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The increasing amount of instruction-level parallelism (ILP) required to fully utilize high

issue-rate processors has forced the compiler to perform more aggressive analysis, optimization,

parallelization and scheduling on the input programs. Yet, the compiler designer must scale

back the use of aggressive transformations in order to contain compile time and memory usage.

The root of the problem lies in the function-oriented framework assumed in conventional com-

pilers. Traditionally the compilation process has been built using the function as a compilation

unit, because the function provides a convenient partition of the program. However, the size

and contents of a function may not provide the best environment for aggressive analysis and

optimization. This dissertation presents a technique in which the compiler is allowed to repar-

tition the program into more desirable compilation units, called regions. Placing the compiler

in control of the size and contents of the compilation unit reduces the importance of the algo-

rithmic complexity of the applied transformations, allowing more aggressive transformations to

be applied while reducing compilation time.

The region concept has been traditionally applied within an ILP compiler only in the context

of code scheduling. This dissertation proposes extending the concept of region partitioning to

the entire compilation process. The implications of region-based compilation to the design

of an ILP compiler will be assessed in the context of classical, ILP optimization and register

allocation. A quantitative analysis is performed to determine the quality of the code produced

by a region-based ILP compiler as compared to a function-based ILP compiler, as well as the

compilation time and memory usage bene�ts a�orded by region-based compilation units.
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CHAPTER 1

INTRODUCTION

As the amount of instruction-level parallelism (ILP) required to fully utilize high-issue rate

processors increases, so does the di�culty of designing the compiler. An implementation of an

ILP compiler must trade o� the use of aggressive ILP techniques and compiler performance in

terms of compile time and memory utilization. In situations in which the compile time and

memory usage becomes too large, the aggressiveness of the applied transformations must be

scaled back to avoid excessive compilation cost. Also, the implementation of ILP compilation

techniques may require the use of certain simplifying constraints and heuristics to make the

technique viable in a production environment. The implementation of trace scheduling within

the Multiow compiler provides an example [1]. As a result, a production quality implementa-

tion may not reect the true potential of a technique.

To satisfy the need for more ILP, compilers increasingly resort to inlining to support inter-

procedural optimization and scheduling [2], [3], [4]. However, inlining often results in excessively

large function bodies that make aggressive global analysis and transformation techniques, such

as global dataow analysis and register allocation, ine�ective and intractable. The root of

this problem is the function-oriented framework assumed in conventional compilers. Tradition-

ally, the compilation process has been built using the function as a compilation unit, because

the function body provides a convenient way to partition the process of compiling a program.

Unfortunately, the size and contents of a function may not be suitable for aggressive optimiza-
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tion. For this reason, the function-based partitioning of the program may not provide the most

desirable compilation units to the compiler.

This dissertation introduces region-based compilation. Under this framework, which is a

generalization of current function-based compilation approaches, the fundamental compilation

unit is selected by the compiler rather than the software designer. Essentially, the compiler is

allowed to repartition the program into a new set of compilation units, called regions. These

regions will replace functions as the fundamental unit to which transformations in all phases

of compilation will be applied. This approach was used in a more restricted context within

the Multiow compiler where combined scheduling and register allocation are applied to to

individual traces [1]. Under the region-based framework, each region may be compiled com-

pletely before compilation proceeds to the next region. In this sense, the fundamental mode

of compilation has not been altered and all previously proposed function-oriented compiler

transformations may be applied.

Region-based compilation units provide a compilation environment that is completely under

the control of the compiler. The compiler may determine the size and contents of the compilation

units to be operated upon. Reducing the problem size has the advantage of reducing the

importance of the time complexity and memory complexity of the optimization, scheduling and

register allocation algorithms used by the compiler. This may simplify the task of engineering

a production quality ILP compiler. The use of pro�le information to determine region contents

allows the compiler to select compilation units that more accurately reect the dynamic behavior

of the program and are more e�ciently optimized. As a result the compiler may produce better

quality code.
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This dissertation investigates the implications of region-based compilation on the implemen-

tation of an ILP compiler. A region-based compiler has been implemented within the IMPACT

compiler framework to quantify the bene�ts of applying classical optimization and register allo-

cation over regions. In addition, this implementation allows a direct comparison of the compile

time and memory usage bene�ts of region-based compilation.

1.1 Contributions

The four major contributions of this dissertation are discussed below.

1. The designer of an ILP compiler must trade o� the use of aggressive transformations

required to expose the ILP necessary to utilize the processor with the need to contain

compile time and memory usage. All transformations must be applied in such a way

that any code expansion does not adversely a�ect later transformations. This thesis as-

serts that the problem lies in the current function-based compilation framework. The

function-based partition of a program is designed with software engineering in mind, not

compilation of the program. A quantitative analysis is done to assess the quality of the

function-based partition and to assess the e�ect of aggressive code expanding transforma-

tions on compilation time and memory usage.

2. This thesis introduces region-based compilation, a generalization of function-based com-

pilation, as an e�ective framework to contain compile time and memory usage during the

application of aggressive transformation. Under this framework, the compiler repartitions

the program into regions, which serve as the fundamental compilation unit for all phases

of the compilation process. This thesis extends the region-based approach traditionally
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used during code scheduling to encompass the entire compilation process and discusses

the implications this has to compiler design. A quantitative analysis is done to investigate

the ability of region-based compilation units to contain problem size in the presence of

extensive code expansion.

3. Traditionally global classical optimizations [5] are applied to the entire function to maxi-

mize available optimization opportunities. Within a region-based compiler, the scope of

optimization is constrained to the same region used for scheduling. Reducing the scope

of the global optimizer has two e�ects. First, reducing the problem size reduces the time

and memory required for application of the nonlinear algorithms employed. Second, re-

ducing the scope will also a�ect the quality of the optimized code. This thesis investigates

the techniques to allow separate optimization of regions, including encapsulation of the

region in a manner equivalent to functions and the maintenance of dataow information

at region boundaries. A detailed analysis is done to assess the compile time and memory

usage improvements a�orded by region-based compilation, as well as optimization quality.

4. Similarly, graph coloring-based register allocation [6] is typically applied to the entire

function to give the register allocator as much context as possible. Reducing the register

allocation scope again reduces register allocation time since register allocation is O(n2),

and the quality of the register allocation is possibly improved. Previous region-based

register allocation techniques were restricted to syntactical [7] or trace-based regions [8].

This thesis investigates the requirements for separate register allocation of arbitrary re-

gions. A detailed analysis is done to assess the compile time and memory usage bene�ts

and the quality of the register allocation when applied to pro�led-based regions.
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1.2 Overview

This dissertation is composed of seven chapters. Chapter 2 presents an overview of the

organization and operation of the IMPACT compiler. All compiler techniques discussed in this

dissertation are implemented within the framework of the IMPACT compiler.

The current backend compilation environment and methodology are discussed in Chapter 3.

Several de�ciencies in the current function-based approach are presented. The use of inlining to

overcome some of these de�ciencies and the e�ect of aggressive inlining on compiler performance

are investigated. Chapter 4 introduces region-based compilation as a generalization of the

current function-based approach to compilation. Region-based compilation provides an e�ective

framework to contain compile time and memory usage during the application of aggressive

transformation. This chapter discusses the rami�cations of this concept to the design of an ILP

compiler.

Chapter 5 investigates the application of classical optimizations to region-based compilation

units. Separate optimization of regions requires the compiler to maintain variable liveness

conditions at region boundaries. A quantitative analysis is done to investigate the quality of

region-based optimized code, as well as the compile time and memory usage bene�ts. Chapter 6

discusses the issues involved in separate register allocation of region-based compilation units.

The boundary condition information required for separate register allocation of regions will be

investigated. A quantitative analysis is done to investigate the quality of region-based register

allocation, as well as the compile time and memory usage bene�ts. Finally, in Chapter 7,

conclusions and directions for future research are given.
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CHAPTER 2

OVERVIEW OF THE IMPACT COMPILER

The implications of region-based compilation are studied within the framework of the

IMPACT compiler. The IMPACT compiler is a retargetable, optimizing C compiler being

developed at the University of Illinois to investigate architectural and compilation techniques

to support ILP processors. A block diagram of the IMPACT compiler is presented in Figure 2.1.

The compiler is divided into two distinct parts based on the level of intermediate representation

(IR) used. The �rst level IR, Pcode, is a parallel C code representation with loop constructs

intact. In Pcode, memory dependence analysis [9], [10], loop-level transformations [11], and

memory system optimizations [12], [13] are performed. In addition, statement level pro�ling

and function inline expansion are performed at this level [14], [15], [16].

The second level of IR in the IMPACT compiler, referred to as Lcode, is a generalized register

transfer language similar in structure to most load/store processor assembly instruction sets.

Lcode is logically subdivided into two subcomponents, the machine independent IR, Lcode, and

the machine speci�c IR,Mcode. The data structures for both the Lcode and Mcode are identical.

The di�erence is that Mcode is broken down such that there is a one-to-one mapping between

Mcode operations and the operations in the target processor's assembly language. Therefore,

to convert Lcode to Mcode, the code generator breaks up Lcode operations into one or more

operations which directly map to the target architecture. Lcode operations are broken up for

a variety of reasons including limited addressing modes, limited opcode availability, ability to

specify a literal operand, and �eld width of literal operands.
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Figure 2.1 The IMPACT compiler.

The region-based compilation techniques, which are the focus of this thesis, are performed

at the Lcode level. Support for region-based compilation, includes region formation using

execution pro�le information, as well as region-based optimization and register allocation. The

existing Lcode modules have been extended to operate on regions.
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At the Lcode level, all machine-independent classic optimizations are applied [17]. These

include constant propagation, forward copy propagation, backward copy propagation, common

subexpression elimination, redundant load elimination, redundant store elimination, strength

reduction, constant folding, constant combining, operation folding, operation cancellation, code

reordering, dead code removal, jump optimization, unreachable code elimination, loop invariant

code removal, loop global variable migration, loop induction variable strength reduction, loop

induction variable elimination, and loop induction variable re-association. Additionally at the

Lcode level, interprocedural safety analysis is performed [18]. This includes identifying safe

instructions for speculation and function calls that do not modify memory (side-e�ect free). The

e�ects of applying classical optimizations on a per-region basis will be discussed in Chapter 5.

After classical optimization, ILP transformations are applied. This involves the application

of superblock code transformation and optimization [19]. When predicated execution support

is available in the target architecture, hyperblock techniques [20], in addition to superblock

techniques, are used as the underlying compilation structure. All superblock optimization tech-

niques have also been extended to operate on hyperblocks. In addition, a suite of hyperblock-

speci�c optimizations to further exploit predicated execution support is available.

After ILP transformation and optimization, code generation is performed to translate Lcode

into the assembly language used by the target processor. Two of the most signi�cant compo-

nents of code generation are the instruction scheduler and register allocator, both of which

are common modules shared by all code generators. Scheduling is performed via either acyclic

global scheduling [18],[21] or software pipelining using modulo scheduling [22], [23]. Acyclic

global scheduling is applied both before register allocation (prepass scheduling) and after reg-

ister allocation (postpass scheduling) to generate an e�cient schedule. For software pipelining,
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loops targeted for pipelining are identi�ed at the Pcode level and marked for pipelining. These

loops are then scheduled using software pipelining, and the remaining code is scheduled using

the acyclic global scheduler. In addition to control speculation, both scheduling techniques

are capable of exploiting architectural support for data speculation to achieve more aggressive

schedules [10],[24],[25].

Graph coloring-based register allocation is utilized for all target architectures [26]. The reg-

ister allocator employs execution pro�le information, if it is available, to make more intelligent

decisions. The extensions to the register allocator to support region-based register allocation

will be discussed in Chapter 6. For each target architecture, a suite of specially tailored peephole

optimizations is performed. These peephole optimizations are designed to remove ine�ciencies

during Lcode to Mcode conversion and to take advantage of specialized opcodes available in

the architecture.

A detailed machine description database, Mdes, for the target architecture is also available

to all Lcode compilation modules [27]. The Mdes contains a large set of information to assist

with optimization, scheduling, register allocation, and code generation. Information such as

the number and type of available function units, size and width of register �les, instruction

latencies, instruction input/output constraints, addressing modes, and pipeline constraints is

provided by the Mdes. The Mdes is queried by the optimization phases to make intelligent

decisions regarding the applicability of transformations. The scheduler and register allocator

rely more heavily on the Mdes to generate e�cient as well as correct code.

Seven architectures are actively supported by the IMPACT compiler. These include the

AMD 29K [28], MIPS R3000 [29], SPARC [30], HP PA-RISC, and Intel X86. The other two

supported architectures, IMPACT and HPL Playdoh [31], are experimental ILP architectures.
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These architectures provide an experimental framework for compiler and architecture research.

The IMPACT architecture is a parameterized superscalar processor with an extended version

of the HP PA-RISC instruction set. Varying levels of support for speculative execution and

predicated execution are available in the IMPACT architecture. For this thesis, all experiments

utilize the IMPACT architecture with varying parameters.
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CHAPTER 3

CURRENT BACKEND COMPILATION

3.1 Compilation Environment

Traditionally, the compilation process has been built assuming functions as the unit of

compilation. This environment is a direct result of the way programs are written. Software

engineering and object-oriented programming practices encourage the software designer to break

up a program in a modular manner that facilitates the reuse and maintainability of the source

code [32]. The problem to be solved is partitioned into a number of distinct modules or functions

each of which solves a portion of the problem as illustrated in Figure 3.1. Since each of these

functions is a self-contained entity, the function-based partition of the program provides a

convenient way to break up the task of compiling a program. Typically, the compiler processes

each function of the program in turn, applying a phase ordered suite of transformations.

3.2 Compilation Methodology

Current compilers typically compile a program on a function-by-function basis. Each func-

tion is compiled completely before proceeding to the next function. Figure 3.2 illustrates the

phases applied in the backend of the compiler during compilation of a function, Fx, consisting

of basic blocks, BB1 - BBn. This �rst phase involves application of classical optimizations [5].

These optimizations, such as common subexpression elimination and copy propagation, are ap-

plied locally to each basic block, but they are also applied globally across all basic blocks to
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Figure 3.1 Problem to be solved: (a) original problem, (b) problem partitioned into functions.
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Figure 3.2 Current backend compilation of a function.

take advantage of optimization opportunities that often exist between basic blocks. Thus, to

maximize the scope of the classical optimizer, the entire function is optimized as a unit.

After classical optimization, the compiler may apply various ILP transformations, such as

superblock or hyperblock formation, to enhance and expose the instruction level parallelism

inherent in the function. As with classical optimization, the ILP transformations are applied to
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the entire function before compilation proceeds to the next phase, code scheduling. The same

is true for the register allocation phase of compilation. The scope of the register allocator is

expanded beyond the basic block boundaries, to encompass the entire function and improve the

quality of the register allocation [6], [33].

Applying each compilation phase to the function body as a whole requires the compilation

process to follow a rigid phase ordering in the manner transformations are applied. In addition,

an implementation of an ILP compiler under this framework must ensure that transformations

are applied such that any code expansion will not adversely a�ect compilation time. This

method of compilation will be termed horizontal compilation for the remainder of this thesis.

The code scheduling phases of compilation provide an exception to this general behavior and

for this very reason tend to be region based. Figure 3.2 shows that the scope of the prepass

scheduler is con�ned to subregions of the function, such as the region containing BB1, BB2,

and BB3. The scope of scheduling has evolved beyond basic block boundaries to encompass

larger units, such as loops [34], traces [35], superblocks [19], or other regions [20], [36]. In

general, functions tend to be too large a unit for the application of aggressive ILP scheduling

techniques to be tractable in the context of a production compiler.

3.2.1 De�ciencies of a function-based partition

Throughout the compilation process there is an implicit assumption that the body of a

function provides the most desirable environment for the compiler to generate e�cient output

code. In reality, this is not the case. Consider the two functions shown in Figure 3.3. Blocks

1-4 of function A form a very frequently iterated loop. Block 3 contains a subroutine call to

function B. As a result, function B, which consists of blocks 5-8, is very frequently executed.
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Figure 3.3 Example of an undesirable function-based partition.

The shaded portions represent the dynamic behavior of these two functions and indicate that

blocks 2 and 7 are infrequently executed.

As discussed above, while compiling function A, the scope of the compiler is the entire

contents of function A, and the contents of function B are hidden. This fact a�ects the compi-

lation of function A in two ways. First, the presence of the subroutine call in block 3 presents

an obstacle to aggressive optimization and scheduling, known as a hazard [37]. Second, since

the compiler has no visibility to the contents of function B, the compiler must make conserva-

tive assumptions regarding the memory access behavior of function B. These assumptions will

constrain aggressive optimization and scheduling of function A. Aggressive transformation of

function B is inhibited in a similar manner. The compiler must make conservative assumptions

regarding the memory access behavior of function A. In addition, the compiler cannot take

advantage of the fact that function B is part of a cycle and apply loop-based transformations,

because this information is hidden from the compiler.

In this example, the function-based partition of the program is potentially hiding variable

aliasing information, as well as valuable optimization opportunities. Perhaps more important,

however, is the fact that the function-based partition is hiding the true control ow structure of
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the program. This makes the function-based partition of the program rather undesirable from

the point of view of the compiler.

The type of compilation units desirable to an aggressive ILP compiler depends upon the

techniques and transformations employed by the compiler. Conventional wisdom expects pro-

grams to spend most of their time in control ow cycles, since any program that executes for

an appreciable amount of time must contain at least one cycle. This belief is supported by

the large amount of active research being done to extract ILP from cyclic code [19], [34], [35],

[38]-[45]. Exposing more cycles to an aggressive ILP compiler increases the likelihood that these

techniques may be applied to generate more e�cient code.

3.2.2 Dynamic distribution of cyclic and acyclic codes

The prevalence of the situation in which the function-based partition is hiding cyclic code

from the compiler can be determined by examining the dynamic distribution of cyclic and

acyclic code within functions. In order for a program to execute for an appreciable amount of

time, it must contain a cycle. If the program spends a signi�cant amount of time executing

operations that appear acyclic to the compiler at the function level, this implies the presence of

cycles spanning function boundaries. These interprocedural cycles are caused by the presence

of subroutine calls within loop bodies, such as in Figure 3.3, and procedure call cycles, i.e.,

recursion.

Figure 3.4 contains the dynamic distribution of cyclic and acyclic codes within the function

bodies of several non-numeric programs. For a detailed description of these benchmarks and

the inputs used to generate these and all subsequent results in this thesis, the reader is referred

to Appendix A. The large percentage of time spent in cyclic code within the programs validates
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Figure 3.5 Application of inlining to the functions of Figure 3.3.

apply more optimizations is increased. Function inlining is the only well-known technique that

will allow interprocedurally coupled portions of the program to be assembled into the same

compilation unit. Application of function inlining to the example in Figure 3.3 successfully

exposes the entire cycle to the compiler by placing the contents of function B into function A,

as shown in Figure 3.5.

3.3 Function Inlining

Traditionally, the goal of function inlining has been to eliminate the overhead of frequent

subroutine calls [3],[4]. However, to further improve output code performance, compilers in-

creasingly resort to inlining to support interprocedural optimization and scheduling. Within

the context of an ILP compiler, the goal of inlining is to increase the visibility of the compiler

by exposing code that is hidden by subroutine calls. This bene�ts the compiler in several ways.

Additional opportunities for the application of classical optimizations, such as common subex-

pression elimination, constant propagation, and loop invariant code motion, are exposed [3].

Assembling larger compilation units may allow privatization of the code, improve variable alias-

ing information [2], and may subsume some interprocedural analysis [4].
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getline(s)

register char *s;

f register c;

while((*s++=c=gtc())!='nn' && c!=EOF && c!=lefteq)

if (s >= in+MAXLINE) f
error( !FATAL, "input line too long: %.20snn", in);

in[MAXLINE] = 'n0';
break;

g
if (c==lefteq)

s{;

*s++ = 'n0';
return(c);

g

gtc() f
loop:

if (ip > ibuf)

return(*{ip);

lastchar = getc(cur�le);

if (lastchar=='nn')

linect++;

if (lastchar != EOF)

return(lastchar);

if (++i�le > svargc) f
return(EOF);

g
fclose(cur�le);

linect = 1;

if (openin�le() == 0)

goto loop;

return(EOF);

g

Figure 3.6 Source code for functions getline and gtc.

In addition, inlining frequent function calls tends to increase the amount of cyclic code visible

to the compiler. This may increase the opportunities for application of techniques designed

to extract ILP from cyclic code. A detailed example of the ILP bene�ts to be gained from

inlining is provided in the next section. The negative e�ects of inlining within a function-based

compilation framework are discussed in Section 3.3.2.

3.3.1 Bene�ts of inlining

The function-based partitioning of the non-numeric program eqn provides an example of

the potential ILP bene�ts of inlining. Intraprocedurally, eqn appears to have a large percentage

of frequently executed code that does not occur within the body of a loop. Figure 3.4 shows

that eqn appears to spend 30% of its execution time within acyclic code. This is the result

of several interprocedural cycles that are caused by the presence of subroutine calls within the

bodies of frequently iterated loops.
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One such interprocedural cycle spans the two functions getline and gtc. The source code

for these two functions is shown in Figure 3.6. The function getline contains a very frequently

iterated loop which calls the function gtc once every iteration. Inlining function gtc into the call

site within getline provides signi�cant bene�t beyond simply eliminating the overhead of the

subroutine call. This is illustrated through the use of superblock optimization and scheduling

techniques [19]. The control ow graph (CFG) for the function getline is shown in Figure 3.7(a).

The loop is composed of basic blocks 5, 6, 7, and 8. Basic block 6 contains a subroutine call

to the function gtc. The CFG for gtc is shown in Figure 3.7(b). The dotted lines indicate the

implicit ow of control between these two functions.

Consider the application of superblock formation and optimization to the function getline

as it appears in Figure 3.7(a). Several superblocks will be formed. However, we are concerned

primarily with the superblock loop generated from basic blocks 5, 6, 7, and 8. This is indicated

by the shaded area in Figure 3.7(a). These basic blocks correspond to the shaded portion of the

getline source code in Figure 3.6. The contents of the resulting superblock after optimization

is shown in Figure 3.8(a). Scheduling this superblock loop for an eight-issue, fully uniform

machine, yields the issue times shown to the right of Figure 3.8(a). One iteration of this

superblock loop requires four cycles. Applying superblock formation to the function gtc yields

the superblock indicated by the shaded area in Figure 3.7(b). The corresponding source code

lines are shaded in Figure 3.6. Again, the contents of the resulting superblock after optimization

and scheduling for the same eight-issue, fully uniform machine are shown in Figure 3.8(b). This

superblock requires nine cycles to completely execute. Thus one loop iteration requires 13 cycles

not including the subroutine call overhead.
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r26,%lo(curfile),r47add
r48,%hi(lastchar)mov
r28,%lo(lastchar),r48add
r3,[0+r25]ld_i
r49, %hi(ibuf)mov
r50,%lo(ibuf),r49add
r3,r50,cb9bgt
r4,[0+r26]ld_i
r43,[0+r4]ld_i
r5,−1,r43add
[0+r4],r5st_i
1,r43,cb27bgt
r9,[4+r4]ld_i
r8,1,r9add
[4+r4],r8st_i
r11,[0+r9]ld_uc
[0+r28],r11st_i
10,r11,cb28beq
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Figure 3.8 Superblock contents prior to inlining for (a) getline and (b) gtc.

