o)
i
S)
g_ 2 autcor00
g & conven00 NN
&3 fital00 K8
g g fft00 RN
g 2 g721dec RN
2
=B g721enc
Hoo
g o g724dec
2 g g724enc
D =
o & gsmdec
D
Q § gsmenc
o
o & h263dec
g o
53 h263enc
58
egdec
g < jpegenc
< g, jpg2Kdec
= s mpeg2dec
§ mpeg2enc
= Average N
R
c
= S B B O
-+ r - o
LR
= @3 g
@ <

SUON B

“poreIa]o) uoryepeidep soueurioydd ou ‘9pod pazrurpdo-JI
'SUOTJRINSIJUOD STIOLIRA 0} SISSODIR SUII)-UNI 988)U901dd :UMOPMO[S 9JRIPOIA T F 9InS1,]

adpcmdec

adpcmenc

Access Distribution

%02
%0
%09
%08
%001

autcor00
conven00
fbital00
fft00
g721dec
g721enc
g724dec
g724enc
gsmdec
gsmenc
h263dec
h263enc

jpegdec
jpegenc
jpg2Kdec
mpeg2dec

mpeg2enc

o o Slowdown

- o

| 8 B 8B 0=2 OB
[wul ol vl - B - B 7 4

gmggoos{o

e T H T &+ &2 o 3

= S > D x @

o Q

o <

=

o

S

{01!
‘uoryezrurydo [edIsse[d 03 dAIYe[aI 9pod paziwiydo-JT]

I0J SﬁH[A’BS Tomod BJePp puk UOT)ONLIISUL }9U :92URIIO} QI)IIPUI.IO_}.IB(I 9)RIIPOIN GC'F SIHB!&

ILP (I+D Power Saved)/

'L

ILP (I+D Power Saved)/ ™ Classical (I+D Power Saved)
Classical (1+D Power Saved) B
= o - N w
© @ ‘
e = h e ¥ adpcmdec
Do |
adpcmdec =~
J o adpcmenc |
adpcmenc) 1]
8 ® g721dec
g721dec a B 8
] Y g721enc |
g721enc o E |
7 T a 724dec
g724dec g g. g ,D
gT24enc EH 5. ; g724enc 7[]
) = 2 autcor00
autcor00 ‘ | 5 a ‘
| b b
conven00 | T & conven00 ‘ |
- o+ 4
fbital00 g fhital00
] S |
fft00 § fft00 #"j
.) H 4
viterb00 | g viterb00
gsmdec | g gsmdec :"]
Oq -
gsmenc 7[:| @ gsmenc
—
h263dec = 1
. —_ h263dec
h263enc e)
1] o h263enc
mpeg2dec | o |
1] T mpeg2dec []
mpeg2enc | E i
mpegddec JJJJ_H § mpegzenc] :
1 (oW
ipg2Kdec - mpegddec
- O) n
mpg123 | 2. jpg2Kdec
jpegdec ‘3- mpg123
] 5 |
jpegenc - = jpegdec [
] 3 |
. 1) g jpegenc []

636 201

60
50]
40
30
20
10 +

=

g724enc []
viterb00 [
jpegdec [
jpegenc

ILP vs. Classical Performance/Power
g724dec

adpcmdec [I:H
]
]

adpcmenc
gsmdec
h263dec

mpeg2dec [

autcor00
conven00
mpeg4dec
jpg2Kdec

Figure 4.26 % Per formance improvement : % Power increase ratio for ILP versus
classical optimization.

increase must be at least three times the resulting power increase for a technique to be
considered “power-aware” [39].

Using an assumption that instruction and data storage jointly comprise one-half of
processor power, Figures 4.26 and 4.27 translate the results of Figures 4.24 and 4.25 into
a comparison of Percentage_per formance_improvement : Percentage_power_increase

for ILP versus classically optimized code. Benchmarks are only shown if they had an

ILP—Optimizedinstruction+data power
Classzcalinstruction+data power

ratio of less than one. A bold line at the bottom of each
figure shows the 3.0 bound of this ratio. The conclusion of these results is that if a
system-wide mechanism for DVS or clock gating can be provided to compensate for early
completion of processing, i.e., to translate performance improvement into power savings,
the combination of speedup with data power savings makes ILP optimization uniformly

beneficial.

105

201

S
o
= 9 NAAA
<
% 80
2
< 60
£
S
‘:{C’ 40
S 2
(72}

] — [

L_) 0 1 s —

. [5] [£) o o o =] [+] (3]
4) c S (=] 5} = L] P
> S @ = 2 5] (] =] =]
a £ 3 8 N £ £ 2 S
= o N = = n n © [=2]
= S S s o o S Q

[=3 (=) > = o
S ©
® €

Figure 4.27 % Per formance improvement : % Power increase ratio for ILP versus
classical optimization, moderate performance tolerance.

4.5 Validating Results: General Sensitivity

From a general sensitivity study of program IPC (instructions per cycle) versus mem-
ory port count and latency, some interesting properties of telecommunication and media
applications become apparent. As single-cycle port count is increased from left to right,
Figure 4.28 shows the IPC gains realized for classically optimized codes. Without ILP-
enhancing optimizations, in particular in the absence of loop transformations (unrolling
and peeling), there is not generally sufficient parallelism in these applications to observe
significant benefit from increasing the port count. However, the IPC step between one
and two ports is virtually universal (all but the adpcm benchmarks, which are relatively
small kernel-like applications, and primarily register allocated). Forcing all memory ac-
cesses to use a single port versus two ports can have up to a 28% impact on IPC (for

h263dec and h263enc), emphasizing the importance of being able to selectively reduce

106

port count and provide differentiated data access. With a higher baseline memory la-
tency of three cycles, overall IPC is lower, and is not as sensitive to port count, but the
step between one and two ports is again prominent (Figure 4.29).

General sensitivity to latency is more dramatic: for a two-ported memory resource
configuration, IPC drops an average of 22%, and up to 35% (jpegdec) as latency is in-
creased from one to three cycles. IPC latency sensitivity is shown for each benchmark
in Figure 4.30. The more dramatic latency response relative to changes observed in Fig-
ures 4.28 and 4.29 for port count is echoed in the C-SRAM scheduling distributions of
Figures 4.3 and 4.4, where, without performance degradation, many more accesses can
be placed in PortA and PortB configurations than in long-latency storage. If placing all
data in three cycle storage realizes 63% data power savings (80% static, 46% dynamic,
each contributing equally to total power), even if data access comprises one-half of total
processor power, a 31.5% performance improvement does not compare favorably with the
average 22% IPC drop. This again emphasizes the importance of selectively differentiated
access latency.

Observing the same port and latency sensitivity trends for ILP-optimized codes (Fig-
ures 4.31, 4.32, and 4.33), several differences become apparent. Clearly, overall IPC
values are higher after ILP optimization, but relative changes in IPC in response to port
count are greater than for classically optimized codes. Consistent IPC steps are visible
not only when single-cycle port count is reduced from two to one, but also from three

to two (Figure 4.31). In contrast, latency sensitivity is not as great: for a dual-ported

107

1 Cycle Memory Latency, 1-4 Ports

1,2,3,4Ports
-

———

|
1

O O O 0O V0 0 o 9 o O O 0 0 O 0O O O MM o o
@ £ @ ¢ & 28 2 8 38 3 9 € @ &2 0 € O N @ £
T ¢ T ¢ T & 5 £ = 2§ 2 T 8 T ¢ D & T T T T O
£ E - = 9 ¥ 9@ 9 B &£ 5 £ £ ® o AN T v Do O

N N N N O > = [o ©O© DY O O o o o
S eRRSS S8 223888883222
S &S oo o o3 9 * > c © a a a @ = =
& © © € E E =

Figure 4.28 General sensitivity to port count: single cycle memory access;
count from left to right; classically optimized code.

increasing port

3 Cycle Memory Latency, 1-4 Ports

2.5
o 2
a
1.5
05 Il
O 0 0 O L0 L o O o O 0 0O O VO O OV O ™M O o
@ £ & £ & £ 0 © 8 8 3 & £ & £ & € O N & o
T 8 T 68 & 5 S T £ L2 T 2T 89T T T G, T 0
E ET I I J 8 ¢ 8 FF g EE QR Q3QAAT X oo
SERNSS sz £5588%%¢33c¢E¢%
&8 2o 09 5 g« > © 9 & = 2 20 2o 2 = =
T © € E E =

Figure 4.29 General sensitivity to port count: three cycle memory access;
count from left to right; classically optimized code.

increasing port

2 Memory Ports, Latency 1-3 Cycles

1,2, 3 Cycles

1,2, 3 Cycles
-

0.5
O O O O O 0 o © o o O 0O 0 0O O 0 O O M O o
® £ @ £ © £ © @ & 8 © @ £ & £ © € & o N & c
T 9 T 0 T o 5 £ T 2 T 9 S ¢ T 0O T T ™. T o
E E-c =3 ¥ 8 0 8 =T £ E MMM ANT E D 5 D
N N N N L = = Q © © DY O D Q @O O
8 a5 555 5 5 2 2 8 8 8N 90 0 0T £ 2 S
T 5T O O o o g 8 > £ © o o o a _ =
S © € E E =

Figure 4.30 General sensitivity to memory latency: two ports for all data; increasing
latency from left to right; classically optimized code.

108

1 Cycle Memory Latency, 1-4 Ports

5
45
4 1,2,3,4Ports
35 ‘ 1,2,3, 4 Ports —>
'S} 3 —> e
e rr
2
00010 o Hﬂw \MMMMM
| | |
30 11 111 11 L 1)1 1 T N

O O O 0O O 0 o 9 O O O 0O 0 VO O VO O M O o
@ £ @ &£ © £ S © 838 S ©@ € @ ¢ @ € @ N @ o
T 6 T 0 T @ 5 £ 3 P2 T ST 985 & T T L, T o
EE\—\—V‘Q‘OgttcEEMMNNﬂ'xgmm
SERRRR sz £5588%8%332¢2¢%
& 6 @209 o5 g~ > © 9 o2 2 2 2 &
© © € E E =

Figure 4.31 General sensitivity to port count: single cycle memory access; increasing port
count from left to right; ILP-optimized code.

45 3 Cycle Memory Latency, 1-4 Ports
4
35 | H
3 1,2,3,4Ports
o 1,2,3,4Ports >
2 ol = P
drmmimirnem
1
o I P 0l O
8255828888388 §:28:883883¢
E EST S I 8 ¢ S & 5 E E @ @ 34 o F ¢ 2 o o
6 o N NN £ 235 2 86 8688 8§ ¥ E 8 8
£ & @202 053 8~ > © o = c g e & g = =5
© © -

Figure 4.32 General sensitivity to port count: three cycle memory access; increasing port
count from left to right; ILP-optimized code.

3 2 Memory Ports, Latency 1-3 Cycles

1,2, 3 Cycles

1,2, 3 Cycles

IPC

—
—~—

O O O O O 0O o © o o O 0O 0 0O O 0 O O M O o
® £ ® £ © € © @ & S © @ £ & £ © £ @& & N o
T 9 T 0 T o 5 £ T 2 T © B © T O T T T T o
E E-c =3 ¥ 8 0 8 =T £ E MMM ANT E D 5 D
N N N N L = = Q ©W © D D DDA L 0 O
€ 8§~~~ Kk K~ 5 E £ T 8 a0 0 9% £ & a
T 5T O O o o g 8 > £ © o o o a _ =
S ® E E E =

Figure 4.33 General sensitivity to memory latency: two ports for all data; increasing
latency from left to right; ILP-optimized code.

109

baseline, classically optimized IPC drops on average 7% more than ILP-optimized code
when latency is increased from one to three cycles.

Because not all SRAM, even if on-chip, will have a single-cycle access latency, the
implemented framework was also validated for SRAM with higher baseline latencies. As
latencies increase, overall scheduling slack can drop significantly, but C-SRAM power
savings potential was still found. In particular, opportunity for port restriction remains
strong because many port-restricted objects are independent, and thus, even if accessed
at multiple sites, are not as frequently impacted by the overall reduction in available

slack.

4.6 Summary of Findings

Key findings in this study of joint operation-object scheduling for port and latency

configuration are as follows:

e As demonstrated through savings of up to 68% static and 22% dynamic power, a
greedy object scheduling algorithm can find significant opportunity for data power

reduction in the C-SRAM framework.

e Tolerance of port restriction and latency reduction exists in all applications, but to
varying extents. As expected, the greatest opportunities for configuration generally
exist in filter-based telecommunication applications, but depending upon coding

style and optimization level, are also found in media codecs.

110

e Interprocedural pointer analysis accuracy has a very visible impact on the volume of
dependence information provided to the compiler. It does not always significantly
change the information needed for unconstrained object scheduling, i.e. knowledge
of data independence, but it may. IPA accuracy thus can effect net data power

savings.

e With a scalable analysis framework, analysis cost is low, so the most accurate

available IPA should be used.

e Optimistic IPA provides information which closely matches cross-input application
behavior, and allows many more objects to be placed in power-saving configura-

tions.

e Neither control nor memory profiling are required for object scheduling, but both

forms of feedback are useful for increasing power savings.

o Aggressive ILP optimization can improve data power savings, but opportunities
vary widely, and must be weighted by code size expansion. Assuming that either
system-wide DVS or processor clock gating is available, when the system-wide
performance improvement realized through aggressive ILP optimization is included
in power : per formance comparisons, the code and resulting data power savings

are uniformly favorable.

