
c© 2008 Shane Ryoo

PROGRAM OPTIMIZATION STRATEGIES FOR DATA-PARALLEL
MANY-CORE PROCESSORS

BY

SHANE RYOO

B.S., University of Illinois at Urbana-Champaign, 2000
M.S., University of Illinois at Urbana-Champaign, 2004

DISSERTATION

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy in Electrical and Computer Engineering

in the Graduate College of the
University of Illinois at Urbana-Champaign, 2008

Urbana, Illinois

Doctoral Committee:

Professor Wen-mei W. Hwu, Chair
Professor David A. Padua
Associate Professor Steven S. Lumetta
Assistant Professor Matthew I. Frank

ABSTRACT

Program optimization for highly parallel systems has historically been considered

an art, with experts doing much of the performance tuning by hand. With the

introduction of inexpensive, single-chip, massively parallel platforms, more devel-

opers will be creating highly data-parallel applications for these platforms while

lacking the substantial experience and knowledge needed to maximize application

performance. In addition, hand-optimization even by motivated and informed

developers takes a significant amount of time and generally still underutilizes the

performance of the hardware by double-digit percentages. This creates a need for

structured and automatable optimization techniques that are capable of finding

a near-optimal program configuration for this new class of architecture.

My work discusses various strategies for optimizing programs on a highly data-

parallel architecture with fine-grained sharing of resources. I first investigate

useful strategies in optimizing a suite of applications. I then introduce program

optimization carving, an approach that discovers high-performance application

configurations for data-parallel, many-core architectures. Instead of applying a

particular phase ordering of optimizations, it starts with an optimization space of

major transformations and then reduces the space by examining the static code

and pruning configurations that do not maximize desirable qualities in isolation

or combination. Careful selection of pruning criteria for applications running on

the NVIDIA GeForce 8800 GTX reduces the optimization space by as much as

98% while finding configurations within 1% of the best performance. Random

ii

sampling, in contrast, can require nearly five times as many configurations to find

performance within 10% of the best. I also examine the technique’s effectiveness

when varying pruning criteria.

iii

To my parents, for their love and support.

iv

ACKNOWLEDGMENTS

My graduate studies would have not been completed without the support and

contribution of numerous individuals and parties. I am very grateful to everyone

who helped me grow as a person and as a researcher. I would like to recognize

many of them here, and apologize to any whom I have accidentally omitted.

I first thank my father and mother, my sister Cherie, and Louise for their

continuous support. Their faith in my decision to pursue engineering and graduate

study has been an anchor in my life.

Many thanks go to the former and current members of the IMPACT research

group and other researchers within the Center for Reliable and High-Performance

Computing who have contributed to this work. They include Christopher Ro-

drigues, Sam Stone, John Stratton, Sara Sadeghi Baghsorkhi, Sain-Zee Ueng,

John Kelm, Robert Kidd, Stephanie Tsao, Christopher Kung, Ian Steiner, and

James Player. I thank the numerous past and current members of IMPACT who

have contributed to our compiler infrastructure. Finally, I thank the former stu-

dents who helped me in my research endeavors, particularly John Sias, Hillery

Hunter, and Ronald Barnes.

I thank Matt Frank and Steve Lumetta for serving on my committee and lend-

ing their experience and intellect to my work. I thank David Padua for serving on

my committee and for his substantial contribution to parallel computing compi-

lation, much of which serves as the foundation for my work. I also thank Michael

Wolfe for his advice and suggestions.

v

I would like to recognize and thank the U.S. Department of Defense, the

American Society for Engineering Education, the University of Illinois, the UIUC

College of Engineering, the Graduate College at UIUC, the UIUC Department

of Electrical and Computer Engineering, and the Roy J. Carver Charitable Trust

for their financial support of my graduate studies. Intel, HP, and NVIDIA have

supported our group with equipment donations and loans during my tenure. Our

research is supported by the Gigascale Systems Research Center, which is funded

under the Focus Center Research Program, a Semiconductor Research Corpora-

tion program. Initial experiments with NVIDIA GPUs were made possible by

NSF CNS grant 05-51665.

Finally, I thank my adviser, Professor Wen-mei Hwu, for teaching me the

fundamentals of computer architecture and optimizing compilers during my un-

dergraduate education, for giving me the opportunity to perform graduate study

and research in the IMPACT research group, and for his continued guidance and

support. Without his dedication to teaching at all levels, his willingness to take on

new students without demonstrated background in compilers, his generosity and

compassion, and his determination in doing research that others think impossible,

this work would not have been possible.

vi

TABLE OF CONTENTS

LIST OF TABLES . x

LIST OF FIGURES . xi

LIST OF ABBREVIATIONS . xiii

CHAPTER 1 INTRODUCTION . 1
1.1 Obstacles . 1
1.2 Architectural Models . 4
1.3 Contributions and Organization 5

CHAPTER 2 ARCHITECTURE . 9
2.1 Threading Model . 10
2.2 Microarchitecture . 15

2.2.1 Execution resources . 15
2.2.2 Memories . 18

2.3 Architectural Interactions . 23
2.4 Software Environment and Support 24

CHAPTER 3 OPTIMIZATIONS . 27
3.1 Performance Principles . 27
3.2 Optimization Example: Matrix Multiplication 31
3.3 Categories of Optimization . 36

3.3.1 Memory bandwidth optimization 37
3.3.2 Dynamic instruction reduction 39
3.3.3 Increasing thread-level parallelism 41
3.3.4 Increasing intrathread parallelism 41
3.3.5 Work redistribution . 43
3.3.6 Resource balancing . 44

CHAPTER 4 APPLICATION STUDY 46
4.1 General Performance Trends of Optimized Applications 51
4.2 Case Studies . 53

4.2.1 H.264: Sum of absolute differences 53
4.2.2 Fluid dynamics using the Lattice-Boltzmann method . . . 58

vii

4.2.3 Magnetic resonance imaging in non-Cartesian trajectory
space . 60

4.3 Optimization Practice . 64
4.3.1 Memory optimization . 64
4.3.2 Register usage . 66
4.3.3 Balancing thread-level parallelism with individual thread

performance . 68

CHAPTER 5 OPTIMIZATION CARVING 70
5.1 Example Revisited: Matrix Multiplication Optimization Space . . 73
5.2 Description of the Technique . 79

5.2.1 Threshold carving . 81
5.2.2 Tradeoff carving . 82

5.3 Optimization Carving for the GeForce 8800 83
5.3.1 Off-chip bandwidth . 83
5.3.2 Instruction stream efficiency versus execution resource

utilization . 84
5.3.3 Individual metrics and a single cost function 87
5.3.4 Applying metrics to matrix multiplication 89

CHAPTER 6 EXPERIMENTS . 92
6.1 Methodology . 92
6.2 Initial Results . 93
6.3 Comparison to Random Sampling 96
6.4 Varying Metrics . 101

6.4.1 Simpler metric: Discounting synchronization effects 101
6.4.2 Modeling cycle count . 106

6.5 Impact of Performance Factors Not Included in Metrics 113
6.6 Future Work . 114

CHAPTER 7 RELATED WORK . 118
7.1 Parallel Programming Languages 118
7.2 Optimizations and Performance Tuning 120
7.3 Phase Ordering . 121
7.4 Optimization Space Exploration 122
7.5 GPU Application Mapping and Optimization 124

CHAPTER 8 CLOSING REMARKS . 126
8.1 Applicability to Future Many-Core Processors 126
8.2 Thoughts on Optimization . 129

APPENDIX A CALCULATION OF THE EXPECTED MAXIMUM
VALUE OF A SAMPLE . 132
A.1 With Replacement . 133
A.2 Without Replacement . 134

viii

REFERENCES . 137

AUTHOR’S BIOGRAPHY . 146

ix

LIST OF TABLES

2.1 Properties of GeForce 8800 Memories 19
2.2 Constraints of GeForce 8800 and CUDA 23

4.1 Application Suite . 47
4.2 Application Performance for Typical Long-Running Execution

Profiles . 49

5.1 Resource Usage and Performance for 16x16 Matrix Multiplica-
tion Configurations Excluding Register Spilling 76

5.2 Compile Time for Several Kernels with Basic Optimizations . . . 81

6.1 Parameter Search Properties . 93
6.2 Optimization Carving Space Reduction 95
6.3 Random Sampling Results . 97
6.4 Space Reduction Using Simplified Utilization Metric 105
6.5 Space Reduction Using Cycle-Based Utilization Metric 112

x

LIST OF FIGURES

1.1 Examples of modeling spaces. 4

2.1 CUDA compilation flow. 10
2.2 Matrix multiplication example. 11
2.3 CUDA thread organization. 12
2.4 Organization of the GeForce 8800. 15
2.5 CUDA thread scheduling within an SM. 17
2.6 Contrasting noncoalesced and coalesced access patterns. 21

3.1 Matrix multiplication optimization examples. 32
3.2 Graphical depictions of the memory access patterns of different

matrix multiplication versions. 33

4.1 Simplified SAD kernel. 56
4.2 LBM algorithm. 59
4.3 Partial code for performStreamCollide. 59
4.4 Address pattern for two consecutive loads in LBM. 60
4.5 Sequential algorithm to compute Q. 62
4.6 Sequential algorithm to compute F Hd. 62

5.1 Matrix multiplication optimization space runtime. 74
5.2 Matrix multiplication optimization space performance. 74
5.3 SAD optimization space. 78
5.4 Coulombic potential grid code. 88
5.5 Performance metrics versus execution time for CP. 89
5.6 Matrix multiplication example for calculating metrics. 90

6.1 Optimization carving for four benchmark kernels. 94
6.2 Expected maximum performance of a random sample of the

optimization space. 98
6.3 Expected maximum performance of random sampling of the

Pareto-optimal configurations from optimization carving and
the entire optimization space. 100

6.4 A hypothetical instruction schedule for a thread block of the
matrix multiplication kernel from Figure 5.6. 103

6.5 Optimization carving using the simplified utilization metric. . . . 105

xi

6.6 Reciprocal square-root execution time for varying numbers of
thread blocks per SM. 106

6.7 Example PTX code from a matrix multiplication kernel with
1x4 rectangular tiling. 108

6.8 Scheduling warps to hide compulsory stall time. 108
6.9 Tradeoff carving using the original utilization metric calculation

for CP with coalesced configurations. 112
6.10 Execution time of MRI-FHD with cache conflicts. 114

xii

LIST OF ABBREVIATIONS

API Application Programming Interface

CPU Central Processing Unit

CSE Common Subexpression Elimination

DRAM Dynamic Random Access Memory

EPIC Explicitly Parallel Instruction Computing

FLOPS Floating-Point Operations Per Second

FP Floating-Point

GPU Graphics Processing Unit

ILP Instruction-Level Parallelism

LICM Loop-Invariant Code Motion

MLP Memory-Level Parallelism

SIMD Single-Instruction Multiple-Data

SFU Special Function Unit

SM Streaming Multiprocessor

SP Streaming Processor

SPMD Single-Program Multiple-Data

TLP Thread-Level Parallelism

VLIW Very Long Instruction Word

xiii

CHAPTER 1

INTRODUCTION

In the past decade, computer processor designs have shifted to multiple cores per

die due to power and performance limitations. While this computing power is

often utilized by multiple applications today, vendors are searching for solutions

that enable a single application to achieve speedup by running on multiple cores.

The number of cores is expected to increase at a near-exponential rate for the

next several years, making finding a solution a pressing issue for the application

and software tools community. The issue is compounded by most developers’ lack

of familiarity with highly data-parallel systems, and the differences between these

single-chip systems and older parallel architectures. This dissertation shows that

systematic principles and automatable tools can be used to optimize programs for

this emerging class of architecture.

1.1 Obstacles

Programming and optimizing applications for highly parallel systems has histor-

ically been the domain of relatively few experts, with performance tuning done

primarily by hand. Because of the relative scarcity of highly parallel applications

and the expense of highly parallel systems, there was limited opportunity for

exhaustive performance experimentation. Today, however, single-chip, massively

data-parallel systems such as the NVIDIA GeForce 8 Series GPUs are available

for approximately one U.S. dollar per single-precision GFLOP, several orders of

1

magnitude less expensive than supercomputers a decade ago. Other architectures,

such as the IBM Cell Broadband Engine [1], Ageia PhysX processor [2], and cus-

tom processor designs [3], also provide significant speedup to applications that

map well to those architectures. For the past few years, developers have been

using these relatively low-cost systems to perform work that would otherwise take

a large compute cluster of traditional microprocessor systems to accomplish.

Unfortunately, the level of effort and expertise required to maximize applica-

tion performance on these kinds of systems has not significantly decreased, and if

anything has increased. There are several reasons for this issue:

1. The appropriate granularity of parallelism for the target architecture may

not be the “natural” one in which the developer conceived the problem.

This difference is particularly true for developers who are used to develop-

ing applications for clustered systems. It may be necessary to change an

application’s computation granularity in order to improve its performance

on the system. The burden of finding the appropriate granularity is gener-

ally left to the application developer, who must sample across a wide range

of points in the configuration space to find a reasonably good configuration.

Because granularity selection is generally done early in the software design

process, an application developer who does not initially try or accommodate

for multiple granularities runs the risk of being trapped at a local perfor-

mance maximum when iteratively optimizing the application via a greedy

approach.

2. The local memory available to each processing element in the system is very

restricted compared to older compute clusters. The cost of spilling data from

low-latency memories to larger, higher latency memories is significant. This

cost is particularly high when those memories are on a separate die from the

2

processing units. Even with intimate knowledge of both application and ar-

chitecture, an application developer must experiment with configurations to

see which map well to the architecture. Because of the increasing complex-

ity of both applications and architectures, the accuracy of an application

developer’s knowledge will generally be flawed during initial development

and take substantial time to develop. In addition, programs often change

over time to include new application features, changing the local memory

usage amount or patterns.

3. Different product lines or even successive generations of the same product

line may require reapplication of the optimization process to take advantage

of the new system. New features and capabilities will change which con-

figurations provide maximal performance. These features also may not be

initially understood by application developers.

4. Applications may need to be mapped to multiple, differing processing plat-

forms to determine the one that provides the most cost-effective performance

for the product needs and goals. Although the embedded space has had the

same issue for some time, it will be present in the desktop and scientific

computing spaces until a particular paradigm establishes dominance.

The common theme is that of rapid, nonintuitive or unexpected changes in the

systems that an application developer targets. Since the architecture and appli-

cations are continuously changing, application developers cannot be expected to

consistently find a near-optimal configuration of a substantial application. Fur-

thermore, traditional compilation cannot be expected to find a near-optimal con-

figuration in the short term, as compiler writers will need a significant amount

of time and effort to learn how to use the features of the target architecture and

create processes and algorithms that optimize many applications well.

3

���

���

������������	�
���

�
��
��
�
��
��
��
	
�

�
�

Figure 1.1: Examples of modeling spaces.

1.2 Architectural Models

In engineering and the sciences, a practitioner has a choice of models from which

to choose. Figure 1.1 depicts abstract representations of the space of models for

a domain. The common tradeoff made when selecting a model is the error of

the model relative to the cost of using that model. Ideally the progression will

be relatively smooth and a clear choice is evident for user needs, as shown with

line (a). For compilers that target single-core superscalar processors, a relatively

cheap architectural model consisting primarily of instruction stream efficiency

has been effective for many years because architectural features and capabilities

reduce the impact of other potential performance factors. Compilers for Intel

Itanium processors, on the other hand, must be more complex to provide high

performance, since the architecture does not easily reduce to a few high-order

concerns [4].

Many model spaces are generally not smooth, looking more like line (b) in

Figure 1.1. The reason for this staircase-like structure is that multiple factors,

each incurring significant cost, must be integrated before a significant reduction

in modeling error is achieved. First-order concerns are relatively inexpensive to

4

model but are not very usable for predicting behavior and performance. Second-

order concerns are more accurate but incur substantial usage costs. A low-error

model is actual hardware or a cycle-accurate simulator of the system.

I believe that line (b) in Figure 1.1 more closely resembles the model space

for the emerging class of single-chip many-core processors. In some cases the

error will rise with higher costs until a critical modeling mass is achieved, which

means that a particular model may be less correct than one that is less precise

and has lower cost. For example, measuring performance with the number of

instructions executed may be misleading if the architecture may take a different

number of cycles to execute each one: a version of a program with more low-

latency instructions may have higher performance than another version with fewer

high-latency instructions. Thus, application and compiler developers run the risk

of using an architectural model that has higher cost and less accuracy than a less

precise model. This issue is one of the more significant problems in attempting

to optimize applications for architectures like the GeForce 8 Series GPUs.

1.3 Contributions and Organization

The purpose of this dissertation is to establish the systematic principles and dis-

cuss automatable tools that can be used to optimize programs for the emerging

class of single-chip, data-parallel, many-core architectures. A few principles can

be used to guide initial mapping of applications to the system and achieve reason-

able performance. However, I believe iterative optimization techniques applied to

these systems will be unable to keep pace with rapidly changing technology and of-

ten leave significant performance unrealized due to the nature of the architecture.

The small size of many kernels and the limited number of performance-affecting

optimizations for each kernel enables an alternate approach developed to find

5

near-optimal configurations of applications for this class of architectures, which I

term optimization carving.1

Instead of assuming that the architectural and program models have little

error, optimization carving uses metrics to select multiple configurations that

maximize metrics modeling high-order concerns. These are likely to be local per-

formance maxima in the optimization space, but it is probable that one of them

is the global maximum. The configurations are then executed with typical input

data to determine the one with the highest performance. It differs from an ex-

haustive space search in that it only varies those parameters that can significantly

change performance and does not execute configurations that are unlikely to be

local maxima. As long as the ranking and modeling of concerns is reasonably

correct, the technique is likely to select a good program configuration. Optimiza-

tion carving can also be used as a tool to validate model assumptions about the

system, similar to prior work [5].

The contributions of this work are as follows:

1. Characterization of the NVIDIA GeForce 8 series architecture and the abil-

ity of applications with certain characteristics to map well to the architec-

ture. This information is presented in Chapter 2.

2. Presentation of performance and optimization principles for the GeForce

8 series in the beginning of Chapter 3. I begin with basic principles that

apply to all computer architectures and then discuss how they should be ob-

served on the NVIDIA GeForce 8 Series. Because of the wealth of execution

resources and the long latencies to memory, programs must be decomposed

into many threads in order to utilize the hardware well. Developers must

also utilize the local memories to achieve good performance, as data local-

1The word “carve” is used in the context of sculpting stone, where unwanted portions are
removed, leaving the finished product behind.

6

ity is not enabled by default in the programming model. I use a matrix

multiplication kernel to demonstrate adherence to the principles in finding

a high-performance kernel configuration.

3. Categorization of optimizations based on their effects on applications ex-

ecuting on the GeForce 8 Series in the latter part of Chapter 3. Some

of the categories are optimizations that reduce memory bandwidth usage

or improve the efficiency of executing code. I discuss explicit examples of

optimizations within each category. I also discuss how optimizations may

interact with each other in ways that may be unexpected to application or

compiler developers. The major side effect of many optimizations is the use

of additional registers, which may reduce thread-level parallelism (TLP).

4. Presentation of the performance of a suite of applications mapped to the

GeForce 8 Series, in Chapter 4. Several applications are studied in further

depth with their performance effects explained. I also discuss the optimiza-

tions which have the most significant effects on performance, specifically

memory optimizations, control of register usage to maintain TLP, and bal-

ancing TLP with per-thread performance. This is presented in Chapter 4.

5. Introduction of optimization carving and discussion of its use for optimizing

applications executing on the GeForce 8 Series processors in Chapter 5. I

assert that it is generally not possible for application developers or compil-

ers to find the best configuration through an iterative process, particularly

because they cannot control part of the code generation process on the

GeForce 8 Series. As an alternative approach, I propose optimization carv-

ing, which begins with a large optimization space and then prunes it to find

configurations which are likely to be the best one.

7

6. Presentation of results of optimization carving for one target architecture,

the GeForce 8800 GTX, in Chapter 6. I experiment with different metric

calculations that can be used when applying the technique and analyze

why they do better or worse than the original calculation. Results are also

compared to random sampling of the space.

Related work is discussed in Chapter 7. I finish with concluding remarks in

Chapter 8.

8

CHAPTER 2

ARCHITECTURE

This work uses the GeForce 8800 GTX1 graphics processing unit (GPU) as the

hardware target for my study. Previous generations of GPUs consisted of a

highly specialized pipeline to which any nongraphics application must be mapped

through graphics application programming interfaces (APIs). This process often

involves reworking application algorithms to fit the API’s model. The GeForce

8800, however, consists of a large set of processor cores that can directly address

a global memory. Although still specialized for graphics processing, this general

addressability allows for a more general and flexible programming model than

previous GPU generations and allows developers to easily implement a wider va-

riety of data-parallel kernels. It shares the same traits with other contemporary

single-chip, many-core processors: a large number of processing units that can

simultaneously execute independent threads in parallel, a limited amount of lo-

cal memory per execution unit, and limited off-chip bandwidth compared to the

available execution resources.

In this chapter, I discuss the programming model provided by NVIDIA, the

Compute Unified Device Architecture (CUDA) and the tools provided to support

it. I then discuss the architecture of the GeForce 8800 and how its structure

creates an affinity for certain kinds of applications. A more complete description

of these can be found in [6,7]. I also discuss some of the complexity that may arise

1There are presently several versions of the GeForce 8800 GPU. References to GeForce 8800
are implied to be the GTX model in this work.

9

����������	
���
�

���������	
����

���

��������	���

����	����������

���	��������	�

������	����

��	
���

���	����	����

���������	
���

������	����
�	

����	

���������

����	��������
����	������

���������	
���

������	����
�	

����

��	
�����

������	���

Figure 2.1: CUDA compilation flow.

when mapping applications to the architecture and optimizing them. Finally, I

describe some of the software tools provided by NVIDIA, which are useful during

the optimization process.