Consider the application of superblock formation and optimization to the function getline

after the inline expansion of the function gtc into the call site in basic block 6 of getline. The

loop in the function getline now contains all blocks from the function gtc. In this case, inlining

has certainly increased the amount of code visible to the compiler, but it has also increased the

amount of cyclic code visible to the compiler. The blocks inlined from gtc can now be subject

to loop-based optimization techniques, since their presence within the cycle is known to the

compiler. Superblock formation yields a superblock that contains the blocks in both shaded

areas of Figure 3.7.

This superblock loop presents several optimization opportunities that were not available

prior to inline expansion. Applying superblock optimizations to this loop results in the code

shown in Figure 3.9. The loop contains 13 operations, one more than the original superblock

loop despite the large amount of code added during inlining. The application of loop-based

optimizations eliminates most of the operations from the superblock loop body. Application of
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Figure 3.9 Superblock loop after inlining gtc into getline.

loop invariant code elimination [5] allows the operations indicated by an (*) in Figure 3.8(b)

to be removed. Also, the application of global variable migration [19] allows the operations

indicated by an (x) in Figure 3.8(b) to be hoisted outside the superblock loop body. Both of

these transformations will be discussed further in Chapter 5. These code optimizations would

not be accomplished without compiling functions getline and gtc as a single unit. Scheduling

this superblock for the same eight-issue, fully uniform machine actually produces a schedule

requiring only three cycles, one cycle shorter than the original superblock loop in getline.

Inlining the function gtc into getline results in a cycle that is four times shorter than in the

non-inlined case. Detailed simulation of eqn on an eight-issue, fully-uniform IMPACT machine

shows that the program requires 21.2M cycles to execute before inlining. Of that, 7.24M cycles

are spent within the functions getline and gtc. After inlining and optimization, only 1.9M

cycles are spent within getline and the overall execution time is 15.9M cycles. This results in a

speedup of 3.8 within the function getline which corresponds closely to fact that the cycle count

of the loop is four times shorter after inlining. Overall, the benchmark sees a speedup of 1.33.

22



Table 3.1 Intraprocedural distribution of dynamic acyclic and cyclic codes.

Percent of Inlined Call Sites
Benchmark 0% 5% 10% 15% 20% 25% 30% 40% 60% 80% 100%

008.espresso 89.10% 97.36% 97.46% 97.61% 97.79% 97.88% 97.97% 98.05% 98.15% 98.24% 98.30%
022.li 39.74% 49.51% 61.79% 65.55% 69.50% 73.22% 78.99% 83.52% 84.30% 85.91% 85.93%
026.compress 80.46% 80.46% 80.46% 80.46% 80.46% 80.46% 80.46% 80.46% 100.00% 100.00% 100.00%
072.sc 72.34% 84.69% 91.50% 92.63% 96.18% 98.12% 98.77% 99.17% 99.79% 99.86% 99.90%
085.cc1 67.54% 78.04% 81.12% 83.43% 85.51% 86.54% 87.49% 88.82% 90.52% 90.79% 90.86%
134.perl 39.45% 64.48% 71.58% 75.42% 77.22% 79.62% 79.64% 80.07% 80.70% 80.72% 80.72%
cccp 96.76% 97.08% 97.27% 97.31% 97.77% 97.88% 98.16% 98.25% 98.67% 98.71% 98.80%
eqn 69.39% 78.07% 82.26% 90.28% 95.57% 97.02% 98.98% 99.54% 99.64% 99.70% 99.98%
lex 96.85% 97.85% 99.61% 99.67% 99.72% 99.74% 99.75% 99.79% 99.86% 99.87% 99.88%
tbl 41.32% 51.73% 58.36% 62.89% 68.60% 77.47% 88.15% 93.57% 95.58% 97.51% 98.96%
yacc 95.34% 96.68% 98.29% 98.94% 99.03% 99.25% 99.47% 99.61% 99.84% 99.94% 99.98%

In this instance, inline expansion has provided the compiler with many more ILP optimization

opportunities than prior to inlining, yielding signi�cant performance improvement.

3.3.2 Impact on code characteristics

The previous example illustrates the bene�ts of exposing hidden cycles to the compiler

through the use of inlining. To form better compilation units, it is desirable to expose all of the

frequently executed cycles that are hidden by the function-based partition of the program. This

can be achieved by aggressively applying pro�le-based function inlining. Table 3.1 shows how

the percentage of code that appears cyclic to the compiler increases as the amount of function

inlining increases.

The number at the top of each column is the percent of the total number of inline expandable

call sites in the program that were inlined expanded, subject to the following constraints. The

inliner was constrained from producing functions larger than 25,000 operations to ensure the

feasibility of later experiments on these heavily inlined programs. Also, the inliner was not

allowed to inline expand functions taking a variable number of arguments nor was it allowed

to inline expand a self-recursive function into itself. Thus, the 100% indicates that all of the

23



expandable call sites were inline expanded, but that does not imply that the program has been

fully inline expanded.

For each benchmark, the knee of the curve occurs at the point where 95-97% of the dynamic

cyclic code visible at the 100% inline expansion level has been exposed to the compiler. The

highlighted entry for each benchmark in Table 3.1 represents this point. The amount of inlining

required to achieve this state varies greatly between benchmarks. For example, the benchmark

134.perl contains 39% cyclic code prior to inlining. With 100% inlining, the cyclic code portion

becomes 80.72%. To capture 95% of the 80.72% exposure, one only has to inline expand the

�rst 20% of the expandable call sites. On the other hand, the number of dynamic function calls

is spread across more call sites in the benchmark 022.li, requiring 40% of the expandable call

sites be inlined to expose 95% of the dynamic cyclic code. For most of these benchmarks it is

unnecessary to inline expand them beyond 30%. Subsequent experiments in this dissertation

will be applied to these benchmarks at this desired level of function inline expansion.

With the aid of pro�le information, it is relatively easy for the compiler to determine the

necessary amount of inline expansion. However, in the absence of pro�le information, the

compiler must employ heuristics to determine which call sites to inline expand. As a result, the

compiler may perform more inline expansion than is necessary for a benchmark. The 40-80%

percent inlining levels will be used to illustrate the e�ect of over inlining on function size and

how this a�ects compiler performance.

Figure 3.10 graphically illustrates the distribution of cyclic and acyclic codes for the 100%

inlined case in Table 3.1. For the most part, it is possible through the application of inlining

to expose all of the frequently executed cycles to the compiler. The three exceptions to this

are 022.li, 085.cc1, and 134.perl, which still appear to contain 10-20% dynamic acyclic code.
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Table 3.2 Static code growth as the amount of inlining increases.
Num Opers Static Code Growth

Benchmark 0% 5% 10% 15% 20% 25% 30% 40% 60% 80% 100%
008.espresso 37426 1.02 1.04 1.07 1.16 1.21 1.26 1.43 1.74 2.53 4.52
022.li 11802 1.03 1.10 1.15 1.24 1.38 1.57 2.02 3.22 6.77 8.82
026.compress 1698 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.10 1.10 1.12
072.sc 16046 1.07 1.22 1.27 1.64 1.84 2.15 3.14 4.24 5.07 6.40
085.cc1 134594 1.05 1.11 1.18 1.29 1.36 1.48 1.79 2.81 3.24 4.34
134.perl 64569 1.02 1.05 1.08 1.19 1.44 1.45 1.49 1.61 1.74 2.02
cccp 7129 1.01 1.02 1.02 1.07 1.09 1.17 1.23 1.46 1.55 2.89
eqn 5326 1.04 1.16 1.30 1.45 1.52 1.75 2.47 3.29 3.55 4.56
lex 7549 1.01 1.05 1.08 1.12 1.15 1.18 1.27 1.79 1.95 2.16
tbl 8443 1.03 1.07 1.11 1.16 1.22 1.35 1.51 1.87 2.69 8.18
yacc 6610 1.02 1.05 1.10 1.11 1.15 1.21 1.30 1.55 1.97 2.83

3.3.3 Impact on problem size

Despite the obvious bene�ts of increasing the compilation scope in this way, inlining has

several negative e�ects on the compiler's performance within the current function-based com-

pilation framework. Inline expansion may increase register pressure to the point at which the

resulting spill code negates any bene�t to be gained from inline expansion [4]. More important,

aggressive inline expansion can lead to excessive code expansion. The increase in function size

will have adverse e�ects on compile time due to the algorithmic complexity of dataow analysis,

optimization, scheduling and register allocation.

Table 3.2 shows the code expansion resulting from the inlining levels shown in Table 3.1.

The worst-case code expansion (100% inlining) ranges from 1.12 to 8.82 times the original code

size, with an average increase of 4.3 times the original code size. At the desirable levels of

inlining, the average code expansion is 1.33 times, which is much less. However, static code

growth itself is not a good indicator of how the inline expansion will a�ect compilation time

and memory usage. There will be a more pronounced e�ect on compilation time and memory

usage if the inline expansion results in a couple of large functions versus several moderately

sized functions.
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Figure 3.11 Histogram of function size before and after inlining.

The data presented in Figure 3.11 provide better insight into the e�ect inlining may have

on compilation. Figure 3.11 contains histograms of the static function size weighted by the

number of dynamic operations in each function. The function bodies within these programs

tend to be rather small. Prior to inlining, all 11 programs spent 75% of their execution time in

functions with fewer than 500 operations,1 whereas at the 100% inlining level there is a drastic

shift to the right. Over 80% of the program's execution time is spent in functions with more

than 1000 operations. Even with a reasonable amount of inlining there is a noticeable shift to

the right. Though the amount of code expansion at this level is not extreme, the e�ect of the

inline expansion tends to manifest itself in the form of extremely large functions.

1These and all subsequent operation counts are before the application of any aggressive optimization other

than inlining. Since we are interested in assembling program units for compilation, this measure of size has merit.
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Table 3.3 Percent increase in classical optimization time as inlining increases.
Time (s) Increase in Optimization Time as Inlining Increases

Benchmark 0% 5% 10% 15% 20% 25% 30% 40% 60% 80% 100%
008.espresso 78 1.08 1.15 1.27 2.31 3.06 3.81 12.33 36.33 254.72 *
022.li 15 1.07 1.33 1.47 2.07 3.00 4.40 11.73 126.73 68.27 *
026.compress 5 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.20 1.20 1.20
072.sc 84 1.02 1.51 1.63 4.93 6.69 11.00 50.40 159.68 341.20 917.71
085.cc1 790 1.41 2.18 3.29 7.73 10.04 15.31 34.62 50.92 * *
134.perl 524 1.02 1.19 1.64 3.94 10.64 11.26 12.39 33.48 72.59 *
cccp 29 1.00 1.07 1.03 1.24 1.31 2.17 2.17 4.03 4.52 108.59
eqn 16 1.06 2.94 5.13 8.06 9.13 11.63 34.81 84.44 110.63 260.00
lex 53 1.00 1.09 1.11 2.17 2.38 2.70 3.09 12.75 19.94 23.38
tbl 53 1.04 1.60 1.68 2.02 3.62 4.60 8.13 21.91 43.91 0.00
yacc 39 1.18 1.33 1.67 1.72 2.21 2.97 4.08 7.41 28.51 169.54

Inlining has succeeded in assembling the interprocedurally coupled portions of the programs

together. However, the areas of the program that should be subject to the most aggressive ILP

techniques are now located within the largest function bodies. The tractability of applying

aggressive ILP compilation techniques under these conditions is questionable. The next section

discusses the e�ect of increasing function size on compile time and memory usage.

3.3.4 Impact on compiler performance

The amount of time required to perform classical optimizations for the various levels of

inlining discussed in previous sections is shown in Table 3.3. The 0% column contains the

number of seconds2 required for classical optimization of each benchmark with no inlining. The

remaining columns contain the percent increase in compile time over the no inlining case for

that level of inlining.

For all benchmarks, with the exception of 026.compress, the compilation time increases

sharply as the amount of inline expansion is increased. For example, the benchmark 072.sc

incurs a compile time increase of only 2% at 5% inlining; however, at 20% inlining it takes

2These and all subsequent execution times were generated on a HP 9000/735 running at 125 MHz with 128MB

RAM.
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Table 3.4 Percent increase in classical optimization memory usage as inlining increases.
Mem (MB) Increase in Memory Usage as Inlining Increases

Benchmark 0% 5% 10% 15% 20% 25% 30% 40% 60% 80% 100%
008.espresso 2.18 1.00 1.00 1.00 1.27 1.44 1.63 4.52 7.07 18.32 *
022.li 0.64 1.16 1.53 1.53 2.33 3.47 3.47 9.49 34.42 41.22 *
026.compress 1.21 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
072.sc 4.05 1.00 1.00 1.00 2.50 3.37 4.73 15.39 16.91 18.74 29.61
085.cc1 4.91 1.93 1.93 2.61 3.41 4.69 7.08 13.41 30.75 * *
134.perl 17.96 1.00 1.00 1.24 2.34 2.88 2.88 3.04 4.80 5.45 *
cccp 1.44 1.00 1.00 1.00 1.34 1.42 2.10 2.10 3.00 3.00 11.26
eqn 1.37 1.00 1.46 1.94 2.98 3.37 5.10 7.17 17.09 19.98 35.36
lex 2.67 1.00 1.00 1.06 1.31 1.56 1.59 1.91 3.91 5.10 5.84
tbl 1.95 1.00 1.14 1.14 1.21 1.50 1.66 2.74 5.36 7.14 0.27
yacc 1.53 1.00 1.00 1.00 1.00 1.00 1.20 1.70 1.88 7.02 21.04

4.9 times as long to perform classical optimization. At 100% inlining, classical optimization

takes 917 times as long, which is clearly not feasible within a production compiler. Because

the benchmark 026.compress contains only two expandable call sites, there is no change in

the benchmark until the 60% inlining level. The drastic increase in compile time across the

benchmarks results from the fact that increasing function size is aggravating the algorithmic

complexity of the optimization algorithms.

Relatively small increases in static code size can result in signi�cant increases in compile

time. The desired level of inlining for yacc is 5%. At this level, there is a 2% increase in code

size, however, that 2% increase in code size results in an 18% increase in optimization time

since most of the code expansion occurs within one function body. The benchmark 134.perl

provides another example. The desired inlining level for 134.perl is 20%. At this level, there

is only a 19% increase in static code size, see Table 3.2, but the classical optimization time

has increased almost 4 (3.94) times. Again, the principal reason is that the code expansion is

localized to two function bodies.

Table 3.4 contains the memory usage during classical optimization as the amount of inlining

is increased. The 0% column contains the memory usage, in megabytes, for the no-inlining case.
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The remaining columns contain the percent increase in memory usage over the no-inlining case

for that level of inline expansion. As with compile time, there are signi�cant increases in the

amount of memory required for classical optimization. For example, the benchmarks 072.sc,

134.perl, and eqn all require two to three times more memory at their desired level of inlining

than they do with no inlining. For 134.perl this is especially signi�cant since this benchmark

requires 18MB of memory with no inline expansion due to several large function bodies. The

benchmarks 022.li, 085.cc1, and tbl require 9.5, 4.7, and 5.4 times the memory, respectively,

at the desired level of inlining. This table clearly illustrates the e�ect of applying algorithms

that are non-linear in memory complexity to entire functions as code expansion increases.

From Tables 3.3 and 3.4 it is clear that under extreme code expansion, and in many cases

reasonable code expansion, the function bodies are too large for aggressive optimization in a

production compiler. The situation will not improve when aggressive ILP transformations are

applied to expose parallelism inherent in programs. The attention of the compiler must be

focused such that the important regions of the program can be aggressively optimized without

the compile time being a�ected by the size of the surrounding function body.
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CHAPTER 4

REGION-BASED COMPILATION FRAMEWORK

The compilation di�culties that arise as a result of inlining are due to the function-based

compilation framework. Aggressive application of inlining can reduce the side e�ects of the

function-based partition, namely, hidden memory aliasing behavior, optimization, and control

ow structure. However, inlining tends to exacerbate the algorithmic complexity of the compi-

lation process by increasing function size. In other words, inlining alleviates several symptoms

of the problem, but the root cause of the problem still exists, the function-based compilation

framework.

Examination of the function-based compilation framework reveals that, regardless of the

implementation, the tasks performed by the compiler during the compilation of a program

fall into three categories: compilation unit selection, transformation, and state maintenance.

Compilation unit selection involves determining the scope of the program over which later trans-

formations will be applied. Transformation involves the application of optimization, scheduling

and register allocation techniques, to a particular portion of the program, selected from the

repertoire available to the compiler. Finally, state maintenance is the bookkeeping required to

maintain correctness during the separate compilation of the selected areas of the program.

Within a function-based compiler, compilation unit selection is trivial since all phases of

compilation are typically applied over the entire function, with the exception of code schedul-

ing. The selection and application of transformations is crude in that current function-based

compilers tend to apply the available transformations in a rigid phase order. The �nal cat-
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egory, state maintenance, requires little work on the part of a function-based compiler. The

interface between functions is well-de�ned by the procedure calling convention, meaning that

the compiler need not maintain any state information during the separate compilation of each

function.

This thesis proposes a compilation framework wherein the compiler is provided with the

capability to dynamically select the compilation unit and, based upon the characteristics of

the compilation unit, apply the most appropriate transformations from the available repertoire.

The remainder of this chapter discusses the rami�cations of this concept to the design of an

ILP compiler. Section 4.1 will discuss the environment of compiler selected compilation units,

called regions. Section 4.2 will discuss the application of transformations in a region-based

compilation framework. Section 4.3 will introduce the state maintenance issues exposed by this

technique. Finally, Section 4.4 will discuss the transformation of a function-based compiler into

a region-based compiler.

4.1 Compilation Environment

Consider an environment in which the compiler is allowed to repartition the program into

a new set of compilation units, called regions. A region is a subgraph of the global control

ow graph of the program. More formally, a program P can be represented by a global control

ow graph G(N;E), where N is the set of all basic blocks in the program and E is the set of

all control ow arcs between two blocks in N . These arcs include interprocedural transitions

through subroutine calls and returns.

De�nition: A region R is represented by the control ow
graph R(n; e) where n � N and e � E.
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Note that under this de�nition, a function is a region, but a region is not necessarily a function.

The subgraph making up a region within the program must either be disjoint from all other

regions, contain a nested region or be nested within another region.

A region is simply a collection of basic blocks and control ow arcs selected to be compiled

as a unit. These regions will be the fundamental units to which optimization, scheduling

and register allocation will be applied. In this environment, control of the compilation scope is

transferred from the software designer to the compiler. Under the assumption that the compiler

has knowledge of the transformations available and understands their behavior, the compiler is

better able to select desirable compilation units than the software designer.

The compiler transformations applied in a function-based environment tend to be restricted

during implementation of the compiler or during compilation itself to prevent excessive code

expansion that may adversely a�ect compilation time or compilation memory requirements.

Allowing the compiler to repartition the program into regions allows the compiler to isolate

compilation of program partitions from code expansion e�ects within the surrounding function

body. Region-based compilation units provide an environment that reduces the importance of

the time and memory complexity of compiler algorithms. This allows the compiler to apply

more aggressive transformations and may make the compiler easier to design.

This remainder of this section will discuss several issues in region formation, present the

region formation algorithm used for the remainder of this thesis and investigate the ability of

regions to provide a more desirable compilation environment in the presence of aggressively

inlined functions.
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4.1.1 Region formation

The goal of the region formation process is to provide the best possible compilation unit for

aggressive transformation. The properties of the selected region should be such that aggressive

optimization is both feasible and bene�cial. The properties that are important are heavily

dependent upon the transformations to be applied by the compiler and the e�ciency of the

implementation. In general, these properties can be separated into two categories: those that

a�ect compiler performance and those that a�ect output code quality.

Compiler performance

As was shown in Section 3.3.4 even a small amount of code expansion can have a signi�cant

impact on compiler performance. Compilation time and compilation memory usage depend

upon the input size and the algorithmic complexity of the applied transformations as well as

the e�ciency of the implementation. Thus, the most important region property from the point

of view of compiler performance is size. The performance of these transformations will be

determined by the number of operations, the number of virtual registers, and the number of

memory dependences within the region. Care must be taken when selecting upper bounds for

these values. The applied transformations may require less time and memory but they may

produce lower quality output code.

As an example, consider a global, graph-coloring register allocator [6]. The computational

and memory complexity of this approach to register allocation is O(n2), where n is the number

of virtual registers in the region. Thus, the amount of time and memory required for global

register allocation is heavily dependent upon the size of the region in terms of the number of

virtual registers. If a function containing 1000 virtual registers is repartitioned into ten regions
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Figure 4.1 Pro�le-sensitive region selection.

containing 100 virtual registers, algorithmically the time and memory required to allocate all

ten regions is ten times less than the time and memory required to allocate the entire function

all at once. However, narrowing the scope of register allocation to this degree may result in a

lower quality allocation. This will be discussed in more detail in Chapters 5 and 6.

Output code quality

The quality of the output code generated by the compiler depends upon the ability of the

compiler to e�ciently transform the code within the region. The region formation process

should consider the presence of optimization hazards, the control ow structure, dependence

height and dynamic program behavior when selecting regions. By excluding basic blocks that

are dynamically irrelevant or contain operations that will inhibit optimization and scheduling,

the region formation algorithm may produce a compilation unit that will allow the compiler to

produce better quality code.

Figure 4.1 contains function A from Figure 3.5 after pro�le sensitive region formation.

Recall that the most frequent path through the loop is composed of basic blocks 1, 3, 4, 5, 6,

and 8. Blocks 2 and 7 have been placed in regions separate from the most frequently executed
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portion of the loop. This allows the dynamically important portion of the loop body to be

optimized without the constraints that may be imposed by the contents of blocks 2 and 7. The

region formation algorithm used in this thesis is pro�le sensitive for this reason. The bene�ts of

optimization and register allocation over pro�le sensitive regions will be discussed in Chapters 5

and 6.

Pro�le-sensitive region formation

This region formation algorithm is a generalization of the pro�le-based trace selection al-

gorithm used in the IMPACT compiler [46]. The principal di�erence is that the algorithm

is permitted to expand the region along more than one path of control. The use of pro�le

information for region formation provides the compiler with an accurate indication of the in-

teraction between basic blocks in the program. This results in compilation units that are more

representative of the dynamic behavior of the program than the original functions.