111

5 DATA INTENT CHARACTERIZATION

Previous memory optimizations have targeted improvements in temporal and spatial
locality, so characterizations have focused on identifying access patterns and streams
in media and telecommunication applications. This work instead found opportunity for
compiler-managed data power savings when application properties are described in terms
of intent and ownership. These properties relate to the mathematical underpinnings of
these applications, and are the basis for the characterization and architectural application
of this dissertation. Data categorization cannot be the direct guide for configuration or
optimization of memory, but as this chapter will show, a thorough characterization of
run-time access traffic explains the efficacy and limitations of data optimizations for this
domain.

In this chapter, general application properties, including common coding structure
and the strong correlation of data use with particular functions, are first described. Code
examples introduce four objects with common data intent types and relate their access
properties to general memory optimization and C-SRAM. The seven established intent

categories are then defined, and the remainder of the chapter describes how the observed

112

algorithmic properties have also driven design of data buffering and sleep management

for embedded applications.

5.1 Algorithmic Properties

Several classes of applications exhibit regular function invocation and data usage be-
havior, including signal-processing and scientific codes. Of these, telecommunication,
image, and video applications are particularly well-suited to execution in a specialized
processing environment where ASIC blocks or custom accelerators streamline computa-
tion. On a fully programmable processor, however, execution commonly becomes ineffi-
cient.

Telecommunication and media codecs may be expressed as a cascaded series of basic
signal processing functions, or kernels. In an ASIC design, input data enter processing
blocks from an I/O buffer or memory storage, and intermediate values are passed between
computational blocks. As pictured in Figure 5.1, additional data, such as look-up tables
and processing state, are kept close to the kernels which use them. Such data flow is
easily represented in a hardware description language (HDL) for custom design. High-
level language (HLL) programming and compilation to a programmable target, however,
require that the pictured communication and storage flows be translated into a sequence
of accesses to generic processor memory space. In the resultant logical HLL coding
style, filter tap coefficients are stored in arrays; short-cuts for mathematical operations

appear as global look-up-tables in memory; and what might have originally been wires

113

Off-Chip ™ on-Chip |
: _ Data Data :
Data | ! Computation| Stream | Computation | Stream _ | Computation ! . Data
In | glocj: Block Block 1| Out
: 7 :
. State Look-Up .
: Registers Table :
! (ROM) !

Figure 5.1 Typical ASIC telecommunication/media flow.

between function blocks in an ASIC design become arrays or structures used to transfer
information across function calls. Hardwired on-chip communication paths and local
variable stores are thus replaced with frequent memory accesses. These data accesses
are superfluous with respect to original codec structure, but due to their original intent
in the underpinning mathematical algorithm, are fortunately more regular than those of
general-purpose applications.

Several properties recur across a broad spectrum of telecommunication and media
applications: (a) reliability of usage periodicity, (b) significant temporal gaps between
usage, and (c) disparity of usage among various data objects. These first two properties
relate to data ownership by particular application kernels (functions) and are manifested
due to call trace regularity. Data ownership also helps to account for the low number
of per-object access sites, which aids the object scheduler described in Chapter 3. The
latter property indicates the need for prioritization and selectivity in treatment of data
objects.

Figure 5.2 shows interval-based activity for all global objects accessed during part of
an execution of the ¢724dec program. Global data for telecommunication applications

include mathematical short-cuts, such as powers of two, inverses, and square roots; scaling

114

g724dec Data Object — Function Correlation

120
[72] R e
"6 100 Lnn ??ﬁj’g
Q
= 8 LT W
O "rs
w0 %
a e
© Yoyxr e Ea
o)
2 20 Lo e P v
(O] W,iﬁgﬁ{ £ s
0F L T e, R e e JENTEEE L e GORMMEG & e
30
O 250 .o oo -~ o PP P
(&) ° ° * °
© - -
S 90 90 00 90 90 W0 WMo W0 AARAR IR AR LR L8 48 47 AARAR LI AR A8 48 4R 47 90 90 90 90 w0 00 e
= 2 > >4 8
— - ; * ; *> LR * o0 .V * 0 .V *
— Qe 9o 90 9o G 90 9o oo G0 40 9o 4o 90 40 90 9o
8' .’...’ :...’
5 > > - -
= = S $ 3
o b ¢ s s
= 10 R < > x
O
g . : 1
L 5 Sod o o o + Calls
bee
B « Returns
bos
0 3
1 241 261 281 301 321 341 3

21 41 61 81 101 121 141 161 181 201 221

1000-Cycle Intervals

Figure 5.2 ¢724dec access patterns for all accessed global objects, correlated with the
function call trace.

and quantization factors for compression and normalization; and filter coefficients. Each
g724dec global object has been assigned a number (1-112), which appears along the y-
axis at the top of Figure 5.2. Each point on the z-axis represents an interval of 1000
cycles. When any element or field of an object is accessed (read or written) in an interval,
a dot appears on the graph. Along the bottom of Figure 5.2 is a similar (interval-based)
graph of the ¢724dec call trace. As time proceeds from left to right, the calls and returns

of individual functions (numbered 1-26) are marked by light diamonds and dark dots,

respectively.

115

As highlighted with vertical stripes, each access to Object 60, the dicol_1sf array,
a quantization look-up table, correlates with an execution of Function 10, Dico_plsf_5.
This occurs because of a common trait of look-up tables in this domain: dicol_1sf is
owned by, or exclusively accessible by, the function Dico_plsf_5.

While many objects are clearly accessed in Figure 5.2 with defined periods, it is most
interesting that the majority of objects are not frequently used. The significant temporal
gaps between access intervals would predict poor performance for these objects if cached
using the traditional least recently used (LRU) hardware replacement method. This com-
mon property drives use of noncache and software-managed SRAM in the telecommuni-
cation domain. These gaps in usage also forecast inefficient memory_power : data_access
density for noncache (software-managed) memory, so reinforce the need for low-power

data storage configurations.

5.1.1 Example data objects

Four code examples are used in this section to highlight typical telecommunication and
media data object types. First, Figure 5.3 shows the GSM 6.10 regular pulse excitation
long term predictor (RPE-LTP) decoder (gsmdec) Short_term_synthesis filtering
function. When scheduled for a processor resembling the Texas Instruments 'C64x
DSP [57], this function accounts for 77.5% of the decoder execution time. Array v is
a field of the gsm_state structure, a heap object allocated to serve as the program’s pri-

mary cross-procedure storage. The v array maintains synthesis filter state information

116

struct gsm_state { static void Short_term_synthesis_filtering (struct gsm_state * S,

word dp0[280 J; word *rrp, intk, word * wt, word * sr)
word z1; [* preprocessing.c, offset compensation */ while (k--) {
longword L_z2; /* offset compensation */ sri = *wt++;
int mp; /* preprocessing.c, preemphasis */ for (i=8;i-){
/* Use coefficients LARp as multiplier values */

word u[sj; /* Short_term_analysis_filter */ sri = sri - rrp[i] * v[i];
word LARpp[2][8]; /* short_term.c */ V[i+1] = V[i] + rrpli] * sri; }
word j [* short_term.c */ *sr++ = v[0] = sri; }

}
word nrp; /* long_term.c, synthesis */
word v[9]; /* short_term.c, synthesis */
word msr; /* decoder.c, postprocessing */
char verbose; /* only used if INDEBUG */
char fast; /* only used if FAST */

Figure 5.3 Example state (ST) array: gsmdec gsm state.v.

across Short_term_synthesis_filtering invocations. For classically optimized code,
the compiler brings individual elements of the v array into the register file for each
inner loop iteration, and then returns a value to memory once the loop iteration com-
pletes. These transfers account for 38% of total run time gsmdec load and store op-
erations, but have a highly predictable pattern because they represent the recall and
storage of kernel state. In the language of this characterization, the v array belongs to
the Short_term synthesis filtering function because it is state. This array is only
accessed by its owner function, and so optimization potential exists in putting it into a
low-power state when its owner is not executing.

A second typical array type is depicted in Figure 5.4: a mathematical look-up table.
The ¢721dec quan function is heavily used by multiple mathematical and quantization
routines (when no inlining is performed, it accounts for 51.9% of benchmark execution
time). The majority of g721dec quan callers use the array power2 as the table param-

eter, i.e., as a shortcut for actual computation of powers of two. This array’s values are

117

={1, 2, 4, 8, 0x10, 0x20, 0x40, 0x80, Typical power2 Dynamic Access Patterns:

0x100, 0x200, 0x400, 0x800, 0x1000, 0x2000, 0x4000} ;
15 2-Byte elements

I* Function quan () : quantize val against table of size elements
*Returniif table [i-1] <= val <table [i] R
* Linear search used to simplify coding */
static int quan (int val, ,int size) { R
inti;
for (i=0;i<size;i++){
if (val <) R
break ;
}
return (i) ; R
}
[* Calls to quan() from quantize(), fmult() , and update() : */ R
quan (SHORT, ,15);

Figure 5.4 Example look-up table (LT) array: g721dec power?.

initialized at the time of declaration, and it is static, so it is never modified during
the course of program execution; read-only access is one of the key features of look-up
table data objects. The size parameter to quan is 15 when power2 is used, but the
break statement is often taken before its enclosing loop has iterated 15 times. Like the v
array described from gsmdec, indexing off an induction variable makes the power2 access
pattern highly predictable, but in this case, it cannot be guaranteed that all members
of the array are needed. This makes it a difficult object to analyze for pattern-based
optimizations, but for access differentiation, it has a nice property: without aggressive
ILP optimization, the table is accessed one element at a time. Like most look-up table
accesses, the speed of this single access is critical to efficiency of its enclosing utility rou-
tine, but from a C-SRAM perspective, this object is still a candidate for port restriction.
Loads and stores to power2 account for 54% of the g721dec application memory traffic,
so optimization of these memory accesses can significantly impact net memory power

consumption.

118

In the context of this characterization, optimization of access power to the power?2
look-up table relies upon the fact that (a) the look-up table is a mathematical short-cut
used only by one function, quan, and (b) since array elements are accessed individually
and then used for a comparison, the schedule height of the utility routine quan will
be directly impacted by the access latency to the power2 array. The latter has been
previously termed load sensitivity to latency, i.e., if the load operation’s latency is
increased, it will negatively impact its code region’s performance.

A coefficient array from gsmdec is shown in Figure 5.5. This variable LARp accounts
for 20% of the application’s total memory traffic and holds the multiplier (coefficient)
values for a filter routine, Short_term_synthesis_filtering. Some coefficient arrays will be
read-only, and are actually look-up tables. This array instead belongs to an adaptive
filter, and so is accessed by three functions, i.e. it is not owned by a single function. As
shown on the right side of the figure, the array is repeatedly read and written fully and
sequentially as its values are used and then updated for the next round of computation.
Coefficient array access patterns will almost always be simple to analyze. Such data
is, however, always interactive because in the original algorithm it serves as input to
the filter taps, or multipliers. Filter computations are critical to codec throughput and
performance, so there will not usually be slack around coefficient use. As thus expected,
the automated object scheduler found only opportunity for port configuration, and for a
test schedule of classically optimized code, LARp was placed in PortB due to its interaction

with the v and wt arrays.

119

void Gsm_Short_Term_Synthesis_Filter (struct gsm_state * S,
word * LARcr, word * wt, word * s)
{

word “LARpp_j =S->LARpp[S->j LARp [8] Access Patterns:
word *LARpp_j_1 =S->LARpp[S->j*=1];
word LARp [8];

Decoding_of_the_coded_Log_Area_Ratios (LARcr, LARpp_j);

/* Coefficients_N_M () assigns values to LARp [0 ... 7]*/
Coefficients_0_12 (LARpp_j_1, LARpp_j, LARp);
I* LARp_to_rp modifies LARp values according to current values */

0 1 2 3 4 5 6 7
LARp_to_rp (LARp); w ‘ —‘-» +> +> +> +> +> +> ‘
Short_term_synthesis_filtering (S, LARp, 13, wt, s);
0 1 2 3 4 5 6 7
Coefficients_13_26 (LARpp_j_1, LARpp_j, LARp);

LARp_to_rp (LARp); R‘ S S e |
Short_term_synthesis_filtering (S, LARp, 14, wt + 13, s + 13);

Coefficients_M_N ()

ax /

LARp_to_rp () Frame

Coefficients_27_39 (LARpp_j_1, LARpp_j, LARp);
LARp_to_rp (LARp);

0 1 2 3 4 5 6 7
Short_term_synthesis_filtering (S, LARp, 13, wt + 27, s + 27); w ‘ —‘-b +> + +> +> +> +> ‘

Coefficients_40_159 (LARpp_j, LARp);

LARp_to_rp (LARp);

Short_term_synthesis_filtering (S, LARp, 120, wt + 40, s + 40); 0 ‘ 1 ‘ 2 ‘ 3 ‘ 4 ‘
} R ‘

static void Short_term_synthesis_filtering (struct gsm_state * S,
word *rrp, intk, word * wt, word * sr)

Short_term_synthesis_filtering ()

while (k-) {
sri = *wt++;
for (i=8;i-;){
/* Use coefficients LARp as multiplier values */
sri = sri - rrpli] * v[i];
V[i+1] = V[i] + rrp[i] * sri; }
*sr++ = v[0] = sri; }

Figure 5.5 Example coefficient (CO) array: gsmdec LARp.