2.1 Threading Model

The CUDA programming model is ANSI C extended by several keywords and

constructs. The GPU is treated as a coprocessor that executes data-parallel kernel

code. The developer supplies a single source program encompassing both host

(CPU) and kernel (GPU) code. These are separated and compiled as shown in

Figure 2.1. Each CUDA program consists of multiple phases that are executed on

either the CPU or the GPU. The phases that exhibit little or no data parallelism

are implemented in host code, which is expressed in ANSI C and compiled with

the host C compiler as shown in Figure 2.1. The phases that exhibit rich data

parallelism are implemented as kernel functions in the device code. These kernel

functions are compiled by the NVIDIA CUDA C compiler (cudacc) and the GPU

object code generator.

A kernel function defines the code in single-program multiple-data (SPMD) [8]

style, to be executed by each thread invoked for a data-parallel phase. These

kernels typically comprise thousands to millions of lightweight threads per invo-

cation. Creating enough threads to fully utilize the hardware often requires a

10

�����������	
��
����������	
��
����������	
���

��������������������	
�������
�	
����������
���
���������� ������!�"�	
��
�������#���!�
$��
���������� ������!�"�	
��
�������#���!�
%��
���������� ������!�"�	
��
�������#���!�

�������	&���	
����������������'��������� ���
(��
������	&��	
��
�'�����
�������#���

��������������
������	&)���*�+� ���!�
,��
������	&��	
��
�'�����
�������#���

��������������
������	&)���*�+� ���!�

�����-��
	��.��
�����	���������
/����%�0���1���/
��/!�
2����%������$,/
�$,/!�

�����3.��
����'��1�����
4������.�
�555�����
�0���1��666��	
��
��	
��
��	
��!�

�����	&����
���0��1����'���
7��
������	&�'�����
��	
��
�������#���

��������������
������	&+� ���*�)���!�

���������	�
���

�����0����� ���
�����.�
�����������
���������
���������!
8
���������
���������.�����'��������������������
����������.��9��/���0���1:�.;&�<��'����:�.;&
��=

�����:�������#�����
��� ����0������>
������������	�9�>�

���������9�>����5�?���'����<<!
����8
����������	�<9��@����.�A����@����.�A�
����������.�<<�
����������.��<9�?���'��
����B
���@����.�A�9�����	�
B

�
�������
���

Figure 2.2: Matrix multiplication example.

fine-grained decomposition of work. For example, each element of a result array

might be computed by a separate thread if the computation for each element is

relatively independent. It should be noted that fine-grained decomposition may

create inter-thread instruction redundancy.

Host code initiates kernel execution by using CUDA-specific function call syn-

tax. There are several restrictions on kernel functions: they cannot use recursion

or static variable declarations, and must have a nonvariable number of arguments.

The host code transfers data to and from the GPU’s global memory using API

calls.

I use a dense matrix multiplication example, operating on two 4096x4096

matrices, to illustrate the CUDA threading model. This example is shown in

Figure 2.2. In this example, each thread calculates one element of the product

matrix. This calculation involves a dot product of a row of the first input array

and a column of the second input array, shown as the kernel function matrixMul()

in Figure 2.2(b). Each thread begins with a pointer to a row of the first input

matrix and a pointer to a column of the second input matrix. It calculates a dot

product and writes the value into the corresponding element of the output array.

11

���������	

����

�

����

�

������

�
���

������

�
���

������

�
���

������

�
���

������

�
���

������

���

������

���

���

��� ���

���

���

�
���

������

�
����������

������

������

������

������

������

������

������

������ ���

���
������

������

������

������

������

������

������

������

������

������

������

������

������

������

������

������ ���

��� ��� ��� ���

Figure 2.3: CUDA thread organization.
2D thread blocks are shown here; thread blocks can be up to three dimensions.

Threads executing on the GeForce 8800 are organized into a three-level hier-

archy, depicted in Figure 2.3. At the highest level, all threads in a data-parallel

execution phase form a grid. The matrix multiplication code in Figure 2.2 forms

a grid consisting of a total of 224 threads.

Each grid consists of many thread blocks. All thread blocks in a grid have the

same number of threads. A grid can be at most 216 − 1 blocks in either of two

dimensions, and each block has unique coordinates. On line 7 of Figure 2.2, the

grid performing the matrix multiplication consists of 256 thread blocks in each

dimension, for 216 thread blocks in total.

Each thread block is a three-dimensional array of threads, whose dimensions

are also explicitly defined by the application developer. These are scheduled as a

unit on the hardware. Threads have unique coordinates within their thread block

and up to 512 threads can exist in a thread block. On line 6 of Figure 2.2, each

thread block consists of 16x16 threads; the third dimension is not used.

Threads in a thread block can share data through a low-latency, on-chip shared

memory and can perform barrier synchronization by invoking the syncthreads

12

primitive. This ability to coordinate the execution of threads distinguishes CUDA’s

programming model from the shader programming of previous GPGPU models; I

show how coordination can boost performance in the next chapter. It is important

to note that the very local nature of the barrier synchronization enables it to be

performed by a fast hardware mechanism and probably does not incur more than

a few processor cycles once all threads in a thread block reach the barrier.

Barrier synchronization within thread blocks is the only supported synchro-

nization on this architecture. No options for synchronization at any other level are

explicitly supported; for example, barrier synchronization across thread blocks can

only be safely accomplished by terminating a kernel. The only possible method of

communication between threads in separate thread blocks is to use a “mailbox”

memory location in the global address space, assuming that the developer can en-

sure that both sending and receiving threads are simultaneously scheduled on the

device. The lack of synchronization mechanisms beyond barrier synchronizations

limits the ways in which parallelism can be expressed in CUDA, but it also makes

it easier for novice parallel programmers to reason about the correctness of their

code.

When the host code invokes a kernel, it sets the grid and thread block dimen-

sions by passing them as parameters. On lines 6-7 of Figure 2.2(a), two structures

of type dim3 are declared: the first is for thread blocks, which are defined as 16×16

groups of threads. The second is for the grid, which consists of 256×256 thread

blocks. The following line of code invokes the kernel. Kernel code is shown in

Figure 2.2(b). First, each thread calculates the starting positions in the input ma-

trices based on its unique block and thread coordinates. It then iterates through

a loop to calculate the result and store it to memory.

The multiple memory spaces of a GPU’s memory system are exposed by CUDA

to application developers. The host’s memory is separate from the device’s mem-

13

ory. The host uses API calls to allocate memory on the GPU and transfer data

between host and device memories. Different memory spaces on the device are

also separate from one another. Major speedup is possible when certain applica-

tion characteristics can utilize the properties of local memories, but the developer

bears the responsibility of selecting the appropriate data placement and layout

for a given application. This selection requires knowledge of the characteristics of

each memory, as is explained in the next section.

Finally, the hardware groups threads into warps of up to 32 threads. The

threads in a warp operate in lockstep, with a single instruction being issued to

eight threads per cycle for four cycles. Warps are not specified in the CUDA

model, but are significant for optimization and performance purposes. Some of

the key points are:

• Thread blocks that do not consist of an integral number of warps will leave

execution resources idle.

• All threads in a warp issue in SIMD (single-instruction multiple-data) fash-

ion, and a performance penalty will be incurred if threads in the same warp

follow different control paths. Predication support can mitigate some of this

penalty, but the NVIDIA compiler does not aggressively predicate code.

• Memory accesses of threads in the same warp can interact in synergistic or

antagonistic ways. Warps should be organized so that threads in the same

warp do not have bank or port conflicts.

• Because threads in a warp operate in lockstep, there are guarantees on

memory access that enable communication through shared memory that

would be unsafe otherwise because of race conditions. One optimization

which capitalizes on this property is the use of a single warp to perform

14

������

���	

���
���������������������������

���	

�������������

��� ����������

!���� ���	 !���� ���"

!���������#�$�%� ����&���

�����#������� '� ��������

(���

)))

))
)

�&(�	

�&(�*

Figure 2.4: Organization of the GeForce 8800.

a reduction that accesses values in a tree pattern without synchronization.

Synchronization is unnecessary in this case because the use of a single warp

creates ordering guarantees among the threads in the warp. Optimizations

using this property are not covered in depth in this work.

These issues are discussed further in the next section.

2.2 Microarchitecture

This section describes the microarchitecture of the GeForce 8800. I first discuss

the execution resources of the system. Because the different memories play a

major role in optimization, these are described separately.

2.2.1 Execution resources

Figure 2.4 depicts the microarchitecture of the GeForce 8800. The GPU consists

of 16 streaming multiprocessors (SMs), each containing eight streaming proces-

sors (SPs), or processor cores, running at 1.35 GHz. There is a single instruc-

15

tion issue unit per SM. Each SP has one 32-bit, single-precision floating-point

(FP), multiply-add arithmetic unit that can also perform 32-bit integer arith-

metic operations. Additionally, each SM has two special function units (SFUs)

that execute more complex FP operations such as reciprocal square root, sine,

and cosine; two of these operations can be issued per processor cycle, per SM.

The arithmetic units and the SFUs are fully pipelined, yielding 388.8 GFLOPS

(16 SM ∗ 18 FLOP/SM ∗ 1.35 GHz) of peak theoretical performance for the GPU.

Each SM has 8192 registers that are dynamically partitioned among the threads

running on it. The registers are contained within a banked register file, the work-

ings of which have not been explained in detail by NVIDIA. The latency of the

register file is generally assumed to be two SP cycles.

As explained in the previous section, threads on an SM are grouped into bun-

dles of 32 threads called warps. Warps are formed from continuous sections of

threads in a thread block: the first 32 threads in a block form the first warp, etc.

A scoreboard indicates when all of a warp’s operands are ready for execution. The

SM then executes the same instruction for the 32 threads in the warp. An SM

issues only one instruction at a time for all threads in a warp; when threads in a

warp take different control paths, it is assumed that multiple passes with suppres-

sion of threads on divergent paths are required to complete execution [9]. Thus,

execution is slowed as much as if each thread had executed all control paths. It is

generally desirable to group threads to avoid this situation, if possible. Also, if the

number of threads per thread block is not evenly divisible by the warp size, any

remaining issue slots are wasted. Due to this design, the architecture naturally

favors applications with little divergent control flow; kernels with large regions of

data-dependent control flow are generally unsuitable for this architecture. Knowl-

edge of warps also helps in avoiding memory bank conflicts, which are discussed

in the next subsection.

16

���

��

��������	
����
���������
��

���

��

���

��

���

��

���

��

���

��

���

��

���

��

���

��

���	

����������
��
����������
������������
��

���������
�� � � � � � � � � � � � �� � � � � � � � �

Figure 2.5: CUDA thread scheduling within an SM.
Warps are interleaved to tolerate intrawarp stalls.

SMs can perform zero-overhead scheduling to interleave warps on an instruction-

by-instruction basis to hide the latency of global memory accesses and long-latency

arithmetic operations. When one warp stalls, the SM can quickly switch to a ready

warp in the same thread block or a ready warp in any other thread block assigned

to the SM. This ability to utilize thread-level parallelism allows an SM to tolerate

long memory latencies by executing work from other threads/warps while a warp

is stalled. The dynamic warp scheduler reportedly adopts a round-robin schedule

among ready warps to ensure fairness.

Figure 2.5 shows an example of thread scheduling on the architecture. Warp

1 from thread block 1 is able to execute the first six instructions without stalling.

Because its operands for instruction 7 are not ready, the SM switches execution to

warp 1 from thread block 2. Similarly, that warp’s operands for the third instruc-

tion are not ready, so the SM switches to warp 1 from thread block 3. Execution

on the SM stalls only if none of its resident warps have ready operands. Because

warps are independent with the exception of synchronizations between those in

the same thread block, there is relatively high execution scheduling freedom in

many applications.

Each SM supports a maximum of 768 simultaneously active thread contexts.

An integral number of up to eight thread blocks are scheduled to an SM at any

time, to the limit imposed by resource constraints. When scheduling a thread

block, the hardware automatically allocates the necessary amount of several hard-

17

ware resources, primarily thread contexts, shared memory, and registers. When

optimizing kernel code, developers need to be aware of how these limits affect the

number of parallel threads that can run on the device. Optimizations may have

negative effects in some cases because a small change in resource use can cause

fewer thread blocks, and thus many fewer threads, to be simultaneously executed.

This issue is discussed further in the next chapter.

In addition to these explicit execution resources, the texture cache also can

be programmed to perform interpolation and other operations useful in graphics

applications. Specific uses of this feature are discussed in Chapter 4.

2.2.2 Memories

The GeForce 8800 has 86.4 GB/s of bandwidth to its off-chip memory. Never-

theless, with computational resources supporting nearly 400 GFLOPS of peak

performance and each FP instruction operating on up to 12 bytes of source data,

applications can easily saturate that bandwidth. In the worst case, the GeForce

8800 can demand 2.25 TB/s (1.35 GHz * [128 multiply-add operations * 12 bytes

+ 32 SFU operations * 4 bytes]) of memory bandwidth. Therefore, as depicted in

Figure 2.4 and described in Table 2.1, the GeForce 8800 has several on-chip mem-

ories that can be used to exploit an application’s data locality and data sharing

to reduce the demand for off-chip memory bandwidth.

The GPU’s memories are highly specialized and have different latencies and

throughput limitations. Memories furnish fast or efficient access only for particu-

lar patterns of memory references. Poor use of local memories, or an intrinsically

poor fit between an application’s memory requirements and the architecture’s

available memory, can result in poor application performance on the architecture.

On the other hand, applications that can effectively use the local memories can

18

Table 2.1: Properties of GeForce 8800 Memories

Memory Location Size Latency Read-
Only

Description

Global off-chip 768
MB
total

200-300
cycles

no Large DRAM. All data reside here at the
beginning of kernel execution. Directly ad-
dressable from a kernel using pointers. Back-
ing store for constant and texture memories.
Used more efficiently when multiple threads
simultaneously access contiguous elements of
memory, enabling the hardware to coalesce
memory accesses to the same DRAM page.

Shared on-chip 16
KB
per
SM

'register
latency

no Local scratchpad that can be shared among
threads in a thread block. Organized into 16
banks. It is often possible to organize both
threads and data so that bank conflicts sel-
dom or never occur.

Constant on-chip
cache

64
KB
total

'register
latency

yes 8 KB cache per SM, with data originally re-
siding in global memory. The 64 KB limit is
set by the programming model. Often used
for lookup tables. The cache is single-ported,
so simultaneous requests within an SM must
be to the same address or delays will occur.

Texture on-chip
cache

up to
global

>100
cycles

yes 16 KB cache per two SMs, with data origi-
nally residing in global memory. Capitalizes
on 2D locality. Can perform hardware inter-
polation and have configurable returned-value
behavior at the edges of textures, both of
which are useful in certain applications such
as video encoders.

Local off-chip up to
global

same as
global

no Space for register spilling, etc.

achieve superlinear speedups compared to traditional processors. Developers must

use their understanding of the memory system to structure both data and kernel

code for high performance.

Global memory is a large, long-latency memory that exists as off-chip DRAM

and is the default storage location. Kernel output data must be written to global

memory in order to be readable after kernel termination. When acting as a

graphics processor, most accesses in the architecture are to textures or lookup

tables. Because of this, global memory is optimized to provide data in aligned,

contiguous, 16-word lines. This pattern is termed a coalesced access.

19

Coalesced accesses can be achieved by designing kernels so that each thread

in a half-warp accesses the corresponding word, in ascending thread order, in an

aligned, 16-word section of data. The memory system detects the threads jointly

accessing the complete line and aggregates the accesses into a single access. This

optimization is termed global memory coalescing. Other patterns can achieve only

a small fraction of the effective memory bandwidth of coalesced accesses. Unless

memory requests are relatively rare, application performance will generally be

limited by memory bandwidth when memory accesses are not coalesced.

Attempting to coalesce global memory accesses may require major changes to

data structures in both host and device code. For example, data organized as an

array of structures will cause threads to load nonunit-strided addresses when they

access fields of adjacent structures. Figure 2.6 shows an example of this, with

threads accessing a field x of contiguous elements in an array of structures. Loads

to non-contiguous memory addresses does not enable global memory coalescing,

as shown in Figure 2.6(a): a separate memory request is required for each thread.

Reorganizing the data as separate arrays, as is done in Figure 2.6(b), will place

these fields next to each other and naturally set up global memory coalescing if

the alignment requirements are satisfied.

The shared memory is a low-latency scratchpad memory in each SM that is

useful for data that is either written and reused or shared among threads in a

thread block. In CUDA kernel code, shared variables (generally arrays) are de-

clared with specific sizes2 and an instance of the variable exists for each thread

block. This memory is accessible only during execution of its thread block and

its contents are discarded after the thread block completes execution. Data must

be loaded to and from shared memory similar to global memory: transfers from

2Support for shared variables with sizes determined at run time exists but is not used in this
work.

20

� �������	�
�� � �������	�
��

� �������	�
��

� �

����������	
��
�
����
��������
����
���
	���������
���
���������
�

�������	
��
�
���
	�������	����������
��
��������
���������

������

���������

��� ���

���������������������

� �������	�
�� � �������	�
��

������

���������

��� ���

������

���������

������

���������

�������	�
��� � ��� �

� � �

��� ������������������!�

�� �

�

�������	�
�� �������	�
��

���������������������

��� ������������������!�

Figure 2.6: Contrasting noncoalesced and coalesced access patterns.

global memory to shared memory must go through the registers of individual

threads. The shared memory consists of 16 banks; simultaneous requests to dif-

ferent addresses in the same bank will conflict and cause a stall. Accesses to the

same address in the same bank are broadcast to requesting threads.

The use of scratchpad memories has been common in embedded systems. How-

ever, shared memory has one major capability beyond those, which is enabling

reuse of data across the entire thread block with the assistance of synchronization.

For example, if each thread in a thread block reads a portion of a block of data,

they can cooperatively load the values of the data into registers and then store

them into the shared memory for use by the entire thread block. An example of

this within a matrix multiplication kernel is visited in the next chapter.

There are two read-only data caches. The first, the constant cache, holds a

working set of the constant memory data. It has the ability to broadcast the same

value to all threads in a warp, making it useful for lookup tables and other data

where data and memory access patterns can be manipulated to fit this pattern.

This ability provides an effective memory bandwidth many times greater than that

21

provided to global DRAM. The applications with the most dramatic speedups in

Chapter 4 are the ones that can take advantage of this capability. When threads

do not load the same value from the cache, it takes several cycles to provide all

requested values.

The texture cache is the other data cache and holds a working set of the

texture memory data. It has a much longer latency than the constant cache

but is useful for data with 2D spatial locality. It does not suffer as greatly as

the constant cache from irregular memory read patterns. The texture cache can

also interpolate values and provide boundary values for 2D arrays, which is a

useful feature for graphics applications. Use of the texture cache requires special

API calls with the input texture and coordinates passed as parameters, while

addressing the constant cache is done implicitly by declaring a data structure

with the constant keyword.

Memory bank and port conflicts are issues that must be addressed when de-

veloping applications for this architecture. In general, simultaneous accesses to

the same location are desirable for the constant cache and individual banks of the

shared memory. If threads in the same warp load different locations, the memory

will take additional cycles to satisfy the request. For example, assume that the

primary datum of an application is an array of structures, each 16 words long,

which is placed in shared memory. Threads in a warp, accessing the same field of

successive objects, will attempt to access different locations within the same bank

and therefore conflict. This conflict can be avoided with data repartitioning; e.g.,

two separate arrays, one of 15-word size and the other 1-word, will not result in

conflicts when the same field is accessed for different objects. Data padding is

another technique to address this problem.

Unlike bank conflicts in shared memory, reorganizing the data in global mem-

ory is generally more difficult because it requires either data structure changes in

22

Table 2.2: Constraints of GeForce 8800 and CUDA

Resource or Configuration Limit
Parameter

Threads per SM 768 threads
Thread Blocks per SM 8 blocks
32-bit Registers per SM 8192 registers
Shared Memory per SM 16 384 bytes
Threads per Thread Block 512 threads

the host code portions of the application or a separate data reorganization phase,

either in host or kernel code. One possible work-around is to load data in bulk

into shared memory and then use it as necessary, even if little reuse or no use

occurs for some of the loaded data. Data structures of new applications whose

execution is primarily in parallel kernels should be designed and constructed to

avoid these issues.

2.3 Architectural Interactions

Accurately predicting the effects of one or more compiler optimizations on the

performance of a CUDA kernel is often quite difficult, largely because of interac-

tions among the architectural constraints listed in Table 2.2. Many optimizations

that improve the performance of an individual thread tend to increase a thread’s

resource usage. However, as each thread’s resource usage increases, the total num-

ber of threads that can occupy an SM decreases. Occasionally this decrease in

thread count occurs in a dramatic fashion because threads are assigned to an SM

at the granularity of thread blocks. In short, there is often a tradeoff between the

performance of individual threads and the thread-level parallelism on an SM.

23

For example, consider an application that uses 256 threads per block, 10 reg-

isters per thread, and 4 KB of shared memory per thread block. This application

can schedule 3 thread blocks and 768 threads on each SM. However, an optimiza-

tion that increases each thread’s register usage from 10 to 11 (an increase of only

10%) will decrease the number of thread blocks per SM from three to two, which

decreases the number of threads on an SM by 33%. In this case, the GeForce 8800

can only assign two thread blocks (512 threads) to an SM because a third block

would increase the number of threads to 768, with total register usage of 8448

(768 threads * 11 registers/thread), above the 8192 registers per SM available. In

contrast, an optimization that increases each thread block’s shared memory us-

age by 1 KB (an increase of 25%) does not decrease the number of thread blocks

per SM. The optimization space is inherently nonlinear, with register usage in

particular often triggering changes because many optimizations affect it.

It is important to note that additional optimizations or a change in the granu-

larity of work that each thread performs may eventually obtain more performance,

even though an initial change significantly reduced performance. This possibility

makes iterative optimization uncertain and difficult, since one cannot be certain

that a seemingly high-performance configuration is not a local performance maxi-

mum. Chapter 3 goes into more detail on the effects of the various optimizations.

2.4 Software Environment and Support

For CUDA compilation, NVIDIA provides a compiler wrapper called nvcc that

handles all parts of the compilation flow, including linking host and kernel binaries.

The compiler also supports several options that programmers can use to debug

kernels and to gain intuition on their performance. Two flags are especially useful:

-ptx and -cubin. The amount of time it takes to run nvcc with these flags is

24

much shorter than actual compilation because only the kernel code is processed

when using the flags.