The region formation algorithm consists of four steps. The �rst step is to select a starting

block, s, known as the seed, to begin growing the region. The seed block selected is the most

frequently executed block not yet in a region. The second step is to expand the scope of the

region from the seed block by selecting a path of desirable successors from s. For this discussion,

we assume that desirability is based solely upon execution frequency. In reality, the algorithm

is constrained by an upper bound on region size. In this context, a desirable successor of a block

x is a block y that is likely to be executed once the ow of control enters block x. The control

ow transition from block x to block y is considered likely if the weight of the control ow arc

from x to y, W (x ! y), is at least (T � 100)% of the weight of block x, W (x). Furthermore,

to prevent the inclusion of irrelevant blocks to the region, the execution frequency of y must be
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at least (Ts � 100)% of the execution frequency of s Therefore, y is a desirable successor of x if

it satis�es the following equation.

Succ(x; y) =

�
W(x! y)

W(x)
� T

�
&&

�
W(y)

W(s)
� Ts

�
(4.1)

The values T and Ts are threshold values de�ned by the compiler. Through empirical

evaluation it was found that setting both T and Ts to 0.5 produces reasonable regions. At

higher values, the regions tend be too large and with smaller values the algorithm is constrained

and the regions are too small.

Once the most desirable successor of s has been added to the region, the most desirable

successor of that block is selected. This process continues until the successor path can no longer

be extended. The third step is to add a path of desirable predecessors from s. The conditions

under which block y is a desirable predecessor of a block x are analogous to the successor case.

Thus, y is a desirable predecessor of x if it satis�es the following equation.

Pred(x; y) =

�
W(y ! x)

W(y)
� T

�
&&

�
W(y)

W(s)
� Ts

�
(4.2)

The resulting path forms the seed path of the region. In the �nal step, the region is further

extended by applying Equation (4.1) to all blocks in the region, selecting all possible desirable

successors. Each selected block is then added to the region and the process continues until no

more desirable successors are found. This has the e�ect of adding all of the desirable paths that

extend out from the seed path. The algorithm is summarized in Figure 4.2.

Consider the application of this algorithm to the CFG shown in Figure 4.3. The numbers

next to the arcs represent the execution frequency of that control ow arc. Region formation

begins by selecting the most frequent block not yet in a region. The header of the inner loop,
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/* most frequent block not in a region */
seed = Seed(B)

/* select path of desirable successors */
x = seed

y = most frequent successor of x
while ( y 3 R && Succ(x; y) ) f

R = R [ fyg
x = y

y = most frequent successor of x
g

/* select path of desirable predecessors */
x = seed

y = most frequent predecessor of x
while ( y 3 R && Pred(x; y) ) f

R = R [ fyg
x = y

y = most frequent predecessor of x
g

/* select desirable successors of all blocks */
stack = R

while ( stack 6= ; ) f
x = Pop(stack)
for each successor of x, y 3 R f

if ( Succ(x; y) ) f
R = R [ fyg
Push(stack,y)

g
g

g

Figure 4.2 Pro�le-sensitive region formation algorithm.

the highlighted block, is the most frequently executed block and is selected as the seed block.

The most likely target block of the seed, block 2, is selected as the desirable successor to

block 1. Block 4 is selected as the successor of block 2. Block 4 contains the backedge of the

inner loop, but since the inner loop only iterates two times on average according to the pro�le

information, block 7 is selected as the successor to block 4. If the inner loop tended to iterate

more frequently, the successor path selection process would have terminated because the block
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Figure 4.3 Pro�le-sensitive region formation: seed selection.

7 would not be a candidate and block 1 already lies within the region. Blocks 4, 7 and 5 are

then selected, in that order, as desirable successors. The converse is true for block 7. In this

instance the region will not grow outside the loop because the most frequent path is around the

backedge to block 5. At this point, successor path growth terminates, since block 1 is already in

a region and the transition from block 5 to block 6 does not satisfy Equation (4.1). The result

is shown in Figure 4.4. The third step of the region formation process is to select the most

desirable predecessor of the seed block; in this example, block 5 already resides in the region so

no desirable predecessors are selected. Finally the fourth step is to select desirable successors

of all blocks within the region. The transition from block 1 to block 3 satis�es Equation (4.1)

so block 3 is added to the region. As stated before, the transition from block 1 to block 6 is

not desirable. The region formation process terminates having selected all basic blocks except

block 6. The result is shown in Figure 4.5. The region shown in Figure 4.5 is now complete

and is representative of the dynamic behavior in this area of the program.

39



1

2 3

5

6

7

4

1999

10990

1500 480

990

Figure 4.4 Pro�le-sensitive region formation: successor path selection.
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Figure 4.5 Pro�le-sensitive region formation: �nal step.

Natural regions

In the presence of pro�le information, the compiler has the advantage of knowing how a

program behaves dynamically. The absence of pro�le information does not preclude region

formation. The region formation process simply has to partition a function based upon the

natural regions present within the CFG. The most obvious of such regions is a loop. In the
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previous example, the dynamic pro�le information guided region formation to grow the region

in Figure 4.5 that contains both the inner loop and the outer loop. The same result may

be achieved in the absence of pro�le simply by starting the region formation process at the

innermost loop bodies expanding the region to outer loops until the upper bound on region size

is reached.

Once all of the basic blocks within loops have been grouped into regions, there are several

methods of dealing with the general acyclic code that remains. All adjacent basic blocks within

acyclic areas of the function may simply be grouped into the same region or a more sophisticated

approach may be applied. The acyclic code itself may be partitioned into natural regions such

as hammocks, single-entry subgraphs as proposed by Mahadevan [36], or control equivalent

regions as proposed by Ferrante et al. [47]. Control equivalent regions, however, tend to be too

small a unit for e�cient region-based optimization.

Hazard avoidance

Pro�le information provides the compiler the ability to exclude dynamically irrelevant blocks

from a region. Again, the absence of pro�le information does not preclude this. Hank showed

that hazard-free paths tend to be frequently executed and that heuristics designed to avoid

basic blocks that contain hazards tend to approximate the bene�ts achieved with pro�le infor-

mation [37]. Thus, by excluding basic blocks containing unsafe subroutine calls or ambiguous

store operations from a region, the compiler can achieve similar results to a compiler using

frequency sensitive regions. For example, if basic block 6 in Figure 4.5 contained a library call,

then a heuristic that avoided subroutine calls combined with the above loop-based heuristic

would form the exact same region, without the aid of pro�le information.

41



4.1.2 Problem size control

One problem with function-based compilation units is that function size is potentially un-

bounded, especially if aggressive inlining is employed. The compiler engineer must deal with

the time and memory complexity of algorithms in the presence of unbounded problem size.

Allowing the compiler to select region-based compilation units, places the compiler in complete

control of the problem size. Since the problem space of the compiler is now localized to a region,

the code expansion in other regions has no e�ect on the compilation of the current region. Re-

ducing the problem space has the advantage of reducing the importance of the time complexity

and memory complexity of the optimization, scheduling and register allocation algorithms used

by the compiler. This simpli�es the task of a compiler engineer developing a production quality

ILP compiler.

The region formation algorithm presented in Section 4.1.1 was applied to the aggressively

inlined (100%) benchmarks to determine how well the dynamic behavior of the program nat-

urally controlled the size of the compilation unit. An upper bound of 200 basic blocks was

placed on the region size. Figure 4.6 adds a histogram of the selected regions to the function

size histograms shown in Figure 3.11. For all 11 programs, 75% of the execution time was

contained in regions with fewer than 250 operations. The large percentage (15%) of regions

that contain less than ten operations results from the fact that many of these integer programs

are dominated by small loop bodies. Small cyclic regions are not a signi�cant problem for

optimization and scheduling, because the amount of ILP within a loop is essentially limited

only by the trip count. Overall, the region selection algorithm is successful in controlling the

problem size even in the presence of aggressive inlining.
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Figure 4.8 Histogram comparing function size before inlining, function size after inlining,
and selected region size after inlining for tbl.
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Figure 4.9 Histogram comparing function size before inlining, function size after inlining,
and selected region size after inlining for 072.sc.
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Figure 4.10 Histogram comparing function size before inlining, function size after inlining,
and selected region size after inlining for 085.cc1.
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Figure 4.11 Histogram comparing function size before inlining, function size after inlining,
and selected region size after inlining for 134.perl.
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Figure 4.12 Histogram comparing function size before inlining, function size after inlining,
and selected region size after inlining for 008.espresso.
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Figure 4.13 Histogram comparing function size before inlining, function size after inlining,
and selected region size after inlining for 026.compress.
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Figure 4.14 Histogram comparing function size before inlining, function size after inlining,
and selected region size after inlining for cccp.
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Figure 4.15 Histogram comparing function size before inlining, function size after inlining,
and selected region size after inlining for eqn.
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Figure 4.16 Histogram comparing function size before inlining, function size after inlining,
and selected region size after inlining for lex.
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Figure 4.17 Histogram comparing function size before inlining, function size after inlining,
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within that program. Thus, Figure 4.18 shows that for eqn more than 30% of the dynamic

operations are in regions spanning two functions. As selected, this region contains 32 of the

9600 operations in the function body that contains it.

The distributions in Figure 4.18 indicate the depth of the interprocedural coupling within

these programs. Several of the benchmarks have a signi�cant amount of interprocedural cou-

pling. More than 40% of the dynamic operations in the benchmarks eqn and 022.li are con-

tained within regions spanning nine or more functions. For 022.li most of these regions are

small, containing fewer than 250 static operations. In the benchmark 085.cc1, more than 70%

of the dynamic operations are within regions spanning ten or more functions. Within perl,

through inlining and region formation, a cyclic region is formed that spans nine functions and

represents 25% of the dynamic operations in the program. The importance of this region shows

that it is desirable to assemble interprocedurally coupled blocks in the program into the same

compilation unit. This region contains only 230 operations, whereas the function it is contained

in contains approximately 15,000 operations after inlining. Under a region-based framework,

the compiler is able to isolate and perform aggressive optimization on this portion of the pro-

gram without being a�ected by the large number of operations that actually reside within the

function body.

4.2 Compilation Methodology

As discussed in Chapter 3, current compilers typically compile each function as a unit

and each function is compiled completely before proceeding to the next function. Under a

region-based environment, the compilation process can be generalized in several signi�cant and

bene�cial ways.
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Figure 4.19 Horizontal region-based compilation of a function.

The region-based compilation process requires an additional phase of compilation, region-

formation. The addition of this phase to the function-based compilation process shown in Fig-

ure 3.2 results in the compilation process shown in Figure 4.19. In this process, the function,

Fx, is �rst repartitioned into regions. Once repartitioned, each subsequent compilation phase

processes the regions one at at time until the entire function body has been processed. Under

this compilation model, restricting the compilation scope to individual regions within the func-

tion can result in signi�cant improvements in the time and memory required to compile the

function due to the nonlinear algorithms applied during each phase. Restricting the scope of

the compiler in this manner will also a�ect the quality of the output code. Both of these issues

will be discussed in detail later in this dissertation.

In addition, treating each region as a separate compilation unit allows the compilation

process to be modi�ed as shown in Figure 4.20. Under this model, a region is selected and all

compilation phases are applied to that region, in the same manner that the phases are applied

under the function-based model, before subsequent regions are selected. This adds a vertical
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Figure 4.20 Vertical region-based compilation of a function.

component to the compilation of a function. Since a region has a scope that di�ers from the

function it resides in, basic blocks in di�erent regions may be in two completely di�erent phases

of the compilation process. 1

The fact that basic blocks in di�erent regions may be at di�erent phases in the compilation

process provides a region-based compiler with a potential advantage over a function-based

compiler. Consider the application of global optimization, followed by scheduling, to a region.

Compensation code generated while applying a transformation to a region may be pushed

outside the transformed region. This compensation code may be selected into subsequent

regions where it will be subject to optimizations applied when that region is processed. This

is not the case under the function-based model, since the entire function is optimized prior to

scheduling and reapplication of the optimizer after scheduling may destroy the schedule. For this

reason, may code schedulers tend to avoid introducing compensation code during scheduling.

The region-based compiler framework provides an environment where the bene�ts of removing

1The intermediate representation used by the compiler must be able to handle the fact that di�erent portions

of the function are in di�erent phases of compilation
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Figure 4.21 Specialized vertical region-based compilation of a function.

these restrictions from the code scheduler can be investigated in the future. These bene�ts will

not be quanti�ed within this thesis.

The region-based compilation process can be further re�ned as shown in Figure 4.21. Under

this model, the compiler can determine the path a region follows through the compilation

process based upon the characteristics of the region. In general, this is not feasible within

a function-based compiler, since function-based compilation units are di�cult to characterize.

The region characteristics that may be relevant to the compiler include dynamic importance,

topology, content, and previously applied transformations. For example, in Figure 4.21, region

R1 is subjected to aggressive ILP optimization and scheduling, whereas region R2 is subject to

only classical optimizations. In this instance the characteristics of region R2, such as dynamic

importance, indicate to the compiler that aggressive ILP transformations are unnecessary. The

compilation time bene�ts of guiding the compilation process in this manner will be investigated

in Chapter 5.

54



Function Body

Epilogue

Prologue

Incoming Parameters

Return Value

Figure 4.22 Function boundary conditions.

4.3 State Maintenance

Separate compilation of a program using a function-based framework is facilitated by the

fact that the boundary conditions of a function are �xed. Consider the function body shown in

Figure 4.22. The function has a single entry point, the prologue, and the variables live across

this entry point, function parameters, and their locations are �xed by the parameter passing

convention. Likewise at the exit point, the epilogue, and the location of the single live variable

across that point, the return value, is �xed by the parameter passing convention. Because of

this, each function can easily be treated as a self-contained entity. As long as the compiler

obeys this convention, there is no need for the compiler to maintain any information between

functions.
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Figure 4.23 Region boundary conditions.

On the other hand, a region is an arbitrary partition of the program's control ow graph.

There may be any number of variables live across each region's entry and exit points. Figure 4.23

shows a region that is a subgraph of the function in Figure 4.22. This region contains two entry

points and two exit points. The boundary conditions at each of these points are represented by

the blocks labeled BC. The variable liveness conditions at a region boundary point are dynamic

and will change as transformations are applied. For correctness, the compiler has to maintain

the variable liveness conditions at each entry and exit point throughout the compilation process.

Chapter 5 will discuss methods of maintaining this information and the e�ect of conservative

information on optimization quality.

In addition to variable liveness, separate compilation of regions also requires the compiler

to maintain register allocation and scheduling information at the region boundary points to
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ensure that regions can be reconciled. This was done within the Multiow compiler in the

context of a combined scheduler and register allocator, which was applied to individual traces.

For correctness, the scheduler must take into account information on processor resources and

register bindings at trace boundary points [1]. Chapter 6 will discuss the boundary condition

information required for e�cient register allocation of arbitrary regions.

In general, a region-based compiler must maintain, update, and propagate all of this bound-

ary information to a degree that guarantees correctness and allows e�cient optimization.

4.4 Region-Based Compiler

The functionality of a region-based compiler can be decoupled into two broad categories.

The �rst category is compilation management. This category includes the three compilation

tasks discussed in Sections 4.1 - 4.3. The second category consists of all transformations in

the compiler's repertoire. Decoupling the available transformations from the management of

the compilation process allows existing function-based compilation techniques to be applied to

region-based compilation units in a straightforward manner.

Figure 4.24 contains a block diagram of a region-based compiler. The compilation manager

examines the input program and is responsible for region formation, transformation selection,

and state maintenance. The compilation manager sends regions to the appropriate transforma-

tions and receives the result through some interface, which is implementation dependent. In

order to implement a region-based compiler within the IMPACT compilation framework, the

general region-based compilation process is modi�ed slightly from that shown in Figure 4.21.

After region formation, a new step, encapsulation, is performed prior to applying any compiler

transformations. The purpose of this step is to encapsulate the region such that it appears to

57



Compilation Manager

Register
Allocation

Acyclic
Scheduling

Superblock 
Form/Opti

Classical
Optimization

Input

Program

Compiled

Program

Interface

Transformation Repertoire

Figure 4.24 Region-based compiler block diagram.

be a function. This encapsulation allows existing function-based transformations within the

IMPACT compiler to be applied directly to regions with only minor modi�cations and facil-

itates the comparison of region-based and function-based compilation techniques. After the

transformation of a region is complete, the region proceeds through a re-integration step. The

remainder of this section will discuss encapsulation and re-integration in more detail.

4.4.1 Encapsulation

Representing a region so that it appears to be a function requires the encapsulation to

resolve two issues. The �rst concerns control ow entering and leaving the region. The second

concerns variable liveness conditions at the region entry and exit points. Both of these issues

can be resolved in the same manner. Consider the outer-loop region selected within the control

ow graph in Figure 4.25(a). After extracting the region from the function it resides in, explicit
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Figure 4.25 (a) Selected outer loop region, (b) extracted region with boundary condition
blocks.

boundary condition blocks are added at each region entry point and exit point. These boundary

condition blocks represent the actual blocks within the containing function that branch into

the region or are reached when the ow of control exits the region. The boundary condition

blocks required for the region selected in Figure 4.25(a) are shown in Figure 4.25(b).

It is desirable to compile selected regions in the same manner as functions so that existing

function-based compilation techniques are applicable within a region-based compiler. To achieve
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Figure 4.26 Control ow encapsulation equivalent to a function: (a) cyclic control ow
hidden, (b) cyclic control ow exposed.

this, the compilation manager must generate control ow that is equivalent to a function at the

region boundary points, i.e., the region should appear as a single-entry/single-exit control ow

graph. This can be done by adding adding dummy prologue and epilogue blocks and connecting

the prologue to all region entry points and connecting all region exit points to the epilogue as

shown in Figure 4.26(a). The control ow of the region is equivalent to that of a function,

however, note that the cyclic nature of the region is lost with this encapsulation. Within the
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home function the region was cyclic, as encapsulated in Figure 4.26(a) it is not. Regions must

be encapsulated in such a way that the original control ow structure is apparent to applied

transformations. With this metod of encapsulation, outer loop regions cannot be optimized as

loops.

The encapsulation process may take advantage of the control ow relationships between

entry and exit boundary condition blocks. For example, if an exit boundary condition block

dominates an entry boundary condition block and those blocks lie within the same region, a

control ow arc may be added between those blocks. Consider blocks BCW and BCX in

Figure 4.26. If the exit block BCW dominates BCX, a control ow arc may be added between

them as shown eliminating the need for a control ow arc between the prologue and BCX.

The same may be true for blocks BCY and BCZ. Any remaining exit blocks that do not

dominate an entry block are connected to the epilogue, such as block BCI in Figure 4.26(b).

Finally, any entry blocks reachable from outside the region are connected to the prologue, such

as block BCA. In this instance, the control ow is again equivalent to that of a function, but

the original cyclic nature of the region is apparent. Applying these control ow relationships

allows outer-loop regions to bene�t from cyclic transformation.

Conveying that a particular set of variables is live across a region exit boundary can be done

by adding dummy operations to the boundary condition block that explicitly reference those

variables. For example, Figure 4.27(a) shows a region exit where virtual registers 1, 2, and 3 are

live-out. This fact can be conveyed by adding three dummy operations to a boundary condition

block that reference these three virtual registers as shown in Figure 4.27(b). Conveying variable

liveness across a region entry point is trivial. Live variable analysis works backward from the

use of a virtual register until it reaches a de�nition [5]. Thus, a virtual register is live into a
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Figure 4.27 Representing live-out conditions at a region exit: (a) virtual registers live-out,
(b) represented by dummy operations.

region if a boundary condition block is reached prior to locating a de�nition of that virtual

register. Live variable information may also be expressed to a transformation using some other

data structure that is associated with the region to be processed. However, expressing live

variable information in this manner allows the existing IMPACT dataow analysis routines to

operate upon regions without modi�cation.

4.4.2 Re-integration

Re-integration is simply the process of placing the compiled region back into the containing

function. The region-based compiler within IMPACT also performs all region state mainte-

nance procedures at this time. As a result of transformation, the region entry and exit point

may change, the dataow conditions, speci�cally live variable information may change, and the

register allocation constraints have to be updated. Chapters 5 and 6 will discuss how optimiza-

tion will a�ect the live variable information at the boundaries and what constraint information

is provided for register allocation, respectively.
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In addition to representing control ow and hold live variable information, the boundary

condition blocks serve as place holders for any compensation code that is generated during

the compilation of the region. When transformation of a region is complete, any code residing

within the boundary condition blocks is placed in a new block in the function. If the block

that the boundary condition block represents already resides within a processed region, the new

block becomes part of the region being re-integrated. However, if the block that the boundary

condition block represents does not lie in a region, the new block participates in the region

formation process to be grouped with subsequent regions. In this way, compensation code

resulting from compilation of one region may bene�t from later optimization when it is selected

into a subsequent region.
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CHAPTER 5

REGION-BASED OPTIMIZATION

The goal of code optimization is to improve the e�ciency of the code produced by the

compiler. In a classical optimizer, the goal is to improve e�ciency by reducing the number of

dynamic operations as much as possible. Within an ILP compiler, optimizations further improve

the classically optimized code by performing dependence breaking transformations to expose

more parallelism and increase execution e�ciency on wide-issue processors. In both instances,

the compiler designer must trade o� the use of aggressive optimizations and, therefore, output

code e�ciency for the sake of containing compilation time and memory usage. This tradeo�

is made more di�cult by the need to increase the scope of optimization to maximize available

optimization opportunities. The application scope of classical optimizations has expanded

beyond the basic block boundaries to encompass the entire function for this very reason [48]-

[51]. However, for the reasons discussed in Chapter 3, the function body is not the most suitable

optimization environment.

In the literature, global optimization has only been applied at these two extremes, the

basic block level or the function level. Classical optimizations have been applied in both a

superblock [19] and hyperblock [20] context. After superblock and hyperblock formation, lo-

cal classical optimizations are applied along with ILP transformation, but no optimizations are

attempted between blocks. There has been no previous work in reducing the scope of global op-

timization to an arbitrary region. Although there has been work done to improve the e�ciency
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of function-based global optimization, for example, the program dependence graph proposed

by Ferrante et al. [47].

The goal of region-based optimization is to restrict the scope of the application of classical

optimizations in such a way that compilation time and memory requirements improve and

the code quality is not overly a�ected. Optimization time bene�ts result from the reduction

in problem size and by focusing aggressive optimization on important regions and performing

minimal optimization on less important regions. The compiler designer may use the time

gained to apply more aggressive ILP transformations to important regions, further improving

the quality of the code generated by the compiler. In addition to compilation time bene�ts, the

region partition allows the classical optimizer to take advantage of optimization opportunities

that typically require more complex transformations.