The final data object described here is of the temporary type. Temporaries are large,
indexed, intraprocedural data which may be used to build tables, maintain local copies
of input or output data, or save records of what has already been processed. Their access
through array indices generally prevents allocation to a register file, and so they can
account for nontrivial amounts of application memory traffic. The workspace array in
Figure 5.6 is used to buffer data between the column and row passes of the jpegdec Inverse
Discrete Cosine Transform (IDCT) computation. As a temporary object, workspace is
not conjoined to other objects, but as part of a tight computation kernel, it is interactive
with several other variables. The stored data is processed as an 8 x 8 matrix, resulting
in the irregular access patterns shown on the right side of Figure 5.6. Most data relayout

techniques would fail to optimize access to workspace, and for classically optimized

120

did jpeg_idct_ifast (j_decompress_ptr cinfo, jpeg_component_info * compptr,

JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col) workspace[64] access patterns: matrix view

int * wsptr;
int workspace[64]; /* buffers data between passes */

Time

/* Pass 1: process columns from input, store into work array. */

;A-/-sptr = workspace;
for (ctr = 8; ctr > 0; ctr--) {
if (condition) {

[Set 1 col of workspace; sequential col-order write]
wsptr++; /* advance pointers to next column */
continue; }

[Set 1 column of workspace; non-sequential col-order write]
wsptr++; /* advance pointers to next column */

}

/* Pass 2: process rows from work array, store into output array. */

wsptr = workspace;
for (ctr = 0; ctr < 8; ctr++) {

[Use 1 row of workspace; non-sequential row-order read | \ Y \

\./;/.sptr += DCTSIZE; /* advance pointer to next row */
Figure 5.6 Example temporary (TP) array: jpegdec workspace.

code, the C-SRAM compiler was likewise unable to place workspace in a low-power

configuration.

5.1.2 Data intent categories

Hand source-code and dynamic memory trace analysis has been performed on over 250
data objects in 11 applications. This analysis aims to establish a uniform understanding
of both telecommunication (traditionally deemed “stream symbol processing”) and media
algorithms (“block pixel processing”), and explain the reasons for efficacy and limitations
of existing approaches to memory optimization.

In addition to studying general usage patterns, this characterization included viewing
individual data objects in terms of (a) contribution to overall memory traffic, (b) access

patterns, (c) data element size, (d) number of elements/fields; (e) scaling with future

121

g724dec memory access phasing

XK DMK e e Yo epommmippmmmiffommpiommme Yo i Yo o pommmppmnniiommm o P e Yo Yo Yy co

3K SR MM S ORR H R ST

Access(es) present in interval

TFA®S T OKN®S5S T TB ORI SENBS
———————————————

1000 cycle intervals

Figure 5.7 ¢724dec memory traffic phasing: arrays categorized according to Table 5.1.

standards, and (f) the role of their storage in a kernel-level algorithmic flow. Each of the
seven categories in Table 5.1 originates from a property in the block-flow view of an algo-
rithm’s computation, and each category carries with it properties that should be present
regardless of architecture-specific processor features. With respect to latency sensitivity,
for example, it was predicted (and shown) that look-up table access is generally sparse
and off the critical path. I/O items, however, generally need to be accessed rapidly, and
placement in a long-latency SRAM segment generally stalls computation.

9724 dec memory accesses from Figure 5.2 are revisited in Figure 5.7, where they are
grouped by the data intent categories of Table 5.1. The categories in the figure are
comprised of sets of arrays and structs, and so the gaps in access indicate that there are
significant periods of time when particular data are not accessed. This periodic access
refers back to function ownership, and as will be described in Section 5.3, can also be

applied to to compiler management of sleep modes.

122

Table 5.1 Data object categories.

Cat | Meaning/Usage Common Ideal Memory/ Data Scaling with Future
Size Storage Construct | Standards

LT | Look-up tables (e.g., math | S(E) = | Two types of LUT | Program access is as ROM,
short-cuts, nonadaptive co- | 2B,4B; storage:(a) low port- | but writes are necessary for
efficients, scan orderings, | Apps have mix | count, random look- | initialization. @ Most LUTSs
quantization and saturation | of small, e.g., | up, (b) resources spe- | do not scale with total in-
values). N(E) = 16, | cialized for streamed | put size (are accessed for
Commonly used just by 1 func- | & large, e.g., | access of full table, | each frame, regardless of how
tion. N(E) = 1024 | Pr > Py. many frames); however, with
Generally random and partial | tables; more complicated processing,
seq. reads, full seq. accesses | Aprox. 4- e.g., length of a filter (N(E))
possible. 25 tables/ increases.

application; Also, tables are inevitably
different for different stan-
dards and coding styles, so re-
use across standards and im-
plementations is unlikely.

10 Input/Output: Generally General case is full | Size of I/O will likely grow
Generally data access | moderate to | seq. access. for future devices, since frame
from/written to a file. large N(E) to | Access will be on | sizes/screens will be larger.
In original algorithm, represents | hold a frame | or near critical path | Correspondingly, both I/O
the input/output streams across | or block of | since data feed rest of | buf sizes and rate of data I/O
a channel, commonly sent to | data. computation. must rise to provide given
the processor via a buffer. Generally P, & Py. frame rate.

Sometimes just a temporary | 1 array for Caveat: for standards achiev-
buffer for file I/O. reading input, ing higher compression, e.g.,
May be accessed by multi- | 1 for writing H.264/MPEG-4 AVC, I/0
ple functions before/after file | output. buf could be smaller.

access.

IP | Interprocedural (interblock) | S(E) almost | Pr ~or > Py Interprocedural communica-
communication (pass interme- | always 2B, tion will likely be reasonably
diate vals among blocks in the | but 4B con- stable across standards; e.g.,
original algorithmic flow). ceivable for if images grow in size, for
Values most commonly written | accumulated a given compression standard
and read fully and seq (all | variables not (e.g., MPEG-4), the means
elements used). quantized/ of processing will still be the
Sometimes written/read in | saturated same, i.e., on a macroblock
multi-element sections. before further (16x16) or sub-macro-block
For image algorithms, traversal | processing; (8x8) basis.
in column-major or a scan order | Arrays moder-
may occur, which makes access | ate in size;
non-seq. 2-25 IP ob-

Generally 1 producer function | jects/ applica-
(loop) and 1 or more consumer | tion
function(s)/loop(s).

Categorization relates to

original blocks, mnot physical

procedures in code, 1i.e., 1S

independent of inlining.

Continued on next page.

Note: P, = number of read ports; P, = number of write ports; B = byte; seq. = sequential
= number of elements in array; N(F') = number fields in
struct; and S(E) = size of elements in array.

access, i.e., A[0,A[1],A[2], etc.; N(E)

123

Table 5.1 — continued.

Cat

Meaning/Usage

Common
Size

Ideal Memory/
Storage Construct

Data Scaling with Future
Standards

ST

State (preserved between func-
tion invocations).

Commonly large structs with
separate fields for state of vari-
ous functions, so used by multi-
ple functions.

If saved in an array, gener-
ally full, seq write and read
by one function across invoca-
tions (sometimes with a hom-
ing/initialization write).

Update may be conditional

Small/ moder-
ate total state
size;

Generally 1

struct or
aprox. 10
arrays per
application;

S(E) most

commonly 2B

Small RAM (must be
read-writable) which
is off except when its
associated function is

active.
P & Py.

Since associated with func-
tions, for the same standard,
will remain constant regard-
less of input size.

As complexity of future stan-
dards increases, more pro-
cessing blocks/filters may be
added (and thus more func-
tions), so the amount of en-
coder/decoder state could in-
crease.

CcO

Coefficients (adaptive).
Virtually always accessed fully
and seq 1x/consumer function
invocation, also generally pro-
duced fully and seq.

Generally either updated by one
function and consumed by one
other, or updated and consumed
by the same function.

Update may be conditional.

Small ar-
rays, generally
N(E) = 8-10;
S(E)=2B

Small RAM (must be
read-writable) which
is off except when its
associated function is
active.

P, = Py,.

Will only slightly increase
with future standards, since
filters may become slightly
longer — advanced signal pro-
cessing generally entails addi-
tion of more or slightly longer
filters, not, e.g., 3X longer
ones.

TP

Temporary vals within 1 func-
tion (intraprocedural data, but
too large to fit in register file,
and need to be indirectly ac-
cessed, so cause memory traffic).
May be used to store local
copies of input/output parame-
ters, help build tables, store in-
termediate computation values,
or save records to indicate what
has been processed.

Would be non-persistent state
native to a processing element in
ASIC context.

Appear as producer/consumer
writes/reads from a single func
Access almost always appears as
many partial seq writes/reads
per function invocation.

Generally sev-
eral arrays per

application
(3-8).

Appear as
S(E) = 1,2,

and 4B arrays
of moderate/
large N(E).

Buffer of short tem-
poral existence.

TP objects generally
associated with low-
leaf functions which
are not callers, so
buffer can be reused
frequently.

Wide range of sizes
of objects, so flexible
buffer sizing.

P & Py,.

Likely stable with future

standards.

OTHER

Access to nonarray/structure
data and data not in a canonical
category (such as debug access).

Small catch-all buffer
which is multiported
and always on, since
accesses are consid-
ered unpredictable.

124

Contribution of arrays & structs to memory traffic

100]
90 1 |
o 80
‘.‘é 70 +
; COTHER
5 60 - oio
§ w0 aco
= osT
T 40 mP
° oLt
=2 30
20
10
0 - T
O o (4 & (Y & Q
I S e
9 9
& & & & & $

Figure 5.8 Run-time distribution of intent categories.

Correlation of categories in Table 5.1 to telecommunication application data variables
was performed by hand; trace analysis of code scheduled for an eight-wide T1 ’C64x-like
machine model [57] reveals that the four primary data types, look-up tables, interproce-
dural communication, state, and coefficients, dominate application memory traffic. For
several applications with diverse distributions, traffic categorization is quantified in Fig-
ure 5.8.

To quantify ownership relationships, Figure 5.9 shows the average and maximum num-
ber of objects referenced by each function in a selection of benchmarks. IPA conservatism
causes identification of ownership relationships which do not appear at run-time; these
larger ownership counts are labeled as “static objects.” As correlates with the significant
reduction in operation—object arcs realized through optimistic zero-weight analyis, at run
time, fewer objects are touched, resulting in many fewer ownership relationships (marked

as “dynamic objects”).

125

Global Data Objects Accessed per Function

» 30 O Avg. Static Objects] ||
"g I Max. Static Objects

'g' 25 1 m Avg. Dynamic Objects]
g 20 | O Max. Dynamic Objects [T |
2 15 -

1%% s H

adpcmdec adpcmenc g721dec g721enc g724dec g724enc gsmdec gsmenc h263dec h263enc mpeg2enc mpegddec

Figure 5.9 Dynamic and static function ownership of objects.

5.2 Application of Intent to Buffering

Rather than applying an understanding of data intent to tolerance of data access
restrictions, this section describes focusing improved access latency on key application
data objects. Traditional approaches to improving data access entail increasing memory
bus width, providing additional memory ports, enlarging the processor register file, or
duplicating register file ports. These are costly solutions, and disregard computational
patterns and the resulting data access trends. In telecommunication applications, large
volumes of memory traffic arise from three of the defined intent categories: arrays which
store filter routine state variables, mathematical tables for look-up operations, and filter
coefficients. Various telecommunication applications use these array types to differing
extents, but through memory trace analysis, we observed that memory traffic is often
dominated by requests to one or two relatively small arrays. Understanding usage of

these constructs provides opportunities for inexpensive reduction of memory demand.

126

Cache/RAM Cache/RAM Cache/RAM
[

.
e e) ==

(a) Standard Load-Store (b) Memory view (c) Register view

Figure 5.10 Data access models.

In contrast to “ideal” data movement through a specialized codec implemented as an
ASIC, the load-store architectural paradigm (Figure 5.10(a)) specifies that an instruction
set only have load and store operations to memory, and that all other operations utilize
data residing in registers. For standard intraprocedural register allocation, the register
file stores intrakernel values, while cross-kernel communication is routed out, through the
register file, to memory. Values normally directly available to kernels in hardware, such
as look-up tables and nonadaptive coefficients (constants), are also routed in and out of
the register file for each routine.

This construction results in large amounts of memory traffic which are contrary to
fundamental codec structure. Memory accesses (1oads or stores) were found to be 17.2%
of dynamic operations for the studied suite of telecommunication applications. This is
far beyond the memory traffic necessary for data input to and output from a codec. If a
compiler can safely identify all instructions accessing a memory location, it may assign
that item to the general purpose register file. When data are allocated to the register
file of a statically scheduled processor, they are accessed with shorter latency, a higher

degree of parallelism, less energy consumption, and increased predictability.