Nvcc compiles kernel code to an assembly-like representation termed PTX.

PTX is normally encoded in an object file for consumption by the CUDA run-

time, which processes this code, performs further optimization such as instruction

scheduling, and generates hardware-specific code for execution. The purpose of

PTX is to provide code portability and to abstract the exact workings of the

architecture away from application developers.

The -ptx flag for nvcc outputs PTX code in a human-readable text format. Al-

though PTX is not the exact code that is executed on the hardware, it often gives

insights into why performance degrades or improves after a manual optimization

is applied. In particular, information such as instruction count, instruction mix,

and a rough idea of scheduling can be reliably utilized. For example, unrolling

a loop with strided memory accesses creates successive operations that operate

at different offsets from a base address. PTX shows the reduction in address

calculations that results from this transformation.

The CUDA runtime that generates executable machine code reschedules in-

structions and allocates registers. The runtime introduces an uncontrollable factor

during program optimization and makes the effects of optimizations on local re-

source usage less predictable. In addition, if the PTX code uses more registers

than are physically available, the kernel will fail to execute.

The -cubin flag outputs the resource usage of GPU kernel code, including

the shared memory used per thread block and registers used per thread. The

resource usage is critical to understanding the performance of the code because

each SM runs the number of thread blocks that can fit into the local resources.

As previously discussed, a small change in code can result in resource usage that

changes the number of thread blocks executing on an SM, which can significantly

25

impact performance. The information provided by -cubin is used in this work to

calculate the number of thread blocks that can simultaneously reside on each SM.

26

CHAPTER 3

OPTIMIZATIONS

This chapter discusses optimization principles and strategies for data-parallel,

many-core processors, such as the GeForce 8800. I first explain the principles

that should be kept in mind when optimizing applications for the architecture. I

then apply these principles to a matrix multiplication kernel. The chapter closes

with descriptions of specific categories of optimization with, concrete examples.

3.1 Performance Principles

There are three basic principles to consider when optimizing an application for

any platform. Performance of an application on a highly parallel system is gener-

ally measured by its throughput of useful instructions. For applications with good

performance on the GeForce 8800, these are generally floating-point operations.

The floating-point throughput of an application depends on the percentage of its

instructions that are floating-point operations. The GPU is capable of issuing

172.8 billion operations per second on the SPs. These include fused multiply-add

operations, which are counted as two operations for throughput calculations. If

a quarter of an application’s instruction mix are fused multiply-adds, then its

performance can be at most 2 * 1/4 FP per op * 172.8 billion ops per second =

86.4 GFLOPS. This performance can be achieved when the SPs are fully utilized.

Assuming that utilization of execution resources is not reduced, decreasing the

number of nonfloating-point operations is beneficial to performance. Transforma-

27

tions that reduce the proportion of these instructions are discussed in the next

sections.

Periods in which the execution resources are not utilized, due to stalls, de-

tract from performance. A stall generally means that there are no threads whose

operands are available for execution. Because of the long (and ever increasing)

latency to off-chip memory, the primary utilization concern often is ensuring that

enough independent work exists to be executed while threads are stalled on global

memory accesses.

As noted in the previous chapter, there is significant scheduling freedom on

the GeForce 8800. First, an SM can continue to execute independent instructions

after a long-latency instruction within the same warp. Second, different warps

in the same thread block can execute while a warp is stalled on a long-latency

operation. Third, up to eight independent thread blocks can be simultaneously

assigned to an SM. A wide variety of techniques enhance one or more of these

aspects of schedulability, although they can incur an instruction efficiency cost.

Lastly, global memory bandwidth can limit the throughput of the system. The

86.4 GB/s global memory bandwidth on the GeForce 8800 must feed the 388.8

GFLOPS of execution resources, so only a small fraction of instructions can be

global memory accesses if the hardware is to be utilized effectively. Chapter 4

shows examples of optimized applications that are still bandwidth-limited on the

GeForce 8800. This issue will continue to be a first-order concern for many-core

processors, as execution resources can increase at a near-exponential rate while

bandwidth into and out of a chip will grow at a much slower rate.

These principles apply to any form of processor. The methods of following

these principles, however, can differ between architectures. For the GeForce 8 Se-

ries and similar GPUs, the process for optimizing applications can be constructed

from a list of five principles.

28

1. Leverage zero-overhead thread scheduling to hide memory latency.

The latency of global memory is at least 200 cycles, requiring 1600 or more

instructions to cover the latency for the eight SPs in each SM. The ar-

chitecture provides zero-overhead warp scheduling to enable thread-level

parallelism to supply instructions to hide this latency, whereas traditional

processors have been limited to using instruction-level parallelism (ILP) and

sometimes a small amount of TLP. The impact on program developers is

that their applications may need to be decomposed to a much finer level

than they previously practiced to provide a sufficient number of threads.

2. Threads within a thread block can communicate via synchroniza-

tion, but there is no built-in global communication mechanism for

all threads. From the hardware design perspective, this design avoids the

need for virtualization of hardware resources, enables the execution of the

same CUDA program across processor family members with a varying num-

ber of SMs, and makes the execution hardware relatively scalable. However,

this limits the kinds of parallelism that can be utilized within a single kernel

call, and affects which algorithms map well to the architecture.

3. Optimize use of on-chip memory to reduce global memory band-

width usage and redundant execution. For most unoptimized applica-

tions the primary performance bottleneck is global memory bandwidth. The

bandwidth limitation was recognized by researchers over a decade ago [10,

11], but mainly in the context of superscalar processors. With initial ver-

sions of applications, optimizations generally will not improve application

performance unless the application uses bandwidth more efficiently as a re-

sult. Working memory within a group of cores consists primarily of a large

register file and the shared memory. Shared memory’s strength is enabling

29

the sharing of data among threads in a thread block. Texture and constant

caches can also reduce the load on global memory bandwidth. Developers

still have to control the number of registers and shared memory used per

thread block, since using too many of these resources can reduce the number

of thread blocks simultaneously running per SM, exposing memory stalls.

4. Group threads to avoid SIMD penalties and memory port/bank

conflicts. CUDA is based on the SPMD model, but its current implemen-

tation on the GeForce 8800 imposes SIMD mode among threads in the same

warp. Good performance requires that threads in a warp follow mainly the

same control flow path during execution. In some algorithms, threads can

be reorganized to avoid divergent control flow. Appropriate thread grouping

can also preserve performance by avoiding memory port and bank conflicts,

as well as enable global memory coalescing.

5. Trade resource usage to improve utilization of hardware resources

and efficiency of the instruction stream. Because of the wide variety

of execution resources, it is possible to use resources to free up demands on

other resources and improve overall system performance. For example, the

contents of registers can be spilled to shared or global memory to reduce

the number of registers per thread and thus potentially increase concurrency

on the system. Conversely, using more registers per thread can reduce the

number of loads and stores executed per thread and increase instruction

stream efficiency, although this shift may reduce the total number of threads

simultaneously running on the system. Examples for specific applications

are discussed in Section 4.3.

The next section illustrates how these principles enable efficient optimization

for a simple kernel running on a many-core processor.

30

3.2 Optimization Example: Matrix Multiplication

This section applies the optimization principles described in the previous section

to a matrix multiplication kernel. Matrix multiplication is a highly parallel algo-

rithm with heavy data sharing across threads. To calculate an element of a result

matrix, one takes the dot product of the corresponding row of the first input

matrix and the column of the second input matrix. Figure 3.1 shows multiple

versions of a matrix multiplication kernel, while Figure 3.2 depicts their mem-

ory access patterns. Experiments were performed on a 4096x4096 dense matrix.

Starting values for indexA, indexB, and indexC are determined by block and

thread coordinates. I use thread blocks consisting of 256 threads arranged in a

16x16 square.

Figure 3.1(a) shows a simple matrix multiplication kernel: each thread loops

through a sequence that loads two values from global memory, multiplies them,

and accumulates the value. This code provides 10.58 GFLOPS of performance.

Before making any assumptions about the source of performance limitations, the

developer can calculate the theoretical performance of the code assuming full

SP utilization. There is one fused multiply-add out of eight operations in the

inner loop, for an estimated potential throughput of 43.2 GFLOPS. Since several

hundred threads are being executed per SM and all threads access global memory

for their input data, the problem appears to be lack of available global memory

bandwidth.

Although the algorithm has inherent data reuse, this implementation does not

capitalize on that. All memory operations access global memory. One quarter of

the operations executed during the loop are loads from off-chip memory, which

would require a bandwidth of 173 GB/s (128 processor cores * 1/4 instructions *

4 B/instruction * 1.35 GHz) to fully utilize the instruction issue bandwidth, which

31

���������	

���
������
�������������
���������������	
�������������
���������������	

������������������ �����	
������������������ �����	
��� �����!����	
��� �����!�����"�#�����	
������ $�������
�	

��
���
�����	���%���	��!!�
�����
������������!�����������
��������"����������	
����&

������ $�������
�	
&
��� �������������	

���������	

���
������
�������������
���������������	
�������������
���������������	

������������������ �����	
������������������ �����	
��� �����!����	
��� �����!�����"�#�����	
������ $�������
�	

��������
�����	
���
��
����
��
���
�
�����
����������
�����	
���
���
����
���
���
�

������ $�������
�	
&
��� �������������	

��������	
���
��

�	���
��������������������

������������������

���
������
�������������
���������������	
�������������
��������������
	

������������������ �����	
������������������ �����	
���
���
������
��������������
�
��� �����!����	
��� �����!�����"�#�����	
������ $�������
�	

��
���
�����	���%���	��!!�
�����
������������!�����������
��������"����������	
���������������	
���
��

�����������
��
��������
�
����&

������ $�������
�	
&
��� �������������	
�����������
���������

�������������������

����	������	
�
������������
�
���������	

���
������
�������������
���������������	
�������������
���������������	

��	
���
���
�����
���
���
���
�����
��� �����!����	
��� �����!�����"�#�����	
������ $�������
�	

������	������	
�
��������������
�
��
���
�����	���%���	��!!�
�����
������������!�����������
��������"����������	
����&

������ $�������
�	
&
��� �������������	

���������������

���������	

���
�����	
�������%�#�����	
������!!�
���
����������!����� �����
������"���� �����	
����� ����!!	
����� �����!��#�����	
��&

��� �������������	

������������ ��!���

Figure 3.1: Matrix multiplication optimization examples.
Code differences from tiled version are shown in bold.

32

� �

����������	
����
����������������

� �

������	����������������
�������	��	������������������

�������������
�����	�����
�������������
�����

� �

������������	�����	���������������������
�������������	��������	��
	����	�����

 ����������	���� ����������������� ���	���� ��	���������������������������

� �

����!�������������"��	������
�����	�����
�������������
���������

�������������	��
�������#���������
�������������������������

$������%�����

$������%�����

$������%�����

���������

Figure 3.2: Graphical depictions of the memory access patterns of different matrix
multiplication versions.

33

is more than twice the available amount. In order to achieve better performance,

a developer must reduce the number of accesses of global memory.

For a given application, there are three choices for local memories: texture

cache, constant cache, and shared memory. The appropriate choice for ma-

trix multiplication is the shared memory; constant cache is unsuitable because

threads in a warp will simultaneously load different values for at least one input

matrix, and the access patterns and amount of reuse favor shared memory over

texture cache. By using memory tiling [12–15], the kernel’s global memory ac-

cesses can be reduced by a factor equal to the length of a square tile. The choice

of thread block is a major decision because larger tile sizes increase data sharing

and thus global memory efficiency, but potentially reduce schedulability because

fewer thread blocks can be executed per SM. On the GeForce 8800 there are a

limited number of useful sizes because of the requirements for global memory co-

alescing, the need to have full warps for good SP utilization, and the maximum

of 512 threads per thread block.

For matrix multiplication, I choose a thread block and memory tile size of

16x16 because the memory system coalesces accesses of 16 aligned, contiguous

words, using off-chip bandwidth effectively. This configuration reduces the total

number of global loads performed by each thread by a factor of 16. The code for

this version is shown in Figure 3.1(b), with a graphical depiction in Figure 3.2(b).

Two 16x16 shared memory arrays are declared, one for each input matrix tile.

Each thread loads a single element from each tile: cooperatively they load both

16x16 tiles into registers. The elements each thread loads are chosen so that

half-warps load full lines from memory, enabling coalesced memory accesses. The

threads then store the tiles into the shared memory. Finally, a small loop calcu-

lates the partial dot product. Two synchronizations are required for correctness:

the first ensures that values in the shared memory are written before being used

34

by other threads; the second ensures that all threads have finished using the values

in shared memory before a new tile is loaded.

The 16x16 tiled version of matrix multiplication achieves 46.49 GFLOPS, or

approximately 4.5X the execution throughput of the initial version. This perfor-

mance is slightly higher than the estimated potential throughput of the original

code, so it appears that the application achieves full usage of the SPs. The use

of 16x16 tiles reduces global loads by a factor of 16 over the nontiled configura-

tion, which reduces the demand on global memory bandwidth to approximately

an eighth of the available bandwidth. Since utilization appears to be high, a

developer can now focus on improving the efficiency of the code.

Code efficiency can be improved by reducing the number of operations that

are not floating-point calculations. Branches and address calculations are two

examples that are easily removed. Figure 3.1(c) shows removal of these operations

via loop unrolling. By unrolling the inner loop, address calculation instructions are

eliminated by replacing variable array indices with constant offsets. By completely

unrolling the loop, all branch instructions have been eliminated. This version of

the matrix multiplication kernel can often achieve double or greater performance

over the simple tiled version.

Another method of improving efficiency is to perform rectangular tiling, as

shown in Figure 3.1(d) and depicted in Figure 3.2(c). This transformation changes

the granularity of computation such that a single thread calculates multiple ele-

ments in the result matrix. The primary benefit to efficiency is register tiling [16]:

the value As[ty][i] only needs to be loaded into a register once for the calcula-

tion of two different result elements, reducing the total number of loads. The total

number of executed control flow operations is also reduced. Rectangular tiling can

be combined with unrolling for further gains. The next section will discuss other

ways in which rectangular tiling may affect performance.

35

A final optimization that should be mentioned is prefetching, which some

developers perform instinctively. In the code shown in Figure 3.1(e), loads of the

values for the next tiles to be processed are initiated prior to calculating the partial

dot product, hiding the latency of the global memory access. This transformation

improves individual thread performance, which is generally easy for a developer to

reason. However, prefetching in this situation improves performance only slightly.

Prefetching can significantly improve execution resource utilization on traditional

processors because it reduces or eliminates the exposed stall time prior to the use

of a loaded value. On a highly threaded system such as the GeForce 8800, exposed

stall time is generally covered by the execution of other threads, so prefetching

does not have as great a performance impact.

Prefetching can sometimes decrease overall performance by reducing thread-

level parallelism. In the case of matrix multiplication, prefetching requires two

additional registers per thread to receive the prefetched values, which can result in

fewer thread blocks executing on each SM. Experiments on matrix multiplication

in Section 5.1 show that prefetching has a minor effect on performance at best and

in one case decreases performance due to reduced TLP. The optimized versions

of applications in Chapter 4 generally do not use prefetching.

3.3 Categories of Optimization

One fact that is ignored by many novice developers is that “optimizations” are

simply transformations that may decrease application performance unless they

target a specific behavior which inhibits application performance for the target

application and architecture. Thus, optimization should always be done by first

considering what effects are desired, then analyzing which transformation will

produce the effect with minimal negative side effects. In this section I divide the

36

three principles in Section 3.1 into various categories of optimization that apply

to the GeForce 8800, then mention specific examples of optimizations.

The basic strategy for achieving good kernel code performance on the GeForce

8800 is to first ensure that executing threads are not starved for data: global

memory bandwidth should not be the limiting factor on performance. After that,

optimizations should balance an efficient instruction stream with high utilization

of execution resources.

Optimizations rarely improve an aspect of machine-level behavior in an iso-

lated manner. Many optimizations affect several aspects, producing a give-and-

take situation between different categories. Moreover, many optimizations in-

crease resource usage and thus compete for a limited budget of registers, thread

contexts, and shared memory. The most common way in which optimizations in-

teract and interfere on the GeForce 8800 is by their effects on register usage. For

example, an optimization that increases the number of independent instructions

after a long-latency instruction generally uses additional registers. This optimiza-

tion causes register usage of each thread and thread block to increase, which in

turn can cause the number of thread blocks assigned to each SM to decrease. I

mention specific cases below.

3.3.1 Memory bandwidth optimization

The first class of optimizations deals with reducing pressure on memory band-

width, particularly global memory. Attempts to improve instruction efficiency

or execution resource utilization matter little to performance if the executing

threads are starved for data. This problem was recognized by Ding and Kennedy

for traditional processors [11]; the issue is exacerbated for data-parallel many-core

processors. Listed here are some techniques for reducing global memory accesses.

37

Ding and Kennedy mention several in [17], with more sophisticated techniques

described in [18].

• Capitalize on the reuse of data via local, low-latency memories. I

showed an example of the use of shared memory in a matrix multiplication

kernel. The caches also assist in reuse of data. Utilizing the memories

effectively may require restructuring of computation using transformations

such as loop interchange [19] to create an amenable access pattern.

• Improve data locality by coalescing global memory accesses to fully

utilize the width of the global memory bus. Noncoalesced accesses utilize

only a fraction of the total memory bandwidth. Optimizations include:

– Using shared memory as a buffer to load data in bulk, then

accessing them in whatever pattern the programmer finds convenient

from that memory. Even if bank conflicts occur during shared memory

accesses, overall performance may improve even without much data

reuse. Note that memory tiling naturally achieves this effect. It is

conceivable that loading some data that will not be used may be worth

the effects of coalescing, although no example has been encountered in

this study.

– Reorganizing data and restructuring the application so that

the data the kernel accesses are located in aligned, contigu-

ous regions of memory. One example is to split an array of struc-

tures into multiple arrays so that fields that formerly required nonunit-

strided access are now adjacent in memory. Doing so manually is gen-

erally considered poor software engineering practice, but it may be

possible for the compiler to perform the transformation or for a smart

memory system to reorganize data at runtime. Work by Yamada et

38

al. [20] proposed a combined hardware and software technique to ad-

dress this issue. Truong et al. [21] recognized the positive cache effects

of similar optimizations on different instances of dynamically allocated

objects, while Chilimbi et al. automate the optimizations [22].

It is possible for applications to still be performance-limited by global memory

bandwidth even after these optimizations have been performed. Such applications

often have little data reuse and have data organizations that cannot be signifi-

cantly modified or require major effort to be modified.

3.3.2 Dynamic instruction reduction

The second category is to reduce the dynamic instruction count per thread, or

increase the efficiency of the instruction stream. Because these are common tech-

niques for improving the performance of applications executing on traditional su-

perscalar processors, their first-order effects are generally well understood. Some

of the most effective examples of these optimizations are listed below, along with

a short description of their intended effects and common side effects.

• Common subexpression elimination (CSE). This optimization removes

repeated calculations of an expression, such as an arithmetic operation or

the load of a value, and instead uses the saved value of a previous compu-

tation from a register. It tends to use additional registers unless a sequence

of redundant expressions can be eliminated.

• Loop-invariant code motion (LICM). Related to common subexpres-

sion elimination, this optimization involves the movement of an expression

within a loop body to a program point prior to the loop. LICM is pos-

sible when the sources of the expression do not change during the loop’s

39

execution and when the expression is calculated on every path of the loop

(for nonspeculative motion). Similar to CSE, it tends to uses additional

registers.

• Loop unrolling. When a loop has a constant or otherwise constrained trip

count, it is often advantageous to “unroll” the loop by an even divisor of

the trip count, replacing it with a loop that iterates fewer times but per-

forms several times more work per iteration. This optimization has several

benefits:

– Fewer loop iteration instructions, such as branches and induction vari-

able increments, are executed.

– Instructions can be combined. For example, a loop may increment a

pointer and then load from the location. When the loop is unrolled,

instead of multiple increment operations, subsequent loads incorporate

an offset and a single increment operation is performed. The unrolled

matrix multiplication kernel in Figure 3.1(c) is an example of this effect.

Complete unrolling of a loop is the extreme case of loop unrolling, and is

very profitable for loops with small bodies since the majority of dynamic

operations may be loop counter and branch instructions. It also frees up the

register that was used as the loop counter. Loop unrolling must be balanced

against additional pressure on instruction cache capacity, so in general only

the innermost loops of a kernel will be the ones unrolled. It may also trigger

other optimizations that change resource usage.

40

3.3.3 Increasing thread-level parallelism

The goal of the third category of optimization is to improve execution resource

utilization by providing enough threads/warps to hide the stalling effects of long

latency and blocking operations. Examples of long latency operations are loads

from global or texture memories. Blocking operations include barrier synchro-

nization, which stops a warp’s execution until all warps in the same block have

reached the barrier.

A common optimization in this category is to decrease the thread block size

and increase the number of thread blocks. This optimization can increase the

number of thread blocks assigned to each SM and provide more independent warps

from other thread blocks when one thread block reaches a barrier. However, this

transformation often requires changing the granularity of computation. In cases

where memory tiling is utilized, it may have the effect of reducing data sharing

and increasing pressure on memory bandwidth.

3.3.4 Increasing intrathread parallelism

The fourth category of optimization, intrathread parallelism, ensures the avail-

ability of independent instructions within a thread. These optimizations have

a multiplicative effect with thread-level parallelism, so small changes can have

major effects on performance. These optimizations can be broken down into two

subcategories.

• Instruction-level parallelism. ILP-increasing code transformations have

been extensively studied and applied to many architectures, particularly

EPIC/VLIW architectures. John Sias’ Ph.D. dissertation [23] discusses

many of these in detail. One interesting case is loop unrolling, which is also

an efficiency-increasing optimization. An example is shown in Figure 3.1(c),

41

where the loads from shared memory for the different tiles can execute in

any order.

This subcategory is primarily the jurisdiction of the instruction scheduler of

the CUDA runtime. It appears to reschedule operations to hide intrathread

stalls, sometimes to the detriment of interthread parallelism. As with opti-

mizations to reduce instruction count, scheduling to reduce intrathread stalls

may increase register usage and potentially reduce the number of thread

blocks on each SM.