Classical optimizations reduce operation count by removing redundant computation. In

order for an operation to be a candidate for application of an optimization it must be fully

redundant, i.e., the re-computation is unnecessary along all possible paths between the two

operations. Consider the example in Figure 5.1(a). Blocks A and B both contain an operation

that performs the same computation, x + y. If there is no rede�nition of variables x and y

along paths 1 and 2 between these two operations, the operation in B is fully redundant and

can be eliminated. If there is a rede�nition of y along path 2 as shown in Figure 5.1(b), the the

computation is redundant only along path 1. In this instance, the re-computation is partially

redundant and cannot be eliminated with traditional classical optimizations. The operation

may be eliminated from block B using partial redundancy elimination techniques [52]-[55], but

these techniques tend to be computationally expensive.

65



z = x + y

z = x + y

A

B

1 2

z = x + y

z = x + y

A

B

1 2

y = 

z = x + y

z = x + y

A

B

1 2

y = 

(a) (b) (c)

Figure 5.1 Redundant computation: (a) fully redundant, (b) partially redundant, (c) fully
redundant within selected region.

Under a region-based environment, this optimization opportunity may be available to a

classical optimizer. If path 2 is infrequently executed, region formation may exclude it as

shown in Figure 5.1(c). This provides the classical optimizer with a straightforward method of

ignoring path 2 and since it is not in the region, the optimizer has no visibility to it. Within the

region, the operations in blocks A and B are fully redundant. This chapter will investigate the

issues involved in performing separate classical optimization of regions and allowing a classical

optimizer to take advantage of optimization opportunities exposed by the region partition, such

as the one in Figure 5.1(c).

The IMPACT classical will be used as a test bed to investigate the e�ects of region-based

optimization in terms of output code quality and optimization time and memory usage. The

e�ect of the region partition has the most signi�cant impact on the behavior global, interbasic

block optimizations. As such, Section 5.1 presents a more detailed overview of the IMPACT

classical optimizer. The boundary condition information required for e�ective optimization of
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regions is discussed in Section 5.2. In Section 5.3 the e�ect of region partitioning on selected

global and loop-based classical optimizations is assessed. Finally, Section 5.4.2 investigates the

impact of the region partitioning on classical optimization time and memory usage.

5.1 IMPACT Classical Optimizer

The IMPACT classical optimizer [17] will serve as a vehicle to investigate the e�ects of

region-based compilation. The encapsulation method discussed in Chapter 4 will allow the use of

the same optimizer for both the region-based experiments and the function-based experiments.

The bene�ts of this are twofold. First, the IMPACT optimizer is known to generate good

quality output code [17], [56]. Using the same optimizer allows region-based optimization to

bene�t from the quality of those transformations. Second, the compile time and memory usage

bene�ts of region-based optimization are directly comparable.

The optimization process can be broken into two components. The �rst is the search for

optimization opportunities and performing the transformation. The second is the generation

of the dataow information required to support the transformation. The optimization process

within the IMPACT optimizer is iterative. Local, global and loop-based optimizations are re-

peatedly applied until convergence, i.e., there are no more optimization opportunities available.

Tables 5.1 - 5.3 contain the local, global and loop transformations, respectively, that are applied

by the optimizer. The algorithmic time complexity of these transformations is O(n2), where n

is the number of operations in the scope of application of the transformation. For local trans-

formations the scope is the basic block. For loop and global transformations, that scope is a

loop or the entire function, respectively. Constraining the scope of these transformations has

signi�cant compile time bene�ts as shown in Section 5.4.2. The transformations annotated with
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Table 5.1 Local optimizations.

constant propagation
forward copy propagation
memory copy propagation
common subexpression elimination
redundant load elimination
constant folding
strength reduction
constant combining
arithmetic operation folding
branch operation folding
operation cancellation
dead-code removal
code reordering

Table 5.2 Global optimizations.

constant propagation
forward copy propagation*
backward copy propagation
memory copy propagation
common subexpression elimination*
redundant load elimination
redundant store elimination
dead-code elimination*

an * in Tables 5.2 and 5.3, global common subexpression elimination, global copy propagation,

global dead code elimination, loop invariant code motion, and global variable migration, will

be used to investigate the e�ects of restricting optimization scope to a region.

Optimizers spend a great deal of time performing dataow analysis. Dataow information

is summary information regarding the previous and future uses of variables at a particular point

in a function. This information includes live-variable, reaching-de�nition, available-expression

and available-de�nition information. There are a number of methods for collecting dataow
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Table 5.3 Loop optimizations.

invariant code motion*
global variable migration*
branch simpli�cation
induction variable strength reduction
induction variable elimination

information [5], [57]-[59]. The most common and straightforward of these techniques is utilized

within the IMPACT optimizer, iterative dataow analysis.

For each of the previously mentioned types of dataow information, iterative dataow anal-

ysis requires the solution of a pair of recurrence equations for each point in the region being

transformed. Using live-variable analysis as an example, we can derive the algorithmic time

and memory complexity of this approach to dataow analysis. The purpose of live-variable

analysis is to determine for a variable v and a point p whether the value of v at p could be used

sometime later in the control ow graph from point p. If so, then v is live at p; otherwise, v

is dead. Assuming that we have determined the variables used by each block, use[B], and the

variables de�ned by each block, def [B], the variables live-in and live-out of a basic block can

be found by solving the recurrence Equations (5.1) and (5.2).

in[B] = use[B] [ (out[B]� def [B]) (5.1)

out[B] =
[

in[Si]; Si is a successor of B (5.2)

For a ow graph of n basic blocks, iterative live-variable analysis requires the solution of 2n

equations. This dataow analysis approach essentially iterates over the control ow graph until

convergence is reached, i.e., a simultaneous solution to all 2n equations is found. The number

of iterations required to converge to a solution varies with the control ow graph; however, the
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upper bound on the number of iterations is the number of blocks in the control ow graph.

Thus to reach a solution requires n iterations over 2n equations, giving live-variable analysis

complexity of O(n2). Similarly, the memory complexity of live-variable analysis is also O(n2).

This result is also true of available-expression and available-de�nition analysis.

During the optimization process, the dataow information eventually becomes incorrect or

too conservative as a result of applying transformations. For this reason, dataow analysis must

be performed repeatedly throughout optimization. Constraining dataow analysis to a region

can signi�cantly improve the amount of time the optimizer spends performing dataow anal-

ysis simply by decreasing the number of basic blocks that must be considered simultaneously.

However, this reduction in analysis scope will have some e�ect on optimization quality.

5.2 Boundary Conditions

Recall from the discussion in Section 4.3 that the separate optimization of functions is

facilitated by known and �xed boundary conditions. When performing separate optimization of

regions, the situation is di�erent. The optimizer has no access to dataow information outside

the region such as variable usage patterns and previously computed subexpressions, thus, is

unable to compute the dataow boundary conditions at region entry and exit points. Consider

the cyclic region consisting of basic blocks A, B, and C in Figure 5.2. Because of the region

partition, the optimizer cannot determine the variable liveness conditions at the exit points

from blocks A and C. In addition the compiler has no knowledge of the availability of variables

or subexpressions at the entry points in blocks A and C. This dataow information must be

provided to the optimizer by the compilation manager to support e�ective optimization.
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Figure 5.2 Region with unknown boundary conditions.

In addition, the region partition prevents the optimizer from knowing the contents of the

potentially re-entrant control ow path exiting block A and entering block C. The optimizer

may need to take these constraints into consideration while transforming the region. The re-

mainder of this section will discuss the information provided to the optimizer by the compilation

manager, Section 5.2.1, and how the optimizer can deal with constraints from side entrances,

Section 5.2.2.

5.2.1 Dataow

The compilation manager has the responsibility of providing and maintaining boundary

dataow information for each region within the program. The quality of the information pro-

vided depends upon the amount of work put into its maintenance. One purpose of region-based

optimization is to minimize the amount of global analysis that must be performed on large
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function bodies that result from inlining and aggressive ILP compilation techniques. It is de-

sirable that the compilation manager provide dataow information at a level that is su�cient

for e�cient optimization without resorting to repeated global analysis.

Live-variable information

At the very minimum, the compilation manager must provide live variable information

in some form. Live variable information is required for many global and loop optimizations,

without it, incorrect transformations will result. One method the compilation manager may

use to provide live variable information is to assume that all variables de�ned with a region

are live outside the region. Under this assumption, the compilation manager need not perform

any global live-variable analysis and there is no maintenance involved. However, the extremely

conservative nature of this information may hinder optimization. The e�ect of such conservative

live-variable information on global dead-code elimination will be investigated in Section 5.3.3.

Most likely it is desirable to provide live-variable information that is more accurate. This

requires at least one global pass of live-variable analysis to determine the initial liveness condi-

tions at basic block boundaries. The degree of di�culty of maintaining live-variable information

can be understood by examining how transformations within a region can a�ect the live-in and

live-out conditions at region boundary points. Underlying the subsequent discussion are two

assumptions. First, there are no interregion transformations taking place. The reason for this

assumption will become clear shortly. The second assumption is that code is allowed to be

pushed outside a region as long as the target block does not reside within a compiled region.

If this assumption were not made, then there are several more cases to consider; however, the

end result is the same.
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Figure 5.3 Local maintenance of live-out information.

First, consider the live-out conditions at the exit point of a region. Figure 5.3(a) contains

a block A that resides within region R and a block B that does not yet reside within a region.

If a variable x exists that is not live-out of block A, the only way that x can become live-out

of block A is if an operation referencing x was to be pushed outside the region into block

B, extending the lifetime, as shown in Figure 5.3(a). In this instance, the only live-variable

maintenance that has to be done by the compilation manager is to add x to the live-out set of

A and the live-in set of B. Now, consider the case in which the variable x is live-outside block

A as shown in Figure 5.3(b). Since x is live-out, this implies that there is an operation outside

of region R that uses x. Thus, the optimizer cannot apply a transformation that will destroy

the value of x within that region. Again, the only way in which the variable x can become no

longer live-out is for the de�nition of x to be pushed outside the region into block B. If this

occurs, the compilation manager need only remove x from the live-out set of A and the live-in

set of B.
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Figure 5.4 Local maintenance of live-in information.

Now, consider the live-in conditions at the entry point of a region. Figure 5.4(a) contains a

block B that resides within region R and a block A that does not yet reside within a region.

If a variable x exists that is not in the live-in set of block B, the only way that x can become

live-in, as a result of transforming region R, is to push the operation de�ning x outside of

block B into block A. In this case, the compilation manager has only to add x to the live-in

set of block B and the live-out set of block A. The �nal case is the most interesting. If x is

the live-in set of block B, as shown in Figure 5.4(b), the optimizer can eliminate the operation

that references x from the region. In this instance, the compilation manager can locally update

the live-in set of B and the live-out set of A by removing x. At this point, the live-variable

information regarding variable x is correct, but it may be conservative.

The reason for the conservative nature of locally updated live-in information is illustrated in

Figure 5.5. If the variable x is de�ned in block A somewhere within the function, and the last

use of x resides within the region R, then eliminating the last use of x means that x is no longer

live-out of block A, nor is it live-in or live-out of any block on all control ow paths between

block A and region R. In order to maintain exact live-variable information, the compilation
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Figure 5.5 Global propagation of live-in information.

manager must update the live-in and live-out sets of all a�ected blocks. This can be done

by performing global live-variable analysis on the entire function to update the live-variable

information, which is undesirable. The technique proposed by Pollock and So�a [60] to allow

incremental update of iterative dataow analysis may reduce the time required to perform this

task.

The IMPACT region-based compilation manager limits the updates of live-variable infor-

mation to the local changes required at the region-boundary. To improve compilation time, the

assumption is made that the conservativeness introduced into the live-variable information by

not propagating live-variable updates beyond the region boundary will not be detrimental to

optimization. The validity of this assumption is investigated in Section 5.3.3 and Section 5.4.2.

75



Other dataow information

In addition to live-variable information, the optimizer also makes use of available-expression

and available-de�nition information. Providing this dataow information to the optimizer al-

lows interregion transformations to occur; however when an interregion transformation is made

the live-variable, available-expression and available-de�nition information must be updated to

ensure correct transformation of later regions. Even intraregion transformations may require

propagation of available-expression and available-de�nition changes, just as deleting an oper-

ation may result in live-variable changes propagating outside the region. Performing these

updates e�ciently is challenging. In addition, the feasibility of interregion transformation is

unclear within a vertical compilation model. The IMPACT region-based compilation manager

does not provide this information under the assumption that the loss of interregion optimization

opportunities will not overly a�ect output code quality. Again, the validity of this assumption

is assessed in Section 5.4.2.

5.2.2 Boundary constraints

As shown in Figure 5.1(c), region formation may transform a partial redundancy into a

full redundancy within a region by changing the scope of the optimization. However, for the

operations in Figure 5.1(c) to become fully redundant, the side entrance to the region must be

dealt with. The compiler has two options, each having advantages and disadvantages.

Ignore side entrances

The �rst option is to allow the compiler to ignore side entrances while performing a transfor-

mation. After a transformation has been applied, compensation code may have to be inserted to
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Figure 5.6 Ignoring side entrances: (a) side entrance prevents redundancy, (b) ignoring side
entrance allows transformation, (c) insert compensation code.

ensure correct execution. Consider the region shown in Figure 5.6(a). Blocks A and C contain

a redundant computation, but the uncertainty introduced by the side entrance into block C

precludes full redundancy. If the optimizer were to ignore the side entrance, as shown in Fig-

ure 5.6(b), the re-computation of x+y can be replaced by the destination of the �rst operation,

z. However, if either x or y is modi�ed along the path entering block C, the compensation code

in Figure 5.6(c) is required.

The principal advantage of this technique is that compensation code is only required when a

transformation is performed across a region side entrance. If available-expression and available-

de�nition information are present, then the optimizer need only insert compensation code when

it is truly necessary. When such information is not present, the optimizer must always insert

compensation code to ensure correctness. On the negative side, inserting additional optimiza-

tions along the side path may increase the operation dependence height along that path. The

path then requires more cycles to execute and is less e�cient. Also, by requiring each trans-
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Figure 5.7 Eliminate side entrances: (a) remove via tail duplication, (b) perform transfor-
mation.

formation to insert the appropriate compensation code, the implementation and veri�cation of

the transformations employed by the optimizer are made more complex.

Eliminate side entrances

The second option is to eliminate the side entrances from the region so that the optimizer

need not take them into consideration. A technique known as tail duplication has been applied

to remove side entrances from superblocks [56]. This same technique can also be applied to

eliminate side entrances from arbitrary regions. Tail duplication eliminates side entrances by

duplicating all blocks within a region that are reachable from a side entrance. For example,

Figure 5.7(a) contains the region in Figure 5.6(a) after tail duplication has been performed.

Block C has been duplicated to form a new block C'. The computation within the region is

now fully redundant and the same transformation can be applied as shown in Figure 5.7(b).
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For this approach, the optimizer need not insert any compensation code. All possible

compensation code is inserted a priori by the tail duplication process. Thus, conventional

optimizations can be applied without modi�cation because the optimizer never sees the side

entrances. This approach does, however, result in more code expansion, which has a signi�cant

e�ect beyond increasing static code size. By performing tail duplication prior to the optimiza-

tion of a region, the amount of code that must be optimized increases. This results in a large

number of regions to optimize. If too much a priori tail duplication is done, the compile time

bene�ts of the region partition may be lost. For this reason, the IMPACT compilation manager

only performs tail duplication on the most important regions. The subsequent discussion of the

behavior of several classical optimizations on region-based compilation units assumes that tail

duplication is employed to eliminate region side constraints.

5.3 Optimizations

This section will investigate the e�ect of region-based optimization on three classical global

optimizations: global common subexpression elimination, global copy propagation and global

dead code elimination as well as two loop optimizations: loop invariant code motion and global

variable migration. The region partitioning and the assumptions made in regard to dataow

conditions at region boundaries will a�ect the number of optimization opportunities available

for each transformation. Finally, this section will assess the overall output code quality of

region-based optimized code.
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For each operation o in a basic block b of the form x = y + z,
where + is a generic operator, such that:

Conditions:
� expression y + z is available at the beginning of b
� neither y nor z are rede�ned prior to o

Actions:
1. Locate prior evaluations of y + z that reach o

2. Create a new variable u
3. For each statement, w = y + z found in (1) by

u = y + z
w = u

4. Replace o, by x = u

Figure 5.8 Algorithm: global common subexpression elimination.

5.3.1 Global common subexpression elimination

The goals of global common subexpression elimination (CSE) are to detect and remove

operations generating the same subexpression within di�erent basic blocks. Figure 5.8 contains

the CSE algorithm [5] applied by the classical optimizer on both function and region-based

compilation units. Consider the example application of this algorithm shown in Figure 5.9.

Basic block B in Figure 5.9(a) contains an arithmetic operation, x = y + z, and the expression

calculated by the right-hand side of this operation is available at the beginning of basic block

B. Also, there are no rede�nitions of x or y prior to the operation, so both conditions for

common subexpression elimination are satis�ed. Once the redundant operation in block A is

located, a new temporary variable t is created and the operation in block B is replaced by a

copy operation as shown in Figure 5.9(b). Note that the application of CSE does not directly

improve the quality of the code. In fact, no operations have been eliminated and the addition of

the copy operation in block A has increased the dependence height of the block by one and no
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AE = {y+z}
LI = {y,z} LI = {u,y,z}

AE = {u,y+z}

w = y + z

x = y + z
a = x + b

u = y + z
w = u

x = u
a = x + b

(a) (b)

Figure 5.9 Application of global common subexpression elimination: (a) before and (b) after.

operations have been eliminated. Application of copy propagation and dead code elimination

are required to realize any bene�t.

From the algorithm in Figure 5.8 the global dataow information required for global CSE

is expression availability information. The only operations that are candidates for global CSE

are those whose expressions are available at the beginning of the basic block containing the op-

eration. However, the only dataow information provided at region boundaries is live-variable

information, available expression information is not provided. Figure 5.10 will be used to illus-

trate the e�ect of this and region partitioning, in general, on the number of CSE opportunities

available to the optimizer. Figure 5.10(a) contains a small control ow graph, in which a region

has been selected to contain basic blocksB, C, E and basic blocksA andD have been excluded.

This �gure contains several opportunities for application of global CSE within a function-based

environment between operation pairs: (op1, op2), (op4, op5), and (op3, op6). Each basic block

has been annotated with available-expression information as computed by the optimizer. The
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Figure 5.10 Application of global common subexpression elimination within a region: (a)
with side entrances and (b) without side entrances.

available expression information for the region entry points is empty, since the optimizer has

no visibility outside the region and the compilation manager is not providing the information.

The CSE opportunity that exists between op1 and op2 is unavailable to the optimizer, since

the available expression information indicates that r + s is not available at the entry point of

basic block B. In general, under the assumption that available expression information is not

available at region boundaries, all interregion CSE opportunities are lost to the region-based

optimizer. A similar situation occurs for the CSE opportunity that exists between op3 and

op6. The expression x + y is available along path (1) entering block E, but the availability

of x + y along path (2) is unknown. Given that tail duplication is being utilized to eliminate
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constraints from side entrances, the region-based optimizer would actually view the region as

shown in Figure 5.10(b).

There are two scenarios depending upon whether or not the expression x + y is fully available

at block D. If the expression x + y is truly available along path (2), i.e., neither x nor y is

rede�ned in block D, global CSE may be applied between op3 and op6 as in the function

case. However, if x + y is not available along path (2), tail duplication allows the region-based

optimizer to perform global CSE, where a function-based optimizer could not without the aid

of partial redundancy techniques. In this instance, the region partition has made an additional

optimization opportunity available to the classical optimizer by removing the incoming path

from block D from consideration; thus, its contents cannot hinder optimization. The �nal

global CSE opportunity between op4 and op5 presents no problem for region-based CSE since

both operations reside within the region and there are no side entry points between the two

operations.

Boundary condition e�ects

Recall from the example application of global CSE in Figure 5.9 that a new variable is created

as a result. It is apparent from the global CSE examples in Figure 5.10(b) that application of

global CSE to a region does not alter the liveness conditions at the region boundaries, since

the new variables that would result from applying global CSE between operations (op3, op6)

and operations (op4, op5) are entirely contained within the region boundaries. Thus, global

CSE requires no updates to the global live-variable information maintained by the compilation

manager. However, if available-expression information were provided and global CSE were

applied between op1 and op2, then the compilation manager must update, to ensure correctness,
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Table 5.4 Region-based performance of global common subexpression elimination.
Region

Function Expected Loss NoTail Tail Ideal
Benchmark # # % # %Loss # %Loss # %Gain

008.espresso 3,633,375 1,305,965 36% 2,179,945 40% 2,529,724 30% 3,942,241 9%
022.li 171,170 268 0% 240,883 -41% 265,109 -55% 227,991 33%
026.compress 4,109,656 57 0% 4,109,599 0% 4,109,599 0% 4,109,656 0%
072.sc 152,991 61,192 40% 57,060 63% 112,993 26% 186,405 22%
085.cc1 2,929,233 808,766 28% 1,822,509 38% 2,094,147 29% 3,193,166 9%
134.perl 6,573,974 216,833 3% 6,132,905 7% 12,599,737 -92% 13,182,904 101%
cccp 2,243 2 0% 2,074 8% 1,967 12% 2,321 3%
eqn 280,224 2,560 1% 200,187 29% 282,130 -1% 313,191 12%
lex 239,410 60,688 25% 175,335 27% 144,505 40% 239,597 0%
tbl 176,402 23,295 13% 127,568 28% 175,174 1% 216,478 23%
yacc 428,292 127,015 30% 257,940 40% 261,771 39% 428,470 0%

the live-variable information for every basic block between block A and block B in the control

ow graph of the function to account for the new variable created between op1 and op2.

Global CSE opportunities

The e�ect of region partitioning on global CSE can be quanti�ed by applying the optimizer

to both function-based and region-based compilation units and summing the number of dy-

namic global CSE opportunities available to the optimizer. Each application of global CSE

is weighted by the execution frequency of the operations involved in order to determine the

relative importance of that optimization. That is, if global CSE is applied to an operation that

is executed 100 times, that application of global CSE is given weight 100. Table 5.4 contains

the available global CSE opportunities in four di�erent optimization environments for several

benchmarks.

The Function column contains the number of dynamic opportunities to apply global CSE in

a standard function-based environment. The Expected-Loss(%) column contains the number

(percentage) of global CSE opportunities that occur across region boundaries. These opportuni-

ties will not be visible to the region-based optimizer under the assumption that global available-
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expression information is not provided. Under this assumption, region-based optimization will

lose 30-40% of the global CSE opportunities available to a function-based optimizer. For the

most part these interregion CSEs result from global CSEs between operations in di�erent loop

bodies that are selected into di�erent regions because the loops tend to iterate frequently. How-

ever, in order for global CSE to be applied between these two operations, the subexpression

must be available at the second operation. Since the second operation is contained within a

loop, the fact that the subexpression is available implies that the operation is loop invariant.