127

In [58], we explored opportunities present in telecommunication reference codes for au-
tomatically reducing memory traffic by means of small on-chip buffers similar to compiler-
managed scratchpads. Two specialized buffering structures were used to capture regular
memory traffic observed during execution of telecommunication applications. Candidate
variables and data structures were identified by the compiler with memory profile infor-
mation and then allocated to either a first-in-first-out (FIFO) or static buffer structure
residing on-chip. Consumer-producer communication streams (the interprocedural intent
category) benefit from FIFO buffers, whereas filter coefficients and mathematical look-up
tables may use static (read-only) buffers. Having used memory profiling tools to demon-
strate the potential for reduction in memory traffic, compiler heuristics and algorithms
were then developed to automatically select these critical arrays.

In this work, the term buffer refers to a very small on-chip structure, much smaller
than the on-chip SRAM used for C-SRAM, which is the primary processor data store.
The manner in which such a buffer is accessed has implications upon both processor
instruction set architecture (ISA) and performance. Two methods will be discussed here:
a memory view and a register view of buffer integration into a load-store architecture.

The memory view is shown in Figure 5.10(b). In this configuration, the buffer serves
as an alternative data source for the register file. Data may be transfered to/from the
register file out of either standard memory or the buffer. Figure 5.11(a) shows how
these transfers occur: in addition to standard memory load and store opcodes, the

ISA contains 1d_buf and st_buf operations which initiate transfers between the buffer

128

and register file. Since the buffer is much smaller than a processor’s memory space, buf
operations require significantly fewer addressing and offset bits than standard memory
operations. Since variable instruction set architectures have been shown to be viable and
beneficial in the embedded domain [59], [60], [61], buf operations enable reduction in
static code size.

In this memory view, computation instructions continue to access their operands from
the processor register file. This approach minimizes changes to both the instruction set
architecture and compiler code generation. Before scheduling, the compiler changes mem-
ory operations targeting buffer-allocated arrays into load_buf and store_buf operations.
Performance improvement is realized since access to an on-chip buffer may reasonably
occur within a single cycle, as opposed to the multicycle latency which must be assumed
for standard memory operations. The disadvantage of this memory view is that elements
from the buffer, like standard memory locations, are brought into the register file and
contribute to intraprocedural register pressure.

An alternate approach to the memory view is the register view, in which a buffer is
accessed as a register file. The register view is illustrated conceptually in Figure 5.10(c)
and in more detail in Figure 5.12. This allows computation instructions to refer to buffer
data via their register operand specifiers. For this work, we assume an on-chip buffer has
16 entries, making it significantly smaller than modern physical register files. Moreover,
we found that a buffer requires no more than one-half the read ports of a general register

file, since at most one source for an instruction will come from a buffer. Even if write ports

129

Register File Register File
< buf Id_buf]

L]]
HENINNE
|
LT

src 0

st_buf

src 1

Element Select
Destination Register Select
Element Select

Destination Register Select

L FU
Id_buf Register Write—Back —‘

(b) Computational Sources

(a) Buffer Access
Figure 5.11 Memory buffer view.

Register File Buffer Write—Back

Element Select

Destination Register Select

jsrcO
L ! FU l:
s

Register Write—Back

Figure 5.12 Register view: computational sources.

are still provided (i.e., the buffer is not static), the size of the buffers will be significantly
less than the general register file. Thus, buffer access should comfortably fit into the
timing constraints of a register file access. One interesting issue is register forwarding for
buffer contents. Buffer writes were found to typically be sufficiently temporally ahead of
buffer reads that no register forwarding is needed, so register bypass paths from buffer
writes to buffer read need not be provided.

For the register view, the static buffer is accessed with an index from a processor

register file entry. This index is typically calculated by a sequence of instructions that

130

Algorithm 2 Identifying static buffer candidates.

Identify array names and lengths, forming a candidate array list, A
Tag load and store operations with array information

Optimize and schedule the application code

Profile load and store accesses to each array in A

Sort arrays by dynamic access count

Remove arrays with length greater than threshold ! from candidate array list

implement a table look-up action. There could be multiple static buffers in a processor,
in which case, a buffer number is needed to specify the buffer accessed. However, for the
eight telecommunication applications evaluated for buffer allocation, a single buffer was
sufficient to provide substantial reduction in memory traffic.

For either the memory or register view, a FIFO buffer was assumed to have standard
first-in-first-out behavior which relies on two hardware pointers, head and tail. The head
and tail pointers were assumed to be automatically incremented after each access. A
FIFO write places a new element at the current tail position and automatically increments
the tail pointer. A FIFO read returns the value at the head position and causes the head
pointer to be incremented. A peek FIFO access returns the value at the head position
without incrementing the tail pointer. Details of compiler-managed allocation of data to
a FIFO buffer are available in [58].

The process used to identify static buffer candidate arrays is described as Algorithm 2.
This method is interprocedural, and also includes tracking of dynamically allocated ar-
rays, so it accounts for whole-program memory traffic. When an array is chosen for
buffer allocation, all accesses to that array are rerouted to the buffer to ensure program

correctness despite use of a profile-based method. An array chosen for buffer allocation

131

remains in its buffer for the course of program execution. The method used for array
allocation thus has similarities to a pseudo-interprocedural register allocation. By speci-
fying particular arrays to be persistent across function invocations, much of the benefit of
interprocedural register allocation is achieved without the implementation and analysis
complexity of true interprocedural register allocation.

Experimental results for the “memory view” buffer access model show that 27.97%
of the memory accesses in these applications can be served by one or two 16-bit by 16-
element buffers (Figure 5.13). This results in an average execution cycle count reduction
of 7.5% (Figure 5.14), and a decrease in power consumption by 28% (Figure 5.15). In
g721enc and ¢721dec, more than 50% of the memory traffic is captured, resulting in a
19% cycle count reduction and 50% power savings. More detailed description of buffer

efficacy and derivation of the above power results are available in [58].

5.3 Application of Intent to Sleep Control

The common ownership relationship between data objects and high-level language
routines means that performance will not be impacted if objects are put in a low-power
sleep state when their owner functions are not executing. Our study of a compiler
sleep management technique to exploit this property has indicated average on-time of
data space will be 30%; overall memory on-time (including storage of data assumed to
always be on, such as function stack variables) averages to 60%. Assuming sleep mode

realizes 80% reduction in leakage power, and leakage represents one-half of total SRAM

132

70% B % of Id/st captured in buffer 2
° 0% of Id/st captured in buffer 1

60% -
50% [I
40%

30% 1 __
20% -
10% A D

0% || []

> @0‘\0 Qef"(\

4 .
g &

<)
P &

,b&? R S

Figure 5.13 Run-time memory traffic captured by allocating key arrays to an on-chip
“memory view” buffer.

25% +

20% ll:l % of cycle count reduction F

15%

10% +

> 0 | i

I 0 s
@&7’0 6‘000 q/,\b?’o q/,\e}\o %b‘&,}o %bgf\o @be’o &Q(\o &

SH A L A O S A

Figure 5.14 Performance improvement from allocation of key arrays to an on-chip “mem-
ory view” buffer.

. W % of power reduction by buffer 2
70% O % of power reduction by buffer 1
60%

50% | 1 [I
40% -

30% —
20% -

10% - | n D
©

0%

Figure 5.15 Power savings from access to an on-chip “memory view” buffer.

133

power, this corresponds to a 17% reduction in data storage power. This compiler sleep
management technique will be termed sleepy memory.

The goal of allocating objects to power-controlled memory regions is to reduce the
power consumption of the memory array by leveraging regularity and infrequency of data
object usage in telecommunication and media codecs. Not all memory objects will be
candidates for allocation in a sleepy region. For example, a data structure may be used
very frequently throughout an application’s execution, e.g., to pass information about
current input stream properties to multiple functions. To accommodate data objects
which are not suited to explicit power management, a sleepy memory needs a standard
region which functions as a normal memory array without sleep control. Note that if
C-SRAM is used, the standard region is not necessarily None space; it could also be
single-ported or long latency. The standard area of the memory array could also be
implemented with the tag and decode logic necessary to make it cacheable, or could be
a software-managed cache, depending upon which is most appropriate for a particular
application or processing environment. This type of scratchpad/cache partitioning was
explored by Ranganathan et al. in [62].

The simple sleep mechanism studied leverages a memory profile to establish ownership
relationships, much like zero-weight IPA. Program data objects with common owners are
grouped into macroblocks. Groups are then put into a low-power sleep mode, and only

awoken when the software turns them on at a call to their owner, or when an actual

134

(unpredicted) access arrives. A state-maintaining sleep mode (like that provided by C-
SRAM) is assumed, so during sleep data is preserved, but will take several cycles to
become accessible. As is the case for C-SRAM configurations, if a data access request
occurs to a region currently asleep, that request is not invalid, but its servicing is delayed
until the appropriate wake time has lapsed.

Baseline support for sleepy memory requires extension of the ISA by only three op-
erations: Wake, Sleep, and Configure. Necessary fields for these instructions are shown
in Figure 5.16. The operations shown follow the traditional register direct memory ad-
dressing convention; depending upon available opcode and encoding space and address
calculation resources, Wake and Sleep operations with additional addressing modes could
be added to the ISA. The sleepy memory results which will be presented assume availabil-
ity of register-indirect power management modes, due to the code generation mechanism
used. Restriction to register direct addressing would be a minimal extension with no

performance impact.

5.3.1 Compilation for sleepy memory

The first step in use of sleepy memory is to determine sleep candidates, or program
data objects that are eligible for allocation in a memory region with sleep control. For
this study, sleep candidates are global and heap-allocated objects. Use of a memory
profile to schedule power modes makes the proposed method analogous to optimizations

such as hyperblock formation, loop peeling, and loop unrolling, which are commonly

135

WAKE SEGMENT WS
Format: WS addr_reg

opcode | | addr_reg
6

Functionality: Transition the region which begins at the address specified in Register [addr_reg] from
its current mode to Normal

SLEEP SEGMENT SS
Format: SS addr_reg
opcode || addrreg
7 6

Functionality: Transition the region which begins at the address specified in Register [addr_reg] from
its current mode to the power-reduced Sleep mode

CONFIGURE SEGMENT CS

Format: CS addr_reg num_macroblocks
| opcode || addrreg || num_macroblocks
19

Functionality: Create a region beginning at the address specified in Register [addr_reg] and extending
for num_macroblocks x macroblock_granularity bytes.

Figure 5.16 Instructions for compiler-managed owner-based sleep.

implemented using execution profiles. Not all code transformations can safely be applied
based upon a profile, and in fact, optimization and transformation of data access based
upon profile information may be inadvisable. However, like use of optimistic IPA for
C-SRAM scheduling, use of a profile to schedule region sleep control is safe because if
the profile is incorrect, it will only result in a delay while the accessed region is awaken.

Algorithm 3 describes the caller-induced method used for sleep management. This
method is analogous to caller-saved register allocation, in which a routine saves the

registers it needs before calling a subroutine. In this case, however, regions currently

136

being used are put into a low-power mode as a subroutine is called. This potentially
causes code size expansion due to insertion of additional instructions around each call
site, but in practice, this effect is negligible.

Of greater concern is the performance penalty potentially incurred in invoking sleep
and awakening regions. In the embedded domain, many processors have branch delay
slots, and compilers are often unable to completely fill these slots. This creates bubbles
in the scheduled code which negatively impact performance. The number of delay slots
is generally between three [31] and five [28]. With caller-induced sleep, the branch delay
slots following Jump to Subroutine and Return from Procedure (JSR and RET) operations
can be filled with Sleep Segment (SS) operations. This thus hides the additional instruc-
tions necessary for putting memory regions into low-power mode when subroutines are
invoked.

The average and maximum number of Sleep Segment operations required per sub-
routine call are shown in Figure 5.17. Values shown in this graph are run-time counts,
and thus give a fairly accurate picture of the penalty of caller-induced sleep. The average
number of sleep operations per subroutine call is very low, generally no greater than two
or three, which corresponds nicely with the number of delay slots generally present fol-
lowing a JSR branch. It was also found that the average distance between a function call
and data use is 4 cycles. Thus if delay slots are already full, Wake and Sleep operations

can instead be merged into function header code.

137

Algorithm 3 Caller-induced sleep state

1: for all Objects in the program do

2 Determine candidate utilization

3 if utilization < utilization_threshold then

4: if candidate_size <= remaining-_space then

5: Candidate will be allocated to a sleepy region

6: Insert Configure Segment operations into beginning of program
7 for all Routines which access this object candidate do

8 Insert Wake Segment operations at beginning of routine

9: At each JSR, insert Sleep Segment operations
10: end for
11: end if
12: end if
13: end for

"Caller-Saved" Segment State: Sleep Segment Ops per JSR

20 O Average SS Count
B Max SS Count

Number SS Ops

Figure 5.17 Sleep operation statistics.