• Memory overlap. A special case of ILP, memory operations can be sched-

uled to amortize and overlap latencies, reducing the likelihood that execution

resources will stall on global memory accesses. The GeForce 8800 supports

a large number of in-flight memory accesses, making the overlap of memory

access latencies a key aspect of performance on that architecture. This cate-

gory breaks down into memory-level parallelism (MLP) [24] and prefetching.

– Memory-level parallelism refers to the reordering of memory operations

to ensure that many loads are in flight before a stalling use is encoun-

tered. For example, in Figure 3.1(b), loads of elements of arrays A and

B can be scheduled before the store to As in order to amortize the ex-

posed latencies of the loads. This concept is similar to the overlap of

cache misses on traditional processors [25]. Proper extraction of MLP

also causes more work to be available from each thread block during

the stall, since each warp can execute two load operations prior to a

consuming store. This optimization is generally the domain of nvcc and

is difficult for a developer to control manually, but is still an important

aspect of extracting performance from applications.

42

– The developer can explicitly insert prefetching code to initiate long-

latency global loads as early as possible and hide its latency with other

instructions. An example is shown in Figure 3.1(e). As discussed in the

matrix multiplication example, the abundant TLP supported by the

architecture reduces the performance benefits of prefetching relative to

its effects on traditional processors. In addition, prefetching generally

requires additional registers in code regions where register usage is

already high, sometimes causing fewer thread blocks to reside on each

SM. Good management of ILP and MLP can minimize the incremental

benefit of prefetching.

3.3.5 Work redistribution

The fifth category involves redistribution of work across threads and thread blocks.

These optimizations can change both instruction efficiency and resource utiliza-

tion, with some effects on memory bandwidth usage. Because of their nature,

optimizations in this category can have unpredictable results due to changes in

register usage.

Thread block and memory tile shape and size selection is one optimization

that falls into this category. Although tiling is primarily done to improve memory

bandwidth usage, the size of the tile also has efficiency and utilization implica-

tions. Large tiles generally have higher efficiency than smaller tiles, but reduced

scheduling flexibility (utilization) since a larger percentage of threads must stall

at barrier synchronizations.

One example is rectangular tiling in Figure 3.1(d): instead of each thread

computing one result, they compute multiple results. This transformation allows

register tiling (also referred to as unroll-and-jam), where values can be reused in a

43

register within a single thread to eliminate loads. The total number of threads is

reduced, which may potentially reduce thread-level parallelism. Another benefit is

the reduction in the total number of control flow operations executed by a kernel:

more useful work is done per thread block and the total number of thread blocks

is reduced. There is often a small increase in ILP, but the increase in register

usage often causes fewer threads and thread blocks to be executed per SM.

Another optimization that is occasionally useful is to distribute work across

multiple invocations of a kernel. This optimization is sometimes necessary to use

the constant cache, due to its size limitation. Splitting execution across mul-

tiple invocations may also help improve cache behavior. The additional kernel

invocation overhead is generally negligible compared to the kernel execution time.

3.3.6 Resource balancing

The last category is best termed resource balancing. The purpose of these op-

timizations is to make changes in resource usage to alleviate pressure on over-

subscribed resources and shift to underutilized ones to produce better overall

performance. Unless the whole system is taken into account, the optimization

may be counterintuitive. Because of the large amount of execution resources,

most optimizations involve giving up instruction efficiency to optimize another

aspect of execution.

One optimization in this category is the movement of data from capacity-

constrained, low-latency memories to larger, high-latency memories to allow more

threads to run simultaneously. For example, explicit register spilling to shared

or global memory can be performed by the application developer to allow more

thread blocks to be simultaneously executed per SM. The resulting configuration

may achieve higher performance, despite the reduced instruction efficiency, be-

44

cause the additional thread blocks improve overall resource utilization. Similarly,

a kernel with small input and output data sets but large working sets may find

it advantageous to spill data to global memory to avoid congesting registers or

shared memory.

45

CHAPTER 4

APPLICATION STUDY

This chapter discusses an application mapping study performed in Spring 2007.

Several groups of students ported applications to the GeForce 8800 with the goal

of achieving maximal speedup. These applications were of interest to existing de-

velopers and users, who saw value in obtaining significant performance increases.

They are more interesting and useful than microbenchmarks because of their

larger code sizes and data sets, and variety of instructions and control flow. Work

of a similar nature has been performed by Che et al. [26]. I discuss the appli-

cability and effectiveness of the principles and techniques in Chapter 3 on these

applications.

To accommodate the SIMD nature of the SMs on the GPU, threads of an appli-

cation must follow nearly uniform paths of execution to have good performance.

They should also have regular memory accesses and high compute-to-memory

ratios or significant data reuse. Table 4.1 lists applications that have these char-

acteristics in varying amounts and have been ported to CUDA, along with source

and kernel lines of code (excluding comments and whitespace).

46

Table 4.1: Application Suite
Application Description Source

Lines
Kernel
Lines

CPU
Execution

Paral-
lelized

H.264 A modified version of the 464.h264ref benchmark from SPEC CPU2006. This application is
an H.264 (MPEG-4 AVC) video encoder. A serial dependence between motion estimations of
macroblocks in a video frame is removed to enable parallel execution of the motion estimation
code. Although this modification changes the output of the program, it is allowed by the H.264
standard.

34 811 194 35%

LBM A modified version of the 470.lbm benchmark from SPEC CPU2006. This application uses the
Lattice-Boltzmann Method for simulating 3D fluid dynamics. The program has been changed
to use single-precision floating-point and print fewer status reports.

1481 285 > 99%

RC5-72 This application accelerates distributed.net’s RSA RC5-72 bit challenge, which performs brute-
force encryption key generation and matching.

1979 218 > 99%

FEM Finite element modeling. Simulation of dynamic behavior of 3D graded materials. 1874 146 99%
RPES Rys polynomial equation solver. Calculates 2-electron repulsion integrals, which are a sub-

problem of molecular dynamics.
1104 281 99%

PNS Petri Net Simulation. Simulation of a mathematical representation of a distributed system. 322 160 > 99%
SAXPY Single-precision floating-point implementation of saxpy from high-performance LINPACK, used

as part of a Gaussian elimination routine.
952 31 > 99%

TPACF Implementation of two point angular correlation function, used to find the probability of finding
an astronomical body at a given angular distance from another astronomical body.

536 98 96%

FDTD Finite-difference time-domain. 2D electromagnetic wave propagation simulation in an arbitrary,
user-defined medium.

1365 93 16.4%

MRI-Q Computation of a matrix Q, representing the scanner configuration, used in a 3D magnetic
resonance image reconstruction algorithm in non-Cartesian space.

490 33 > 99%

MRI-FHD Computation of an image-specific matrix F Hd, used in a 3D magnetic resonance image recon-
struction algorithm in non-Cartesian space.

343 39 > 99%

CP Computation of electric potential in a volume containing point charges. Based on direct Coulomb
summation, as described in [27].

409 47 > 99%

47

Benchmark versions of some of the applications are presently available at [28].

The larger codes often required more modification to port to CUDA; the most

extreme case was H.264, which involved a large-scale loop distribution to extract

the motion estimation kernel from nonparallel application code. The percentage

of single-thread CPU execution time spent in kernels is given to show the to-

tal application speedup that can be achieved as limited by Amdahl’s Law. For

example, FDTD’s kernel takes only 16.4% of execution time, limiting potential ap-

plication speedup to 1.2X. In general, kernel execution occupied the vast majority

of execution for these applications when run entirely on a single CPU core.

Application selection is biased towards particular classes of problems such

as linear algebra and stencil and grid-based computations. Most of these have

data structures laid out in simple arrays, enabling easy coalescing of memory

accesses by developers. Kernels generally have little variance in control flow and

corresponding predictability in memory accesses.

Table 4.2 shows characteristics of the optimized application implementations

using CUDA version 0.8.1 The data for matrix multiplication are listed for com-

parison.2 The maximum number of simultaneously active threads shows the

amount of thread parallelism available on the hardware at a given time, taking

resource constraints into account, with a maximum of 12 288 across the 16 SMs.

There is a wide range of values, with little correlation of number of threads to

actual speedup. The total threads in a given kernel often number in the millions.

The number of registers and the amount of shared memory per thread show the

degree of local resource utilization.

1Due to incompatibilities in both base architecture and CUDA versions, several of the appli-
cations could not be directly mapped to the evaluation system used in later chapters. Rather
than remove the applications, I chose to keep the performance information for the older system.

2The GPU speedup for matrix multiplication uses a highly optimized library with SSE2
support as comparison. Kernel speedup compared to a CPU binary without SIMD support and
optimized only for cache usage is on the order of 100X.

48

Table 4.2: Application Performance for Typical Long-Running Execution Profiles
Appli-
cation

Max Simul-
taneously

Active
Threads

Registers
per

Thread

Shared
Mem per
Thread

(B)

Global
Memory to

Computation
Cycles Ratio

GPU Exec
%

CPU-
GPU

Transfer
%

Architectural
Bottleneck(s)

Kernel
Speedup
on GPU

Appli-
cation

Speedup

Mat
Mul

12 288 9 8.1 0.276 16.2% 4% Instruction issue 7.0X 2.0X

H.264 3936 30 55.1 0.006 2.6% 4.5% Register file
capacity and
cache latencies

20.2X 1.47X

LBM 3200 32 84.2 0.415 98.3% 0.4% Shared memory
capacity

12.5X 12.3X

RC5-72 3072 42 0.3 '0 64.3% 0.5% Instruction issue 17.1X 11.0X
FEM 4096 18 61 1.135 91.4% ¿ 1% Global memory

bandwidth
11.0X 10.1X

RPES 4096 23 24.8 0.01 37.5% 1% Instruction issue 210X 79.4X
PNS 2048 32 9.9 0.241 98% ¿ 1% Global memory

capacity
24.0X 23.7X

SAXPY 12 288 7 0.3 0.375 88% 4.5% Global memory
bandwidth

19.4X 11.8X

TPACF 4096 24 52.2 0.0002 34.3% ¿ 1% Shared memory
capacity

60.2X 21.6X

FDTD 12 288 11 8.1 0.516 1.8% 0.9% Global memory
bandwidth

10.5X 1.16X

MRI-Q 8192 11 20.1 0.008 > 99% ¿ 1% Instruction issue 457X 431X
MRI-
FHD

8192 12 20.1 0.006 99% 1% Instruction issue 316X 263X

CP 6144 20 0.4 0.0005 > 99% ¿ 1% Instruction issue 102X 102X

49

Other information in the table includes the ratio of global memory cycles to

computation cycles after shared memory and caches are utilized to their fullest

extent, expressing the global memory bandwidth requirements of the most time-

consuming kernel of each application. Section 4.1 discusses how this ratio cor-

relates to performance. GPU execution time expresses how much of the total

execution time the application kernels occupy on the GPU. CPU-GPU transfer

time is shown for comparison with the computation time. One interesting case is

H.264: a highly optimized version spends more time in data transfer than GPU

execution. The last item is the architectural bottleneck(s) that appears to be

limiting these implementations from achieving higher performance.

The two rightmost columns of Table 4.2 list the performance of ported appli-

cations. The baseline, single-thread CPU performance is measured on an Opteron

248 system running at 2.2 GHz with 1 GB main memory. The choice of processor

was made with the intent of having a high-performance, single-core processor;

similar CPU performance is found with newer, high clock rate multicore architec-

tures.3 CPU versions were heavily optimized for applications with outstanding

GPU speedup to ensure that comparisons were fair: SIMD instructions and fast

math libraries were some of the more effective optimizations. Applications were

compiled with gcc version 4.1.3, with -O3 or the maximum optimization level

that worked correctly. Both the speedup of CUDA kernel execution over single-

thread CPU kernel execution and total application speedup were measured, with

all floating-point numbers set to single-precision. Measurements were made with

typical long-running inputs; e.g., for SPEC CPU benchmarks the reference inputs

were used. I do not discuss the precision requirements of applications in this

3My claim of similar performance does not factor in performance using the CPU’s SIMD
execution resources: recently released processors can have double or more SIMD resources than
the processor used here. Experiments in later chapters and work on individual applications [29,
30] were performed with a more contemporary evaluation system. As explained previously,
several of these applications could not be directly ported to the newer system.

50

work, although experiments have shown that at least two applications, LBM and

FDTD, suffer from insufficient floating-point precision.

4.1 General Performance Trends of Optimized

Applications

In general, significant kernel and application speedup is obtained across the suite,

as shown in Table 4.2. Compute-intensive kernels with relatively few global mem-

ory accesses achieve high performance. Kernels that are not as compute-intensive

still achieve respectable performance increases because of the GeForce 8800’s abil-

ity to run a large number of threads simultaneously. Low-latency floating-point

execution is a major factor in speedup, as is the use of caches and shared memory

to reduce latencies and global bandwidth usage. Careful organization of threads

and data was generally useful in optimizing the usage of the specialized memories,

most notably in the MRI kernels.

The applications in Table 4.2 with the highest performance gains, namely

TPACF, RPES, MRI-Q, MRI-FHD, and CP, have low global access ratios and

spend most of their execution performing computation or accessing low-latency

memories. They also generate enough threads to hide potential stalls on long-

latency operations and maintain high pipelined floating-point throughput.

One major reason for the high performance of the MRI kernels is that a sub-

stantial number of executed operations are trigonometry functions; the SFUs exe-

cute these much faster than CPU fast math libraries. SFU performance accounts

for approximately 30% of the speedup of those kernels. Significant effort was spent

improving the CPU versions (approximately 4.3 times faster than the original

code) to ensure that the CPU-GPU performance comparison was reasonable [31].

The CP kernel has a significant number of reciprocal square root operations and

51

has a similar performance advantage on the GPU. The opposite effect, where the

processor must emulate functionality that is not supported natively in the in-

struction set, exists in RC-5: the GeForce 8800 lacks a modulus-shift operation.

Performance of the code if a native modulus-shift were available is estimated to

be several times higher.

Another reason for the MRI kernels’ high performance, as well as that of CP,

is that threads can be organized so that every thread reads the same sequence

of memory addresses within the primary data-parallel loop. Since every thread

in a warp reads the same value, the data naturally map to constant memory,

making global memory bandwidth limitations a nonissue. The advantage of using

constant memory in the MRI kernels is discussed in more detail in Section 4.2.3.

The H.264 kernel is notable for its use of texture memory to accomplish calcu-

lations that would be performed as normal processor instructions in a CPU-based

implementation. The texture memory provides both 2D locality and boundary-

value calculations. Although the kernel spends 20% of execution time stalled on

texture memory, this configuration is still 2.8 times faster over global-only access.

Section 4.2.1 discusses the H.264 kernel in more depth.

LBM, FEM, and FDTD are notable for being time-sliced simulators, where

a portion of the simulation area is processed per thread. For each time step,

updates must propagate through the system, requiring global synchronization.

Since there is no efficient means to share data and perform barrier synchronization

across thread blocks, the kernel processes a single time step and then terminates

to ensure that all data writes to global memory in the previous time step are

visible to the next time step. This pattern places high demand on global memory

bandwidth since the kernel must fetch the entire working set from global memory

and store it back after performing a small amount of computation. PNS does

not have this issue because a separate simulation is performed per thread. One

52

possible solution to this issue is to relax the global synchronization requirement

by changing application algorithms.

Memory-related bottlenecks appear in LBM, FEM, PNS, SAXPY, and FDTD,

all of which have high memory-to-compute ratios. These high ratios cause bot-

tlenecks in two ways. First, LBM and PNS are limited in the number of threads

that can be run due to memory capacity constraints: shared memory for the for-

mer, global memory for the latter. Second, FEM, SAXPY, and FDTD saturate

memory bandwidth. Even though the latter two have the highest number of si-

multaneously active threads of the suite, having many threads does not address

the large memory to compute ratio, which causes memory bandwidth to be the

primary performance bottleneck.

4.2 Case Studies

This section focuses on three applications and details their mapping to CUDA.

I explain what makes the application easy or difficult to map to the architec-

ture, the changes required to achieve higher performance over a straightforward

implementation, and the obstacles to further increases in performance.

4.2.1 H.264: Sum of absolute differences

The SPEC CPU2006 benchmark 464.h264ref is an implementation of an H.264

video encoder (also referred to as MPEG-4 Advanced Video Coding). The orig-

inal code, running on a single core of an X86 processor, spends approximately

60% of its execution time in the routine SetupFastFullPelSearch and its callee

functions. This routine compares fixed-size regions from two frames of a video

to determine how well the blocks match. The metric used for the quality of a

match is called a sum of absolute differences (SAD): the absolute value of the

53

difference between pels (video pixels) at the same location of the two regions is

calculated, and the sum of those differences for all pixels is the result. Efficient

and fast SAD computation has been researched extensively due to its importance

in contemporary video encoders [32]: a high-quality encoder can produce smaller

bitstreams or a higher quality encoded video.

The CPU-only version used for performance comparison was hand-optimized

for a more fair comparison. In the inner loop that corresponds to the 4x4 SAD

kernel, an indirect function call was replaced with a conditional branch and inlined

function calls. The optimized version was also rewritten to use the abs library call

instead of a lookup table for the calculation of absolute values. The rest of the

application was left unmodified. The modified CPU-only implementation spends

only 35% of its time in the SetupFastFullPelSearch routine.

The encoder’s design made extracting data parallelism difficult. The encoder

partitions video frames into 16x16 pel macroblocks, which are processed singly

through all stages of encoding. Data parallelism is limited within the processing

of a single macroblock, consisting of loops with few iterations and small bodies.

Furthermore, real data dependences between encoding of neighboring macroblocks

serialize many stages of the encoding process. The portion of the code perform-

ing motion estimation was distributed out of the loop and optimized for GPU

execution, which required significant developer effort.

In several stages of encoding, the encoding parameters for a macroblock depend

on results produced for neighboring macroblocks in the same frame. For example,

in motion estimation a starting point for the search is obtained by averaging the

best-fit locations of neighboring blocks that have already been processed. This

dependence was broken to parallelize the code, which is acceptable by the H.264

standard but may result in lower-quality and larger encodings for fast-moving

video. More frame-level parallelization may be possible with algorithm changes,

54

but changing the algorithm is a design decision that affects the quality and size

of the encoded output and would be made with the target platform and purpose

in mind.

When encoding a CIF-size4 (352x288) video with a 16-pel search range, 1.7

million 4x4 SADs and 1 million larger SADs are generated to encode one P-frame.

The huge degree of parallelism across many uniform and simple SAD computations

makes it appealing for GPU execution. The SPEC version of the encoder was

rewritten to compute all SADs for a frame at once, rather than interleaving SAD

computation with other steps of encoding. This change increases the available

parallelism and amortizes the time spent in data transfers. Three GPU kernels

were created to replace the function SetupFastFullPelSearch. The first kernel,

taking 61% of GPU time, computes SADs over 4x4 areas. The second and third

kernels, taking 31% and 8% of GPU time, respectively, compute SADs for larger

areas using the results of the first kernel. The discussion below focuses on the

first kernel since it comprises most of the computation on the GPU.

An initial GPU implementation computes one 4x4 SAD per thread, yielding

a 15X kernel speedup relative to the CPU-only code. However, speedup can be

doubled by writing the kernel to exploit data reuse by selectively grouping compu-

tation into threads and thread blocks and by applying software-managed caching,

loop transformations, and instruction-level optimizations. These are described in

detail below.

To illustrate the available data reuse, the code for a simplified sequential ver-

sion of the SAD computation loop is shown in Figure 4.1. Each execution of lines

5-10 reads a 4x4 square area of two video frames and computes a single SAD

4CIF stands for Common Intermediate Format. With regards to image size, H.264 tends
to split into two categories. The first is the mobile market, where small screens are the norm.
H.264 is also used for high-definition video, with length and width in the thousands of pels.
Both categories benefit from high-quality motion estimation: mobile devices require less data
to be transmitted, and high-definition can achieve better video quality with similar data usage.

55

1 for (blockY = 0; blockY < height / 4; blockY++)

2 for (blockX = 0; blockX < width / 4; blockX++)

3 for (offY = -16; offY <= 16; offY++)

4 for (offX = -16; offX <= 16; offX++)

5 sad = 0;

6 for (pixY = 0; pixY < 4; pixY++)

7 for (pixX = 0; pixX < 4; pixX++)

8 sad += abs(reference[blockY*4+offY+pixY][blockX*4+offX+pixX]

9 - frame[blockY*4+pixY][blockX*4+pixX]);

10 sad_array[blockY][blockX][offY][offX] = sad;

Figure 4.1: Simplified SAD kernel.

value. Iterations of the loops at lines 3-4 select different 4x4 areas of the refer-

ence frame for comparison. These 4x4 areas partially overlap with one another.

The two outermost loops select different 4x4 areas of the frame being encoded.

Reads from frame are fully reused across the loops at lines 3-4, since the array

index is not dependent on offX or offY. The two outer loops carry no reuse in

frame. There is partial reuse in reference across all of the outer four loops, since

the 36x36 area from reference used for each block is shifted by 4 pels between

iterations of either loop.

Each thread block is responsible for several iterations of the outer two loops.

Reuse is exploited in frame by caching the data in shared memory, and in reference

by using the texture cache. Within a thread block, each thread executes several

iterations of the middle two loops, taking advantage of register tiling [16] to elim-

inate redundant memory accesses. The innermost loop is completely unrolled

and the offX loop is unrolled by a factor of 3; register pressure prevents further

profitable unrolling.

Memory access delays account for more than half of the kernel’s execution

time. Memory transfers related to software-managed caching of input and output

data, using the shared memory to enabled memory coalescing, consume 5.5% of

execution. In contrast, operating directly out of global memory increases kernel

execution time by a factor of 2.8. Another 21% is consumed reading values from a

56

constant memory array to obtain index values for the spiral search pattern. This

array fits entirely in the cache, but threads in this kernel do not read the same

address in the same cycle, causing serialized reads from the single constant cache

port. While texture memory provides 2D image caching and special behavior for

out-of-bounds image accesses, both of which assist performance, 24% of kernel

execution is spent waiting on results of texture fetches. Cache misses account for

less than 3% of that 24%. The large per-thread register usage limits the number of

threads per SM to 256 or fewer, which is not sufficient TLP to hide the latency of

a texture fetch. 123 threads per block5 was chosen to utilize close to 256 threads

per SM, primarily to minimize the effects of texture fetch latency.