Thus a later pass of loop-invariant code motion will eliminate the operation from the loop,

lowering the signi�cance of this lost optimization.

TheRegion-NoTail column shows the number of global CSEs available to the region-based

optimizer without tail duplication. Subtracting the expected loss from the number of function-

based global CSEs provides an upper bound on the number of global CSEs available in this

environment since the absence of global available-expression information disallows interregion

CSEs. The Region-NoTail column shows that several of the benchmarks, 008.espresso,

134.perl, and lex, come relatively close to achieving this upper bound, while the benchmarks

085.cc1 and yacc do not. The reason performance is less than expected for 085.cc1 and

yacc is that, in this environment, the optimizer must make conservative assumptions about

constraints from region entry points. Recall the CSE opportunity between op3 and op6 in

Figure 5.10. Without tail duplication, the optimizer must assume that the computation is only

partially redundant so it can not apply global CSE in this case. The anomalous 022.li value

which is higher than the upper bound results from the phase ordering of global optimizations

within the optimizer. Constraints from a side entrance prevent a copy propagation that exposes

an application of global CSE elsewhere in one region of 022.li. If the copy propagation is
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performed �rst as in the function-based environment, global CSE is not possible between those

two operations.

The Region-Tail column shows the number of global CSEs available to the region-based

optimizer when tail duplication is applied. This represents the best case for global CSE without

available-expression information. There are two combined e�ects within this column: the ad-

ditional optimization opportunities exposed by tail duplication and optimization opportunities

lost via tail duplication. The additional optimizations exposed via tail duplication actually

allow all but two of the benchmarks, cccp and lex, to exceed the the upper bound imposed

by the region partition, as indicated by the Region-Tail column. The region-based optimizer

actually had almost twice as many global CSE optimization opportunities in the benchmark

134.perl as did the function-based optimizer. The benchmarks lex and cccp appear to have

lost optimization opportunities as a result of tail duplication. This occurs when an entire loop

body is tail duplicated. Consider the cyclic region shown in Figure 5.11(a). Application of

global CSE between blocks A and B is given a weight of 100. After tail duplication, the CFG

appears as shown in Figure 5.11. The execution frequency of basic block B is now split between

B and B0. Thus, applying global CSE within the region now only provides a potential bene�t

of weight 100 � z. Global CSE cannot be performed between A and B0, because B0 is outside

of the region of A.

The �nal two columns show the global CSE opportunities available to an ideal region-based

optimizer, where global available-expression information is provided, and the percent increase

over function-based optimization. Given that the compilation manager does not provide this

information, an ideal region-based optimizer can be emulated by a function-based optimizer

applied to a function where region selection and tail duplication have been performed. Thus, the
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Figure 5.11 Loss of a global common subexpression due to tail duplication: (a) cyclic region
before tail duplication and (b) after tail duplication.

optimizer has access to accurate available-expression and available-de�nition information as well

as the additional optimization opportunities exposed by tail duplication. With the exception

of 026.compress, lex, and yacc, the region partitioning, after application of tail duplication,

provided a signi�cant percentage increase over the global CSE opportunities available in a

function-based environment with the increases ranging from 3-101% with an average increase of

20%. Even though the ideal region-based optimizer has an apparent advantage over the region-

based optimizer without available-expression information in terms of the number of global CSEs

available, Section 5.4 will show whether or not this advantage manifests itself as an improvement

in output code performance.

5.3.2 Copy propagation

The goals of global copy propagation (CP) are to detect and remove unnecessary copy

operations across basic blocks. Figure 5.12 contains the global CP algorithm applied by the
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For each copy operation o: x = y, �nd all operations u in a
basic block b using x, such that:

Conditions:
� de�nition of x is available at the beginning of b
� expression y is available at the beginning of b
� neither x nor y is rede�ned prior to within b u

Actions:
Replace use of x in u by y

Region Extension:
If basic block b is a boundary condition block, rather
than replace x by y in u, insert a copy of operation o

in b prior to u.

Figure 5.12 Algorithm: global copy propagation.

AE = {u}

u = y + z
w = u

a = w + b

AD = {w}
AE = {u}

u = y + z
w = u

a = u + b

AD = {w}

(a) (b)

Figure 5.13 Application of global copy propagation: (a) before and (b) after.

classical optimizer on both function and region-based compilation units. Consider the example

application of this algorithm shown in Figure 5.13. Basic blockA contains a copy operation,w =

u, and basic block B contains an operation that references w, a = w + b. According to dataow

analysis, the de�nition of w and the expression u are both available at the beginning of basic

block B. Given there are no rede�nitions of w or u prior to the operation, all conditions for copy
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op2: q = p + s
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op2: q = p + s
op3: w = x
op4: a = b

op5: d = a + c

op6: v = w + y op6': v = w + y

x = ?

w = ?

Figure 5.14 Application of global copy propagation within a region: (a) with side entrances
and (b) without side entrances.

propagation are satis�ed. The use of w is replaced by a use of u as shown in Figure 5.13(b).

Note that the application of global CP does not directly improve the quality of the code since no

operations have been eliminated. A subsequent application of dead code elimination is required

to realize any bene�t.

From the algorithm in Figure 5.12, both available-expression and available-de�nition in-

formation are required for global CP. The only operations that are candidates for global CP

are those copies whose source and destination operands are both available at the beginning

of the basic block that contains an operation using the destination of the copy. Figure 5.14

will be used to illustrate the e�ect of region partitioning, in general, and the lack of global
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available-expression and available-de�nition information, in particular, on the number of global

CP opportunities available to the optimizer. Figure 5.14(a) contains a small control ow graph,

where a region has been selected to contain basic blocks B,C, E and basic blocks A and D

have been excluded. This �gure contains several opportunities for application of global CP

within a function-based environment between operation pairs: (op1,op2), (op4,op5), and (op3,

op6). Each basic block has been annotated with available-de�nition and available-expression

information as computed by the optimizer. The available-de�nition and available-expression

sets at the region entry points are empty, since the optimizer has no visibility outside the region

and the compilation manager is not providing the information.

Similar to the global CSE example, the global CP opportunity that exists between op1 and

op2 is unavailable to the optimizer, since available-de�nition and available-expression informa-

tion is not provided at region entry points. As with global CSE, interregion CP opportunities

are lost to the region-based optimizer without this dataow information at region boundaries.

To minimize the e�ects of this, the global CP propagation algorithm has been extended to allow

the optimizer to place copy operations in boundary condition blocks. Consider the example in

Figure 5.15(a). Block A contains a copy operation and block BC, a boundary condition block,

contains a dummy operation that uses the destination of the copy, x. The presence of the

dummy operation indicates that the variable x is live outside the region. The region boundary

is preventing an opportunity for application of global copy propagation. Replacing the variable

x in the dummy operation with y will interfere with the live-variable maintenance performed

by the compilation manager, instead a copy of the copy operation is placed in the boundary

block as shown in Figure 5.11(b). The contents of the boundary block will later be formed into

a region containing a true use of the variable x, e�ectively allowing interregion global CP.
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AE = {y}
AD = {x}

(a)

x = y
A

BC
dummy_op    x

AE = {y}
AD = {x}

x = y
A

BC

dummy_op    x

(b)

x = y

Figure 5.15 Global copy propagation and boundary condition blocks: (a) copy propagation
opportunity into boundary condition block, (b) duplicate copy operation inserted into boundary
condition block.

The global CP opportunity between op3 and op6 is a�ected similarly as the opportunity

between op1 and op2. The de�nition w and the expression x are available along path (1)

entering block E, but availability along path (2) is unknown. Given that tail duplication is

being utilized to eliminate these constraints, the region-based optimizer sees the region as

shown in Figure 5.14(b). There are two scenarios for application of global CP depending upon

the availability conditions of w and x along the control path entering block E from path (2). If

both are truly available along path (2), i.e., neither x nor w is rede�ned in block D, then tail

duplication will allow application of global CP between op3 and op6 as in the function-based

case. However, if both conditions are not met along path (2), tail duplication still allows the

application of global CP, where a function-based optimizer could not perform the transformation

without partial redundancy support. In this instance, the region partition has prevented the

contents of block D from hindering optimization. The �nal global CP opportunity between op4
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and op5 presents no di�culty for the region-based CP since both operations reside within the

region and there are no side entrances between the two operations.

Boundary condition e�ects

Global copy propagation does not eliminate any operations; however, it does extend the

lifetime of the source operand of the copy operation and potentially shorten the lifetime of the

destination. Unlike the global CSE, global CP may alter the live-out conditions at region exit

boundarys by inserting copy operations into region boundary blocks as shown in Figure 5.15(b).

Thus, global CP may require local updates to the global live-variable information maintained

by the compilation manager. If available-expression and available-de�nition information were

provided, and global CP were applied between op1 and op2 in Figure 5.14(b), then to maintain

correctness, the live variable information for every basic block between block A and B must

also be updated.

Global CP opportunities

The e�ect of region partitioning on global CP is quanti�ed in the same manner the behavior

of global CSE is quanti�ed in Section 5.3.1. Table 5.5 contains the global CP opportunities

found for each of the four optimization environments. The Function column shows that there

is a signi�cantly higher number of opportunities for application of global CP than global CSE.

From the Expected-Loss column, the opportunities for global CP tend to be less localized

than the opportunities for global CSE. Many more of the opportunities for global CP appear to

span region boundaries. The benchmarks 085.cc1, cccp, lex, and yacc are expected to miss

from 50-95% percent of the global CP opportunities because of the region partitioning, under

the assumption that available-expression and available-de�nition information is not provided.
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Table 5.5 Region-based performance of global copy propagation.
Region

Function Expected Loss NoTail Tail Ideal
Benchmark # # % # %Loss # %Loss # %Gain

008.espresso 9,350,526 2,397,941 26% 6,304,575 33% 8,498,979 9% 9,516,877 2%
022.li 3,934,863 196,247 5% 2,948,551 25% 4,623,645 -18% 4,980,856 27%
026.compress 752,715 52 0% 752,663 0% 752,663 0% 752,715 0%
072.sc 3,945,843 515,297 13% 3,362,071 15% 3,682,381 7% 4,219,733 7%
085.cc1 5,803,730 2,887,251 50% 3,377,018 42% 4,887,105 16% 6,951,267 20%
134.perl 248,306,405 33,522,427 14% 125,670,073 49% 265,330,973 -7% 277,700,396 12%
cccp 41,706 33,930 81% 10,413 75% 19,129 54% 45,686 10%
eqn 2,357,645 65,896 3% 2,300,027 2% 5,459,425 -132% 7,723,819 228%
lex 353,778 211,098 60% 150,634 57% 273,275 23% 435,272 23%
tbl 529,070 14,511 3% 467,472 12% 486,962 8% 559,549 6%
yacc 1,431,321 1,359,784 95% 70,637 95% 112,957 92% 1,472,676 3%

The Region-NoTail column shows that without tail duplication, the optimizer is con-

strained from applying global copy propagation in many instances. Recall that the upper

bound on the available global CP opportunities is determined by subtracting the expected loss

from the number of function-based global CPs. Note that several of the benchmarks, 085.cc1,

cccp, eqn, and lex, actually exceed this upper bound even without tail duplication. For these

benchmarks, the extension to the global CP algorithm that allows interregion global CP is �nd-

ing several interregion global CP opportunities. In general, however, the remaining benchmarks

fall short of the upper bound because the conservative assumptions made at side entrances are

dominating any bene�t gained from interregion global CP. Global CP opportunities such as the

one between op3 and op6 in Figure 5.14 are unavailable, because the optimizer must assume

that the copy is not fully redundant.

As indicated by theRegion-Tail column, tail duplication signi�cantly improves the number

of global CP opportunities. Again, this represents the best case for global CP without available-

expression and available-de�nition information at the region boundaries. Recall that there are

two combined e�ects within this column: the additional optimization opportunities exposed by
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tail duplication and optimization opportunities lost via tail duplication. Tail duplication can

actually hide optimization opportunities from the optimizer as shown in Figure 5.11. It is this

e�ect that prevents the region-based optimizer from �nding all available opportunities. For

example, there are 486,962 region-based global CP opportunities in tbl after tail duplication.

Adding the expected loss of 14,511, gives a total of 501,473, which is still less than the ideal

region-based performance of 559,549 global CP opportunities.

The ability to perform a limited amount of interregion global CP is manifesting itself as

an apparent inconsistency for the benchmarks 008.espresso, 085.cc1, 134.perl, cccp, and

lex in the Region-Tail environment. Adding the expected loss to the number of global CP

opportunities found in the Region-Tail environment yields a number higher than the ideal

value shown in the Region-Ideal column. Again, this shows that the region-based optimizer

is able to take advantage of some interregion global CP opportunities so that it does not take

the entire expected loss.

The Region-Ideal column shows the global CP opportunities available to an ideal region-

based optimizer in which global available-expression and available-de�nition information is pro-

vided and perfectly maintained. The ideal region-based optimizer is emulated as described in

the previous section. With the exception of 026.compress, the region partitioning provided a

signi�cant percentage increase over the global CP opportunities available in a function-based en-

vironment with increases ranging from 2-228%, an average increase of 30%. As with the global

CSE, the ideal region-base optimizer has an apparent advantage over the region-based opti-

mizer without available-expression and available-de�nition information in terms of the number

of global CPs available. Wide-issue processors may be able to absorb the slightly less e�cient

94



For each operation o in basic block b, such that:

Conditions:
� value de�ned by o is not used in b

� value de�ned by o is not live-out of b

Actions:
Delete operation o

Figure 5.16 Algorithm: global dead-code elimination.

code without signi�cantly a�ecting program execution time. Section 5.4 will show whether or

not this advantage manifests itself as an improvement in output code performance.

5.3.3 Dead-code elimination

The goal of global dead-code elimination (DCE) is to remove operations de�ning variables

that are never referenced. Such operations appear quite frequently as a result of the previous

transformations: global common subexpression elimination and global copy propagation. In

fact the previous transformations do not directly improve the quality of the code. They convert

redundant operations into dead code. Dead-code elimination has the responsibility for deleting

these dead operations. Figure 5.16 contains the algorithm for dead-code elimination. Applica-

tion of this algorithm is extremely straightforward. If the variable de�ned by an operation is

not referenced within the home basic block of the operation and the variable is not live-out of

that basic block, the operation may be deleted. The absence of the variable from the live-out

set of the home basic block implies that it is not going to be used later. The converse is also

true. The presence of the de�ned variable in the live-out set of the home basic block implies

that it is referenced by a later operation. Whether this implication is true or not depends upon

the accuracy of the provided live-variable information.
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Boundary condition e�ects

Unlike the previously discussed transformations, dead-code elimination directly a�ects the

liveness conditions at region boundary points. Deleting the last use of a variable within a

region removes the variable from the live-in set(s) of the region entry point(s). This change

can potentially propagate across the function as illustrated in Figure 5.5. If the compilation

manager does not propagate this change, the conservative nature of the live-variable informa-

tion may prevent truly dead code from being eliminated in subsequent regions. In addition,

every operation that is deleted may alter the global available-de�nition and available-expression

conditions, requiring the compilation manager to propagate these changes if this information is

being maintained.

Global DCE opportunities

The number of global DCE opportunities available to the optimizer depends upon both the

amount of dead code exposed by previous transformations, such as copy propagation and the

accuracy of the available live-variable information. Recall that the compilation manager has

several options available in terms of maintenance of live-variable information. To investigate

the e�ects that conservative live-variable information has on the amount of dead code that

can be eliminated by the optimizer, the following �ve environments are compared: function-

based optimization (Function), region-based optimization assuming all variables are live-out

(Region-AllLive), region-based optimization using only local maintenance (Region-Maint),

region-based optimization with propagation of live-variable changes (Region-Prop), and ideal

region-based optimization where available-expression, available-de�nition, and live-variable in-
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Table 5.6 Region-based performance of global dead code elimination.
Region

Function All Live Local Maintenance Propagation Ideal
Benchmark # # %Loss # %Gain # %Gain # %Gain

008.espresso 40,255,332 24,810,267 38% 39,955,883 -1% 39,957,481 -1% 40,963,780 2%
022.li 5,868,323 2,646,298 55% 6,856,808 17% 6,857,425 17% 7,199,731 23%
026.compress 8,428,192 2,111,414 75% 12,679,479 50% 12,679,479 50% 12,679,531 50%
072.sc 17,823,799 1,179,766 93% 17,759,567 0% 17,759,922 0% 18,291,545 3%
085.cc1 22,728,843 9,250,113 59% 21,194,904 -7% 21,197,024 -7% 23,093,933 2%
134.perl 287,037,211 80,966,208 72% 332,256,681 16% 332,260,003 16% 344,564,257 20%
cccp 419,120 115,484 72% 414,263 -1% 414,677 -1% 440,289 5%
eqn 2,978,864 1,106,227 63% 5,161,797 73% 5,162,055 73% 7,403,547 149%
lex 9,818,256 1,152,635 88% 9,182,902 -6% 9,183,269 -6% 9,826,299 0%
tbl 771,904 133,923 83% 778,863 1% 780,654 1% 852,176 10%
yacc 8,771,553 1,202,686 86% 6,508,690 -26% 6,509,090 -26% 8,791,379 0%

formation is maintained (Region-Ideal). Table 5.6 shows the number of dynamic DCE oppor-

tunities available in each of these environments.

As the Region-Ideal column in Table 5.6 indicates, the ability of the optimizer to perform

DCE is severely inhibited by the assumption that all variables within the region are live-

out. The only operations that the optimizer is able to eliminate are those that de�ne the

temporaries created during application of previous transformations, such as the temporaries

created by global CSE. As Section 5.4 will show, the code produced in this environment contains

a signi�cant amount of unnecessary operations.

When live-variable information is maintained by the compilation manager, the number of

global DCE opportunities, in column Region-Maint, can be more easily compared to those

available to the function-based optimizer. For the benchmarks such as 008.espresso, lex

and yacc, the region-based optimizer �nds less dead code than the function-based optimizer.

This is due primarily to lost opportunities earlier in the optimization process. Recall that

these benchmarks lost a signi�cant number of global CSE and global CP opportunities due to

the region partition. On the other hand, the benchmarks 022.li, 026.compress, 134.perl,
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and eqn show an increase in the amount of dead code eliminated. This phenomenon results

from an increase in opportunities for application of loop-variant code motion and global variable

migration. Loop-invariant code motion may create redundant operations in frequently executed

loop preheaders, and global variable migration introduces copy operations that are eliminated

by subsequent application of local CSE and global DCE.

The next column, Region-Prop, shows the available dead code opportunities when the

compilation manager propagates live-variable changes, as mentioned in Section 5.2.1. Note

that there is not a signi�cant increase in the number of dead operations eliminated over the

environment where live-variable information changes are updated locally. The only situation

in which more accurate live-variable information will result in more dead code eliminations is

when the last use of a variable is deleted from a region and the operation de�ning that variable

is in a region that is not yet processed. Given that the regions are processed in order of dynamic

importance, any additional dead code opportunities will reside within the less important regions.

Also, note that the live-variable information is naturally propagated among adjacent regions.

Thus by processing the most frequent regions �rst, most likely innermost loops, any live-variable

changes are naturally propagated to the outer loops without the need for global updates. In

this environment, the global propagation of live-variable information is unnecessary.

Finally, the Region-Ideal column shows the bene�t of global analysis to a region-based

optimizer. In this environment, the optimizer bene�ts from the additional optimization oppor-

tunities exposed by the region partition, yet it does not lose the global DCE ! global CP !

global DCE sequences since available-expression and available-de�nition information is avail-

able at region boundaries. As a result, the global DCE opportunities found in this case are

slightly higher than for the Region-Maint environment.
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For each operation o of the form x = y + z, where + is a
generic operator, in a loop l, such that:

Conditions:
� Operands x and y are invariant
� x is a unique de�nition in l

� All uses of x are reached one by o

� Block containing o dominates all loop exits
where x is live-out

� If o is a memory access, there are no memory
conicts or unsafe subroutine calls in l

Actions:
Place operation o at bottom of loop preheader

Figure 5.17 Algorithm: loop invariant code motion.

5.3.4 Loop-invariant code motion

The goal of loop-invariant code motion (LICM) is to remove operations from the loop body

whose operands do not change during loop execution. Figure 5.17 contains the LICM algorithm

used for both function-based and region-based compilation units. In order for a operation to

be a candidate for LICM, all �ve conditions must be satis�ed for all possible execution paths

within a loop. Region-based application of LICM can potentially identify more optimization

opportunities because only the execution paths of the loop that are contained within the region

have to be considered. This approach to loop optimization has been applied successfully in

the special case where only one path through the loop is selected, known as superblock loop

optimization [19]. Consider the loop shown in Figure 5.18(a). The load operations that are

accessing memory locations x and x + 4 in basic blocks B and D are not loop invariant

because block E contains an increment of x. Selecting a region that includes all blocks of the

loop except block E, as shown in Figure 5.18(b), removes the path containing the increment
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A

B C

D E

F

ld r1,mem[x+4]

ld r2,mem[x]

x = x + 4

A

B C

D E

F

ld r1,mem[x+4]

ld r2,mem[x]

x = x + 4

(a) (b)

Figure 5.18 Load operations: (a) variant within the loop body, (b) invariant within the
selected region.

of x from consideration. Both load operations are loop invariant within the region. In general,

excluding infrequent paths through the loop that contain unsafe subroutine calls, ambiguous

store operations or operand rede�nitions, as in this example, will signi�cantly increase the

LICM opportunities available to the optimizer.

Any transformation within the region, however, must ensure correctness when the execution

path ows through portions of the loop not contained within the region. Since the region does

not contain the entire loop body, any operation removed from the loop as invariant must be

re-executed whenever the ow of execution enters the loop body from outside the region. This

assumes, of course, that the optimizer considers the selected region a natural loop. A natural
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A

B C

D E

F

x = x + 4

F'

ld r2,mem[x]

ld r1,mem[x+4]

A

B C

D E

F

x = x + 4

F'

ld r2,mem[x]
ld r1,mem[x+4]

P

(a) (b)

Figure 5.19 Tail duplication: (a) transforms region into a natural loop, (b) ensures invariant
code is re-executed properly.

loop is a cycle that contains one entry point and that entry point dominates all other blocks

within the loop. The selected region shown in Figure 5.18(b) is not a natural loop because of

the side entrance into block F.