138

Func A
10%

LN

Func B Func C
20% 40%

Obj. 1: 64B

Object 2:
256B

Obj 1: 64B Obj 1

N7

Func D
30%

Obj 2: 256B

Deep Sleep
Segment Area

Standard
Area

Leakage power savings for segmented area:

((Func B + Func C) * Obj 1 + Func D * Obj 2)
(Obj 1 +0Obj 2)

(20% + 40%) * (64B) + (30% * 256B)
(64B + 256B)

On-time of segmented area is 24% of what it
would be without using sleepy memory

Figure 5.18 Sample sleepy memory allocation and utilization.

Figure 5.18 gives a simple example calculation of utilization, or awake time. Each

function (A, B, C, and D) is shown with the percentage of program execution time it

accounts for during an evaluation run of its application. Functions B and C, for example,

each access Object 1, so this 64 byte object must be awake for 60% of the total application

execution time.

For program-wide memory Wake and Sleep scheduled according to Algorithm 3, net

utilization of memory space is shown in Figure 5.19. For a single object, utilization is

calculated as

num_cycles_awake

object_utilization = (5.1)
tot_program_cycles
Utilization is a weighted metric, whereby
memory_utilization = Z object_utilization * object_size (5.2)

all_objects

139

Weighted utilization of global memory space

B Expansion to Min. Slice Size
M Perfect Slice Fit

& D & >
ST IS P P TS FS
FFEFILSESE TSI ST SE SIS
F L L LS E ST ST NS T F e B E D
o&b & o@e & I&o\ @o« \Go\ 'i"b \@/\W,\,z & 825, h&a ?/(\c D-Q‘{\ 6&6 & @ e@z & @ &é o@e &
o S
I R e R N U R S S S S S RN
TE TS & & S & o F N D
& & o L& & o
& &8 g S &

Figure 5.19 Macroblock utilization with “caller-induced” sleep.

Utilization for the lighter bars in Figure 5.19 (Perfect Region Fit) is weighted by the
exact object size, which implies a perfect fit of objects to their sleepy regions. For the
sake of simplifying region control hardware, it seems prudent to assume a minimum sleep
granularity. The effect of a minimum sleep size on utilization can be seen in the dark er
bars in Figure 5.19 (Ezpansion to Minimum Segment Size) for a sample sleepy region size
of 32 bytes, or two lines for common embedded SRAM sizing. A small granularity is used
here for the sake of comparison against hardware-managed sleep modes like the Drowsy
Cache [11]. Sleep could also be compiler-controlled at larger granularity, e.g., within the
C-SRAM framework at macroblock boundaries. Effective use of this technique at large
granularities would require more in-depth layout optimization than included in the scope
of this work.

Total memory utilization (both sleepy and standard space) is calculated assuming

that memory space used to accommodate function stacks is always on. The sizes of all

140

Memory On-Time with Sleepy Segmentation
100 -

c
O 804
—
©
N
S 60
>
£
o
E 40
=
s
o 204
[t
& o S
& \o‘? \«Q 9\@&\@&@&\@ (&&\&@\@ Q\» & Q\»s‘@\@ «\Q&\@&\ Q&\\@ & \\&&\@ &f
«¢o°°°°& °@§§§\“é& R <~ S & S S
& @\/’Pé'i & & é\‘c@ gé{ & &g W g gg‘ & éé‘@\;&\/\ \qw“@&\
& & &
& & & ¢ &S 6

Figure 5.20 Total utilization of all data space with caller-induced sleep.

function stacks were recorded, and based upon the execution trace, the maximal run-
time sum of function stack space is determined for each input run. The input with the
largest total live stack space is used as the baseline for determination of total memory

utilization, where

totme sl (tot_sleepy_util tot_sleepy_size) + (100% * mazx_stack_size)
_mem_util =

. - (5.3)
tot_sleepy_size + max_stack_size

These results are shown in Figure 5.20.

5.3.2 General applicability

Sleepy memory is not exclusively an embedded technique — it could reside at any level
of a processor memory hierarchy. For the telecommunication and media applications
for which results are presented above, region allocation is done assuming an embedded

context in which the sleepy memory is the nearest level of the memory hierarchy. For

141

scientific or other nonembedded classes of applications which exhibit regular activity
patterns, but have much larger data objects, sleepy memory could be implemented at
a further (e.g., L3) cache level, where software management of multiline regions could
replace or supplement prefetching. As the power consumption of caches becomes of
increasing concern, use of a power-managed sleepy structure could be used to alleviate

power concerns, while maintaining favorable performance.

142

6 RELATED WORK

6.1 Cache Adaptation

Configurable SRAM is a form of adaptation to application characteristics. A Com-
plexity Adaptive Processor whose resources adapted to the needs of an application was
coined in 1998 by Albonesi [63], [64]. Adaptive processing was originally primarily en-
visioned for performance improvement, but more recently, adaptive cache designs to
improve memory system power consumption have been proposed.

Most have targeted the expense of cache associativity by allowing ways to be disabled
during periods of high cache hit rates. Among these proposals are [1], [65], and [66]. Al-
bonesi proposed splitting caches into vertical subarrays (i.e., using wordline partitioning)
to be able to change the degree of associativity at little cost to the cache array area [65].

While Albonesi envisioned software control of the cache’s associativity at the applica-
tion granularity, Balasubramonian et al. [66] expanded on Albonesi’s design and proposed
automated dynamic detection of application needs and program phases. Balasubramo-

nian et al.’s cache is a subbanked, joint L1/L2 structure in which the sizes, associativities,

143

and latencies of the two levels can be varied. Using hardware performance monitor coun-
ters for branch frequency, IPC, and miss rate, the proportion of the cache array dedicated
to each cache level is varied.

The accounting cache is described in [67]. A requested item is first sought via a
primary access to a limited number of ways, and if not present, then a secondary access
probes the remaining ways for the datum before being sent to the next level of the cache
hierarchy. An LRU approximation is used to disable unneeded ways of the cache, rather
than software instructions [65] or performance counter data [66].

Zhang et al. [1] adjust cache associativity not by shutting down (turning off) ways,
but rather by concatenation. This reduces associativity and allows the full array to be
utilized while still saving dynamic power, because fewer ways are accessed per datum
request. Specifically, Zhang et al. use way shutdown to save static leakage via gated-V,
circuitry.

Veidenbaum et al. [68] note that optimal data cache line size (as measured by the
amount of memory traffic generated and the miss rate) changes over the course of an
application’s execution. Veidenbaum et al.’s mechanism uses hardware monitoring to
adjust cache line size dynamically based on application accesses to the line. This is

achieved by building variable-sized virtual lines from short physical cache lines.

144

Each of these adaptive cache methods only explores one dimension of configuration,
and thus does not have the potential and flexibility of the evaluated set of SRAM config-
urations. Previous approaches are generally hardware methods, and so introduce perfor-
mance and power variation into the system. With the exception of [1], the above studies
consider general-purpose workloads, and none provides a clear explanation of the relation
between application data usage properties and the efficacy of their adaptation.

The FlexCache uses IPA and other compiler support to improve software-managed
caching [69]. SRAM tags are managed in software, allowing application-specific line sizes,
associativity, and replacement policies with a five cycle access latency. The compiler
may also allocate data to noncache space (not virtual memory mapped) with one cycle
latency, but this is only done for scalar register spills and fills. The FlexCache work is
thus focused on static analysis techniques to understand locality, rather than memory

operation flexibility.

6.2 Cache Sleep

6.2.1 Hardware sleep management

While we are not aware of previous work which leverages concurrent configuration of
latency and ports, there are several existing mechanisms for reducing SRAM leakage by
controlling cache sleep states, including [6], [11], and [16]. Some of these techniques have

only been demonstrated for instruction caching and most rely on hardware mechanisms.

145

The drowsy cache [11], [70] periodically puts all lines into a data-maintaining state,
and then incurs a cycle penalty to wake accessed lines. Decay caches [16], [71] accelerate
eviction of unused cache lines by turning off lines containing data which has not been
recently accessed. The decay cache is based on use of run-time counters, not a software
management mechanism. A hardware-based per-line mechanism masks the inefficiency
of cache replacement algorithms, rather than substituting a new mechanism for hardware
caching. Decay is not applicable to noncache SRAM because the sleep mode used does not
maintain data values. Both decay and drowsy caches use per-line control mechanisms so
incur significant configuration area expense in the memory array design. Both techniques
also entail performance loss which is not predictable, making them less attractive for the

embedded domain.

6.2.2 Compiler-controlled cache sleep

Zhang et al. [72] propose a compiler mechanism to place lines of an instruction cache
into either a state-preserving or state-destroying mode by dynamically scaling supply
voltage. The technique only applies to instruction caching, and does not address the
power consumption of data storage.

We are aware of only one work that takes a compiler-based approach to data cache
sleep management [6]. Data-reuse analysis is leveraged to place data that will not be
used by current computation into a state-preserving sleep mode. Zhang et al. [6] discuss

the effects of several code transformations on the performance and power savings of their

146

technique, but their overall performance degradation is not predictable and can be worse
than that of hardware-managed cache sleep techniques. Their approach also significantly
differs from ours in that theirs does not statically resolve object relationships, does not
reschedule code to achieve further power savings, and does not necessarily achieve power

savings without performance loss.

6.3 Embedded Compiler Technology for Memory Optimization

In contrast to the automation-driven approach of this work, compilation technol-
ogy for most embedded platforms require much more programmer intervention. Many
compilers require pragmas, or programmer directives, to trigger optimizations or force
scheduling for special DSP features, particularly for data storage components. As an
example, high-level language use of the Analog Devices BlackfinDSP n-element circular
buffer requires the non-standard C/C++ notation my_array[i%n] [73]. If HLL source is
obtained from a vendor or written by a developer other than the engineer responsible for
code compilation, addition of pragmas to optimize memory usage may be difficult. By
leveraging accurate interprocedural information and automatically controlling operation
scheduling and data placement, this dissertation thus provides an important step forward
in embedded compilation for low-power devices.

Profiling has been leveraged to improve C-SRAM power, but is not yet ubiquitous
in the embedded domain. Profilers have been provided in several commercial embedded

development packages, most notably through GreenHills, Texas Instruments, and Analog

147

Devices. Texas Instrument’s tools allow monitoring of code coverage and cache perfor-
mance, so represent a form of memory profiling [74], [75]; the compiler package for the
Blackfin DSP includes a tool for parsing and displaying program execution profile infor-
mation at function granularity [73]; and the Green Hills ST100 DSP family CodeBalance
tool [76] allows developers to enter constraints for tuning the performance versus code
size trade-off of the ST100 variable-width instruction set architecture. The control flow
profiling used for this dissertation has finer granularity (extended basic blocks, includ-
ing exit branch flow weights) than that for the Blackfin processor, and the implemented
memory profiling tools supply more detailed, and more general, information about data
usage than those provided by Texas Instruments.

A survey of software-based embedded memory optimization techniques is available
in [77]. The authors note that embedded memory optimization differs fundamentally than
that for the general-purpose domain because embedded processors are domain-specific
and can fairly be tailored to observed application profile properties. These observations

support the domain-specific and feedback-directed approaches taken in this work.

6.4 Scratchpad Allocation

Differentiated load servicing through configurable SRAM is related to studies of data
partitions for embedded systems with scratchpad resources. In these systems, a small,
low-power, software-managed SRAM is used to cache variables under programmer or

compiler control. Scratchpad based compiler-managed caching has been well-explored

148

from the perspective of software heuristics to minimize the average latency of memory
accesses. While the objective of data allocation is thus different (performance, not power),
the two approaches of closest relation to this work are (a) [78], which assigns objects to a
scratchpad (non-hardware-cache SRAM) on the basis of data usage profiles, and (b) [79],
which assumes a mixed embedded DRAM /scratchpad SRAM/cache system. Both are
explained in more detail below. Thorough summaries of other work in compiler-controlled
caching are provided in [80] and [81].

Static allocation to scratchpad (e.g., [78], [79], and [82], is a necessary compiler tech-
nique for chipsets that include on-chip software-managed SRAM to reduce data access
latency, but is a less flexible approach to power savings than configurable SRAM because
the size of the scratchpad and DRAM cannot be changed. Sjodin et al. [78] assign objects
to on-chip RAM according to their frequency of use. Nonscalar global objects are allo-
cated based upon a static profile estimation. Scalars and non-globals are not addressed,
and Steensgaard pointer analysis is used. Panda et al. [79] assume embedded DRAM or
SRAM is available as a one-cycle scratchpad memory. They find that in general, joint
scratchpad and cache memory provide the best performance solution. Their partitioning
strategy is based on variable types: (1) scalars and constants are always allocated to the
scratchpad; (2) arrays larger than the scratchpad size are allocated to global memory;
(3) arrays with overlapping lifetimes are mapped to separate spaces so as to minimize
cache conflicts; and (4) variables that are frequently accessed, and within whose lifetime

many other variables are accessed also, are allocated to the scratchpad. If programs

149

are executed as threads, the scratchpad space is assumed to be partitioned into sections
dedicated to each program, thus minimizing context-switch overhead because program
scratchpad regions are independent of one another. This is the same assumption made
for standard C-SRAM usage.