The remaining half of the 4x4 SAD kernel’s execution time is spent in com-

putation out of the register file and shared memory. The code was optimized

through manual application of classical optimizations to reduce the instruction

count in threads, primarily strength reduction of integer multiplication and divide-

modulus operations. One GPU-specific optimization was to broadcast values

through shared memory rather than recompute them in each thread.

The other two GPU kernels load SADs calculated by the first kernel, add them

together, and write the new SADs to global memory. They are nearly identical,

differing only in address calculations. The inner loop is very memory-intensive

with 11 global memory instructions and 9 other instructions. Thus, the most

important optimizations were to take advantage of global memory coalescing and

to keep many threads active simultaneously to enhance thread- and memory-level

parallelism.

While latency tolerance through thread parallelism affords speedup in the

primary kernel with a shader-style computation model, additional speedup was

achievable through CUDA’s programming model by consolidating a larger amount

5This seemingly odd number is primarily due to the way the 33x33 search area is divided.

57

of work into threads and then applying loop-level optimizations. These opti-

mizations used additional registers over a näıve version, reducing the number of

in-flight threads and exposing more of the hardware’s latency. However, they re-

duced the dynamic instruction count sufficiently to improve overall performance.

Overall, the largest remaining bottleneck is not in GPU computation (2.6% of

application execution time) but in moving memory between the CPU and GPU

(4.5%), which exceeds the time spent in GPU computation and limits the available

speedup.

4.2.2 Fluid dynamics using the Lattice-Boltzmann method

The SPEC CPU2006 benchmark 470.lbm is a fluid dynamics simulator that imple-

ments the Lattice-Boltzmann method. The program simulates the collisions be-

tween fluid particles across a series of time steps. The most heavily executed code

region is an iteration-parallel loop within the function performStreamCollide,

which accounts for over 99% of single-core CPU-only execution time when running

the SPEC reference input.

Figure 4.2 outlines the basic algorithm. The primary data structure for the

program is a 3D grid of cells, which represents the space through which fluid flows.

Each cell within the grid characterizes a set of fluid particles and their velocities

toward neighboring cells. Some cells are designated as obstacles to interfere with

the fluid particles and are treated accordingly during simulation. Each cell is a

20-element floating-point array: one element is used as a flag to specify properties

related to the cell, one is used for flow information for the cell itself, and the other

18 are used to specify velocities towards neighboring cells that share an edge with

the cell (6 faces and 12 edges).

58

initializeGrid(src)

initializeGrid(dst)

for(each time step)

if (mode == CHANNEL)

handleInOutFlow(src)

performStreamCollide(dst,src)

swapGrids(dst,src)

Figure 4.2: LBM algorithm.

for (all cells in the grid)

/* check to see if cell is not an obstacle */

if (!(src[off+19] & OBSTACLE))

rho = src[off+0] + src[off+1] + ... + src[off+18];

/* calculate directional vectors */

ux = src[off+3] - src[off+4] + ... - src[off+18];

. . .

/* compute and store velocity field elements to neighboring cells */

dst[above_off+1] = . . .

dst[below_off+2] = . . .

. . .

else

/* copy velocity field elements of current cell to neighboring cells */

Figure 4.3: Partial code for performStreamCollide.

Figure 4.3 shows partial code of the performStreamCollide function. Every

thread operates on a single cell of the grid and all 20 array elements are con-

sumed. A major issue is that the usage pattern of data is dispersed, as depicted

in Figure 4.4(a), which takes a memory cycle per datum to satisfy when these are

loaded from global memory. Because all data of each cell are used, threads can

cooperate to buffer the data in shared memory and gain performance from access

coalescing, as shown in Figure 4.4(b). By also unrolling loops, this implemen-

tation has 12.3X performance speedup over the CPU-only version on the SPEC

reference input. An unoptimized version, in comparison, achieves 6X speedup.

Further optimization of performStreamCollide was limited due to the al-

gorithm’s access patterns and resource limitations of the GPU. First, the 16 KB

available in an SM’s shared memory can buffer data for only 200 threads (16 KB /

59

��

�� ��

�� ��

��

�� ��

���������	�
�
��������
�������
�	

�����������
��
��������
�������
�	

������

������

��� ���

��� ���

��������������������

������

������

���

�

��������������������

Figure 4.4: Address pattern for two consecutive loads in LBM.
(a) Requires a memory cycle per address due to non-contiguous access.

(b) Can obtain several values per cycle via coalescing but requires shared
memory buffering.

(20 elements/thread * 4 B/element)). Second, a global synchronization is required

at the end of every time step, which CUDA can only provide with a kernel ter-

mination. As a result, the contents of shared memory are not preserved between

kernel invocations and a given element is used at most three times before being

discarded. Lastly, stores of result data are not coalesced, although the buffers

used to coalesce memory reads could be utilized to achieve the same effect for

memory writes.

4.2.3 Magnetic resonance imaging in non-Cartesian trajectory
space

The reader is likely to be familiar with the use of magnetic resonance imaging

(MRI) in the medical domain. MRI uses algorithms based on inverse Fourier

transforms to reconstruct an image from a set of RF signals collected from a sam-

ple in a slowly time-varying magnetic field gradient. What is not commonly known

is that conventional MRI does not have high resolution compared to radiation-

based imaging because it makes tradeoffs to reduce the computation requirements

60

of the algorithm. Cartesian/grid-based scans are commonly used so that an image

can be reconstructed using a fast Fourier transform (FFT). However, this choice

often produces imaging artifacts, particularly in 3D images, limiting its usefulness

for identifying small features in biological tissue. While radial- and spiral-based

scans can produce higher-quality images, they require significantly more compu-

tational power, as the computations to reconstruct the image must be performed

in an arbitrary, non-Cartesian trajectory (“k-”) space. The computational power

supplied by the GPU makes it possible to perform reconstruction using these scans

in a practical amount of time, opening up the possibility of fast, high-resolution

MRI. Work by Stone et al. [31] discusses this application and its optimizations in

greater depth.

d(t) =

∫

ρ(x)e−i2πkxdx + η (4.1)

FHd = (F HF)ρ = Qρ (4.2)

Equation (4.1) shows the generic MRI reconstruction problem: d(t) is the

measured input, ρ is the desired image, k represents the trajectory, and η is

external noise. This equation can be transformed into Equation (4.2): F is the

Fourier matrix and F H is its conjugate transpose. The algorithm operates by

precomputing a matrix Q and a vector F Hd and then finding an iterative linear

solution via conjugate gradient. The time-intensive part of this algorithm is the

computation of Q and F Hd. Q is specific to the scanner configuration and only

needs to be computed once for a given scanner setup, while F Hd is specific to both

the scanner and the image being reconstructed, and is computed on a per-image

basis. Both computations involve matrix or vector multiplication by a Fourier

matrix whose elements are generated on the fly. Figure 4.5 shows the code to

compute Q, while Figure 4.6 shows the F Hd computation.

61

for (idxK = 0; idxK < numK; idxK++)

phiMag[idxK] = phiR[idxK] * phiR[idxK] + phiI[idxK] * phiI[idxK];

for (idxK = 0; idxK < numK; idxK++)

for (idxX = 0; idxX < numX; idxX++)

expArg = 2 * PI * (kx[idxK] * x[idxX] + ky[idxK] * y[idxX]

+ kz[idxK] * z[idxX]);

Qr[idxX] += phiMag * cos (expArg);

Qi[idxX] += phiMag * sin (expArg);

Figure 4.5: Sequential algorithm to compute Q.

for (idxK = 0; idxK < numK; idxK++)

realRhoPhi[idxK] = phiR[idxK] * dR[idxK] + phiI[idxK] * dI[idxK];

imagRhoPhi[idxK] = phiR[idxK] * dI[idxK] - phiI[idxK] * dR[idxK];

for (idxK = 0; idxK < numK; idxK++)

for (idxX = 0; idxX < numX; idxX++)

expArg = 2 * PI * (kx[idxK] * x[idxX] + ky[idxK] * y[idxX]

+ kz[idxK] * z[idxX]);

cosArg = cos(expArg);

sinArg = sin(expArg);

rFHD[idxX] += realRhoPhi[idxK] * cosArg - imagRhoPhi[idxK] * sinArg;

iFHD[idxX] += imagRhoPhi[idxK] * cosArg + realRhoPhi[idxK] * sinArg;

Figure 4.6: Sequential algorithm to compute F Hd.

The experimental results were collected on an image size of 64x64x64 pixels

and a trajectory size of 147 258. The highest CPU-only performance was mea-

sured at 0.199 GFLOPS for Q and 0.263 GFLOPS for F Hd using single-precision

floating-point, fast math code generation for trigonometry functions, SSE vector

instructions, and manual tuning of the code. This performance corresponds to an

execution time of approximately 5 hours for Q and 40 minutes for F Hd.

Direct, unoptimized ports of the kernels to the GPU are respectively 81X (18.8

GFLOPS) and 73X (22.9 GFLOPS) faster than the CPU-only versions, but higher

performance can be achieved. The primary performance optimization was to store

trajectory values for each step in constant memory. To enable this optimization,

the computation was divided into steps small enough that each step’s data fit

entirely in the constant cache. The loops of both kernels were interchanged so

62

that threads simultaneously iterate over the idxK indices in their inner loop,

thus loading the same value from constant memory in a given cycle. The large

register file also allows five values (x, y, z, Qr, and Qi) to be held in registers for

each thread during the inner loop. The optimized kernel has the character of a

texture shader: it loads a small number of values, proceeds through a sequence of

floating-point operations and constant-memory lookups, and finally stores a small

number of values out to memory.

There are a significant number of trigonometric calculations, approximately

one for every seven standard floating-point operations. Fast math code generation

was used on both CPU-only and GPU versions. On the GPU, fast math uses the

SFUs rather than perform a software Taylor expansion. Fast math does not

unduly affect the image quality; the signal-to-noise ratios are reduced by only

3 dB and still exceed generally accepted quality standards by 25 dB. These changes

result in a throughput of 96.1 GFLOPS for Q and 74.0 GFLOPS for F Hd, or 457X

and 316X respectively over CPU-only performance. Further speedup appears to

be limited primarily by the availability of instruction issue bandwidth: a higher

issue and execution rate in each SM would improve application performance.

Several aspects of the GPU design contribute to this application’s impressive

speedup. First, the SPs and SFUs are heavily optimized for floating-point per-

formance, so floating-point instructions, particularly the trigonometry functions,

take fewer clock cycles than on the CPU. Second, the GPU can maintain high

pipelined floating-point throughput without dependence stalls by overlapping the

execution of separate threads. Third, the abundance of registers reduced the

number of memory instructions and the associated stall times on the GPU. In

contrast, the CPU-only code has a large proportion of floating-point loads and

stores, due to the CPU’s limited register capacity and the lack of direct register

transfer instructions between the SSE and FP units. Finally, the broadcast ability

63

of the constant cache enables a much higher effective memory bandwidth than is

possible on traditional processors.

Continued work by Stone et al. [30] further improved the performance of both

CPU-only and GPU versions of the application. They use a newer, four-core

processor with wider SSE capabilities as the base platform, use the Intel compiler

to achieve higher per-thread performance, and thread the code to utilize all cores

on the superscalar processor. The authors were able to improve the performance

of the CPU-only implementation so that the GPU’s performance advantage was

reduced to 23 times over a four-core CPU-only implementation, as opposed to over

100 times in the results shown here. They found that only when constant memory

and the SFUs were used did the GPU achieve significant performance benefit

over a highly optimized, superscalar, multicore solution. This indicates that for

the MRI kernels and similar applications, the primary bottlenecks of superscalar

processors are memory bandwidth and trigonometry calculation efficiency.

4.3 Optimization Practice

This section discusses the relative effects of optimizations and specific experiences

with the applications studied. It is intended as a guide to developers optimizing

their applications and to give specific examples of methods to follow the principles

in Section 3.1.

4.3.1 Memory optimization

Optimization of memory accesses is generally necessary to achieve significant

speedup for the applications in the suite. For some applications the choice of

using texture or constant memory is intuitive, such as texture memory for H.264

and other video applications. It may be necessary to transform the code in order

64

to expose the proper memory access patterns to efficiently utilize these memories.

Otherwise, shared memory is the default choice for reducing redundant loads and

thus pressure on memory bandwidth. Its use is straightforward when there are

either no shared values between threads (each thread has its own private space)

or when neighboring threads share data in a simple blocked/tiled pattern, similar

to matrix multiplication. Care must be taken so that threads in the same warp

access different banks of the shared memory; e.g., array elements may need to be

padded to ensure nonconflicting accesses. More complex applications often use

more sophisticated data structures, requiring splitting of data structures or other

effort by the developer.

One use of shared memory is as a buffer to improve the access pattern of

global memory. As stated previously, memory bandwidth is easily saturated when

accesses are not coalesced into 16-word, aligned regions. LBM, FEM, FDTD,

and other lattice computations use arrays of small structures in global memory.

Threads simultaneously read or write a given field of multiple elements and these

fields are not contiguous in memory. Each noncontiguous access is a separate

DRAM access request, overwhelming the device’s memory bandwidth. In LBM

the problem can be alleviated using contiguous accesses to transfer the arrays in

bulk into shared memory; this transformation is discussed in Section 4.2.2. The

buffering optimization may also be possible with FDTD if a substantial amount of

data reorganization is performed, but FEM uses an irregular mesh data structure

that has few contiguous accesses even with data reorganization.

Even with the use of shared memory, coalescing accesses to global memory gen-

erally improves performance. In some cases, noncoalesced accesses cause memory

bandwidth to be a performance bottleneck, as effective bandwidth is significantly

lower without coalescing. It is also important to remember that the SIMD nature

of warp instruction issue on the SMs means that a warp cannot execute until

65

all of its input operands are available. Because noncoalesced accesses must be

processed sequentially, they cause a warp’s memory instructions to have a longer

latency than if accesses were coalesced. As a result, noncoalesced accesses require

more parallelism to cover their latencies. The performance difference may not

be multiple times, but in general global coalescing is worth the cost of any extra

instructions that may be needed in order to coalesce accesses.

Tiling factors of thread blocks also play a role in performance. Large thread

blocks have the potential to increase data sharing but increase the coarseness

of thread block-to-SM scheduling and can reduce TLP. The choice of tile shape

should be first motivated by global memory coalescing and other memory system

optimizations, such as the use of shared memory for applications with large per-

thread data sets, or the constant cache. After tiling, optimizations such as register

tiling can be performed to further improve performance.

As previously discussed, prefetching is not often used as an optimization be-

cause it generally has little positive effect and often causes reduced performance

due to decreased TLP. I refer to Chapter 3 for further discussion on prefetching.

4.3.2 Register usage

In Section 3.1, I stated that performance depends on the percentage of “core” op-

erations (instruction efficiency) and the utilization of execution resources. On the

GeForce 8800, utilization is achieved through TLP on the SM, with a multiplica-

tive effect from threads’ ILP and MLP. Efficiency is addressed through “classical”

compiler optimizations. In a highly optimized application, improving one is often

done at the cost of the other. On the GeForce 8800, efforts to improve efficiency

may inadvertently damage utilization by the reduction of TLP, due to an increase

in registers per thread. This TLP reduction can reduce overall kernel performance.

66

There are many optimizations which can increase register usage, many of which

are described and cited in compiler texts [33–35]. They are generally performed

with the intent of reducing the number of executed instructions or replacing slower

operations with faster ones (e.g., integer multiply of a power of two replaced with

a shift operation). The common optimizations that increase register usage are

CSE and redundant load elimination, which are performed by nvcc. Developer-

directed loop unrolling also may increase register usage by exposing instruction

scheduling opportunities to the runtime.

In general, developers should be aware of potential changes in register and

shared memory usage that can result from optimizations, as detailed in Chap-

ter 3. Limiting the scope and scale of optimizations can also help control usage.

Optimization on the innermost, most frequently executed kernels generally has

beneficial effects without a major increase in register usage.

Three techniques can also help mitigate these effects:

• The performance loss from register usage is most apparent in application

configurations with few, large thread blocks. Configuring an implementa-

tion to use a larger number of smaller thread blocks results in fewer threads

being lost when one fewer thread block can be simultaneously scheduled per

SM. Using smaller thread blocks is to be avoided unless other performance

benefits are expected: kernels employing tiling optimizations usually benefit

from large thread block sizes because they eliminate more memory opera-

tions. In tiled kernels, one may have to try a range of block sizes to find the

best configuration.

• A developer can explicitly spill and fill values, normally mapped to registers,

to shared or global memory. Register spilling is done by default for the

matrix multiplication kernel used in this work, as it adds only two additional

67

instructions to each thread’s execution while saving at least one register.

Overzealous register control can hurt performance due to the additional

executed operations.

• Register pressure-sensitive code scheduling algorithms and optimization stra-

tegies, such as that proposed in [36], have been investigated in the context

of instruction-level parallelism compilers. Additional research is needed to

apply these strategies to architectures such as the GeForce 8800 because

the “correct” number of registers to use is uncertain, as discussed in Sec-

tion 4.3.3.

4.3.3 Balancing thread-level parallelism with individual thread
performance

From the point of view of a developer performing transformations by hand, op-

timization becomes an effort of improving individual thread performance while

maintaining enough threads to hide memory latencies and utilize execution re-

sources effectively. Developers must consider that the highest-performing config-

urations may have relatively few threads and thread blocks per SM. For example,

Table 4.2 shows that some application implementations use only a third of the

available thread contexts. Even when there is an option to use more threads,

these configurations have superior performance because the ILP within the threads

makes up for reduced TLP compared to other configurations, while code efficiency

is higher due to the optimizations which use the larger number of registers per

thread.

Developers should be also aware that a configuration found by manual, itera-

tive optimization may be a local performance maximum. For example, in H.264,

an initial implementation had many threads simultaneously executing per SM,

68

each with a small number of registers. An exhaustive optimization space search

found that a configuration with fewer threads, each with more registers, achieved

higher performance by performing fewer memory operations. This configuration

was often stalled on accesses to texture memory, but execution efficiency during

nonstalled periods was higher than that of other configurations.

Attempting to manually find the best balance of parallelism and a highly ef-

ficient instruction stream is difficult for the GeForce 8800 for several reasons.

First, there are generally multiple potential high-performance configurations and

they will be dissimilar in several optimizations, meaning that it is possible to

be trapped at a local maximum during iterative optimization using a greedy ap-

proach. Second, resource usage and instruction scheduling is not under complete

control of the developer, so targeting particular parallelism levels is difficult at

best. Instead, in the next chapter I propose a technique that begins with the

entire optimization space and prunes it to find configurations which are likely to

have high performance.

69

CHAPTER 5

OPTIMIZATION CARVING

When developing an application with a high performance requirement, a devel-

oper begins with a mental model of the target platform and creates the application

with this model in mind. One usually starts with the first-order concern for perfor-

mance, which historically has been the application algorithm and its instruction

count. After finding a seemingly reasonable base configuration, the application

will be tested and then iteratively optimized until an acceptable configuration is

found.

This approach is often adopted by compilers that generate high-performance

code for traditional uniprocessors and multiprocessors: algorithms cannot be

changed, so the efficiency of the instruction stream is the first-order performance

concern. A plethora of instruction removal, redundancy elimination, and strength

reduction optimizations have been developed to address this concern.

However, the iterative optimization approach has major detriments when ap-

plied to many-core compilation. The broad issues were discussed in the first

chapter, and some specifics are discussed here:

1. It is well understood by the compiler community that particular orderings

of optimizations can trap optimization processing into a local performance

maximum. Optimization phase ordering [37, 38] has not received as much

attention as it could have. The reason is that the performance difference

between two configurations of an application executing on a single-core su-

perscalar or EPIC/VLIW processor might be on the order of several percent.

70

On many-core platforms such as the GeForce 8800, a performance difference

of several times is possible. Optimizations for the system have complex ef-

fects, and a poor decision by an application developer or compiler can trap

the application in a local performance maximum. This possibility makes it

imperative to perform a broad search of the space when increased applica-

tion performance is valuable.

2. Contemporary many-core architectures have a wealth of execution resources,

but these are separated both by physical space and by architecture struc-

ture, such as the lack of direct global-to-scratchpad memory transfers on

the GeForce 8800. The cost of communication is significant, which is well-

understood by parallel program optimization experts. However, the degree

of tradeoffs on many-core systems is different: for example, there is a much

more vague tradeoff between whether a processing unit should recompute

a value locally or obtain that value from another processing unit, due to

shorter communication latencies between processing units on the same chip.

Determining a good combination of tradeoffs will be difficult for most de-

velopers.

3. We are currently in a period of rapid innovation in both applications and

architecture; the GPU innovation cycle is particularly short. New features

are introduced very regularly, with some residing on hardware and disabled

until their correctness can be validated. However, it takes time and effort

for application developers and compiler designers to utilize new features;

they will not be well understood for a significant amount of time. Also, to

preserve competitive advantage, limited information may be available about

these features. The primary examples encountered during the application

study for the GeForce 8800 were global memory coalescing, cache attributes,

71

and SFU performance. Iterative compilation is likely to make the wrong as-

sumptions about how to use these features and create suboptimal application

optimization configurations. In addition, because application features are

added over time, a configuration that worked well for a previous version of

the application may not stay that way. Changes may invalidate assumptions

about the effects of optimizations and generally require reapplication of the

optimization process.

Instead of selecting a single starting configuration and iteratively optimizing

it, I propose an approach that begins with a large space of configurations and then

prunes away those that are likely poor performers. This pruning is done based on

knowledge of the primary and secondary performance concerns for the application

and architecture, quantified as metrics. Because I found a single cost function

to be ineffective across multiple applications, the technique uses thresholds and

Pareto-optimal curves to determine which configurations should be pruned. The

purpose of the technique is to find a near-optimal configuration without detailed,

accurate knowledge of the system by either a developer or the compiler.