Both of the above problems can be solved through the application of tail duplication. Con-

sider the CFG shown in Figure 5.19(a) of the loop after tail duplication has been applied to

remove the side entrance from the selected region. The selected region is now a natural loop

and conventional cyclic transformations, such as LICM, may be applied. Also note that all
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re-entrant control ow paths now enter the loop through the loop header. Thus, any operations

removed from the loop as invariant and placed in a preheader of the selected region will be

re-executed when the execution ows through the portion of the loop not selected within the

region. As an example, consider Figure 5.19(b), which contains the loop body after LICM has

been applied to remove the invariant load operations from the loop body. Both load operations

have been removed from the region and placed in a preheader block, P. Note that if the ow

of execution exits the region from block C, it re-enters the loop through the preheader and the

load operations are re-executed. This is the desired behavior since the address accessed by the

load operations is modi�ed along this execution path.

Boundary condition e�ects

Application of LICM code motion changes the live-variable conditions at the entry point

to the loop, the loop header. The variables de�ned by all operations moved to the preheader

become live over the entire portion of the loop contained within the region. If the loop header lies

on a region boundary, which is frequently the case with frequently iterated loops, the preheader

should be left outside the region. This has two e�ects. First, this changes the live-in conditions

at the region entry point, but the change requires only local updates by the compilation manager

as described in Section 5.2.1. Second, pushing the loop-invariant code outside the region allows

it to be optimized in the region formed around the current cyclic region. If that subsequent

region is an outer loop, the inner loop-invariant code may be subject to LICM within the outer

loop region. In this manner, loop-invariant code may be hoisted out of a deep loop nest even

though the entire loop nest is not simultaneously visible to the optimizer.
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Table 5.7 Region-based performance of loop-invariant code motion.
Region

Function Expected Loss Maintenance Ideal
Benchmark # # % # %Gain # %Gain

008.espresso 26,938,951 3,528,352 13% 44,404,996 65% 44,404,996 65%
022.li 89 0 0% 372,937 * 372,937 *
026.compress 0 0 0% 2,160,310 * 2,160,310 *
072.sc 2,709,081 56,113 2% 8,179,527 202% 8,179,527 202%
085.cc1 14,308,069 2,253,243 16% 15,028,660 5% 15,028,660 5%
134.perl 182,060 3 0% 19,348,876 * 19,348,876 *
cccp 9,870 1,156 12% 8,622 -13% 8,622 -13%
eqn 511,222 451,114 88% 2,605,794 410% 2,605,794 410%
lex 1,691,866 29,447 2% 2,453,287 45% 2,453,287 45%
tbl 91,806 24,679 27% 151,289 65% 151,289 65%
yacc 4,003,486 368,239 9% 6,815,503 70% 6,815,503 70%

LICM opportunities

Table 5.7 contains the available LICM opportunities for three compilation environments:

function-based, region-based, and ideal region-based. In addition, the table contains the ex-

pected number of global LICM opportunities that are lost due to the region partition. These

lost opportunities are operations that are truly loop-invariant; however, the basic block the

operation resides in is not contained within a cyclic region, thus the operation cannot be sub-

ject to LICM. For example, a loop-invariant operation located in block E of Figure 5.19 would

reside within an acyclic region and would not be a candidate for LICM. The expected losses

due to the region partition ranges from 0% for 022.li, 026.compress, and 134.perl to 88%

for eqn.

However, as shown in the Region-Maint column, the additional opportunities for LICM

provided by region partitionning more than compensate for the opportunities lost due to par-

titioning. For all benchmarks, except for 085.cc1 and cccp, the region-based optimizer found

at least 45% more, and in most cases far more, loop invariant code than was available to the

function-based optimizer. For example, the loop contents of 026.compress are such that there
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are no operations that are invariant along all control ow paths; however, the region selected

within the main loop exposes over 2M dynamic loop-invariant operations. The loss of LICM

opportunities in the region-based optimizer for the benchmark cccp stems from the losses due

to partitioning and losses due to tail duplication in a manner similar to the way tail duplication

results in an apparent loss of global CSE or global CP opportunities.

Unlike the previously discussed transformations, the ideal region-based compiler does not

have an advantage over a region-based compiler without globally maintained dataow analysis

information. The losses due to the region partition are lost in this environment as well. The

addition of global dataow analysis information cannot change the acyclic nature of a region;

thus, the number of LICM opportunities available in theRegion-Ideal environment is identical.

5.3.5 Global variable migration

The goal of global variable migration (GVM) is to move frequently accessed memory vari-

ables, such as globally declared scalar variables, array elements, or structure elements, into

registers for the duration of the loop. The loads and stores to these variables are replaced by

register accesses for the duration of the loop. Figure 5.20 contains the algorithm for GVM

used by the optimizer for both function-based and region-based compilation units. In order for

the memory accesses within the loop to be candidates for GVM, all three conditions must be

satis�ed for all possible execution paths within a loop. As with LICM, region-based application

of GVM can identify more optimization opportunities because only the execution paths of the

loop that are contained within the region need to be considered. Consider the loop shown in

Figure 5.21(a). The load and store operations are accessing the global variable x; however,

global variable migration cannot be applied, because of the presence of the ambiguous store
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For all memory access operations in a loop l, that access the
same memory location, mem[x + y], such that:

Conditions:
� Operands x and y are invariant
� There are no ambiguous memory references in l

� There are no unsafe subroutine calls in l

Actions:
1. Replace memory access operations with copy operations
2. Place a load operation in preheader of l
3. Place a store operation in all exits of l

Figure 5.20 Algorithm: global variable migration.

A

B C

D

st mem[?],ald r1,mem[x]
r1 = r1 + 1
st mem[x],r1

A

B C

D

st mem[?],ald r1,mem[x]
r1 = r1 + 1
st mem[x],r1

(a) (b)

Figure 5.21 Global variable migration (a) increment prevents transformation, (b) optimiza-
tion exposed within region.
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A

B C

D

st mem[?],ald r1,mem[x]
r1 = r1 + 1
st mem[x],r1

D'

A

B

D

r1 = r1 + 1

ld r1,mem[x]

st mem[x],r1

st mem[x],r1

P

D'

(a) (b)

Figure 5.22 (a) Tail duplication transforms region into a natural loop, (b) result of global
variable migration.

operation in block C. Selecting a region within the loop that excludes block C, as shown in

Figure 5.21(b), removes the ambiguous store from consideration. GVM may now be applied to

the load and store operations in block B.

The application of tail duplication by the compilation manager allows the loop optimizer to

proceed with GVM transformation without concern for side entrances and the contents of the

portions of the loop outside the region, as with LICM. Figure 5.22(a) contains the loop after

tail duplication, and Figure 5.22(b) shows the region after global variable migration has been

applied. The load operation has been placed in a loop preheader block P, and store operations

have been placed within boundary blocks at the region exit points, which correspond to the loop
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exits in this example. The store operation inserted at the exit from block A is required in case

the exit is a true loop exit or in case the store operation in block C does not access the same

location. This ensures that the load operation in the preheader loads the correct value. Note

that the clearly redundant copy operations that replace the load and store operations within

the loop body are not shown. They are removed by subsequent application of copy propagation

and dead-code elimination.

Boundary condition e�ects

In addition to altering the live-variable conditions at the entry point to the loop, GVM also

changes the live-variable conditions at the loop exit points. The addition of store operations

extends the lifetime of the promoted variable beyond the loop boundaries. If the loop exits

coincide with the region exit boundaries, the inserted store operations should be pushed outside

the region along with the loop preheader, block P in Figure 5.22(b). This changes the live-

out conditions of the region, requiring local live-variable updates by the compilation manager,

as described in Section 5.2.1. Also, the store operations may bene�t from memory access

optimizations applied to subsequent regions.

Global GVM opportunities

The performance of global variable migration in a region-based framework is evaluated in

the same three environments as LICM. The number of available opportunities for GVM in each

environment is shown in Table 5.8. Note that with the exception of 008.espresso and 072.sc,

there are few available opportunities for application of GVM within the benchmarks due to the

presence of conicting memory operations and subroutine calls within loop bodies. As a result,

the opportunities lost are negligible for all benchmarks. However, if there exists a load or a

107



Table 5.8 Region-based performance of global variable migration.
Region

Function Expected Loss Maintenance Ideal
Benchmark # # % # %Gain # %Gain

008.espresso 2,971,512 37,394 1% 3,327,694 12% 3,327,694 12%
022.li 6,000 0 0% 871,830 * 871,830 *
026.compress 0 0 0% 7,876,025 * 7,876,025 *
072.sc 1,071,554 348 0% 1,881,219 76% 1,881,219 76%
085.cc1 11,654 0 0% 29,653 154% 29,653 154%
134.perl 76 0 0% 17,845,083 * 17,845,083 *
cccp 4,073 2,292 56% 5,087 25% 5,087 25%
eqn 560 0 0% 534,140 * 534,140 *
lex 5,165 353 7% 3,809 -26% 3,809 -26%
tbl 9,455 0 0% 14,498 53% 14,498 53%
yacc 22,583 333 1% 24,959 11% 24,959 11%

store operation that is accessing the memory location subject to GVM, that resides within the

loop, but is not contained within the region, the opportunity to remove that memory access

from the loop is lost.

The columns Region-Maint and Region-Ideal contain the GVM opportunities available

to the region-based optimizer. Recall that both cases have the same GVM opportunities avail-

able to them. With the exception of lex, which loses several GVM opportunities because of

tail duplication, the region partition exposes many additional GVM opportunities by removing

the constraint that the optimizer must consider all paths within the body of a loop. These

additional GVM opportunities, as well as the additional LICM opportunities, will translate

into better quality code with fewer dynamic operations and shorter cycle times. This will be

discussed in the next section.

5.4 Optimizer Performance

The overall quality of the code produced using region-based classical optimization will be

evaluated using a four-issue processor. The processor has no limitations placed on the combi-
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Table 5.9 Instruction latencies.

Function Latency Function Latency

Int ALU 1 FP ALU 2
memory load 2 FP multiply 2
memory store 1 FP divide (SGL) 8
branch 1 / 1 slot FP divide (DBL) 15

nation of instructions that may be issued each cycle, except that it is restricted to one branch

per cycle. This investigation assumes perfect branch prediction and perfect instruction and

data caches. Also, in�nite registers are assumed for this study, since the e�ect of region-based

register allocation will be investigated in Chapter 6. Finally, the assumed instruction latencies

are those of the HP PA-RISC 7100 and are shown in Table 5.9.

5.4.1 Optimization quality

The traditional �gure of merit for the evaluation of classical optimization is operation count.

Classical optimizations strive to improve the quality of the code by eliminating unnecessary op-

erations. The previous discussion has shown that application of classical optimization within

a region-based environment can signi�cantly a�ect global and loop transformations. In this

section, the overall e�ects of region-based classical optimization are investigated for �ve com-

pilation environments: function-based optimization Function), region-based optimization as-

suming all variables are live-out (Region-AllLive), region-based optimization using only lo-

cal maintenance (Region-Maint), region-based optimization with propagation of live-variable

changes (Region-Prop), and ideal region-based optimization where available expression, avail-

able de�nition, and live-variable information is maintained (Region-Ideal).
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when the compilation manager locally maintains only live-variable information, a region-based

classical optimizer reduces the dynamic operation count by up to 16% less than the function-

based optimizer, as indicated by the Region-Maint bar. Across all of the benchmarks an

average reduction of 6% is achieved, which clearly indicates that additional loop optimizations

exposed by the region partition more than compensate for the lost interregion optimization

opportunities. As expected, the Region-Prop bar indicates that the additional dead code

exposed by propagating only global live-variable information does not have a perceptible impact

on the dynamic operation count.

The rightmost bar, Region-Ideal, for each benchmark indicates that maintenance of global

available-expression, available-de�nition, and live-variable information provides some additional

bene�t. The most signi�cant improvements are seen in eqn, tbl, and yacc where the global copy

propagation opportunities lost because of the region partition represent a noticeable percentage

of the total dynamic operation count. For the most part, this graph shows that the number of

dynamic global optimization opportunities lost due to the region partition does not make up a

signi�cant portion of the overall dynamic operation count.

Figure 5.24 compares the execution time of the benchmarks under the same compilation

environments on a four-issue processor. Again all cycle counts have been normalized to the

function-based cycle count. The Region-AllLive column shows that the four-issue machine

has the bandwidth to absorb the operations that could not be eliminated, unless those opera-

tions appear in critic loop bodies, as with 085.cc1 and tbl. This is not surprising given the

aggressiveness of this machine. More importantly, this graph shows that the region-based clas-

sically optimized code produced by maintaining some, Region-Maint, or all, Region-Ideal,

can signi�cantly improve the cycle count over function-based optimized code. This supports
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Figure 5.24 Comparison of cycle count for function-based and region-based classically opti-
mized code on a four-issue processor.

the idea that better optimization locally, i.e., within a region, can produce better quality code

than global optimization alone.

Figure 5.24 also shows that the decision not to have the compilation manager maintain

available-expression and available-de�nition information is sound. With the exception of tbl,

the additional optimization opportunities provided by that environment do not signi�cantly

improve the cycle count. Within tbl there is an important interregion global CSE where the

presence of available-expression information allows the ideal region-based optimizer to take

advantage of this opportunity, leading to a reduction in the critical path via subsequent global

CP and global DCE. However, it should be noted that the statement that maintenance of

available-expression and available-de�nition information is unnecessary is only true for the
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transformations applied. If an optimizer were to employ a more aggressive transformation such

as partial redundancy elimination, the situation may be di�erent.

5.4.2 Optimization time and memory usage

This section investigates the compile time and memory usage bene�ts of the application of

classical optimization within a region-based compilation framework vs. a function-based com-

pilation framework. There are two areas for compile time improvement during the application

of classical optimizations. A region-based compiler can potentially exploit both a reduction in

problem size and the ability to focus aggressive optimizations only on important areas of the

program. In order to fairly investigate the compile time and memory bene�ts of region-based

classical optimization, the same IMPACT classical optimizer was applied to both function-

based and region-based compilation units. During function-based compilation, the optimizer

applied local, global, branch, and loop optimizations to the entire function, unless dynamic

pro�le information indicated that the function was never called. In this instance, the opti-

mizer only applied local optimizations. To investigate the bene�ts of problem size reduction,

the region-based compile applied treated all regions uniformly, i.e., the same four optimization

levels were applied to all regions, unless the region resided within a zero-weight function. As

with function-based optimization, only local optimizations were applied. To investigate the

bene�ts of focusing optimization, the region-based compiler applied only local optimizations to

zero-weight regions, local, global and branch optimizations to acyclic regions, and all four levels

to cyclic regions.

The optimization time improvements for region-based compilation are shown in Figure 5.25.

The left bar represents the function-based optimization time for the benchmark over the region-

113



0 2 4 6 8 10 12 14 16 18

008.espresso

022.li

026.compress

072.sc

085.cc1

134.perl

cccp

eqn

lex

tbl

yacc

B
enchm

arks

Speedup

P
roblem

 S
ize R

eduction
F

ocused O
ptim

ization

F
ig
u
r
e
5
.2
5

S
p
eed

u
p
of

region
-b
ased

classical
op
tim

ization
v
s.

fu
n
ction

-b
ased

classical
op
ti-

m
ization

.

b
ased

op
tim

ization
tim

e
w
h
ere

all
region

s
are

treated
u
n
iform

ly.
T
h
e
region

-p
artition

in
g
af-

ford
ed

an
average

sp
eed

u
p
of

3.2
over

fu
n
ction

-b
ased

com
p
ilation

sim
p
ly

b
y
red

u
cin

g
th
e
op
ti-

m
ization

scop
e.

N
ote

th
at

th
e
b
en
ch
m
ark

s
th
at

b
en
e�
t
th
e
m
ost

from
p
rob

lem
size

red
u
ction

,

0
7
2
.sc

,
0
8
5
.c
c
1
,
1
3
4
.p
e
r
l,
an
d
tb
l,
are

th
e
b
en
ch
m
ark

s
w
h
ere

th
e
in
lin

in
g
resu

lted
in

rath
er

large
fu
n
ction

b
o
d
ies.

T
h
e
b
en
ch
m
ark

s
w
ith

sm
aller

fu
n
ction

b
o
d
ies,

su
ch

as
0
2
6
.c
o
m
p
r
e
ss,

c
c
c
p
,
an
d
y
a
c
c
,
d
id

n
ot

b
en
e�
t
from

th
e
p
rob

lem
size

red
u
ction

,
sin

ce
th
e
fu
n
ction

s
w
ith

in

th
ose

b
en
ch

m
ark

s
are

n
ot

large
en
ou
gh

to
ex
acerb

ate
th
e
n
on
lin

ear
n
atu

re
of

th
e
classical

tran
sform

ation
s.

T
h
e
righ

t
b
ar

in
F
igu

re
5.25

rep
resen

ts
th
e
fu
n
ction

-b
ased

op
tim

ization
tim

e
over

th
e
region

-

b
ased

op
tim

ization
tim

e
in
w
h
ich

th
e
region

-b
ased

com
p
iler

selected
th
e
op
tim

ization
level

b
ased

u
p
on

th
e
region

im
p
ortan

ce
an
d
top

ology.
T
h
e
ad
d
ition

of
th
is
cap

ab
ility

in
creases

th
e
average

114



0 2 4 6 8 10 12 14 16 18

008.espresso

022.li

026.compress

072.sc

085.cc1

134.perl

cccp

eqn

lex

tbl

yacc

B
enchm

arks

Speedup

T
ransform

ation S
peedup

D
ataflow

 S
peedup

F
ig
u
r
e
5
.2
6

B
reak

d
ow

n
of

region
-b
ased

sp
eed

u
p

b
etw

een
tran

sform
ation

sp
eed

u
p

an
d

d
ata

ow
sp
eed

u
p
.

sp
eed

u
p
ach

ieved
v
ia

region
-b
ased

com
p
ilation

to
5.8.

T
h
ese

d
ata

sh
ow

th
at

p
rov

id
in
g
th
e

com
p
iler

th
e
ab
ility

to
select

op
tim

ization
levels

is
m
ore

im
p
ortan

t
or

ju
st

as
im

p
ortan

t
as

th
e
red

u
ction

in
p
rob

lem
size.

C
on
sid

er
th
e
b
en
ch
m
ark

1
3
4
.p
e
r
l.

R
ed
u
ction

in
p
rob

lem
size

resu
lts

in
an

op
tim

ization
tim

e
sp
eed

u
p
of

7,
b
u
t
b
y
fo
cu
sin

g
th
e
op
tim

ization
e�
orts

on
ly

on

th
e
im

p
ortan

t
region

s
in
creases

th
e
sp
eed

u
p
to

16.
T
h
e
large

p
rob

lem
size

sp
eed

u
p
resu

lts
from

th
e
fact

th
at
1
3
4
.p
e
r
l
con

tain
s
several

ex
trem

ely
large

fu
n
ction

b
o
d
ies

after
in
lin

in
g;
h
ow

ever,

th
e
d
y
n
am

ic
b
eh
av
ior

w
ith

in
th
ose

fu
n
ction

s
is
lo
calized

to
a
few

im
p
ortan

t
region

s,
resu

ltin
g

in
a
16

tim
es

sp
eed

u
p
w
h
en

th
e
com

p
iler

sp
en
d
s
tim

e
on
ly

w
h
ere

it
is
n
eed

ed
.

R
ecall

from
S
ection

5.1
th
at

th
e
op
tim

ization
p
ro
cess

can
b
e
sp
lit

in
to

tw
o
com

p
on
en
ts:

th
e

search
for

op
tim

ization
op
p
ortu

n
ities

an
d
th
e
com

p
u
tation

of
d
ata

ow
an
aly

sis
in
form

ation
.

F
igu

re
5.26

con
tain

s
th
e
sp
eed

u
p
b
reak

d
ow

n
for

th
e
region

-b
ased

com
p
ilation

m
o
d
el,

sh
ow

n

115



in the right bar of Figure 5.25. In this graph, the speedup bar has been divided into these

two components: the portion of the speedup derived from reduction of optimization search

time and the portion of the speedup derived from reduction in dataow analysis time. For all

of the benchmarks, the majority of the compilation time speedup results from a reduction in

optimization search time. There are two reasons for this. First, the scope of the global and

loop optimization is limited by region boundaries. Second, the compiler is applying only local

optimization to unimportant regions, which means the scope of optimization is constrained by

basic block boundaries. Despite this, a signi�cant portion of the speedup results from reduction

of dataow analysis time, because reducing problem size reduces the amount of time required for

the iterative dataow analysis algorithms to converge. Note that the presence of the boundary

condition blocks and dummy operations used to convey live-variable boundary conditions, as

discussed in Section 4.4, does a�ect dataow analysis time.

In addition to the cost due to boundary operations during region-based optimization, there

is additional overhead associated with region-based compilation. This overhead includes the

time required for region formation, extraction and encapsulation of regions, re-integration of op-

timized regions, and maintenance of live-variable information at region-boundaries. Figure 5.27

shows the speedup of region-based optimization including the time required by the compilation

manager. The compilation manager overhead ranged from 10-40%, with an average of about

25%, reducing the average speedup for region-based optimization to 4.1. This does not neces-

sarily represent the overhead for region-based compilation as implemented within a production

compiler for two reasons. First, the implementation of the compilation manager may not be

representative of a production quality implementation. Second, in this experiment classical
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Figure 5.27 Speedup of region-based classical optimization vs. function-based classical opti-
mization including compilation manager overhead.

optimization is absorbing all of the overhead; however, in reality the overhead can be amortized

over all phases of the compilation process.

In addition to signi�cant optimization time improvements, region-based optimization pro-

vides memory usage improvements as well. Figure 5.28 shows the memory size reduction for

region-based classical optimization for each benchmark. This graph contains the ratio of the

maximum amount of memory required for function-based classical optimization over the max-

imum amount of memory required by region-based classical optimization. With the exception

of 026.compress, cccp, and eqn, which do not contain large function bodies, the amount of

memory required for region-based optimization is about half of that required for function-based

optimization. On average, region-based classical optimization reduces the memory requirements

by 3.8 times. Once again the extreme case, a reduction of over 12 times results in 134.perl due
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Table 5.10 Summary of function-based and region-based classical optimization times and
memory usages at desired inlining levels.

Function-Based Region-Based
Benchmark Optimization Time (s) Memory (K) Optimization Time (s) Memory (K)

Trans Dataflow Trans Dataflow Overhead
008.espresso 41 43 2234 26 27 15 861
022.li 132 44 6246 26 31 20 2373
026.compress 3 3 1238 1 1 1 857
072.sc 190 224 10390 24 34 28 2849
085.cc1 4344 3591 23582 207 425 273 5277
134.perl 1521 541 43094 55 73 90 3505
cccp 14 15 1470 6 9 4 869
eqn 72 57 4170 29 49 9 2301
lex 20 33 2730 7 12 4 777
tbl 813 348 10714 39 61 16 1885
yacc 21 25 1562 10 17 4 713

5.5 Summary

Application of classical optimization within a region-based framework can provide signi�cant

improvements in output code quality while reducing the amount of time and memory required.