In their study of scratchpad storage, Sjodin et al. [78] found that for small programs,
static allocations (i.e., data placement choices made at compile-time) are sufficient. How-
ever, large programs require precise profile information, and do not realize a significant
drop in off-chip memory traffic because they tend to have a greater number of memory
accesses to non-global data. This emphasizes the importance of the technique described
in Section 3.5.1 for configuration of dynamically allocated data, as well as the ability
to perform page-based power configuration. Dynamic approaches to scratchpad alloca-
tion [54], [83], in which the values in the scratchpad change as the program executes, have
a somewhat different focus than this work because they are concerned more with accom-
modating temporal usage patterns than determining and scheduling for whole-program
power savings opportunities. However, as described in Section 3.5.5, a dynamic allocation

algorithm could be used to ensure that data is in C-SRAM.

6.5 Custom Partitioned Data Layouts

Several approaches to custom memory partitioning are described in [4]. These include
specialized memory hierarchies, partitioning such that frequently accessed variables ap-

pear in a small memory, and grouping variables that are accessed temporally close to one

150

another so as to enable sleep modes when a partition’s variables are not needed. Some
previous work assumes that data access patterns are known and only explores the parti-
tioning problem; other work evaluates approaches using just computation kernels. Our
ability to provide detailed memory profile information for applications allows exploration
of memory performance and power techniques using high-level language code and whole
applications.

The problem of allocating data to memory such that partitions are accessed infre-
quently is formulated in [84]; Farrahi et al. suggest that simulation data be used to
determine temporal and spatial use of program memory, however their proposals are
evaluated on randomly generated data, not actual application code. Profile information
is used in [85] to group memory objects into categories according to frequency of access.
Frequently accessed data is then placed in small SRAMS, while less commonly used data
remains in large memories. While these techniques realize differentiation in load access
properties, they break the memory into separate entities.

DTSE (Data Transfer and Storage Exploration) is a CAD tool to simplify data al-
location to disjoint memories during the process of custom chip design [13], [86], [87].
It includes the Atomium toolset, which can be used to perform source-to-source C code
transformations for simplifying custom multimedia processor design. Source-to-source

transformations to, for example, ungroup array accesses could improve utilization of

151

configurable SRAM. The DTSE tools, however, require user input to specify transforma-
tions, memory hierarchy properties, and timing constraints; and many assumptions are
also made about how subsequent CAD tools/compilers process C code.

The DTSE designers have also proposed including floorplan-based memory latency
variation in custom memory designs [88]. Papanikolaou et al. [88] suggest that the most
heavily accessed memories in a custom layout should be placed closest to the processing
datapath so as to have the shortest wiring. Their latency variation, however, is not

adjustable in the field because it results from differences in physical routing length.

6.6 Data Relayout for Cache Performance

Cache performance may be improved if data is stored in the most common program
access order. In the embedded domain, data layout has been primarily addressed with
compiler techniques; for general media applications, hardware remapping [89] has also
been proposed. Compiler-based data remapping for embedded systems is explored in [90],
but pointer-intensive applications are targeted. We have not found pointer chasing to be
a problem in telecommunications or media algorithms. Palem et al. [90] state that dy-
namic memory remapping is too costly for embedded systems, so compiler techniques are
necessary. Rather than changing algorithmic memory access patterns to fit a constrained
memory system, Palem et al. aim to improve data layout relative to the application access

sequence [90]. Though the technique is automated, handles dynamically allocated-data,

152

and is profile-based, it addresses different problems than we have encountered, so will
not be discussed further here.

The goal of the Impulse project is to make the layout of data in memory more closely
resemble the order in which it is needed for computation [89], [91]. The Impulse memory
controller serves as a detached interface between the processor chip and off-chip memory
(DRAM). The memory controller remaps addresses from disjoint physical and virtual
memory locations to contiguous shadow space addresses, and the on-chip caches may then
be filled with these tightly packed accesses. Though it deals with a different level of the
memory hierarchy than that addressed in this dissertation, a remapper like Impulse could
open opportunity for use of configurable SRAM in a more general purpose processing
domain because the properties of access to remapped data would be better known than
those of the general application.

In the general-purpose domain, profile guidance has been employed for data re-layout
to increase hardware cache spatial locality [92], [93]. These works minimize cache misses
(i.e., average access latency), given a fixed instruction stream and caching mechanism.
Power is only impacted peripherally as L2/L3 request servicing is diminished — perfor-
mance is the primary target. Our integration with the static instruction scheduler instead
allows modification of operation-level data access behavior (in terms of expected latency
and port resource utilization). Rather than mitigating the effects of hardware, the con-
figurable SRAM approach changes hardware behavior so as to directly, and predictably,

save power.

153

Profile-guided data layout optimization has also been proposed for dynamically allo-
cated data [94]. A memory allocation library is proposed to enable profile-guided data
layout. The two optimizations evaluated are field reordering and instance interleaving
(placing identical fields from different instances of a data structure near one another in
memory). Benchmarks are from the Olden suite, the Worchester Polytechnic Institute
benchmark suite (WBS), and other sources, and include a ray tracing and virtual image

rendering application.

6.7 Performance/Power Trade-Offs: Other Approaches

The implemented compiler techniques for configurable SRAM allow a trade-off to
be made between application performance and memory system power consumption. As
explained in previous sections, most existing memory subsystem power management
approaches make these trade-off decisions at run time in hardware, so they are not
explicitly controlled. System performance versus power consumption trade-offs have,
however, been examined in light of increased CPU-cache bus power consumption in deep
submicron technologies [95]. Increased bus power consumption is anticipated as a result
of the increasing wire : gate capacitance ratio as feature sizes become smaller. Givargis
et al. [95] recommend careful choice of design parameters so as to correctly balance the

cache and bus performance/power trade-off.

154

6.8 Technology: Leakage Control

An overview of static (design-time techniques related to transistor properties and
sizing) and dynamic (in-the-field adjustments to circuit voltages) approaches to leakage
power reduction is presented in [10]. Heo et al. [10] term the bit-line floating technique
leveraged for port turn-off (see Section 2.2) leakage biased bitlines. Using leakage biased
bitlines to shut-off all access to particular SRAM banks, they achieve 24% L1-I-cache
and 50% register file leakage energy reduction. Their control methodology requires pre-
dictability of access, so only the instruction cache was considered. Configurable SRAM
provides power savings when access can be limited to just one port (it is not required
that all ports be turned off), and the implemented compiler technology extends the ap-
plicability of bit-line floating to include data storage.

Leakage has been shown to be exponentially dependent on temperature [96]. Due to
this high correlation, activity migration, in which computation is migrated to a cooler
section of the die when heat thresholds are exceeded, is shown to potentially reduce power
by around 10%. For configurable SRAM, any macroblocks configured for lower power
will have lower operating temperatures, but in particular, voltage scaling to increase
latency will result in cooler portions of SRAM. To maintain a favorable overall SRAM
temperature, and thus further reduce leakage, cooler (long-latency) regions could be

interleaved with regions configured for faster access.

155

6.9 Pointer Analysis

Most approaches to scratchpad data allocation have avoided the difficulties associated
with pointer use in high-level language codes. Scratchpads have been used, for example,
for spill code [7], or proposals have been evaluated primarily on the basis of kernels and
so do not handle benchmarks with high-level language pointer usage.

The scheduling process described in Chapter 3 can make use of an optimistic subset
of the possible pointer relationships. While the optimistic result is obtained through a
different process, the concept of using optimistic pointer information has been used for
guiding data speculation for EPIC processors [97], [98]. However, zero-weight exclusion
analysis uses control flow profiling in conjunction with an accurate pointer analysis pro-
cess instead of memory dependence or alias profiling to obtain the approximation. The
final representation using dependence objects is similar to the location sets (LOCs) used
by Ghiya et al. [99], differing only in the naming of heap objects and the representation

of structure field accesses.

6.10 Memory Characterization

Characterization of memory access types by both intent (i.e., look-up table, coeffi-
cient, intermediate data, etc.) and characteristic patterns (stride/random) appears to
be unique. One work worth mentioning, however, is [100], which characterizes sources
of cache load misses. Using Olden, SPEC2000, and pointer-intensive benchmarks, Sair

et al. [100] classify load misses into one of four miss access patterns: next-line, stride,

156

same-(heap)-object, and pointer-based. Each of these patterns corresponds to previously
proposed prefetching methods, and it is found that these categories cover greater than
90% of benchmark cache misses. Sair et al. suggest that a categorization of load miss
behavior may be useful in guiding profile-based optimization, and propose a hardware
mechanism for collecting a load miss profile at run time. Their work does not evaluate
telecommunication or media algorithms, so its categorization does not provide the level
of detail we contend is necessary for effective power and performance optimization in the
target domain. Pointer-chasing, for example, is not a problem in the studied applica-
tion set, and observation of same-heap-object cache misses does not necessarily imply
anything about the predictability of those misses.

Memory characterization and analysis studies have been published for several classes
of benchmarks. These studies, however, focus on simulator results in and of themselves,
rather than use of profile information to derive new data storage designs or improve the
compilation process. Work by Fritts [101], Fritts et al. [102], and Fritts and Wolf [103] has
provided general characterizations of such application properties as instruction cache size
for given cache hit rates, and data working set sizes. Berkeley’s Multimedia Workload is
characterized in [104].

In the multimedia application space, Berg [105] provides a characterization of data
flow patterns as: horizontal (access to a single row), vertical (column access), or blocked

(output of an image block). However, the focus of his classification is on the input/output

157

reads and writes of images before and after each kernel, and because kernels are consid-
ered in isolation, a more complete understanding of application data flow and access
patterns is not presented. The interprocedural characterization presented in this disser-
tation goes beyond Berg’s by putting kernel memory traffic behavior in the context of a
whole application, where data is not just read and written once at the boundaries of ker-
nels; adding a temporal dimension to memory traffic analysis; and applying application
understanding to power reduction.

Latency tolerance of 1oads in eight SPEC95 benchmarks was evaluated by Srinivasan
and Lebeck [106]. Tolerance was measured for an out of order dynamically scheduled
superscalar processor by allowing run-ahead execution until a load’s results were needed.
Their approach does not leverage or provide compiler analysis, and the notion of tolerance
is not applied to change program execution or data access properties.

In a novel approach to custom memory design, Grun et al. [107] have used data access
properties to guide custom memory design. Their method uses a profile to divide variables
into two categories: those exhibiting temporal locality, and those likely to benefit from
spatial locality. These variables are then divided into two custom-sized caches, one
with short lines; the other with long lines. They thus use the idea of data properties
guiding memory optimization, but look at only two basic dimensions, only consider single-
application SoCs, and do not directly target power consumption (reduction in power is

only a side-effect of higher cache hit rates due to partitioning).

158

7 SUMMARY AND FUTURE WORK

As system and software complexity increase, future power mitigation techniques will
be successful only if their design effectively coordinates multiple layers of the system
hierarchy. This work has proposed and evaluated configurable SRAM, a means for lever-
aging low-power circuit techniques to expose on-chip SRAM port, latency, and sleep
configuration to software. While maintaining applicability to real-time and performance-
constrained embedded systems, C-SRAM uses compiler analysis to jointly control data
power management and operation scheduling, requiring no change in the system pro-
gramming model, and providing means for stack and heap data power savings. Circuit,
microarchitecture, compiler, and programming constraints were all considered in the de-
sign, realizing an effective hardware—software collaboration for power savings.

The call-outs in Figure 7.1 summarize contributions made by this work in the context
of data storage power and optimization. Each quadrant lists several previous approaches
to power savings, classified by their primary control mechanism and power target. Pre-
vious approaches were explained in greater detail in Chapter 6; each generally falls into

just one control/power quadrant.

159

Static Power Dynamic Power C-SRAM compiler

C-SRAM provides .

. . o . technology applicable
static power savings 2 | Drowsy Cache Custom Partitioning | o o e
with predictable S Decay Cache pal g

erformance Xd tati SRAN/EDRAM ~ physically

P b= = dy Adaptation differentiated access

n (C

.g I

5 2 C-SRAM access

@ g |__ differentiation
C-SRAM hardware = &£ S Scratchpad complementary to
mechanisms also n 7h ele(?803 Data Reuse: Tiling, optimizations to
applicable for (ZhangICS03) | | oop Reversal, etc. | reduce hierarchy
implementing sleep transfers

Figure 7.1 Domain space.

As technology advances, static and dynamic power must each be considered, and
as application complexity increases, effective power management will rely on hardware—
software collaboration. General-purpose approaches to data storage power reduction
have focused on caches, using hardware-managed heuristics to turn off cache lines and
ways, realizing primarily static power savings. Previous approaches to embedded power
optimization reduced dynamic power by customizing memory sizes or dividing accesses
between SRAM and embedded DRAM at design time. The hardware component of the
C-SRAM approach (control hooks for changing access latency and number of available
ports) presents opporunity for both static and dynamic power reduction, and provides
a sleep mechanism for further power savings. Unlike previous approaches at the top of
Figure 7.1, C-SRAM is explicitly managed by the compiler, so maintains applicability
to real-time and performance-constrained systems. The analysis components of the C-

SRAM compiler can also be leveraged to guide custom partitioning, but the compiler’s

160

control is greater because operation scheduling is integrated with data management de-
cisions.