I begin this chapter with one of the most simple examples of application op-

timization, that of matrix multiplication, and explain why it can be difficult to

find the best configuration. I then describe the optimization carving technique

and how metrics are used to prune the optimization space. I identify and create

metrics for the GeForce 8800 and then apply them to the optimization of kernels

for the architecture.

72

5.1 Example Revisited: Matrix Multiplication

Optimization Space

The purpose of this section is to show the primary performance facets of the

architecture and the discontinuity of the optimization space, using the matrix

multiplication kernel used in previous chapters. I start with a tiled configura-

tion of matrix multiplication, and vary several parameters to explore the entire

optimization space. The parameters used for matrix multiplication are:

• Tile size: I choose thread blocks of size 8x8 and 16x16. They process an

integral multiple of data tiles. Tiling reduces memory bandwidth usage.

• Unrolling factor: The innermost loop of the kernel has been unrolled by an

even divisor of the loop trip count, varying between one (no unrolling) and

complete unrolling of the loop. Unrolling reduces the number of dynamic

instructions executed.

• Rectangular tiling factor: The default configuration, 1x1, processes one

tile in the first input matrix and one tile in the second input matrix at a

time. Increasing the rectangular tiling factor to 1x2 processes two tiles in

the second input matrix for every one in the first, and so on. Rectangular

tiling enables the register tiling optimization and reduces memory band-

width usage.

• Prefetching: In an effort to improve ILP and reduce exposed memory

latency, a prefetching optimization is applied to overlap global memory load

latencies with computation.

Figure 3.1 on page 32 shows code examples of these optimizations, while Figure 3.2

depicts their memory access patterns.

73

�
��
�
��
�
�
�
	

0

1

2

3

4

5

6

7

8

normal prefetch normal prefetch normal prefetch normal prefetch normal prefetch normal prefetch

unroll 1

unroll 2

unroll 4

complete
unroll

�
�
�

��
��
�

Figure 5.1: Matrix multiplication optimization space runtime.

0

20

40

60

80

100

120

normal prefetch normal prefetch normal prefetch normal prefetch normal prefetch normal prefetch

1x1 1x2 1x4 1x1 1x2 1x4

8x8 tiles 16x16 tiles

unroll 1

unroll 2

unroll 4

complete
unroll

�
�
�
�
�
�

�
�
	
	

��

�
	

Figure 5.2: Matrix multiplication optimization space performance.

Figure 5.1 shows the run time of these configurations, while Figure 5.2 shows

the performance in GFLOPS. One configuration, with 16x16 tiles, 1x4 rectangular

tiling, and prefetching, does not execute because it is oversubscribed on registers.

There are several performance trends shown by the results.

• When bandwidth is the major performance limitation of the kernel, little

else matters; e.g., increasing instruction stream efficiency or ILP and MLP

(through prefetching) has no appreciable effect. This effect is shown for the

8x8 tiles: the tiling format does not allow for coalescing of global memory

74

accesses and its performance is severely restricted by memory bandwidth

limitations. Although rectangular tiling alleviates the pressure on band-

width, other optimizations still have little effect until memory bandwidth

is removed as a performance limitation via global memory coalescing using

16x16 tiles.

• Unrolling is a hit-or-miss proposition for increasing performance on this

architecture. The reason for performance losses, other than instruction cache

effects, is that the runtime creates an instruction schedule that increases

register usage and allows fewer thread blocks to be simultaneously executed

per SM. This effect causes a loss of SP utilization that must be gained,

if possible, through further optimization: complete unrolling is generally

superior to an unroll factor of 4.

• Increasing the rectangular tiling factor generally improves performance. It

improves the efficiency of the instruction stream, global memory bandwidth

utilization, and ILP. However, to take advantage of register tiling, additional

registers must be used, which in one case reduces the number of thread

blocks executing per SM and kernel performance.

• As mentioned in Chapter 3, prefetching has a limited benefit for this system

because there is often much useful work that can be done while a long-

latency load request is being satisfied. It provides a minor improvement in

performance when there are sufficient registers to not cause fewer thread

blocks to be executed per SM. For bandwidth-limited configurations, such

as those with 8x8 tiling factors, there is no appreciable benefit.

Table 5.1 shows the resource usage of the 16x16 matrix multiplication configu-

rations, excluding register spilling. It shows how the application of optimizations

75

Table 5.1: Resource Usage and Performance for 16x16 Matrix Multiplication Con-
figurations Excluding Register Spilling

Rectangular
Tiling
Factor

Unrolling
Factor

Prefetching Registers
per
Thread

Thread
Blocks per
SM

Performance
(GFLOPS)

1 no 11 2 53.13
1 yes 13 2 55.17
2 no 11 2 66.40

1 2 yes 13 2 70.52
4 no 12 2 54.71
4 yes 14 2 78.54

complete no 13 2 54.58
complete yes 13 2 79.22

1 no 13 2 84.53
1 yes 15 2 86.60
2 no 14 2 98.17

2 2 yes 16 2 100.76
4 no 16 2 90.30
4 yes 19 1 87.26

complete no 16 2 109.51
complete yes 16 2 108.22

1 no 18 1 98.66
1 yes 20 1 107.96
2 no 19 1 92.18
2 yes 24 1 99.09

4 4 no 24 1 88.21
4 yes 29 1 94.01

complete no 27 1 119.82
complete yes 35 0 does not

execute

may sometimes decrease performance: one example is shown with the configura-

tions that are 1x2 rectangularly tiled with unroll factor of 4. In this case, the

prefetching optimization reduces performance because only one thread block can

be executing on the SM at a given time, as opposed to two thread blocks for the

nonprefetching configuration.

Register spilling can sometimes enable an additional thread block to be resi-

dent per SM. Major performance differences are not demonstrated with the use

of register spilling on this matrix multiplication kernel because two thread blocks,

each with 256 threads, contain enough work to hide each others’ global memory

76

access latencies. Explicit register spilling with CUDA v1.0 only causes some con-

figurations with two thread blocks to move to three blocks per SM, which results

in a small performance increase at best. The 0.8 version of CUDA used in previ-

ous experiments [39] caused some configurations to move from one thread block

to two per SM, resulting in a more significant performance increase.

The optimal configuration of matrix multiplication is a 16x16 tiled, 1x4 rectan-

gular tiled, completely unrolled configuration. This result is initially nonintuitive

to most developers: the configuration allows only a single thread block execut-

ing per SM, causing block synchronizations to have a more significant effect on

scheduling. However, the sheer number of operations, due to rectangular tiling,

creates a significant amount of ILP. This tradeoff between TLP and ILP will be

unique for every application because of the variation in work granularity. A point

I wish to make is that very few, if any, developers will arrive at this configuration

by guessing a starting point and iteratively optimizing. For example, there is a

continuous decrease in performance for unroll factors of 2 and 4 for the 16x16 tile,

1x4 rectangular tiled configuration.

There are a significant number of optimization configurations to be considered

for an application as simple as matrix multiplication. Figure 5.3 shows the op-

timization space for an SAD kernel adapted from H.264, which is several times

larger in code size. In this kernel, the best configuration uses fewer threads (just

under 64) than a hand-optimized version (just under 128). The large “peaks” in

the graph generally represent transitions where per-thread resource usage permits

fewer thread blocks to be resident per SM, relative to the same configuration with

slightly fewer threads per thread block. Because a developer is likely to emphasize

thread-level parallelism in an initial version of the code, iterative approaches will

begin at configurations towards the right side of the graph. It is unclear during an

iterative optimization process whether superior performance can be gained by go-

77

 2

 3

 4

 5

 6

 7

 8

 9

 32 64 96 128 160 192 224 256 288 320 352 384

T
im

e
(m

s)

Threads per Thread Block

Figure 5.3: SAD optimization space.
Lines connect configurations that differ only in their SADs-per-thread parameter.

ing to fewer threads per thread block, especially since many of the configurations

at the performance valley with approximately 60 threads per block have worse

performance than configurations at the other valleys.

Previous work in optimization space exploration [39, 40] for this system dis-

cusses the optimization spaces and searches for SAD and other kernels in greater

detail. The primary findings of these works are: For applications with multiple di-

mensions of optimization, no hand-optimized configuration was the best one found

by an exhaustive search; the best was generally unexpected to the developers who

optimized the kernel; and the best and hand-optimized configurations differed

in several optimization parameters, making it unlikely that automated, iterative

optimization using a greedy approach would have found the best configuration,

starting from the hand-optimized one.

An expert with in-depth understanding of both the algorithm, including its

behavior and memory usage patterns, and the hardware, including its memory

78

bandwidth and resource characteristics, may have been able to bypass some of the

pitfalls presented here. However, the goal of this work is to develop a technique

that allows developers with imperfect understanding of the system to still find a

near-optimal configuration.

5.2 Description of the Technique

Conceptually, optimization carving begins with the entire optimization space for

an application. By examining metrics extracted from application configurations

for the system, it removes configurations in the space that are unlikely to get high

performance. This approach is in contrast to traditional compilation techniques

that can be likened to oil drilling: an initial guess is made and strong effort is

put forth to find a desirable result from that point. Each carving prunes the

optimization space, eventually leaving a few potentially optimal configurations

that can then be evaluated via hardware execution to determine the superior one.

There are several reasons why optimization carving is practical or reasonable,

particularly for the GeForce 8800:

• The kernel codes studied here have a small number of independent configu-

ration axes. The optimization search space is relatively small.

• The effects of code transformations, particularly in combination, are unpre-

dictable. This situation is especially true for the GeForce 8800, because

of the application developer’s lack of control over the runtime’s instruction

scheduling and register allocation. Thus, iterative optimization is unlikely

to find a configuration with close to the best performance.

• On single-chip, many-core architectures, configurations that are trapped in

local performance maxima may be significantly removed from the optimal

79

in both performance and transformations, as shown in previous work [39,

40]. A partial search of the optimization space may achieve a substantial

performance advantage over iterative optimization.

Optimization carving is done in order of performance impact. First-order

issues are addressed first, then second-order, and so on. Carving must be done

correctly to find a near-optimal configuration, but it is easier to understand and

correctly model the high-order performance concerns of an architecture than the

exact effects of optimizations. The technique as presented here begins with the

complete optimization space and full knowledge of resource usage for this reason.

How to perform more speculative optimization carving is left for future work.

I anticipate that optimization carving would be more effective if it is cus-

tomized to the needs of each particular application. In addition, for architectures

other than the GeForce 8800, more complex carving may be necessary to usefully

prune the search space. For this work, I address the needs of the kernels studied in

the previous chapter on a relatively simple but highly parallel architecture. This

choice results in a simple, two-stage carving process that is easily explained.

Although it might seem that optimization carving has a sufficiently high cost

that users may as well perform a full optimization space search, I assert that

significant time savings is achieved with the technique. Kernel code dominates

executed instructions and often execution time, but not static instructions or

compile time, so static analysis can be very inexpensive. Table 5.2 shows com-

pilation times for several GPU kernels and their test harnesses: compilation for

discovering the static code and resource usage of the kernel takes significantly less

time than complete compilation. Although the harness code does not need to be

recompiled for every configuration, my point is that statically generating kernel

code is less expensive than full compilation, even before factoring in compilation

time for complete applications or execution time for each configuration.

80

Table 5.2: Compile Time for Several Kernels with Basic Optimizations

Kernel -cubin Compile
Time

Complete
Compile Time

Matrix Multiplication 0.278 s 0.972 s
CP 0.300 s 0.887 s
SAD 0.288 s 0.873 s
MRI-FHD 0.266 s 0.893 s

I define two kinds of carving, threshold carving and tradeoff carving. Each has

different selection criteria, discussed here.

5.2.1 Threshold carving

Threshold carving is performed when some performance aspect must be satis-

fied or mitigated in order to achieve good performance. The prime example on

the GeForce 8800 is off-chip memory bandwidth: as shown in Figure 5.2, perfor-

mance is not positively impacted by efficiency-increasing optimizations when the

hardware is constantly stalled on off-chip memory accesses.

Selection for threshold carving involves pruning all configurations that do not

surpass either a relative or absolute threshold, quantified in a metric. In the

matrix multiplication example, the developer or compiler performing the carving

could require that all global memory accesses be coalescible, or that the estimated

bandwidth requirement of the application be below a certain limit. This require-

ment represents an absolute threshold. A relative threshold might be established

for an application where memory bandwidth is always a bottleneck, in which case

only the configurations with the best memory usage are evaluated.

81

5.2.2 Tradeoff carving

Tradeoff carving has a different nature from threshold carving: in some cases, it is

not clear that one should maximize or minimize a particular performance aspect.

An example mentioned in previous chapters is instruction stream efficiency: some

redundant computation may improve performance by allowing more threads to

execute in parallel or by reducing communication between threads. The purpose

of tradeoff carving is to retain all configurations that balance two or more aspects

of an application because the optimal balance is unclear.

Selection for tradeoff carving involves metrics for two or more aspects of an

application. The configurations that are retained are those that lie on a Pareto-

optimal curve: no point on the curve is inferior in every dimension to any other

point in the space. Any configuration that is inferior in every dimension to any

other configuration is pruned.

During tradeoff carving, good configurations may lie just off the Pareto-optimal

curve because the metrics may not capture all performance aspects of the archi-

tecture. The probability of this situation is higher with more detailed metrics,

particularly those that introduce more variables into the calculations, because

any effects that are not exactly modeled are likely to inflate the metric values for

poor-performing configurations. This possibility of “false precision” means that

metrics used for tradeoff carving should either be very simple or extremely exact.

Another method for avoiding this situation is to retain configurations that are

within a certain distance from the Pareto-optimal curve, although the reduced

pruning increases the number of configurations to be evaluated. I explore the use

of more precise metrics in Section 6.4.2.

82

5.3 Optimization Carving for the GeForce 8800

In this section I discuss the use of optimization carving for applications executing

on the GeForce 8800. To keep the demonstration of the technique simple, I use

two carving stages. More carving stages are easily conceived; for example, if the

application being optimized has a known issue with on-chip network conflicts or

instruction cache thrashing, another carving stage can be created to address that.

5.3.1 Off-chip bandwidth

The first-order performance concern for the GeForce 8800 is global memory band-

width. As shown in Section 5.1, only optimizations that affect global memory

bandwidth have any effect when bandwidth is a performance bottleneck. Thus,

the optimization space’s first carving is a threshold carving targeting efficient

global memory bandwidth usage.

Global memory bandwidth usage is easily estimated by examining the per-

centage of memory accesses in the instruction stream and determining the average

number of bytes being transferred per cycle. The global memory coalescing effect

can also be included by observing whether memory accesses in kernel code are

to contiguous locations within a warp and are aligned (offset by a multiple of 16

from the beginning of the structure).

The performance of many of the applications studied here is limited by global

memory bandwidth for versions that do not take advantage of reuse or coalescing.

This carving focuses attention on those optimizations that improve bandwidth

and in many cases eliminates it as a bottleneck.

83

5.3.2 Instruction stream efficiency versus execution resource
utilization

When the performance of the GeForce 8800 is not limited by memory bandwidth

capacity, it is determined by two factors: instruction stream efficiency and execu-

tion resource utilization. In many cases one can be traded off for the other with

potential improvement in performance. An example of this tradeoff is the use of

shared memory to capitalize on data reuse: instead of loading a value multiple

times from global memory, a thread can load the value once, store it in shared

memory (an extra instruction), and subsequently load the value from there. Even

though additional instructions must be executed to initialize the shared memory,

the thread no longer is stalled on global memory access and therefore can make

faster progress. On the other hand, threads that use too much shared mem-

ory may cause fewer threads to be simultaneously executed per SM, potentially

reducing performance.

The concepts of efficiency and utilization are very general and can be applied

to any computer architecture. However, it is possible to calculate reasonably

accurate metrics for applications executing on the GeForce 8800. The initial

versions developed for this work are explained below.

Efficiency =
1

Instr ∗ Threads
(5.1)

Equation (5.1) estimates the instruction efficiency of the kernel to be run on

the GPU by counting the total number of instructions that will be executed. Instr

is an estimate of the number of dynamic instructions that will be executed per

thread on the GPU, derived from the PTX code generated by nvcc. For this

work, the average iteration counts of the major loops in the kernel are manually

annotated to obtain this data. Some instructions count as multiple instructions;

84

32-bit integer multiplication is the primary example, taking multiple processor

cycles to execute on the GeForce 8800. Threads is the number of threads that will

run on the GPU for a given problem size, known to the developer when writing

the code. This value is made explicit in the invocation of the kernel function and

does not have to be an absolute value as long as the relative values of different

configurations are correct.

In the absence of a memory bandwidth bottleneck and assuming nearly full

SP utilization, I expect that efficiency will correlate directly to the performance

of different configurations. Because it counts the total number of instructions

executed, the metric measures the instructions that are redundant across threads.

This metric penalizes configurations that have more redundancy, such as ones

with finer-grained threads.

Utilization =
Instr

Regions

[

WTB − 1

2
+ (BSM − 1)(WTB)

]

(5.2)

Equation (5.2) estimates the utilization of the compute resources on the GPU.

The goal of this metric is to encapsulate the schedulability of warps in the system.

Utilization is estimated primarily by looking at TLP and determining how often

a warp is expected to wait and the amount of available work from independent

warps. The fraction Instr
Regions

represents the average number of nonstalling instruc-

tions a single warp is expected to execute before encountering an instruction that

causes it to stall. Again, Instr is the per-thread number of dynamic instructions

that will be executed on the GPU. Regions is the number of dynamic instruction

intervals delimited by warp-stalling instructions or the start or end of the ker-

nel. Examples of warp-stalling instructions are those that consume the results of

long latency operations (generally global and texture memory loads) and synchro-

nization operations. SFU instructions are considered to have long latency when

85

longer latency operations are not present. Issues such as memory bank and port

conflicts, SFU oversubscription, and so on have been ignored because their effect

is small compared to the stall time incurred by global memory accesses.

The quantity within the brackets represents the number of independent warps

in the SM, other than the one currently executing, that can be executed while the

warp-stalling instruction is being resolved.

• The first term in the bracket is the number of other warps in the same

thread block as the currently executing warp. WTB is the number of warps

in a thread block, which is determined by dividing the number of threads

in a thread block by 32. There is a division by two because if the blocking

instruction is a synchronization instruction, on average half of the warps in

the same block still need to execute until they also reach the synchronization

point. This assumption represents the worst case, since load stalls do not

have a similar requirement.

• The second term in the bracket is the number of warps from other thread

blocks on the SM that can be executed. BSM is the number of thread blocks

assigned to each SM. The runtime assigns the maximum number of thread

blocks possible to each SM, up to eight, without violating local resource

usage. Consequently, this number can be calculated from the local resource

usage obtained via -cubin.

Synchronization instructions are grouped with the consumers of long latency

memory operations in order to simplify the calculation of the Regions term, even

though they display different behavior. Execution at a barrier synchronization

proceeds only when all of the threads in a thread block have reached that point,

whereas stalls on uses of global load operations do not stall the execution of other

warps. I anticipate that the division by two in the first term in the bracket captures

86

the first order effects. The next chapter experiments with metric calculations of

both lesser and greater detail.

There is a distinct upper limit on how efficiently the execution resources can

be used. If utilization were used in a single cost metric (e.g., efficiency * uti-

lization), it would be expected that the value would be capped or asymptotically

approach the peak theoretical limit of 10 operations per cycle, per SM. However,

because my intent is to use this metric as part of a Pareto-optimal selection, it

is only necessary that the superiority or inferiority of a configuration relative to

other configurations is retained. I do not model capped or asymptotic utilization

because it is unnecessary for this purpose. Because of this decision, the relative

utilization values of configurations may not be meaningful.

There are aspects of application behavior which are not modeled in the met-

rics. Some examples of these are cache behavior, SFU performance, the penalty

incurred when threads in the same warp take different control paths, and mem-

ory bank and port conflicts. These are generally not first-order concerns for the

kernels studied in this work, although I show one exception in the experiments.

As discussed previously, running nvcc with -cubin and -ptx flags is faster

than full compilation of a kernel or application. Computing the efficiency and

utilization metrics is relatively fast after this information and a few numerical

inputs from the developer or a profile are obtained. This approach allows for fast

exploration of a large search space.

5.3.3 Individual metrics and a single cost function

In the initial phase of this work, an attempt was made to create a single cost

function that would approximate the performance of the code. This approach is

akin to using static schedules to estimate EPIC/VLIW code performance. The

87

z = gridspacing * (float) k;

for (j=0; j<grid.y; j++)

y = gridspacing * (float) j;

for (i=0; i<grid.x; i++)

x = gridspacing * (float) i;

energy = 0.0f;

for (n=0; n<atomarrdim; n+=4)

float dx = x - atoms[n];

float dy = y - atoms[n+1];

float dz = z - atoms[n+2];

energy += atoms[n+3] / sqrtf(dx*dx + dy*dy + dz*dz);

energygrid[grid.x*grid.y*k + grid.x*j + i] = energy;

Figure 5.4: Coulombic potential grid code.

efficiency and utilization metrics both carry part of the information needed to

predict the performance of a kernel configuration, but experience has shown that

neither is sufficient in isolation for useful performance comparisons. The CP kernel

is used as an example to show what aspect of performance is captured by each

metric.

The CP kernel, shown in Figure 5.4, computes electric potentials at every point

in a 3D grid. One of its uses is in setting up initial conditions for aqueous molecular

dynamics simulations. In the original configuration, each thread computes the

potential at a single grid point with a loop that processes one charge in each

iteration. The optimization with the largest effect is tiling the computation at

the thread level, computing multiple grid points per thread. This optimization

greatly improves efficiency by eliminating redundant floating-point computation.