The quality of the output code is heavily dependent upon the dataow information provided

at region boundary points. The compiler may maintain no live variable information, maintain

local live-variable information, globally propagate live-variable information, or globally maintain

availability and liveness information. Of the options available, the assumption that all variables

are live-out requires the least amount of work to maintain; however, this information is clearly

too conservative. This is reected by the increased dynamic operation and cyclic counts relative

to function-based optimized code resulting from the inability of the optimizer to remove truly

dead operations.

With reasonably accurate live-variable information present at region exit points, the region-

based optimizer was able to produce better quality code than a function-based classical opti-

mizer. There are two competing e�ects when applying region-based classical optimization in
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this environment. The region partition and the absence of availability information at region

boundaries prevent the optimizer from taking advantage of opportunities for interregion com-

mon subexpression elimination and copy propagation. The results indicate that a signi�cant

number of the global CSE and global CP opportunties do occur between regions. On the pos-

itive side, the ability of region partitioning to exclude control ow paths from consideration

during loop optimizations results in a signi�cant increase in the number of opportunities for

application of loop-invariant code motion and global variable migration. The bene�ts of addi-

tional loop optimizations more than compensate for the loss of interregion acyclic optimizations.

Region-based optimization is trading global optimization e�ciency for better local optimization

within cyclic regions.

Global propagation of live-variable information provides little additional bene�t over local

maintenance because of the order in which the regions are optimized. By using pro�le in-

formation to determine processing order, regions are optimized starting with inner loops and

progressing outward through the loop nest. This tends to naturally propagate changes in live-

ness conditions from the most important regions to the least important regions. As a result,

any additional dead code opportunities exposed by the more accurate liveness information tend

to occur in infrequently executed portions of the function.

Providing available-expression and available de�nition information requires the compiler to

globally maintain and propagate changes in the availability information, as well as live-variable

information to ensure correct transformation. With this information, the optimizer can po-

tentially take advantage of interregion optimization opportunities despite the region partition.

However, global maintenance of all three forms of dataow information may be prohibitively

expensive. For the classical transformations applied within this thesis, providing this informa-
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tion did not provide a performance improvement large enough to justify the work required to

globally maintain the information. In addition, it is not clear how feasible interregion transfor-

mation is within a vertical compilation model. For this reason, the region-based compiler used

to investigate the time and memory usage bene�ts of region-based compilation performed only

local maintenance of live-variable information.

In addition to the improvements in output code quality, region-based optimization also

provides signi�cant improvements in optimzation time and reductions in optimizer memory

usage requirements. The optimization time improvements are due to the reduction in problem

size provided by the region partition and perhaps more importantly to the ability to focus

the attention of the compiler on important regions while spending little time on unimportant

regions. The reductions in memory usage stems from a reduction in the amount of dataow,

memory dependence, and hazard information that must be simultaneously maintained by the

optimizer.
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CHAPTER 6

REGION-BASED REGISTER ALLOCATION

The purpose of register allocation is to map the variables and compiler temporaries, collec-

tively referred to hereafter as virtual registers, of a program to the physical register �le of the

target processor. The goal is to minimize the dynamic number of memory accesses required to

access those virtual registers that cannot be assigned, or allocated, to a physical register. The

scope of global register allocation typically encompasses the entire function. Global, function-

based register allocation is typically mapped to a graph coloring problem [61], [62]. The register

allocation process itself generally consists of three steps: interference graph construction, reg-

ister assignment or graph coloring, and spill code insertion.

The interference graph is the data structure used by the register allocator to ensure a legal

allocation. The graph contains a node for each virtual register in the compilation unit and an

arc between each pair of variables that interfere, i.e., are simultaneously live. Thus it is illegal

to assign the same physical register to two virtual registers connected by an arc within the

graph. The interference graph is constructed by comparing the lifetimes of every pair of virtual

registers in the compilation unit and inserting an arc between two nodes when the intersection

of their lifetimes, or live ranges, is not empty.

Once the interference graph is constructed, the register allocator attempts to obtain a k-

coloring of the graph, where k is the number of physical registers in the target processor.

Obtaining an optimal k-coloring of the interference graph is NP-complete. For this reason,

polynomial time heuristics are used to �nd a suboptimal coloring. A great deal of work has
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been done on the subject of coloring heuristics and spill code minimization [61]-[65]. If we

assume that the compilation unit on which register allocation is being performed contains n

virtual registers, then the computational complexity of register allocation is bound by the

complexity of interference graph construction and the complexity of the coloring heuristic. The

construction of the interference graph requires O(n2) live range comparisons. Provided that

the comparison itself can be done in constant time, the time complexity of interference graph

construction is O(n2). The coloring heuristic may require up to n passes over the n node

interference graph giving the coloring heuristic O(n2) time complexity as well. Overall, the

time complexity of register allocation is O(n2). Register allocation also has memory complexity

of O(n2) since the interference graph may contain an arc between every pair of n nodes. As

such, register allocation can require a large amount of time and memory when applied to large

functions.

Application of global register allocation within a region-based compilation framework has

two potential advantages. First, con�ning the scope of register allocation to the contents of

a region can potentially reduce register allocation time and memory requirements by simply

reducing the number of virtual registers that must be simultaneously considered. Second,

focusing the attention of the register allocator on the most frequently executed areas of a

function while ignoring constraints from less important areas can potentially improve the quality

of the allocation in much the same way the region partitioning exposes additional optimization

opportunities. However, because the register allocator loses the global view of the function, it

loses the global relative importance of the virtual registers referenced within the region. As

with region-based optimization, a higher quality allocation within the region may result in a less

optimal global allocation. Yet, by allocating the most important regions �rst, any additional
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spill code can be pushed into less frequently executed areas or areas where there are su�cient

resources to absorb the additional memory operations.

Several previous approaches to improve register allocation time, memory usage, or quality

have made use of the region concept. Callahan and Koblenz [7] partition the register allocation

of a function by de�ning a hierarchical tiling based upon the control ow graph. The tiles are

colored individually in a bottom-up fashion, mapping virtual registers to pseudo-registers. In a

second, downward pass the pseudo-registers are mapped to physical registers. By allocating leaf

tiles �rst, which tend to correspond to the innermost loop bodies, the regions of the program that

would tend to have the highest execution frequently are allocated �rst. Norris and Pollock [66]

propose a similar hierarchical approach, however, the partitioning is based upon the program

dependence graph [67] regions, which consist of control equivalent code segments and loop

bodies. In this technique, the scope of register allocation tends to be too small, on the order

of one C statement, resulting in an unnecessary spill code. Gupta, So�a, and Ombres [68]

use clique separators to reduce the memory requirements of global register allocation. In this

approach, a function is partitioned by selecting traces [35] and determining the clique separators

within each trace. If the interference graph of a function is divided into m cliques, the memory

complexity of register allocation becomes O( n
2

m
2 ) and the time complexity becomes O(n

2

m
).

However, published results show that the overhead of determining the clique separators results

in signi�cantly longer overall register allocation time.

The Multiow compiler utilized the concept of region-based register allocation within the

trace scheduler [8], [69]. Rather than applying global register allocation after instruction

scheduling as is done in most optimizing compilers, a combined scheduling and register al-

location technique is applied to individual traces so that the instruction scheduler can treat
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registers as machine resources. Register boundary conditions are communicated to the sched-

uler by means of an explicit data structure called a Value-Location Mapping inserted directly

into the control ow graph of the function [8]. This will be discussed further in Section 6.2.

The IMPACT register allocator will be used as the testbed to investigate the e�ects of

region-based register allocation in terms of allocation quality and register allocation time and

memory usage. As such, Section 6.1 presents a more detailed overview of the IMPACT global

register allocator. The boundary condition information required for correct and e�cient register

allocation of a region is discussed in Section 6.2. Section 6.3 dicusses reconciliation of separately

compiled regions. Finally, Section 6.4 assesses the e�ects of region-based register allocation.

6.1 IMPACT Register Allocator

The IMPACT register allocator [26] will serve as the vehicle to investigate the e�ects of

global register allocation within a frequency sensitive region-based compiler. The encapsulation

method discussed in Chapter 4 along with some additional boundary condition information, to

be discussed in Section 6.2, will allow the use of the same register allocator for both region-based

and function-based experiments. This facilitates the direct comparison of register allocation

quality and register allocation time and memory usage di�erences. Figure 6.1 contains the

global register allocation algorithm used within the IMPACT global register allocator. The

algorithm has been divided into the three basic steps of register allocation: interference graph

construction, register assignment, and spill code insertion. The remainder of the section will

briey discuss each of the three steps as the background for the changes required for application

of global register allocation within a region-based environment. The statements marked with
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Register Allocation(Func f )
f

// 1. Interference graph construction
Compute LiveVariable(f );
vr list = Determine LiveRanges(f );
Construct InterferenceGraph(vr list);

// 2. Register assignment, graph coloring
sorted vr list = Determine Priorities(vr list); y
uncolored = 1;
while ( uncolored ) f

uncolored = 0;
for ( vreg = sorted vr list ; vreg != NULL; vreg = vreg!next )

reserved = Determine UnavailRegisters(vreg); y
register = Find FreeRegister(vreg,reserved); y
if ( register != -1 )

AssignColor(vreg,register);
else f

Modify LiveRange(vreg);
uncolored += 1;

g
g

g

// 3. Spill Code Insertion
Insert SpillCode(f,vr list); y

g

Figure 6.1 Algorithm: global register allocation.

a y are modi�ed slightly for e�cient and correct application of global register allocation to

regions.

6.1.1 Interference graph construction

As shown in Figure 6.1, interference graph construction �rst requires the register allocator

to perform global live-variable dataow analysis in order to construct the live range for each

virtual register. The register allocator utilizes the same iterative dataow analysis method used
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by the optimizer, the di�erence is that register allocation requires dataow analysis to be done

only once. Using this information, the register allocator determines the set of operations over

which a virtual register is live, its live range. The interference graph is then constructed by

placing an arc between two virtual registers if their live ranges contain common operations, as

described in the previous section.

6.1.2 Graph coloring

The graph coloring phase of the IMPACT register allocator has two important functions

that are relevant to application of global register allocation over regions. They are priority

determination and register selection.

Priority determination

The register allocator uses a priority-based approach to color the interference graph [33].

Each virtual register is assigned a pro�le-based priority to determine the order in which the

virtual registers are colored using the following equation.

priority(vreg) =
ref weight(vreg)3

num oper(vreg)
(6.1)

The ref weight() is the sum of the dynamic weight of the operations that reference the virtual

register, and the num oper() is the number of operations contained within the live range.

Empirical analysis has shown this to be a very good heuristic for determining the coloring

order [26]. During the coloring phase, the register allocator must determine whether a virtual

register should be allocated to a register or spilled, i.e., reside in memory on the stack. To make

this decision, the register allocator determines the bene�t of allocating the virtual register by

calculating the cost of spilling it. The cost of spilling a register can be estimated with the

127



following equation.

spill cost(vreg) = def oper(vreg) � store cost+ use oper(vreg) � load cost (6.2)

In the worst case, if the virtual register is not allocated, a store operation is needed after

every de�nition and a load is required for every use. In practice, some of these memory access

operations can be eliminated. Essentially the bene�t of allocating a virtual register is the

number of memory access operations saved by placing it in a processor register.

However, the register allocator must also determine the register saving convention, caller-

saved or callee-saved, of the physical register that is most e�cient. If a virtual register is

allocated to a caller-saved register that register must be saved and restored across every sub-

routine call within the live range. Thus the true bene�t of allocating a virtual register to a

caller-saved register is given by

caller benefit(vreg) = spill cost(vreg) � jsr weight(vreg) � (store cost+ load cost) (6.3)

where jsr weight() is the sum of the dynamic weight of the subroutine call operations within

the live range of the virtual register. If a virtual register is allocated to a callee-save register,

that callee-save register must be saved and restored upon entry and exit to a function. Thus,

allocation to a callee-save register may require the number of memory access operations given

by the following equation.

callee benefit(vreg) = spill cost(vreg) � func weight � (store cost+ load cost) (6.4)

where func weight is the execution frequency of the function being allocated. However, if the

callee-saved register has previously been allocated to a virtual register, it use is essentially free.

During the coloring process, the register allocator selects the type of register, callee-saved or
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caller-save, that provides the highest bene�t. If neither provides a positive bene�t, the virtual

register is spilled.

Register selection

The coloring algorithm iterates over the interference graph until all virtual registers have

been assigned to a processor register. For each virtual register, the physical registers that

cannot be assigned to the current virtual register are determined by examining the interference

graph. Any physical registers that have been assigned to interfering virtual registers are not

candidates for assignment to the current virtual register.

The register allocator uses a �rst �t algorithm to minimize the number of registers used. The

�rst register in the bank of physical registers that is not contained within the set of unavailable

registers is selected. If a free register is not found for any one virtual register during a pass over

the interference graph, the register is spilled and its live range is modi�ed to lower the register

pressure [26]. Even a spilled virtual register requires a register to hold the value to be stored

or loaded from the stack.

6.1.3 Spill code insertion

Since the IMPACT register allocator assumes that all variables reside within virtual registers

prior to allocation, memory accesses must be inserted for virtual registers that could not be

allocated. The register allocator inserts a store operation after each de�nition and a load

operation before each use of a spilled virtual register. If the allocation permits, the register

allocator may not have to insert a load operation before each use. Separate allocation of regions

requires an extension of this capability to insert the appropriate compensation code to correct

for the separate register allocation.
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6.2 Boundary Conditions

The separate register allocation of regions di�ers from the separate allocation of functions,

in that the information ow between functions is achieved through memory or special parameter

passing registers as speci�ed by the procedure calling convention. That is, there are no virtual

registers that are live into the body of the function being allocated. Given that regions are

an arbitrary subgraph of the program control, there may be any number of virtual registers

live into and out of the region. These are commonly referred to as outward-exposed virtual

registers.

During the allocation of a function, the register allocator essentially has two options for

each virtual register, it may assign the virtual register to a physical register or it may spill the

virtual register and assign it a stack location. During the allocation of a region, the register

allocator has an additional option, it may ignore the virtual register. As an example, consider

the regions shown in Figure 6.2. There are four outward-exposed virtual registers in region A:

vr1, vr2, vr3, and vr4. All virtual registers are referenced within the region except vr1. By

Equation (6.1), an unreferenced virtual register, such as vr1, has a priority of zero. Since such

lifetimes are unimportant to the current region, the register allocator need not make a decision

regarding vr1 until a later region is allocated which actually references this virtual register.

Because of this capability, the register allocator may experience lower register pressure within

the region than would be seen in the same area of the function during function-based allocation.

In addition, the register allocator now has the option of taking a di�erent action on a virtual

register in two di�erent regions, e�ectively achieving natural live range splitting. For example, in

Figure 6.2 the register allocator may chose to allocate virtual register vr3 to a physical register

in region A, yet spill the same virtual register in region B. However, the register allocator must
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vr3=

vr4==vr2

=vr2

vr3=

=vr4

Region A

Region B

(vr1)

Figure 6.2 Regions containing outward-exposed virtual registers.

ensure that the necessary compensation code is inserted to correct for the di�ering register

assignments between regions. Briggs, Cooper and Torczon [70] have proposed several methods

of applying aggressive live range splitting to achieve this e�ect during the global allocation of

a function with limited success.

While applying global register allocation within a region-based framework, the register al-

locator must be provided with su�cient information to ensure a correct allocation within the

region and that the separately allocated regions can be reconciled. This information has to be

maintained such that allocation of later regions is subject to the constraints from previously

allocated regions. Also, there is information that can be provided to the register allocator to

improve the quality of the allocation within the reduced scope resulting from the region par-
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tition. The remainder of this section will present this required and bene�cial information and

discuss how this information is used by the register allocator.

6.2.1 Dataow information

As with the global optimizer, the register allocator requires live-variable information at the

region exit points so that live ranges for virtual registers outward-exposed through region exits

are computed correctly. Recall that the compilation manager has several options regarding the

quality of the live-variable information provided. Assuming that all variables are live-out can be

detrimental to the quality of the register allocation. For the remainder of this discussion it will

be assumed that the live-variable information is being locally maintained by the compilation

manager so that it is relatively accurate. Also it should be noted that, as implemented, the

register allocator does not introduce any compensation code outside the region so the live-

variable conditions at region boundaries do not change.

6.2.2 Register bindings

Since the register allocator is allocating the regions separately, it is quite possible that the

same virtual register can be allocated to a di�erent physical register in di�erent regions. The

compilation manager provides the register allocator with the register binding conditions for each

outward-exposed virtual register at each region entry and exit point. In order to do this, the

compilation manager simply maintains a table of the bindings of all outward-exposed variables

at the entry and exit points of each register allocated region. The information is provided to

the register allocator along with the region in the form of an auxiliary data structure.

Figure 6.3 contains two regionsA andB. RegionA has been allocated and has four outward-

exposed virtual registers that are also live-in at the entry point of region B. During allocation

132



vr1: {unavail, pr1,pr2,pr3}
vr2: {alloc, pr3}
vr3: {spill, mem[0]}
vr4: {alloc, pr2}

pr1=

pr2==pr3

=vr2

vr3=

=vr4

Region A

Region B

(vr1)

st mem[0],pr1

Figure 6.3 Outward-exposed virtual register boundary conditions provided to region B after
register allocation of region A.

of region B, the register allocator is provided with the allocation results of all four virtual

registers. In this case, register binding information is provided for vr2 and vr4 indicating

that they were allocated to physical registers pr3 and pr2, respectively. The entries for vr1

and vr3 will be discussed in later sections. This information has two uses with the region-

based register allocator. First, this information is used by the register to insert the appropriate

compensation code within the region, in the event that it does not make the same allocation

decisions for outward-exposed virtual registers in di�erent regions. Second, the register allocator

may use the register binding information at region boundaries as a hint to guide the register

selection process in order to minimize the amount of compensation code that is required. In

fact, register bindings may stipulate to the register allocator the register that must be used for

a virtual register used within this region (see Section 6.3).
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Region A

Region B

Region C

vr1=

=pr1

vr1, ignored

vr1: {alloc, pr1}

Region A

Region B

Region C

vr1, ignored

=pr1

pr2=

vr1: {alloc, pr2}

pr1=pr2

Region A

Region B

Region C

vr1, ignored

pr2=

=pr1

vr1: {alloc, pr2}

pr1=pr2

(a) (b) (c)

Figure 6.4 Ignoring virtual registers: (a) vr1 ignored in region A and assigned to pr1 in region
B, (b) vr1 assigned to pr2 in region B with copy in region B, (c) copy in region C.

Allowing the register allocator to ignore a virtual register during the allocation of a region

poses an interesting problem for the compilation manager, which must provide register binding

information at region entry and exit points. Once an ignored virtual register has been bound to

a physical register, that information must be propagated to subsequent regions. Consider the

following example shown in Figure 6.4. If virtual register vr1 is ignored in region A and later

allocated to physical register pr1 in region B, as shown in Figure 6.4(a), care must be taken

during the allocation of region C. If the register allocator assigns the vr1 to pr1, there is no

problem. If the register allocator assigns the virtual register to pr2, then some correction code

is required. This correction code could be inserted within region B assuming vr1 will reside in
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Region A

Region B Region C

vr1, ignored

=pr1 =pr2

vr1: {alloc, pr2}vr1: {alloc, pr1}

vr1: {alloc, ?}

Region A

Region B Region C

vr1, ignored

=pr1 =pr2

vr1: {alloc, pr1}

vr1: {alloc, pr1}

vr1: {alloc, pr1}

pr2=pr1

vr1: {alloc, pr2}

(a) (b)

Figure 6.5 Ignoring virtual registers: (a) unknown boundary condition at entry to region A,
(b) boundary condition set by allocation in region B.

pr2 in region A, as shown in Figure 6.4(b), or the correction code could be placed in region C

assuming that vr1 will reside in pr1 in region A, as shown in Figure 6.4(c).

Figure 6.5 contains a slightly more complicated example. Consider the case in which the

register allocator ignores virtual register vr1 in region A and allocates it to pr1 in region

B, as indicated in Figure 6.5(a). If the register allocator assigns vr1 to pr2 in region C a

question arises. What physical register contains vr1 in region A? The register allocator must

be provided the location of vr1 in region A while region C and any other regions adjacent

to A are being allocated. Given that regions are being compiled in order of importance,

the compilation manager applies the following constraint. The �rst region to which a virtual

register is bound, to either a physical register or a stack location, determines the location of that

virtual register in all regions where it was ignored. Under this assumption, the register binding

conditions for ignored virtual registers are well-de�ned. Thus, during the allocation of region
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C in Figure 6.5(b) the compilation manager provides binding information telling the register

allocator that vr1 resides in pr1 at the entry point to region C. If the register allocator does

not allocate vr1 to pr1, then a copy operation is required. From the literature it is not clear

what assumptions were made within the Multiow compiler to handle this situation [8], [69].

In a sense, the register allocator is not aware that a virtual register was ignored in an adjacent

region. The register allocator is simply told which physical register a previously ignored virtual

register resides in upon entry to the region or must reside in upon exit from the region. This

also implies that an outward-exposed virtual register that has been bound to a physical register

in an adjacent region cannot be ignored during the allocation of that region. The register

allocator must ensure that the virtual register resides in the appropriate physical register at

the region boundary points.

Value-location mappings

As previously mentioned, the Multiow compiler conveyed register binding information by

inserting explicit Value-Location Mappings(VLMs) into the control ow graph. These mappings

are treated exactly like other operations during the scheduling and register allocation of a

trace. Figure 6.6(a) shows the VLMs resulting from separate allocation of regions A and B

from Figure 6.2. The VLMs indicate that vr1 was ignored, or its binding is delayed, vr2 was

allocated to pr3, and vr4 was allocated to pr2 in region A. In region B, vr1 was also ignored,

vr2 was allocated to pr4, and vr4 was allocated to pr5. To reconcile the regions, a new trace

region, C, is formed containing the VLMs. This region is then scheduled as any other region,

resulting in the code shown in Figure 6.6(b). Note that copy operations have been inserted to

compensate for the di�ering register bindings for vr2 and vr4. The approach in this thesis
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pr2==pr3

=pr4 =pr5

Region A

Region B

vr1: db {B}
vr2: pr4
vr4: pr5

vr1: db {A}
vr2: pr3
vr4: pr2

VLM

VLM

(vr1)

Region C

pr2==pr3

=pr4 =pr5

Region A

Region B

(vr1)

Region C

pr4=pr3
pr5=pr2

(a) (b)

Figure 6.6 Value-location mappings: (a) VLMs after scheduling of regions A and B, (b) after
scheduling of new region C.

di�ers in that the register allocator is responsible for inserting compensation directly into the

current region after allocation is complete. This allows the compensation code to be scheduled

in with the region entry or exit code and prevents mixing of register allocated and unregister

allocated operations during the optimization of subsequent regions. Compensation code will be

discussed in more detail in Section 6.3.