Object scheduling is based on a solid foundation of scalable, accurate interprocedu-
ral pointer analysis, allowing more precise data control than the previously published
compiler approach to data sleep management (Zhang et al. [6], bottom left quadrant
of Figure 7.1). C-SRAM is complementary to scratchpad partitioning algorithms (they
ensure that data will be in on-chip SRAM), and may be used in conjunction with per-

formance optimizations, including those aimed at improving data reuse.

Future work

The algorithms and prototype compiler described in Chapter 3 are effective in realizing
data power savings, but there are several extensions of this work which would likely
realize additional benefit. First, it can be predicted that modulo scheduling will provide
an efficient means for tolerating additional load latency by adding stages to the modulo
schedule. In most cases observed in the studied applications, the initiation interval should
remain the same height, and only a small performance loss will be incurred in the loop
prologue and epilogue.

Second, conjoined objects limit the scheduler’s ability to place important objects into
lower-power zones. Such situations can occur when the same procedure is called with
many different parameters, as is sometimes the case with math and other utility routines

in the studied application set. There is an opportunity to either create specialized copies

161

of such multiuse procedures, thereby separating the uses of the objects, or, for read-only
objects, replicating the objects for each consumer procedure. By cloning the procedures
or objects, scheduling decisions can be made independently. Where the number of ac-
cesses and cycle counts are high enough to amortize the cost of re-configuration, it may
also be possible to specialize per-function or per-region object access latencies or port

restrictions, and then specify reconfiguration to occur at run time.

162

1]

2]

3]

[4]

[5]

[6]

[7]

8]

[9]

REFERENCES

C. Zhang, F. Vahid, and W. Najjar, “A highly configurable cache architecture for
embedded systems,” in Proc. 80th Annual Int’l Symposium on Computer Architec-
ture, June 2003, pp. 136-146.

P. Petrov and A. Oralioglu, “Power efficient embedded processor IP’s through
application-specific tag compression in data caches,” in Design Automation and
Test in Furope Conference, 2002, pp. 1065-1071.

M. Huang et al.,, “Ll1 data cache decomposition for energy efficiency,” in
IEEE/ACM Int’l. Symp. Low Power Electronics and Design, 2001, pp. 10-15.

L. Benini, A. Macii, and M. Poncino, “Energy-aware design of embedded memo-
ries: A survey of technologies, architectures, and optimization techniques,” ACM
Transactions on Embedded Computing Systems, vol. 2, pp. 5-32, Feb. 2003.

J. Glossner et al., “Trends in compilable DSP architecture,” in Proceedings of the
IEEE Workshop on Signal Processing Systems (SiPS), 2000.

W. Zhang, M. Karakoy, M. Kandemir, and G. Chen, “A compiler approach for
reducing data cache energy,” in Proceedings of the 2003 International Conference
on Supercomputing, 2003, pp. 76-85.

K. D. Cooper and T. Harvey, “Compiler—controlled memory,” in Proc. 8th Int’l
Conference on Architectural Support for Programming Languages and Operating
Systems (ASPLOS ’98), 1998, pp. 100-104.

W. Tang, R. Gupta, and A. Nicolau, “Power savings in embedded processors
through decode filter cache,” in Proceedings of Design, Automation and Test in
Europe, 2002.

A. Bhavnagarwala, S. Kosonocky, M. Immediato, D. Knebel, and A. Haen, “A
pico-Joule class, 1 GHz, 32 KByte x 64b DSP SRAM with self reverse bias,” in
Proceedings of the 2003 Symposium on VLSI Circuits, June 2003, pp. 251-252.

163

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

18]

[19]

[20]

[21]

[22]

S. Heo, K. Barr, M. Hampton, and K. Asanovi¢, “Dynamic fine-grain leakage reduc-
tion using leakage-biased bitlines,” in Proceedings of the 29th Annual International
Symposium on Computer Architecture, May 2002, pp. 137-147.

K. Flautner, N. S. Kim, S. Martin, D. Blaauw, and T. Mudge, “Drowsy caches:
Simple techniques for reducing leakage power,” in Proceedings of the 29th Annual
International Symposium on Computer Architecture, May 2002, pp. 148-157.

P. Shivakumar and N. Jouppi, “CACTI 3.0: an integrated cache timing, power,
and area model,” Western Research Laboratory, Tech. Rep. WRL 2001/2, Aug.
2001.

F. Catthoor, Ed., Unified Low-Power Design Flow for Data-Dominated Multi-
Media and Telecom Applications. Boston, MA: Kluwer Academic Publishers, 2000.

A. Bhavnagarwala, S. Kosonocky, and J. Meindl, “Interconnect-centric array archi-
tectures for minimum SRAM access time,” in Proceedings of the 2001 International
Conference on Computer Design (ICCD ’01), 2001, pp. 400-405.

T. Juan, J. Navarro, and O. Temam, “Data caches for superscalar processors,” in
Proceedings of the International Conference on Supercomputing, 1997, pp. 60-67.

S. Kaxiras, Z. Hu, and M. Martonosi, “Cache decay: Exploiting generational behav-
ior to reduce cache leakage power,” in Proceedings of the 28th Annual International
Symposium on Computer Architecture, June 2001, pp. 240-251.

A. Agarwal, H. Li, and K. Roy, “DRG-Cache: A data retention gated-ground cache
for low power,” in Proceedings of the 39th Design Automation Conference, 2002.

C. Kim and K. Roy, “Dynamic Vt SRAM: A leakage tolerant cache memory for low
voltage microprocessors,” in Proceedings of the International Symposium on Low
Power Electronics and Design (ISLPED’02), 2002, pp. 251-254.

J. S. Caravella, “A low voltage SRAM for embedded applications,” IEEE Journal
of Solid-State Circuits, vol. 32, pp. 428-432, March 1997.

S. Yang and B. Falsafi, “Near-optimal precharging in high-performance nanoscale
CMOS caches,” in Proceedings of the 36th Annual International Symposium on
Microarchitecture (MICRO-36), Dec. 2003, pp. 67-78.

L. Villa, M. Zhang, and K. Asanovi¢, “Dynamic zero compression for cache energy
reduction,” in Proc. 33rd Int’l Symp. on Microarchitecture, 2000, pp. 214-220.

H. Li, C.-Y. Cher, T. Vijaykumar, and K. Roy, “VSV: L2-miss-driven variable
supply-voltage scaling for low power,” in Proceedings of the 36th Annual Interna-
tional Symposium on Microarchitecture (MICRO-36), Dec. 2003, pp. 19-28.

164

[23] D. Marculescu, “On the use of microarchitecture-driven dynamic voltage scaling,”
in Proceedings of the Workshop on Complexity-FEffective Design (WCED), 2000.

[24] Atmel, AT91 ARM Thumb Microcontrollers, 2632C-ATARM—-03/04 ed., Mar. 2004.

[25] Freescale Semiconductor, Inc., MCF5216 Integrated Microcontroller Product Brief,
MCF5216PB/D ed., Mar. 2004.

[26] Taiwan Semiconductor Manufacturing Company, Ltd., “Nexsys 90-nm technology
for SoC,” http://www.tsmc.com/download/enliterature/90_bro_2003.pdf, Tech.
Rep. 6000-1/04.03, Apr. 2003.

[27] Embedded Microprocessor Benchmark Consortium (EEMBC).
http://www.eembc.hotdesk.com/about%20eembc.html, Dec. 2004.

[28] Texas Instruments Incorporated, TMS320C6000 CPU and Instruction Set Refer-
ence Guide, Mar. 1999.

[29] B. Rau, V. Kathail, and S. Aditya, “Machine-description driven compilers for EPIC
processors,” Hewlett Packard, Tech. Rep. HPL-98-40, Sept. 1998.

[30] M. S. Schlansker, B. R. Rau, S. Mahlke, V. Kathail, R. Johnson, S. Anik,
and G. Abraham, “Achieving high levels of instruction-level parallelism with re-
duced hardware complexity,” Hewlett-Packard Laboratory, Tech. Rep. HPL-96-
120, November 1994.

[31] StarCore DSP Technology, SC140 DSP Core Reference Manual, June 2000.

”

[32] W. Hwu, “Compiler technology for future microprocessors,” Proceedings of the

IEFEE, vol. 83, pp. 1625-1640, Dec. 1995.

[33] A. Aho, R. Sethi, and J. Ullman, Compilers: Principles, Techniques, and Tools.
Reading, MA: Addison-Wesley, 1986.

(34] W. W. Hwu et al., “The superblock: An effective technique for VLIW and su-
perscalar compilation,” The Journal of Supercomputing, vol. 7, pp. 229-248, Jan.
1993.

[35] S. A. Mahlke et al., “Effective compiler support for predicated execution using the
hyperblock,” in Proc. 25th Annual Int’l Symp. on Microarchitecture (MICRO-25),
Dec. 1992, pp. 45-54.

[36] C. Lee, M. Potkonjak, and W. Mangione-Smith, “MediaBench: A tool for evaluat-
ing and synthesizing multimedia and communications systems,” in Proc. 30th Int’l
Symp. on Microarchitecture (MICRO-30), Dec. 1997, pp. 330-335.

165

[37] ETSI TC-SMG, “Digital cellular communications system; Enhanced Full Rate
(EFR) speech transcoding (GSM 06.60),” European Telecomm. Standards Insti-
tute, Tech. Rep. ETS 300 726, Mar. 1997.

[38] International Telecommunication Union Telecommunication Standardization Sec-
tor, Study Group 8 (ITU-T SG8), JasPer Software Reference Manual, 1.500.4 ed.,
Dec. 2001.

[39] S. Gochman et al., “The Intel Pentium M processor: Microarchitecture and per-
formance,” Intel Technology Journal, vol. 07, pp. 21-36, May 2003.

[40] L. O. Andersen, “Program analysis and specialization for the C programming lan-
guage,”, Ph.D. dissertation, University of Copenhagen, 1994.

[41] B. Steensgaard, “Points-to analysis in almost linear time,” in Proceedings of the
23rd ACM SIGPLAN-SIGACT Symposium on Principles of Programming Lan-
guages (POPL), 1996, pp. 32—41.

[42] E. Nystrom, H.-S. Kim, and W. Hwu, “Importance of heap specialization in pointer
analysis,” in Proceedings of the Workshop on Program Analysis for Software Tools
and Engineering, 2004.

[43] M. Hind and A. Pioli, “Which pointer analysis should I use?,” in Proceedings of the
2000 ACM SIGSOFT International Symposium on Software Testing and Analysis,
2000, pp- 113-123.

[44] M. Hind, “Pointer analysis: Haven’t we solved this problem yet?,” in Proceedings
of the Workshop on Program Analysis for Software Tools and Engineering, 2001,
pp- 54-61.

[45] E. Nystrom, H.-S. Kim, and W. Hwu, “Bottom-up and top-down context-sensitive
summary-based pointer analysis,” in Proceedings of the 11th Annual Static Analysis
Symposium, Aug. 2004.

[46] B.-C. Cheng, “Compile-time memory disambiguation for C programs,”, Ph.D. dis-
sertation, University of Illinois at Urbana-Champaign, May 2000.

[47] H. Hunter and W. Hwu, “Code coverage and input variability: Effects on architec-
ture and compiler research,” in Proceedings of the Int’l Conference on Compilers,
Architecture, and Synthesis for Embedded Systems, Oct. 2002, pp. 79-87.

[48] H. C. Hunter, “Characterization of memory activity in media and telecommunica-
tions applications,” M.S. thesis, University of Illinois at Urbana-Champaign, May
2002.

166

[49] S. Shalan and V. Mooney, “A dynamic memory management unit for embedded
real-time system-on-a-chip,” in Workshop on Compilers, Architecture, and Synthe-
sis for Embedded Systems, 2000.

[50] M. Millberg, A. Postula, and A. Hemani, “An efficient dynamic memory manager
for embedded systems,” in Proceedings of the International Conference on Chip
Design Automation (ICDA), 2000.

[51] L. Martinot, “Dynamic memory allocation optimizes integration of Blackfin pro-
cessor software,” Analog Dialogue, vol. 37, July 2003.

[52] J. Gyllenhaal, W. Hwu, and B. Rau, “HMDES version 2 specification,” University
of Illinois, Tech. Rep. IMPACT-96-03, 1996.

[563] S. Abraham, V. Kathail, and B. Deitrich, “Meld scheduling: Relaxing scheduling
constraints across region boundaries,” in Proceedings of the 29th Annual Interna-
tional Symposium on Microarchitecture (MICRO-29), Dec. 1996, pp. 308-321.

[54] S. Udayakumaran and R. Barua, “Compiler-decided dynamic memory allocation
for scratch-pad based embedded systems,” in Proceedings of the ACM Int’l Confer-
ence on Compilers, Architecture, and Synthesis for Embedded Systems, Oct. 2003,
pp. 276-286.

[55] H. Hunter and W. Hwu, “Memory profiling: Expanding the 3G developer’s bag of
tricks,” in Workshop on Compilers and Tools for Constrained Embedded Systems,
Oct. 2003.

[56] J. Sias, H. Hunter, and W. Hwu, “Enhancing loop buffering of media and telecom-
munications applications using low-overhead predication,” in Proceedings of the
34th Annual International Symposium on Microarchitecture (MICRO-3/4), Dec.
2001.