Figure 5.5 shows how CP’s execution time and performance metrics vary with

the results-per-thread tiling factor. The normalized reciprocals of the performance

metrics are plotted, so lower is superior in both plots. The efficiency data points

overlap and appear as a single curve. Efficiency closely follows the actual execution

time at tiling factors of 1, 2, 4, and 8. Although utilization varies over this

88

 1

 0

P
er

fo
rm

an
ce

 M
et

ric

1/Utilization
1/Efficiency

 2

 3

 4

 5

 6

 7

 16 8 4 2 1

E
xe

cu
tio

n
T

im
e

(s
ec

)

Tiling Factor

Execution Time

Figure 5.5: Performance metrics versus execution time for CP.

range, it remains sufficiently high that decreases in utilization do not significantly

slow down the machine’s execution throughput. At a tiling factor of 16, the

decrease in utilization reduces the machine’s throughput, countering a further

increase in efficiency. For this kernel, efficiency improves monotonically while

utilization worsens monotonically with increasing tiling factor, and the optimum

configuration balances both metrics.

It should be noted that CP does not stress global memory bandwidth. In

applications where memory bandwidth was often but not always a bottleneck,

it was more difficult to estimate the performance of kernels using a single cost

function.

5.3.4 Applying metrics to matrix multiplication

The matrix multiplication kernel shown in Figure 5.6 is used to demonstrate the

calculation of the metrics. The kernel is first compiled with -cubin to obtain

89

���������	

������
����������
�����������
��������������������� !�" !�"	
�������������������#� !�" !�"	

��

�$�%����&!
��

�'������������������(�����������)�
����(�����
��

�����������*�+��
�����,������������������%����
���� �-" �)"���� ����)�"	
��#� �-" �)"���# ����)#"	

��

�$�%����&�
������)��.��!�	
������)#�.��!��/�+����#	

��

�0�����-�
�����1���������,���������������%����&��
�����-�
���������	

��

�$�%����&2
��������.�
������� �-" �"�/�#� �" �)"	
�����
��������.�
������� �-" !�"�/�#� !�" �)"	

�����-�
���������	
��

�0��������������������%����&2�
3
� ����)�"��������	

Figure 5.6: Matrix multiplication example for calculating metrics.
This code is the same as Figure 3.1(c) with regions delineated for clarity.

the resource usage, which shows that each thread uses 13 registers, and each

thread block uses 2088 bytes of shared memory for its 256 threads. Determining

the number of resident thread blocks per SM is done by referring to the per-SM

resource limits in Table 2.2. In this case, register usage is the limiting factor:

BSM = b8192/(13 ∗ 256)c = 2. The number of warps per thread block is WTB =

d256/32e = 8.

The kernel is then compiled with -ptx to determine its execution profile. The

loop is annotated with a trip count of 256, found by dividing the matrix size

(4096) by the tile length (16). With this annotation, the number of dynami-

cally executed instructions can be determined statically. A single thread executes

15 150 instructions, including 512 barriers and 256 load-consumer pairs: I assume

90

that the load from B is performed prior to the store to shared memory array As,

so that the global load latencies are overlapped and the store to Bs does not incur

a stall. Thus, Instr = 15 150 and Regions = 769. The final piece of informa-

tion needed is the number of threads in the kernel. There is one thread for each

element of the 4k x 4k output matrix: Threads = 224. From these numbers,

Efficiency = 3.93 ∗ 10−12 and Utilization = 227. The relationship of these met-

rics among different configurations is more meaningful than their absolute values.

Even relative values are not necessarily comparable, since the utilization metric

does not taper off to a constant value as would the true utilization of a system.

91

CHAPTER 6

EXPERIMENTS

This chapter discusses the use of optimization carving to find high-performance

configurations of several applications. I also compare the results of the tech-

nique to random sampling of the entire optimization space, and examine the use

of different computations for the utilization metric. I close the chapter with a

discussion of the shortcomings of the technique as used here.

6.1 Methodology

The results in this chapter were obtained with CUDA version 1.0. Experiments

were performed on an Intel Core2 Extreme Quad running at 2.66 GHz with 4 GB of

main memory. The presented data represent runs with smaller inputs than those

considered typical, which allows an exploration of the entire optimization space

in a reasonable amount of time for comparison to optimization carving results.

Informal experiments have shown that execution time will scale accordingly with

an increase in input data size for these applications on this architecture, due to

the regular and otherwise data-independent execution of the kernels. The data

are gathered from a single run of each configuration; repeated experiments have

shown that the gathered run times are reliable.

Table 6.1 lists the applications studied, the optimization parameters varied,

the number of configurations in the optimization space, and the total time needed

to evaluate the performance of every configuration in the optimization space.

92

Table 6.1: Parameter Search Properties

Kernel Parameters Varied Total Con-
figurations

Total Eval-
uation Time

Matrix
Multiplication
(MM)

memory tile/thread block size, rect-
angular tile dimension, unroll factor,
prefetching, register spilling

93 363.3 s

CP thread block size, per-thread tiling, co-
alescing of output

38 159.5 s

SAD per-thread tiling, unroll factor (3
loops), work per thread block

908 7.677 s

MRI-FHD thread block size, unroll factor, work
per kernel invocation

896 2875 s

These applications were selected from the larger suite presented in Chapter 4

because there were a large variety of optimizations that could be combined, with

interesting effects and sometimes discontinuous results. The SAD kernel is the

first kernel of the three in the H.264 application, discussed in Section 4.2.1. It is

modified to not follow a spiral search pattern, thus avoiding the constant cache

port conflicts encountered in the original version. Optimizations varied for carving

were performed at the source code level; e.g., loops of different unroll factors were

manually written and selected at compile time.

6.2 Initial Results

Figure 6.1 shows Pareto plots of the metric values for each optimization configura-

tion for all of the applications. Threshold carving was performed only for matrix

multiplication. The maximum metric values have been normalized to one for

comparison purposes. Most Pareto plots are configured so that smaller values are

superior and the optimal curves are close to the origin; I have kept larger values

as superior because it is more intuitive, although it creates Pareto-optimal curves

which may appear odd to readers. In general the best performance should come

from configurations with both high efficiency and utilization, meaning points to-

93

 1

 0
 1 0

U
til

iz
at

io
n

Efficiency

(a) Matrix Multiplication (MM)

 1

 0
 1 0

U
til

iz
at

io
n

Efficiency

(b) CP
 1

 0
 1 0

U
til

iz
at

io
n

Efficiency

(c) SAD

 1

 0
 1 0

U
til

iz
at

io
n

Efficiency

(d) MRI-FHD

Figure 6.1: Optimization carving for four benchmark kernels.
The best performing configuration is circled in each graph. Configurations

pruned by threshold carving are marked with squares rather than ‘+’. In (d),
each point actually represents as many as seven configurations with

indistinguishable efficiency and utilization.

wards the upper right corner of the graph. These points create a Pareto-optimal

curve, which is drawn in the figure. The best performing configuration for each

application is circled. Configurations that are inferior to another configuration in

only one metric value are eligible for inclusion on the Pareto-optimal curve; for

example, there are several configurations in CP and MRI-SAD that have the best

efficiency and varying utilization values.

The matrix multiplication kernel has thread blocks of size 8x8 and 16x16 in

its configuration space. Although a developer with detailed knowledge of global

memory coalescing would know to exclude 8x8 blocks, the requirements for global

memory coalescing were not well understood when these experiments were first

94

Table 6.2: Optimization Carving Space Reduction

Kernel Selected
Configura-
tions

Space
Reduction

Selected
Evaluation
Time

Time Re-
duction

Selected Best Rela-
tive to Overall Best

Matrix Multi-
plication (MM)

8 91% 10.2 s 97% 100%

CP 10 74% 42.95 s 73% 100%
SAD 19 98% 62.21 ms 99% 100%
MRI-FHD 58 93% 270.0 s 91% 99.2%

performed. I use this opportunity to show the effects of threshold carving: config-

urations pruned by threshold carving are marked with a square rather than ‘+’.

This pruning changes the Pareto-optimal curve in subsequent tradeoff carving,

as can be seen by the squares on the “outside” of the curve in Figure 6.1(a).

These configurations run significantly more slowly than the plot would indicate

because they are limited by memory bandwidth. A Pareto-optimal curve that

includes these configurations will still find the best configuration, but at the cost

of evaluating several configurations with poor performance.

Table 6.2 shows the number of configurations selected by carving and the

resulting reductions in space and evaluation time, which were significant. It also

shows the relative performance of the best configuration on the Pareto-optimal

curve compared to the best performance found via exhaustive search. For three

kernels, the Pareto-optimal subset contains the best overall configuration. The

best configuration of the MRI-FHD kernel does not lie on the Pareto-optimal

curve, but the second-best configuration does, with a performance difference of

less than 1%. The variation in runs is relatively close to this difference, and

there are several points on the Pareto-optimal curve that are within 2% of the

best performance. As I discuss in Section 6.3, the MRI-FHD kernel has a large

number of high-performance configurations.

95

It is difficult to make a judgment about whether a given value of utilization

is “good” or “bad.” As previously stated, the utilization metric measures the

relative ability of a configuration to utilize the execution units, but the differences

in values are of less importance. For example, consider that the best configuration

for matrix multiplication in Figure 6.1(a) has one of the lowest utilization values

of the entire space. The reason low utilization is not a reliable predictor of poor

performance for matrix multiplication is because all configurations are quite good

at ensuring that execution resources are almost always occupied. Thus, instruction

stream efficiency is the primary determinant of performance for this kernel. This

fact is not necessarily true for the other kernels.

Figure 6.1(d) shows the Pareto plot for the MRI-FHD application. In this

graph, configurations tend to be clustered in groups of seven, appearing as a sin-

gle point. This effect is due to the fact that MRI-FHD is not a blocked algorithm

in the way that matrix multiplication is, so changes in thread block size affect

neither the efficiency nor the utilization of this kernel. Differences in actual per-

formance within each cluster are small, generally a few percent. Hence, when

several configurations have identical or nearly identical metrics and similar opti-

mization parameters, it may be sufficient to randomly select a single configuration

from that cluster, rather than evaluating all the configurations.

6.3 Comparison to Random Sampling

The last stage of optimization carving requires execution of the remaining config-

urations to determine the best one. A question that arises is whether a random

sample of the optimization space might be capable of achieving similar results. In

this section I compare random sampling of the optimization space to the results

of optimization carving.

96

Table 6.3: Random Sampling Results

Kernel Best
Config-
uration
Time

Optimization
Carving
Configura-
tions

Expected
Maximum
Performance
of Same Size
Random
Sample

Random
Sample
Performance
Relative to
Best

Random
Sample
Size for
90% of
Best

Random
Sample
Size for
95% of
Best

MM (16x16
only)

1.147 s 8 1.404 s 81.7% 20 37

CP 2.679 s 10 2.869 s 93.4% 8 15
SAD 2.029 ms 19 2.479 ms 81.8% 78 93
MRI-FHD 3.727 s 58 3.763 s 99.0% 2 4

The value of interest in random sampling is the highest performance of the

configurations in the sample. I term this value the expected maximum performance

of a sample. Conceptually, a sample of unit size has an expected maximum

performance equal to the expected value (arithmetic mean) of the space. On the

other end of the scale, a sample consisting of the entire space would provide the

maximum performance in the space. This calculation is not described in any

introductory statistics or probability text I have referenced, so I describe it in

Appendix A.

Figure 6.2 shows the expected maximum performance of random samples of

varying size, while Table 6.3 shows the size of the samples required to have an

expected maximum performance of 90% and 95% of the best configuration. For

matrix multiplication I use only 16x16 thread blocks, since thread blocks that

do not take advantage of global memory coalescing have mediocre performance

(shown in Figure 5.1 on page 74) and can be eliminated prior to sampling. A

vertical dotted line corresponds to the number of selected configurations from

optimization carving for comparison.

97

1.1

1.2

1.3

1.4

1.5

1.6

1.7

0 10 20 30 40

Sample Size

Random
Best

���

���

�
��
�
	

�
�

(a) MM (16x16 only)

2.5

2.75

3

3.25

3.5

3.75

4

0 5 10 15 20

Sample Size

Random
Best

���

���

�
��
�
	

�
�

(b) CP

2

2.2

2.4

2.6

2.8

3

0 20 40 60 80 100 120

Sample Size

Random
Best

��� ����
��
�
	

�
�
�

(c) SAD

3.7

3.8

3.9

4

4.1

4.2

4.3

0 10 20 30 40 50 60

Sample Size

Random
Best���

���

�
��
�
	

�
�

(d) MRI-FHD

Figure 6.2: Expected maximum performance of a random sample of the optimization space.
A vertical dotted line marks the number of configurations that optimization carving selects.

98

Random sampling is an effective method for finding good configurations for

the CP and MRI-FHD kernels, with an expected maximum performance close

to the best configuration’s performance with a small random sample. It is ef-

fective because there are many configurations with near-best performance in the

optimization spaces of those kernels.

Matrix multiplication and SAD require much larger random samples for a

near-best configuration to be expected. Unlike CP and MRI-FHD, there are only

a few configurations with performance near the best, and even these can still be

several percent away from the best. The right combination of local memory tiling,

register tiling, and loop unrolling gives significant performance advantages to the

highest-performing configurations.

One possibility that should be examined is whether randomly sampling the

pruned space produced by optimization carving can find a near-best configura-

tion effectively. The dotted lines in Figure 6.3 show the expected maximum

performance of a random sample of the Pareto-optimal configurations selected

by optimization carving. The important observation is that, with the exception

of matrix multiplication, small samples of the Pareto-optimal configurations may

not be significantly better than sampling of the entire space, and are worse for

MRI-FHD. Not every Pareto-optimal configuration should be expected to have

good performance; one should only expect that the best performing configuration

is Pareto-optimal. Larger samples of the pruned space often have a much better

expected maximum performance because it is more likely that the best or a near-

best configuration is included in the sample, since the pruned space is smaller.

MRI-FHD is a notable exception, where optimization carving is not significantly

superior to random sampling. It appears that variations in the performance of the

MRI-FHD kernel are due to differences in how the configurations interact with

the constant cache and SFUs, neither of which is modeled in the metrics.

99

1.1

1.2

1.3

1.4

1.5

1.6

1.7

0 10 20 30 40

Sample Size

Total
Pareto
Best

�
��
�
��
�
�

(a) MM (16x16 only)

2.5

2.75

3

3.25

3.5

3.75

4

0 5 10 15 20

Sample Size

Total
Pareto
Best

�
��
�
��
�
�

(b) CP

2

2.2

2.4

2.6

2.8

3

0 20 40 60 80 100 120

Sample Size

Total
Pareto
Best

�
��
�
��
�
�
�

(c) SAD

3.7

3.8

3.9

4

4.1

4.2

4.3

0 10 20 30 40 50 60

Sample Size

Total
Pareto
Best

�
��
�
��
�
�

(d) MRI-FHD

Figure 6.3: Expected maximum performance of random sampling of the Pareto-optimal configurations from optimization
carving and the entire optimization space.

100

6.4 Varying Metrics

The key factors in the usability of the technique are the effectiveness of relatively

simple metrics and the results’ robustness to approximations and inaccuracies in

the metrics. In this section I develop both simpler and more complex versions

of the metric for execution resource utilization. I use these to perform tradeoff

carvings and compare the results to those of the initial metrics.

6.4.1 Simpler metric: Discounting synchronization effects

Here, I create a simpler version of the utilization metric and test its effectiveness

versus Equation (5.2) in reducing the search space while still finding a near-best

optimization configuration. In selecting which aspects to include in the simpler

metric, I observe that stalls due to global loads and the longest latency operations

are the greatest detriment to machine utilization for our application suite. The

primary way to avoid these losses is to execute more threads in parallel per SM.

This intuition is codified into Equation (6.1). I remove the stalling effects of syn-

chronizations and assume that barrier synchronization is no more expensive than

any other instruction. Instead of regions being delineated by consumers of global

loads and synchronizations, I now only count regions delineated by consumers

of global loads or the longest latency operations, represented by LongRegions.

Because the effects of synchronizations are no longer being considered, all other

warps are potentially available for execution during a stall, so I calculate the to-

tal number of warps executing on the SM and subtract one. Compared to the

previous utilization calculation, this metric will increase, relative to other con-

figurations, the utilization values of configurations that have fewer thread blocks

with many warps and do not perform prefetching.

101

Utilizationsimple =
Instr

LongRegions
[BSMWTB − 1] (6.1)

The reason I remove the effects of synchronizations is that the previous metric

potentially “double-counts” the effects of load stalls. First, barrier synchroniza-

tion on the GeForce 8800 appears to be extremely fast, unlike on traditional

multiprocessing systems. Thus, synchronizations stall execution of a thread block

only when the warps that have not reached the barrier cannot execute useful in-

structions due to another stall. These stalls will generally be due to loads from

texture and global memory that have not returned their values. However, most

synchronizations exist to ensure that values have been stored to shared memory

for use by all threads, and these preceding stores often consume the results of

global loads. Thus, a warp generally encounters a synchronization stall when

another warp is stalled on the use of a load.

In addition, a combination of a good instruction schedule, a good dynamic

thread scheduling policy, and many warps per SM may ensure that synchroniza-

tions rarely cause significant stalls. Consider the matrix multiplication instruction

schedule in Figure 6.4, corresponding to the code in Figure 5.6 on page 90. When

a warp enters the loop, loads of elements in arrays A and B are executed for the

first warp. No forward progress can be made in that warp because the next in-

struction is a store of value being loaded, so execution proceeds to other warps in

the thread block. Once those have stalled, execution proceeds to another thread

block if multiple are simultaneously running on an SM. Once the results of the first

set of loads arrive, the first warp can execute loads and other instructions before

encountering the synchronization barrier. Due to MLP, several other warps’ load

results have also arrived by that time and execution can continued unstalled until

the last warp in the thread block reaches the barrier. Because all other warps

102

������

���	�
 � ��	��

������

���	�
���

���

�
�
�
�

�
�
�
�
�

�
�
�
�

�
�
�
�
�

�����������

�����������

�������	
������������������

������

�������

��������

���

��
��������

������

������

������

������

�����	��

���

�����������

�����������

���

��
��������

�����	��

���

�
�
�
�

�
�
�
�
�

���

�
�
�
�

�
�
�
�
�

�����������

�����������

���

��
��������

�����	��

���

�
�
�
�

�
�
�
�
�

�
�
�
�

�
�
�
�
�

���

��		��	�����	
���������������

���������

������������

������

������������

������

������������

������

Figure 6.4: A hypothetical instruction schedule for a thread block of the matrix
multiplication kernel from Figure 5.6.

103

have reached the barrier, execution can proceed unabated past the barrier. With

this schedule, the barrier never causes execution to stall on the SM.

Finally, there are no synchronizations in the inner loops of the kernels other

than matrix multiplication. The previous metric penalizes configurations with

larger thread blocks due to the division by two: warps in the same thread block

should theoretically be equally schedulable as warps in different blocks for kernels

without synchronization.

Figure 6.5 shows the results of optimization carving using the simplified utiliza-

tion metric for the four applications. Matrix multiplication carving is performed

only with 16x16 thread block configurations for clarity. Some shifting of the lo-

cations of configurations has occurred, but in general the plots appear similar

to results using the original metric calculation, with the largest difference being

further clustering of formerly scattered configurations in the MRI-FHD plot. For

matrix multiplication, the Pareto-optimal line has not changed from Figure 6.1(a),

containing the same configurations. Similar to the original metric calculation, the

best configuration is on the Pareto-optimal curve for all but the MRI-FHD plot.

Table 6.4 compares the number of points on the Pareto-optimal curve using

the original and simplified utilization metrics. In applications other than matrix

multiplication there is a significant increase in the number of points on the curve,

mainly because there is less to differentiate configurations in the simplified metric.

Even though the simplified metric still serves its purpose, for three kernels a larger

number of configurations must be evaluated to find the configuration with the

highest performance.

The MRI-FHD kernel is notable in that even though the simplified metric

produces a Pareto-optimal curve with three times the number of configurations

of the original utilization metric, no configuration on the curve is closer than 5%

in performance from the best configuration. Given that 152 configurations are

104

 1

 0
 1 0

U
til

iz
at

io
n

Efficiency

(a) MM (16x16 only)

 1

 0
 1 0

U
til

iz
at

io
n

Efficiency

(b) CP
 1

 0
 1 0

U
til

iz
at

io
n

Efficiency

(c) SAD

 1

 0
 1 0

U
til

iz
at

io
n

Efficiency

(d) MRI-FHD

Figure 6.5: Optimization carving using the simplified utilization metric.

evaluated, the simplified metric fares poorly compared to random sampling of

the optimization space. As stated previously, the primary difference between the

simplified and original utilization metrics is that the simplified metric improves

the standing of configurations that have fewer thread blocks and more threads per

block. A simple experiment shows that there may be a significant performance

penalty when a single thread block with heavy SFU usage is executed per SM, as

opposed to multiple, smaller thread blocks.

Table 6.4: Space Reduction Using Simplified Utilization Metric

Kernel Total
Configurations

of Original
Selections

of Simpli-
fied Selections

Performance
Relative to Best

MM (16x16 only) 45 8 8 100%
CP 38 10 18 100%
SAD 908 19 23 100%
MRI-FHD 896 58 152 94.9%

105

 6e-07

 8e-07

 1e-06

 1.2e-06

 1.4e-06

 1.6e-06

 1 2 3 4 5 6 7 8

T
im

e

Thread Blocks

Figure 6.6: Reciprocal square-root execution time for varying numbers of thread
blocks per SM.

The test kernel for this experiment consists of a kernel that loops over a single

reciprocal square-root operation 2000 times. The number of thread blocks on an

SM is varied while the total number of threads is kept roughly constant (slight

variations are made to create an integral multiple of half-warps, to avoid impacting

instruction scheduling and the memory system). Figure 6.6 shows the results.

Although the variations from 2 to 8 thread blocks may be due to variations in the

total number of threads, there is a clear performance loss when a single thread

block is running on an SM. The MRI-FHD kernel illustrates a situation where

behavior of an architectural feature was not anticipated or initially understood

by application developers or optimizers, making the metric and the optimization

carving technique less effective.

6.4.2 Modeling cycle count

It is evident that the metrics displayed so far are relatively crude. I have discussed

the combined effects of ILP, TLP, and MLP but have not attempted to relate

their effects within a single metric until this point. Here, I attempt to capture

the behavior of the application kernels more precisely by factoring in the stall

106

time and work performed by each thread as a fraction of a single thread block’s

minimum execution time.