6.2.3 Unavailable registers

Delaying the assignment of a virtual register also imposes constraints upon the physical

register that the virtual register may be assigned to during allocation of subsequent regions.
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Consider vr1 in Figure 6.3. There are no references of vr1 within region A so it was ignored

during the allocation of that region. However, since vr1 is used within region B, the register

allocator is required to either allocate vr1 or spill it. To ensure a correct allocation, the

register allocator cannot use any physical registers assigned to virtual registers in region A that

interfere with vr1. Thus, as indicated in Figure 6.3, the compilation manager provides the

register allocator with a set of physical registers that cannot be used for this virtual register.

In this case, they are pr1, pr2, and pr3.

Under the assumption that the compiler cannot place compensation code within a compiled

region, there is an additional constraint. If the live range of an ignored virtual register contains a

subroutine call within the region where it was ignored, the register allocator cannot allocate that

virtual register to a caller-saved register. Doing so would require the compiler to insert caller-

save code around the subroutine calls in the regions where the virtual register was ignored.

As each region is register allocated, the compilation manager maintains a set of unavailable

registers for each virtual register that is ignored within a region and provides this set to each

region where a previously ignored virtual register is outward-exposed.

During graph coloring, the register allocator examines the interference graph to construct a

set of physical registers that are already in use by interfering virtual registers and are, therefore,

unavailable to the current virtual register. In addition, if the current virtual register is outward-

exposed, but not yet assigned to a physical register in an adjacent region, the set of globally

unavailable registers provided by the compilation manager is merged in with the results of the

interference graph search. The register allocator then attempts to �nd a physical register that

is not located within this set of unavailable registers for the current virtual register.
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6.2.4 Stack locations

During the register allocation of each region, some virtual register will invariably be spilled

and assigned a stack location. The chosen stack location must be provided to all subsequent

regions where that same virtual register is outward-exposed. Again, the compilation manager

maintains a table of the stack locations assigned to outward-exposed virtual registers that were

spilled within a region. As shown in Figure 6.3, vr3 was spilled during the allocation of region

A. Thus the compilation manager provides information to the register allocator indicating that

vr3 is located in memory location mem[0] at the entry point to region B. Requiring that

all regions use the same stack location for a particular virtual register ensures that all regions

needing to access memory to retrieve this virtual register will access the correct value. This

eliminates the need for compensation code between regions to relocate virtual registers on the

stack.

6.2.5 Bene�cial global information

Recall that the caller-saved/callee-saved bene�t functions, Equations (6.3) and (6.4), assume

that the register allocator has visibility to the entire live range of a virtual register. This is

not the case during region-based register allocation. Consider the example in Figure 6.7(a)

containing two regionsA and B and an outward-exposed virtual register vr1. During allocation

of regionA, the register allocator selects a caller-saved register, say pr3, since the portion of the

live range within the region contains no subroutine calls. Within region B, the live range of vr1

contains a subroutine call. If the register allocator were to use the same register, pr3, within

region B, load and store operations must be inserted around the subroutine call, as shown in

Figure 6.7(b). If the register allocator were to select a callee-saved register, say pr15, then a
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Region A

Region B

pr3=

=vr1

jsr()

vr1: {alloc, pr3}

Region A

Region B

=pr3

vr1: {alloc, pr3}

st mem[x],pr3
jsr()
ld pr3,mem[x]

pr3=

Region A

Region B

=pr15

vr1: {alloc, pr3}

pr15=pr3

jsr()

pr3=

(a) (b) (c)

Figure 6.7 Subroutine calls: (a) caller-saved register selected in region A, (b) use of caller-
saved register in region B requires spill code, (c) use of callee-saved register in region B requires
copy.

copy operation would be required at the entry point of region B to correct for the di�erent

allocation, as shown in Figure 6.7(c).

By providing the register allocator with an estimate of the number of subroutine calls

contained within the global live range of a virtual register, a callee-saved register may be selected

instead, requiring no correction code if the same register is used in both regions A and B. This

information is readily available to the compilation manager. After the initial pass of global

live-variable information, the number of subroutine calls within a lifetime can be determined

by examining the live-in sets of the basic blocks that contain subroutine calls. The compilation

manager can then provide these global subroutine call counts for each outward-exposed virtual

register of a region. In addition, it may be bene�cial to provide the function execution weight

for the same reason.
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Both are provided to the IMPACT region-based register allocator by the compilation man-

ager and used to determine the caller-saved and callee-saved bene�ts of outward-exposed virtual

registers.

6.3 Reconciliation Code

After register allocation is complete, the register allocator may have to insert reconcilia-

tion code between the current region and previously allocated regions to compensate for the

di�erent allocation in each region. Since reconciliation code is only required between adjacent,

allocated regions and those previously allocated regions are of higher weight and are potentially

more frequently executed, all reconciliation codes are absorbed within the current region being

allocated. Not only does this tend to keep reconciliation code in the less frequently executed

areas of the function, but under a vertical compilation model, there is no bene�t to pushing

this compensation code outside the current region, since all adjacent, register allocated regions

are completely compiled.

The required reconciliation code is determined by examining the register binding information

at the region entry and exit points as provided by the compilation manager and comparing it

to the allocation result in the current region. In all, there are �ve possible scenarios. Figure 6.8

shows the two most desirable situations. In these cases, the register allocator made the same

decision in both regions for an outward-exposed virtual register, i.e. either the virtual register

was allocated to the same register in both regions or it was spilled to the same memory location

in both regions. In either case, no code compensation code is required. Recall, from Section 6.2.4

that the register allocator is not allowed to spill a virtual register to two di�erent stack locations.
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Region A

Region B

pr3=

=pr3

vr1: {alloc, pr3}

(a)

Region A

Region B

pr1=

=pr5

vr1: {spill, mem[4]}

(b)

st mem[4],pr1

ld pr5, mem[4]

Figure 6.8 Region reconciliation: no code required.

Figure 6.9 shows the two cases in which a virtual register is spilled in one region and allocated

in the other. In Figure 6.9(a) virtual register vr1 is allocated to pr3 in region A, but is spilled

in the current region. Since all references of vr1 in the current region, B, will be accessing its

assigned stack location, a store operation is required to place the contents of pr1 on the stack

upon entry to the region. Figure 6.9(b) shows the opposite case. In region A, vr1 was spilled;

however, it is allocated to physical register pr3 in the current region. In this instance a load

operation is required to place the proper value into pr3 upon entry to the current region.

Finally, Figure 6.10 shows the case in which a virtual register is allocated to two di�erent

registers in di�erent regions. In region A, vr1 is allocated to physical register pr3, but in the

current region it is allocated to pr10. This requires a copy operation at the entry point of the

current region to move the contents of pr3 into pr10. If the register binding information is not

taken into account during the allocation of the current region, separate allocation can quickly
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Region A

Region B

pr3=

=pr3

vr1: {alloc, pr3}

(a)

Region A

Region B

pr1=

=pr5

vr1: {spill, mem[4]}

(b)

st mem[4],pr1

ld pr5, mem[4]

st mem[4],pr3 ld pr3, mem[4]

Figure 6.9 Region reconciliation: (a) store required in current region, (b) load required in
current region.

Region A

Region B

pr3=

=pr10

vr1: {alloc, pr3}

pr10=pr3

Figure 6.10 Region reconciliation: copy operation required current region.
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produce an explosion of copy operations at region boundaries. To avoid an excessive amount

of copy operations, the IMPACT region-based register allocator �rst attempts to assign an

outward-exposed virtual register to the same register used by an adjacent region. If this cannot

be done, the virtual register will be spilled. This approach has two e�ects. First, reconciliation

code is limited to the �rst four cases shown in Figures 6.8 and 6.9; no copy operations are

required. Second, this will restrict the register allocator and result in additional spill code.

However, as shown in Section 6.4 it does not adversely a�ect output code performance.

6.4 Allocation Performance

This section will evaluate region-based register allocation in terms of register allocation

quality, register allocation time, and memory usage. Function-based register allocation and

region-based register allocation are performed on the same superblock ILP optimized code, for

each of the 11 benchmarks at the desired inlining level. Superblock ILP optimized code is used

to provide a register allocation environment with higher register pressure as is typically found

after aggressive ILP optimization and scheduling. The assumed processor model is an identical

four-issue processor with 64 integer and 64 double-precision registers rather than the previously

assumed in�nite number of registers.

6.4.1 Allocation quality

There are two ways to compare the quality of register allocation. The �rst is to compare

the amount of dynamic spill operations introduced; the second is to compare the additional

execution cycles added as a result of register allocation. Figure 6.11 compares the dynamic

percentage of additional load and store operations introduced by the function-based and region-
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in scope for most of the benchmark programs. In spite of this, the noticeable increase in the

number of spill code operations in the benchmarks 085.cc1, eqn, and tbl is due to caller-saved

load and store operations around subroutine calls. For these benchmarks, the global subroutine

call estimates are invalidated by later transformation, namely, code scheduling. This problem

does not occur during function-based register allocation since all code scheduling is completed

prior to performing register allocation.

Consider the following example. If the register allocator is told that a virtual register vr1

in region A contains no subroutine calls, that virtual register will most likely be allocated to

a caller-saved physical register. However, during the compilation of region B an operation

de�ning vr1 is moved above a subroutine call. During register allocation of region B, the

register allocator may prefer the use of a callee-saved register because the live range of vr1 now

contains a subroutine call contrary to the information provided by the compilation manager.

The register allocator has two choices. First, use the caller-saved register selected by region A

or spill the virtual register. In either case, some spill code is introduced. This is the source

of the additional caller-saved spill code in the mentioned three benchmarks. In general, this

is the only situation in which the restriction that the register allocator use the same physical

register in all regions for an outward-exposed virtual register results in a signi�cant amount of

spill code.

Several of the benchmarks 022.li, 134.perl, and cccp experience a decrease in the amount

of dynamic spill code operations, because of the natural live range splitting that the region

partitioning provides. The most noticeable di�erence is in the benchmark 134.perl, where

the region-based register allocator was able to use three fewer callee-saved registers during the

allocation of a frequently called, self-recursive function. This phenomenon can be illustrated
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=vr1

jsr()

jsr()

=vr2

=vr1

vr2=

Region X

Region Y

Region Z

=pr1

jsr()

jsr()

=pr1

=vr1

vr2=

Region X

Region Y

Region Z
vr1: {alloc, pr1}

vr2: {alloc, pr1}

(a) (b)

Allocation
Conflict

Figure 6.12 Natural live range splitting: (a) vr1 and vr2 interfere globally, but not in regions
X and Y, (b) vr1 and vr2 allocated to same physical register resulting in conict in region Z.

with the example shown in Figure 6.12(a). The �gure contains three regions X, Y, and Z.

Region X contains a frequently iterated loop with a subroutine call within it and references a

virtual register vr1. Region Y holds another frequently iterated loop containing a subroutine

call that references a virtual register vr2. These two virtual registers interfere since they are

both simultaneously live in region Z. A function-based register allocator is required to use two

registers because of this interference and prefers callee-saved registers because of the frequent

subroutine calls contained in the live ranges. During allocation of region X and Y, the register
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Figure 6.13 Comparison of function-based and region-based cycle count after register allo-
cation of superblock ILP optimized code on a four-issue processor.

allocator may use the same callee-saved register for both vr1 and vr2 because these virtual

registers do not interfere in these regions. In doing so, the register allocator will discover a

conict during the allocation of region Z, because the two interfering, outward-exposed virtual

registers have been allocated to the same register, as shown in Figure 6.12(b). As a result, one

of these two virtual registers will be spilled within region Z; however, for 134.perl this spill

code is much less frequently executed than the callee-saved spill code in the function prologue

and epilogue. In this example, the region partition has reduced the register pressure from that

seen during function-based allocation in two of the three most important regions.

The overall performance di�erence between the function-based and region-based codes on

a four-issue processor is shown in Figure 6.13 by including the e�ect of the load and store

operations introduced by register allocation. The two bars represent the change in cycle count
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after function-based and region-based register allocations. As expected, both register allocation

environments result in a slightly increased cycle count due to the additional memory operations

introduced by the register allocator. The benchmarks 134.perl and cccp have slightly better

cycle counts after region-based register allocation because of the smaller amount of spill code

added during register allocation. However, the benchmarks 026.compress and 072.sc also

show a lower cycle count even though the region-based register allocator required more spill

code. In these benchmarks, the region-based allocation inserted fewer arti�cial dependences

giving the postpass code scheduler more freedom to perform code motion than after function-

based allocation. Also, as expected the larger amount of spill code inserted by the region-based

register allocator in 008.espresso, eqn, etc. results in a slightly larger cycle count. Overall,

the region-based register allocator is able to produce comparable code in a considerably shorter

amount of time.

6.4.2 Allocation time and memory usage

Register allocation time is dominated by the time required to build the virtual register

interference graph. Given the O(n2) nature of interference graph construction, the reduction in

problem size provided by the region partitioning has a signi�cant impact on register allocation

time. To quantify the e�ect of the region partitioning on register allocation time, the same

register allocator is applied to both function-based and region-based compilation units. The

amount of time required for region-based register allocation is the sum of the times required to

allocate each region within the program. Figure 6.14 shows the speedup for region-based register

allocation, i.e., the function-based allocation time over the region-based allocation time, for each

benchmark. Region-based register allocation is on average three times faster than function-
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Table 6.1 Summary of function-based and region-based register allocation times and memory
usages at desired inlining levels.

Function-Based Region-Based
Benchmark Time (s) Memory (K) Time (s) Memory (K)

008.espresso 36.9 3748 16.5 828
022.li 18.1 1848 12.2 560
026.compress 6.3 2796 1.2 676
072.sc 48.6 9460 16.9 1592
085.cc1 613.1 46084 132.8 4368
134.perl 192.0 37528 43.5 1252
cccp 6.4 1172 3.8 296
eqn 38.5 11464 8.2 2264
lex 8.5 1800 4.3 272
tbl 28.7 7264 12.9 1068
yacc 9.4 836 5.5 452

Finally, Table 6.1 contains the data used to create the the allocation time and memory

reduction graphs in this section. The register allocation times, in seconds, are shown for both

function-based and region-based compilations on a HP 9000/735, 125MHz workstation. Note,

the table contains no overhead for region-based register allocation. Maintenance of the boundary

condition information required for region-based register allocation does not noticeably increase

the overhead introduced by the compilation manager. The maximum amount of memory re-

quired during function-based and region-based register allocations is shown in increments of

1024 bytes(K).
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CHAPTER 7

CONCLUSIONS

7.1 Summary

The traditional function-based approach to compilation is not suitable within an aggressive

ILP compiler. The function-based partition of a program, albeit providing a convenient way

to break up the task of compiling the program, presents the compiler designer with several

problems. As shown in this dissertation, the function bodies present the compiler with an envi-

ronment that hides valuable information and optimization opportunities. In addition, the use

of aggressive transformation, such as inlining, to improve the situation must be carefully con-

trolled to contain the increase in compile time and memory usage that results from assembling

larger function bodies.

This dissertation has proposed region-based compilation, a technique to improve the feasi-

bility of applying aggressive compilation techniques within a production quality ILP compiler

while potentially improving the quality of the code generated by the compiler. Under this

framework, the compiler is allowed to repartition the program into regions and compile each

region as a separate compilation unit. This provides the compiler with several new capabilities.

First, the compiler gains control over the compilation unit size, which improves the compilation

time and memory usage behavior of the compiler, reducing the importance of algorithmic com-

plexity of the applied transformations. This in turn makes the compiler easier to design. Sec-

ond, the compiler can focus the application of aggressive transformations on important regions
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of the program and apply only necessary transformations to regions that are less important.

Third, region-based compilation introduces vertical compilation within the body of a function,

allowing any compensation code generated during the compilation of a region to bene�t from

optimization as part of subsequently formed regions. In order to study the implications of these

capabilities within an ILP compiler, a region-based compiler has been implemented within the

framework of the IMPACT compiler.

Application of classical optimization within the region framework requires the compiler

to accurately maintain live variable information at region boundaries and to optionally main-

tain available-expression and available-de�nition information. Without available-expression and

available-de�nition information, interregion global optimizations are lost; however, the region

partition also tends to expose additional loop optimization opportunities. Essentially, without

available-expression and de�nition information, region-based optimization trades global opti-

mization e�ciency for improved optimization within the region. Providing available-expression

and available-de�nition information allows the optimizer to take advantage of interregion opti-

mization opportunities. In both cases, the results indicate that region-based classical optimiza-

tion produces better quality code than function-based optimization.

Application of global register allocation within the proposed region framework requires

the compiler to maintain register binding as well as additional information to ensure correct

reconciliation of separately register allocated regions. The region partition reduces the ability

of the register allocator to make e�ective global decisions, such as selecting between caller-

saved and callee-saved registers, resulting in slightly higher spill code than is introduced during

function-based global register allocation. However, the natural live range splitting capability

provided by the region partition does reduce register pressure in important regions allowing
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spill code to be placed in less frequently executed areas of the program. As the data indicate

the result is a better quality allocation than that provided by function-based global register

allocation in some instances. As with optimization, the reduced scope of a region provides a

signi�cant reduction in the amount of time and memory required to perform global register

allocation.

This thesis shows that region-based classical optimization produces better quality code and

region-based register allocation produces a comparable register allocation, both in much less

time and using much less memory. The time and memory saved during classical optimization

and register allocation will allow the designer of an ILP compiler to apply more aggressive

ILP techniques than are feasible in a production compiler that assumes functions as the unit

of compilation. Thus, a region-based compiler has the potential to produce superior quality

code in a production environment where compilation time and memory requirements must be

contained.

7.2 Future Work

Although the investigations in this dissertation provide a great deal of understanding of the

behavior and potential of region-based compilation, there are still several open issues that can

lead to promising areas for future research.

The investigation of classical optimization within a region context examined varying levels of

dataow information at region boundaries. Maintenance of available-expression and available-

de�nition information was bene�cial in several instances by allowing the region-based optimizer

to perform critical interregion global optimizations. Availability information may be more cru-

cial in a region-based optimizer that applies more aggressive transformations, such as partial
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redundancy elimination. The region-based compiler as implemented for this thesis maintained

only live-variable information at region boundaries. The ideal region-based results where avail-

ability information is provided were generated by performing function-based optimization. An

e�cient method of providing and maintaining availability information to the global optimizer as

well as the feasibility of interregion transformation within a vertical compilation model warrants

further study.

In this dissertation, aggressive function inline expansion was used to assemble dynamically

coupled functions into the same function body. Regions were then selected on the enlarged func-

tion bodies. Inline expansion of the entire function body introduces a great deal of dynamically

unimportant code into the calling function, resulting in unnecessary code expansion. Rather

than perform aggressive inlining a priori, the inline expansion decisions can be incorporated

into the region formation process. If the compiler were allowed to cross function boundaries

and grow regions interprocedurally, only the portion of the called function within the selected

region has to be inline expanded into the call site. This reduces the code expansion that results

from aggressive inline expansion prior to region formation. In this manner the region-based

compilation framework may provide a directed method for performing partial inlining.

Recall from the discussion of function inline expansion in Chapter 3 that inline expansion

does not expose an interprocedural call cycle to the compiler. Through application of aggressive

inline expansion, a recursive call cycle will degenerate to a self-recursive function; however, the

back edge of the cycle remains implicit in the subroutine call. Performing interprocedural region

formation, followed by partial inlining as described above, will result in a self-recursive region.

A technique that can transform such a region into an iterative cycle has enough merit to warrant
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further study. With this capability, the region-based compilation framework provides a uniform

method for exposing all cycles to the compiler while attempting to minimize code expansion.
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APPENDIX A

BENCHMARKS

All evaluations presented in this thesis use the set of eleven benchmarks shown in Ta-

ble A.1. The benchmarks consist of �ve of the six programs from the SPEC CINT92 suite, and

another benchmark from the SPEC CINT95 suite, 134.perl. The remaining �ve benchmarks

are common Unix utility programs. A short description of each benchmark is also presented

in Table A.1. These benchmarks were chosen because of their control-intensive nature and

traditional lack of exploitable ILP.

The IMPACT compiler makes extensive use of execution pro�le information during the

compilation procedure. A description of the input �les used to generate the pro�le information

is presented in Table A.2. For the benchmarks in which inputs were readily available, a set of 20

Table A.1 Benchmark set.

Benchmark Description

008.espresso truth table minimization (SPEC CINT92)
022.li lisp interpreter (SPEC CINT92)
026.compress �le compression (SPEC CINT92)
072.sc spreadsheet (SPEC CINT92)
085.cc1 GNU C compiler (SPEC CINT92)
134.perl shell interpreter (SPEC CINT95)
cccp GNU C preprocessor, version 1.35
eqn format math formulas for tro�
lex lexical analyzer generator
tbl format table for tro�
yacc parser generator
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Table A.2 Benchmark inputs used for pro�ling.

Benchmark Description of Pro�ling Inputs

008.espresso 20 truth tables
022.li 4 lisp �les (8-queens, 3 gabriel benchmarks)
026.compress 20 �les of varying size
072.sc 3 spread sheets (3 SPEC reference inputs)
085.cc1 20 C �les of varying size
134.perl 20 perl scripts of varying size
cccp 20 C �les of varying size
eqn 20 technical papers containing equations
lex 5 lexers for C, Lisp, Pascal, awk and pic
tbl 20 technical papers containing tables
yacc 10 grammars

random �les were selected to provide a wide range of training data. For the other benchmarks,

as many inputs as typically could be obtained were used for pro�ling.

The input �le used for each benchmark to collect performance data is presented in Table A.3.

Overall, a large amount of care was taken to select a suitable input for measurement purposes.

Also, the measured input was chosen to be di�erent than all of the inputs on which the program

was pro�led to provide a more realistic evaluation. However, due to lack of available inputs,

072.sc, was pro�led and measured on a common input. For the SPEC benchmarks, one of the

SPEC reference inputs was chosen. The one exception was for 022.li, which used a scaled-down

version of the SPEC reference input to reduce the simulation time.
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Table A.3 Benchmark input used for measurements.

Benchmark Description of Measured Input

008.espresso one of the SPEC reference inputs (bca.in)
022.li 7-queens
026.compress SPEC reference input
072.sc one of the SPEC reference inputs (loada2)
085.cc1 one of the SPEC reference inputs (insn-recog)
134.perl one of the SPEC referene inputs (jumble)
cccp the �le cccp.c from the GNU C Compiler Version 1.35
eqn one large technical paper
lex IMPACT compiler's C lexer
tbl one large technical paper
yacc the grammar in c-parse.y from the GNU C Compiler Version 1.35
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