[57] J. Eyre and J. Bier, “VLIW architectures for DSP,” in Proceedings of the Interna-
tional Conference on Signal Processing Applications and Technology, 1999.

[58] H. Hunter, C.-W. Li, N. Carter, and W. Hwu, “Capturing telecommunication ap-
plication memory traffic,” University of Illinois, Tech. Rep. IMPACT-03-01, 2003.

[59] STMicroelectronics, ST120 DSP-MCU Programming Manual, Dec. 2000.

[60] J. Moreno, V. Zyuban, U. Shvadron, F. Nesser, J. Derby, M. Ware, K. Kailas,
A. Zaks, A. Geva, S. Ben-David, S. Asaad, T. Fox, M. Biberstein, D. Naishlos,
and H. Hunter, “An innovative low-power high-performance programmable sig-
nal processor for digital communications,” IBM Research, Tech. Rep. RC 22568
(W0209-079), Sept. 2002.

167

[61] ARM Limited, The ARMIE-S Thumb Family, ARM DOI 0079A ed., 2002.

[62] P. Ranganathan, S. Adve, and N. Jouppi, “Reconfigurable caches and their ap-
plication to media processing,” in Proceedings of the 27th Annual International
Symposium on Computer Architecture, 2000, pp. 214-224.

[63] D. Albonesi, “The inherent energy efficiency of complexity-adaptive processors,”
in Proceedings of the Power-Driven Microarchitecture Workshop at ISCA, 1998,
pp. 107-112.

[64] D. Albonesi, “Dynamic IPC/clock rate optimization,” in Proceedings of the 25th
Annual International Symposium on Computer Architecture, June 1998, pp. 282—
292.

[65] D. Albonesi, “Selective cache ways: On-demand cache resource allocation,” Journal
of Instruction-Level Parallelism, vol. 2, May 2000, http://www.jilp.org/vol2.

[66] R. Balasubramonian, D. Albonesi, A. Buyuktosunoglu, and S. Dwarkadas, “Mem-
ory hierarchy reconfiguration for energy and performance in general-purpose pro-
cessor architectures,” in Proc. 33rd Int’l Symp. on Microarchitecture, 2000, pp. 245—
257.

[67] S. Dropsho, A. Buyuktosunoglu, R. Balasubramonian, D. Albonesi, S. Dwarkadas,
G. Semeraro, G. Magklis, and M. Scott, “Integrating adaptive on-chip storage struc-
tures for reduced dynamic power,” in Proceedings of the 2002 International Con-
ference on Parallel Architectures and Compilation Techniques (PACT ’02), 2002,
pp. 141-152.

[68] A. Veidenbaum, W. Tang, R. Gupta, A. Nicolau, and X. Ji, “Adapting cache line
size to application behavior,” in Proceedings of the 1999 International Conference
on Supercomputing, 1999, pp. 145-154.

[69] C. A. Moritz, M. I. Frank, and S. Amarasinghe, “FlexCache: A framework for
flexible compiler generated data caching,” in Proceedings of the 2nd Intelligent
Memory Workshop, Nov. 2000.

[70] N. S. Kim, K. Flautner, D. Blaauw, and T. Mudge, “Drowsy instruction caches—
leakage power reduction using dynamic voltage scaling and cache sub-bank predic-
tion,” in Proc. 85th Annual Int’l Symp. on Microarchitecture (MICRO-35), 2002,
pp- 219-230.

[71] P. Juang, P. Diodato, S. Kaxiras, K. Skadron, Z. Hu, M. Martonosi, and D. Clark,
“Implementing decay techniques using 4T quasi-static memory cells,” IEEE Com-
puter Society Computer Architecture Letters, vol. 1, pp. 180-219, Sept. 2002.

168

[72] W. Zhang, J. Hu, V. Degalahal, M. Kandemir, N. Vijaykrishnan, and M. J. Irwin,
“Compiler-directed instruction cache leakage optimization,” in Proc. 35th Annual
Int’l Symp. on Microarchitecture (MICRO-35), 2002, pp. 208-218.

[73] Analog Devices, Inc., Digital Signal Processor Division, VisualDSP++ 3.0 C/C++
Compiler and Library Manual for Blackfin™ DSPs, 82-000410-03 ed., Apr. 2002.

[74] Texas Instruments Incorporated, “Code coverage and multi-event profiler user’s
guide.” Literature Number SPRU624A, Jan. 2003.

[75] Texas Instruments Incorporated, “Using cache analysis tool to improve cache uti-
lization.” Application Report SPRA863, Jan. 2003.

[76] Green Hills Software Inc., “Embedded ST100 development guide: MULTI 2000.”
Pub ID D16B-10201-89NG, 2000.

[77] P. R. Panda, F. Catthoor, N. D. Dutt, K. Danckaert, E. Brockmeyer, C. Kulka-
rni, A. Vandecappelle, and P. G. Kjeldsberg, “Data and memory optimization
techniques for embedded systems,” ACM Transactions on Design Automation of
Electronic Systems, vol. 6, no. 2, pp. 149-206, 2001.

[78] J. Sjodin, B. Froderberg, and T. Lindgren, “Allocation of global data objects in on-
chip RAM,” in Workshop on Compilers, Architecture, and Synthesis for Embedded
Systems, Dec. 1998.

[79] P. R. Panda, N. D. Dutt, and A. Nicolau, “On-chip vs. off-chip memory: the data
partitioning problem in embedded processor-based systems,” ACM Transactions
on Design Automation of Electronic Systems, vol. 5, no. 3, pp. 682—704, 2000.

[80] M. Verma, S. Steinke, and P. Marwedel, “Data partitioning for maximal scratchpad
usage,” in Proceedings of the Asia and South Pacific Design Automation Confer-
ence, 2003.

[81] O. Unsal, R. Ashok, I. Koren, C. Krishna, and C. Moritz, “Cool-cache for hot
multimedia,” in Proceedings of the 34th Annual International Symposium on Mi-
croarchitecture (MICRO-34), Dec. 2001, pp. 274-283.

[82] O. Avissar, R. Barua, and D. Stewart, “An optimal memory allocation scheme for
scratch-pad based embedded systems,” ACM Transactions on Embedded Comput-
ing Systems, vol. 1, pp. 626, Nov. 2002.

[83] M. T. Kandemir, J. Ramanujam, M. J. Irwin, N. Vijaykrishnan, I. Kadayif, and
A. Parikh, “Dynamic management of scratch-pad memory space,” in Proceedings
of the 38th Design Automation Conference, 2001, pp. 690-695.

169

[84] A. Farrahi, G. Téllez, and M. Sarrafzadeh, “Memory segmentation to exploit sleep
mode operation,” in Proceedings of the 32nd Design Automation Conference, 1995,
pp- 36-41.

[85] L. Benini, A. Macii, and M. Poncino, “A recursive algorithm for low-power memory
partitioning,” in Proc. Int’l Symposium on Low Power Electronics and Design,
2000, pp. 78-83.

[86] F. Catthoor, S. Wuytack, E. D. Greef, F. Balasa, L. Nachtergaele, and A. Vandecap-
pelle, Custom Memory Management Methodology. Boston, MA: Kluwer Academic
Publishers, 1998.

[87] Interuniversity = Microelectronics Center (IMEC), “Atomium project.”
http://www.imec.be/design/atomium/, Dec. 2004.

[88] A. Papanikolaou, M. Miranda, F. Catthoor, H. Corporaal, H. D. Man, D. D. Roest,
M. Stucchi, and K. Maex, “Methodology for propagating technology trade-offs
over memory modules to the application level,” in Proceedings of the 8rd PASCT
Symposium, Sept. 2003.

[89] B. K. Mathew, S. A. McKee, J. B. Carter, and A. Davis, “Design of a parallel
vector access unit for SDRAM memory systems,” in Proc. of the 6th IEEE Symp.
on High-Performance Computer Architecture (HPCA-6), Jan. 2000, pp. 39-107.

[90] K. V. Palem, R. M. Rabbah, V. J. Mooney III, P. Korkmaz, and K. Putaswamy,
“Design space optimization of embedded memory systems via data remapping,” in
Proceedings of the Joint Languages, Compilers, and Tools for Embedded Systems
(LCTES) and Software and Compilers for Embedded Systems (SCOPES) Confer-
ence, June 2002.

[91] J. Carter, W. Hsieh, L. Stolloer, M. Swanson, L. Zhang, E. Brunvand, A. Davis,
C.-C. Kuo, R. Kuramkote, M. Parker, L. Schaelicke, and T. Tateyama, “Impulse:
Building a smarter memory controller,” in Proc. of the 5th IEEE Symp. on High-
Performance Computer Architecture (HPCA-5), Jan. 1999, pp. 70-79.

[92] S. Rubin, R. Bodik, and T. Chilimbi, “An efficient profile-analysis framework for
data-layout optimizations,” in Proceedings of the 29th ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages (POPL), 2002, pp. 140-153.

[93] B. Calder, C. Krintz, S. John, and T. Austin, “Cache-conscious data placement,”
in Proc. 8th Int’l Conference on Architectural Support for Programming Languages
and Operating Systems (ASPLOS ’98), 1998, pp. 139-149.

[94] D. N. Truong, F. Bodin, and A. Seznec, “Improving cache behavior of dynami-
cally allocated data structures,” in Proceedings of the International Conference on
Parallel Architectures and Compilation Techniques (PACT °98), 1998, pp. 322-329.

170

[95] T. D. Givargis, J. Henkel, and F. Vahid, “Interface and cache power exploration
for core-based embedded system design,” in Proceedings of the 1999 IEEE/ACM
International Conference on Computer-Aided Design, 1999, pp. 270-273.

[96] S. Heo, K. Barr, and K. Asanovié¢, “Reducing power density through activity mi-
gration,” in Proceedings of the International Symposium on Low Power Electronics
and Design (ISLPED’03), 2003, pp. 217-222.

[97] Y. Wu and Y. Lee, “Accurate invalidation profiling for effective data speculation
on epic processors,” in International Conference on Parallel and Distributed Com-
puting Systems, 2000.

(98] J. Lin, T. Chen, W.-C. Hsu, P.-C. Yew, R. Ju, T.-F. Ngai, and S. Chan, “A com-
piler framework for speculative analysis and optimizations,” in Proceedings of the
ACM SIGPLAN Conference on Programming Language Design and Implemanta-
tion, 2003, pp. 289-299.

[99] R. Ghiya, D. Lavery, and D. Sehr, “On the importance of points-to analysis and
other memory disambiguation methods for C programs,” in Proceedings of the
ACM SIGPLAN Conference on Programming Language Design and Implemanta-
tion, 2001.

[100] S. Sair, T. Sherwood, and B. Calder, “Quantifying load stream behavior,” in Proc.
of the 8th IEEE Symp. on High-Performance Computer Architecture (HPCA-8),
Feb. 2002, pp. 197-208.

[101] J. Fritts, “Architecture and compiler design issues in programmable media proces-
sors,”, Ph.D. dissertation, Princeton University, 2000.

[102] J. Fritts, W. Wolf, and B. Liu, “Understanding multimedia application character-
istics for designing programmable media processors,” in Proceedings of the SPIE
Photonics West Media Processors Conference, 1999, pp. 2—13.

[103] J. Fritts and W. Wolf, “Instruction fetch characteristics of media processing,”
in Proceedings of the SPIE Photonics West Media Processors Conference, 2002,
pp- 72-83.

[104] N. Slingerland, “Architectures for multimedia,” M.S. thesis, University of California
at Berkeley, 2000.

[105] S. G. Berg, “A cache-based prefetching memory system for mediaprocessors,”,
Ph.D. dissertation, University of Washington, 2002.

[106] S. Srinivasan and A. Lebeck, “Load latency tolerance in dynamically scheduled
processors,” in Proceedings of the 81st Annual International Symposium on Mi-
croarchitecture (MICRO-31), Nov. 30-Dec. 2 1998, pp. 148-159.

171

[107] P. Grun, N. Dutt, and A. Nicolau, “Access pattern based local memory customiza-
tion for low power embedded systems,” in Proceedings of Design, Automation and
Test in FEurope, 2001, pp. 778-784.

172

VITA

Hillery Catriona Hunter was born in Bellflower, California. She began electrical engi-
neering studies at the University of Illinois at Urbana-Champaign in 1996. She spent the
1997-1998 academic year at the Technical University of Munich, Germany, from which
she received the 1998 Outstanding International Student Prize. In 1999, she received
her B.S.E.E. from the University of Illinois, with Highest Honors, and an International
Minor in Germanic Studies. Continuing at the University of Illinois for graduate studies
under Professor Wen-mei Hwu, she received her M.S.E.E. in 2002 and Ph.D. in Elec-
trical Engineering in 2004. As a graduate student, she was the holder of the national
Tau Beta Pi, National Science Foundation, and IBM PhD Fellowships, in addition to the
University of Illinois Distinguished Fellowship and Electrical and Computer Engineering
Department Kohler Fellowhip. She will be joining the IBM T.J. Watson Research Center

in Yorktown Heights, New York, in 2005.

173