In the previous utilization calculations, a region represents a nonstalling in-

struction sequence and by association the stall period between it and the next

region. This abstract stall time is assumed to be the same for all configurations.

In reality, ILP and MLP effects can reduce the exposed stall time for a single warp

by executing other instructions after a load operation. They have a multiplicative

effect with TLP. Kernels with low TLP and high ILP compared to other configu-

rations are unfairly penalized with the previous utilization calculations, and may

have much higher utilization and overall performance than the metric predicts. I

shown an example here.

Consider the code in Figure 6.7, taken from a 1x4 rectangularly tiled matrix

multiplication kernel with 16x16 thread blocks. The first load will take approxi-

mately 200 SP cycles to return its values. Four more load operations can execute

immediately after the first. These five loads execute in 20 SP cycles, after which

the warp must stall for load results. In a 16x16 thread block, there are a total of 8

warps, and each warp can execute for 20 cycles before encountering a stall. Thus,

approximately 160 cycles of the first load’s latency are covered by the execution

of other load instructions in a single thread block. High ILP is one of the factors

that enables the 1x4 rectangularly tiled kernel to achieve the best performance of

the matrix multiplication configurations.

Figure 6.8 depicts how the scheduling of warps hides a single warp’s compulsory

stall time. Compulsory stall time is the latency from loads or other long-latency

operations, reduced by the execution of operations from the same warp after the

long-latency operation is issued. Work from other threads hides the compulsory

stall time and helps the SM avoid stalls. Conceptually, utilization should represent

the percentage of execution time where the SM is not stalled. Here, I attempt to

107

1 ld.global.f32 $f5, [$rd9+0];

2 ld.global.f32 $f6, [$rd16+0];

3 ld.global.f32 $f7, [$rd16+64];

4 ld.global.f32 $f8, [$rd16+128];

5 ld.global.f32 $f9, [$rd16+192];

6 st.shared.f32 [$rd20+0], $f5;

7 st.shared.f32 [$rd23+0], $f6;

...

Figure 6.7: Example PTX code from a matrix multiplication kernel with 1x4
rectangular tiling.

���� �����	
����

�		 ���� ����

���
���
���

���

����������
����������

������

������

������

Figure 6.8: Scheduling warps to hide compulsory stall time.

calculate utilization by determining the amount of compulsory stall time that is

not covered by the work from the thread blocks executing on the SM.

It should be noted that within a synchronization region, or the region between

two barrier synchronizations, warps in the same thread block must be executing

code within the same region. However, work in other thread blocks can come

from any part of the kernel. This fact should be correctly factored into the

calculation of the metric. For example, the synchronization region with global

loads in matrix multiplication can have relatively few instructions compared to

the synchronization region that performs the partial dot product calculation. A

relatively small percentage of the thread block’s total work is available to cover

the latency of the global loads.

Another important detail is that only a portion of the work of other thread

blocks is available to cover a stall, since other thread blocks will encounter their

own stalls. I assume that the amount of this work is the total number of instruc-

108

tions executed by a thread divided by the total number of long latency stalls,

or Instr
LongRegions

. For the simple kernels used here, using this value is probably a

reasonable assumption. However, there is a possibility that thread blocks running

on the same SM will have a tendency to be either in-phase or out-of-phase with

each other, with potential increases or decreases in the number of instructions

available for execution during a stall. How to predict this situation and include

it in the utilization metric is left for future work.

I first introduce the concept of a thread block’s minimum execution time for

a synchronization region, mintimesr, shown in Equation (6.2). The letters sr

stand for synchronization region. The available work from a single warp in a

synchronization region is warpworksr, calculated directly from the instructions

between the synchronization operations. The compulsory stall time for a single

warp in each synchronization region is stallsr and is measured by taking the

latency of a long-latency instruction (200 cycles for global memory loads) and

subtracting the work from operations between the long-latency instruction and

its consuming instruction in the same warp. If the warps in a thread block can

cover all of the latencies, then the minimum execution time is equivalent to the

total number of work cycles in the thread block. Otherwise, some part of the

compulsory stall time is exposed and must be covered by work from other thread

blocks. One important note is that this calculation and the following ones are

optimistic about the ability of other warps’ work to cover a stall: the warps

may encounter their own stalls after performing a fraction of their work in the

synchronization region, as depicted in Figure 6.8.

mintimesr = warpworksr + max[stallsr , (WTB − 1)warpworksr] (6.2)

109

I next calculate the amount of work that an SM can execute during a synchro-

nization region, worksr, shown in Equation (6.3). The work from a thread block

is added to available work from other thread blocks. Only a portion of the other

thread blocks’ work is available to cover a stall, as I previously described, but there

may be multiple stalls within a synchronization, represented by LongRegionssr.

The combined work may completely cover the latencies in the synchronization

region, in which case the value of worksr is capped at mintimesr. I cap the value

because the SM reaches maximum utilization when all latencies are hidden.

worksr = min

[

mintimesr,WTB · warpworksr

+
(BSM − 1)(WTB)Instr · LongRegionssr

LongRegions

] (6.3)

Equation (6.4) shows the new utilization metric, which approximates the frac-

tion of execution time that the SM is executing instructions. The denominator

represents the total time that a single thread block requires to execute the code,

calculated by adding up the minimum execution times for all synchronization

regions. The numerator is the total amount of work that an SM can schedule

during the period represented by the denominator. Capping the value of worksr

at mintimesr for each synchronization region prevents extra work in one syn-

chronization region from covering the latencies in another synchronization region,

which was possible in the previous utilization calculations but cannot happen in

reality.

Utilizationcycle =

all sr
∑

worksr

all sr
∑

mintimesr

(6.4)

I make several assumptions about SFU behavior. SFU latency is assumed

to be 20 cycles. I assume that the SM can issue instructions to SPs after four

110

cycles of issuing SFU instructions, but must finish issuing SFU instructions before

issuing another set of SFU instructions; otherwise, the SM must stall. Finally,

I assume no effects from execution capacity limitations are exhibited. A related

assumption I make is that warps in the same thread block are as schedulable as

warps in other thread blocks, although Figure 6.6 shows otherwise.

Because I do not have access to a cycle-accurate scheduler, I manually sched-

uled instructions and calculated the work and exposed stall time for each config-

uration. SAD and MRI-FHD are not included in this experiment because of the

large number of configurations in those kernels. I assume that the compiler and

runtime schedule instructions to maximize MLP and minimize compulsory stall

time. It should be noted that this assumption can create significant error if it is

incorrect: if two load latencies are sequential instead of overlapped, a warp will

have twice as much compulsory stall time.

Since CP generally benefits from global memory coalescing, for the baseline

comparison I remove noncoalesced configurations from the optimization space.

Tradeoff carving selects nine configurations for evaluation, as shown in Figure 6.9;

only one of the configurations on the original Pareto-optimal curve in Section 6.2

did not have coalescing.

Table 6.5 shows the results of using the new utilization calculation on the MM

and CP kernels. Unlike the previous experiments, I no longer include configura-

tions that are equivalent in one metric value and inferior in another compared to

other configurations. The reason is that all configurations in both kernels have

maximum utilization: the available work should be able to cover all latencies in

each synchronization region.

Only the best MM configuration is selected by carving. The advantage of

capping the utilization for each synchronization region is that carving can deter-

mine that all configurations have very high utilization. In reality, the best MM

111

 1

 0
 1 0

U
til

iz
at

io
n

Efficiency

Figure 6.9: Tradeoff carving using the original utilization metric calculation for
CP with coalesced configurations.

Table 6.5: Space Reduction Using Cycle-Based Utilization Metric

Kernel Total
Configurations

Original
Selections

Cycle-Based
Selections

Performance
Relative to Best

MM (16x16 only) 45 8 1 100%
CP (coalesced
only)

19 9 3 79%

configuration should have lower utilization than other configurations: the warps

in the single thread block cannot completely cover the stall time of the first load,

since they cannot execute all of their work before encountering their own stalls.

This inaccuracy could be corrected by splitting synchronization regions into sev-

eral work-and-stall regions, similar to the LongRegions of the previous utilization

calculation. Refinement of the calculation is left for future work.

The Pareto-optimal configurations for CP have a loop unroll factor of 16, as

opposed to the best-performing configuration with an unroll factor of 8. More

unrolling gives those configurations higher efficiency at the cost of fewer total

warps per SM (4 or 6) than the best configuration, which has 10 warps per SM.

112

The second- and third-best configurations, which have the same efficiency as the

best configuration, have 8 warps per SM. It appears that the additional warps in

the best configurations have a positive effect on utilization that is not modeled by

the metric. One likely reason is that the the code being executed on the system

may be essentially the same as the PTX code, which places the consumers of the

results of reciprocal square root operations directly after their producers. The

manually scheduled code used as the input for the metric calculation moves those

instructions downward in the schedule, for much higher ILP and far lower com-

pulsory stall time. If the executed code resembles the PTX code, SFU latencies

will be exposed and the additional warps will be necessary to cover the latencies.

The CP case illustrates a potential danger of using more precise metric cal-

culations: unless they capture execution details very accurately, they may inad-

vertently penalize and possibly prune top-performing configurations. Accidental

pruning can be mitigated by not pruning points that are close to the Pareto-

optimal curve, which is counter to the purpose of using more precise metrics.

Given this danger, the use of precise metrics will probably be most useful when

the optimization space needs to be severely pruned, even at the risk of missing

the best configuration in the overall optimization space.

6.5 Impact of Performance Factors Not Included in

Metrics

Although the configurations selected by optimization carving contained a near-

best optimization configuration for the test kernels, one should examine the effec-

tiveness of the technique when the metrics do not incorporate certain aspects of

performance behavior. I observe one aspect here, that of cache behavior.

113

 0

 20

 40

 60

 80

 100

 120

 140

 2048 1024 512 256 128 64 32

E
xe

cu
tio

n
T

im
e

(s
ec

)

Tiling Factor

Execution Time

Figure 6.10: Execution time of MRI-FHD with cache conflicts.

Consider Figure 6.10, which depicts the performance of a preliminary version

of the MRI-FHD kernel as the tiling factor (number of data points processed

by each thread block) changes. The performance metrics indicate that efficiency

and utilization remain constant as the tiling factor changes, predicting no signif-

icant change in performance. However, experiments revealed that performance

decreases as the tiling factor increases, as shown in Figure 6.10.

The sharp contrast between the predicted performance trend and the actual

performance led the developer of the MRI kernels to consider that the layout and

traversal of data in constant memory might be causing frequent constant cache

conflicts. Changing the data layout yielded a kernel that is insensitive to changes

in the tiling factor and performance up to 17% faster than the previous best

configuration.

6.6 Future Work

In this section I discuss future work related to program optimization carving. One

thrust concerns methods to reduce the amount of compilation or configurations

114

searched for optimization carving. Another thrust is alternate approaches for find-

ing high-performance application configurations. Finally, I discuss the possibility

of architectural support for mitigating the discontinuity of the optimization space

and tools to help developers in the optimization process.

The effectiveness of the metrics would improve with the inclusion of effects

of architectural features that are first-order performance determinants for some

applications. The MRI-FHD kernel is the prime example of the need for more

refined metrics. More precise modeling would also enable the combination of

the efficiency and utilization metrics into a single cost function. Even if the

cost function assumes no memory bandwidth limitations, it would remove the

need to do a tradeoff carving, replacing it with a threshold carving based on a

combined cost function. As stated previously, so far I have not been able to find a

sufficiently accurate cost function that consistently finds near-best configurations

across multiple, relatively simple kernels.

It is feasible for a runtime system like that of the GeForce 8800 to auto-

matically perform many of the code optimizations used by optimization carving.

If performance feedback information were produced during execution, it could be

consumed by the runtime to optimize kernels, enabling speedup of the kernel prior

to its completion. Run time modification of kernels is relatively easy to manage

for programs written for CUDA, due to the independence of thread blocks: newly

initiated thread blocks can execute optimized code, while thread blocks already

running can complete execution of unoptimized code.

The fundamental issue that optimization carving addresses is the difficulty

for either an automatic system or a human developer to determine what mix

of optimization dimensions, such as tiling, will achieve high performance on the

GeForce 8800. However, it is often much easier to determine which of two similar

configurations will have greater performance. For example, most of the matrix

115

multiplication kernels studied here have decreased performance when unrolling by

a factor of four because the number of thread blocks simultaneously executing on

an SM is reduced compared to configurations unrolled by a factor of two. Since the

number of thread blocks per SM cannot change further when unrolling completely

(assuming no oversubscription of registers), it is likely that complete unrolling will

have results superior to those of unrolling by a factor of four. It would be desirable

to avoid compiling or evaluating configurations with poor unrolling factors. This

approach requires either precise knowledge about the effects of optimization or

prediction of their effects, similar to work by Zhao et al. on codes for embedded

processors [41].

A more directed approach for optimizing code for the GeForce 8800 is to

target specific granularities of parallelism and maintain them throughout the op-

timization process. Instead of trying various optimizations without regard to their

effects, the compiler can compile multiple configurations that have varying values

of specific characteristics, such as the number of thread blocks simultaneously

executing per SM or the degree of register tiling. It can then control optimiza-

tions that allow configurations to stay within the specified limits. Although the

compiler will still need to compile multiple configurations, targeting specific gran-

ularities would reduce the number of configurations that need to be compiled,

effectively targeting the configurations on the Pareto-optimal curve from tradeoff

carving. This approach also requires careful study of optimization phase ordering

and prediction of optimization effects in order to prevent the accidental bypass of

desirable configurations.

One major issue with the GeForce 8800 architecture is that the number of

thread blocks assigned to each SM is directly related to a thread block’s local

resource usage. Although this issue is a fundamental limitation for many-core

processors, the problem is exacerbated by unpredictable performance changes

116

when small changes are made to the kernel. It may be possible to create support

in the runtime to automatically spill registers when it would allow significantly

better utilization of execution resources. This technique could be enhanced with

architectural support to spill registers to unused local memory, avoiding additional

burden on global memory bandwidth.

A more integrated and structured environment for optimizing kernels would

make the application developer’s efforts more focused and efficient. Environ-

ments such as those constructed by Adve et al. [42] have been constructed for

past systems, languages, and compilers. The issue is complicated by the opacity

of some architectural feature of the GeForce 8800, but the basics of global mem-

ory bandwidth, instruction efficiency, and resource utilization can be combined

with visualization tools to improve developer efficiency. This approach can be

integrated with profiling information and feedback into the compiler and runtime

to automate much of the optimization process.

117

CHAPTER 7

RELATED WORK

Code transformation and optimization for parallel programs have a long his-

tory, with much of the foundational work performed by the Parafrase [43, 44],

PTRAN [45], and PFC [46–48] projects, followed later by Polaris [49] and SUIF [50].

This work builds on past work by examining a particular class of parallel architec-

ture, namely single-chip, many-core architectures that enable fine-grained sharing

of local execution resources and memories, and how to optimize applications for

the architecture.

7.1 Parallel Programming Languages

Data-parallel programming languages are considered an intermediate approach

between automatic parallelization and vectorization efforts [51, 52] and explicit

parallel programming models such as OpenMP [53] to support parallel comput-

ing. APL was one of the first data-parallel languages and was developed from

notation work by Iverson [54]. Fortran 90 [55] was one of the most widely used

data-parallel languages and was notable for its use of array assignment statements.

Later, High Performance Fortran (HPF) [56] was introduced as a standard data-

parallel language to support programs with SPMD. However, the complexity of

data distribution and communication optimization techniques, as discussed in

the final two chapters of [34], was a difficult challenge. As a result, application

developers became involved in explicitly handling data distribution and communi-

118

cation; message passing libraries such as MPI [57] became a popular programming

model for scalable parallel systems. CUDA has similar management capability,

where the developer explicitly manages data layout in DRAM and local mem-

ory spaces, data caching, thread communication within thread blocks, and other

resources to achieve high performance.

The interest in general-purpose GPU programming has been driven by rela-

tively recent improvements in the programmability of graphics hardware. The

release of Cg [58] signified the recognition that GPUs were programmable pro-

cessors and that a higher-level language was needed to develop applications for

them. Others felt that the abstractions provided by Cg and other shading lan-

guages were insufficient and built higher-level language constructs. Brook [59]

enables the usage of the GPU as a streaming coprocessor. Accelerator [60] is

another system that uses data-parallel arrays to perform general-purpose compu-

tation on the GPU. A Microsoft C# library provides data types and functions to

operate on data-parallel arrays. Data-parallel array computation is transparently

compiled to shader programs by the Accelerator runtime.

Other efforts to provide a more productive stream processing programming

environment for developing multithreaded applications include the RapidMind

Streaming Execution Manager [61] and PeakStream Virtual Machine [62]. These

mainly target high-performance computing applications that are amenable to

stream processing. Their achieved performance may be inferior to customized

GPU/CPU code due to virtual machine and dynamic compilation overhead as

well as the inability to use platform-specific features. CUDA supports kernels

with much larger code sizes and avoids the use of graphics APIs, although it

currently does not map to other architectures as the RapidMind and PeakStream

environments do. The hardware aspects of mapping general-purpose computation

to GPUs is discussed later in the chapter.

119

A programming interface alternative to CUDA is available for the AMD Stream

Processor, using the R580 GPU, in the form of the Close to Metal (CTM) compute

runtime driver [63]. Instead of abstracting away architecture-level instructions,

CTM completely exposes the ISA to the programmer for fine-grained control.

Intel’s C for Heterogeneous Integration (CHI) programming environment [64]

is a different approach to tightly integrate accelerators such as GPUs and gen-

eral purpose CPU cores together, based on the proposed EXOCHI model. EX-

OCHI supports a shared virtual memory heterogeneous multithreaded program-

ming model with minimal OS intrusion. In the CUDA execution model, the

GPU is a device with a separate memory space from the CPU’s. As a result,

all data communication and synchronization between CPU and GPU is explicitly

performed through the GPU device driver.

7.2 Optimizations and Performance Tuning

Chapter 3 discusses the effects of optimizations on the GeForce 8800. Many clas-

sical optimization techniques for data-parallel architectures are described in [34,

35, 65]. The effects of such optimizations, especially in combination, can be un-

expected due to their effects on local resource usage, as discussed in [66, 67]. In

particular, tiling at both the shared memory and register levels has major effects

on performance and is the cause of significant discontinuities in the optimization

spaces of some applications.

The memory subsystem of the GeForce 8800 favors access patterns which can

be enabled by data layout transformations. The encompassing work on compiler-

driven optimization for data locality was performed by Kennedy et al. [68, 69].

They split data locality optimization into three stages: loop optimizations, tiling,

and register tiling. The fine-grained sharing of resources permits a variable num-

120

ber of threads and registers per thread to execute on this architecture, and this

particular ordering of concerns has the potential of being trapped at a local per-

formance maximum.

Later work in this area focused mainly on cache behavior of different instances

of dynamically allocated objects on superscalar processors, whereas performance

on the GPU involves structuring of accesses, usually to single arrays of struc-

tures, so that contiguous memory regions are simultaneously accessed. Yamada

et al. [20] propose a combined hardware and software approach to improve mem-

ory performance. Truong et al. [21] use a library, driven by profile information, to

reorganize fields of data or separate structures into different fields for better per-

formance. Chilimbi et al. used automated techniques [22] for the same purpose.

The need for developers to understand the behavior of optimizing compilers

for data-parallel architectures was discussed in work by Adve et al. [5]. They

discuss the need to identify the modeling assumptions made about the system

and a mechanism to validate those assumptions; optimization carving is a tech-

nique that does both of these for the GeForce 8 Series GPUs. NVIDIA provides

tools, such as the -ptx and -cubin flags of nvcc, to give developers visibility

into compiler behavior for assisting performance optimization. They have also

recently enabled run-time profiling of applications on newer products. However,

the GeForce 8800 is not sufficiently observable for application developers to easily

find optimal configurations, and no support for compiler or runtime consumption

of performance information is currently exposed to third-party developers.

7.3 Phase Ordering

Phase ordering concerns the order in which optimizations are applied and the

decisions of whether to apply them or not. There is much previous work in phase

121

ordering, particularly for classical optimizations directed towards single-thread

applications. Vegdahl published one of the first papers on phase ordering [37],

looking at the interaction of code generation and compaction. Whitfield and Soffa

developed a framework to control phase ordering to improve performance [38].

Cooper et al. [70] use genetic algorithms to find good phase orderings. Kulkarni

et al. mention other previous work [71].

This work is not directly related to phase ordering because the optimizations

varied in the study are effectively orthogonal and applied unconditionally, making

phase ordering a nonissue. Chapter 3 instead focuses on understanding the effects

of optimizations on this class of architecture, while Chapter 5 shows how different

optimizations interact. Prior work [39] has examined how optimal configurations

differ from hand-optimized ones for several applications. This work contributes

to future construction of effective phase orderings for this class of architecture.

If a compiler targets particular resource usages (thread blocks per SM, dimen-

sions of thread blocks, etc.) instead of using optimization carving, phase ordering

will become an important issue in finding the best optimization configuration that

matches the desired resource usage. This issue is discussed briefly in Section 6.6.

Studies such as that performed by Cooper et al. [72] or more recently Kulkarni

et al. [71] will be necessary to find good phase orderings for particular program

characteristics. The effects of optimizations may need to be predicted, similar to

what Zhao et al.’s framework performs for embedded systems compilation [41].

7.4 Optimization Space Exploration

Program optimization carving as presented here is derived from a full exploration

of the optimization space, an approach that has been explored by others in various

fashions. Wolf et al. [73] introduced a compiler that explores the entire optimiza-

122

tion space to find the optimal optimization configuration, but they do not use

metrics to prune the space. Han et al. [74] also use static models to search for the

optimal tiling and padding size for a conventional multiprocessor. Work has also

been done to study the interaction among different optimizations and between

optimizations and the hardware without a full search. These are based on analyt-

ical models [75, 76], statistical models [77], genetic algorithms [72], and adaptive

learning and intelligent search techniques [78–81] to find an optimal configuration.

The optimization carving technique is most similar to the work of Wolf et al.,

but the performance metrics presented here are customized for a massively data-

parallel architecture with a large memory bandwidth and latency-hiding memory

system. To my knowledge, the only similar study of this emerging class of data-

parallel architectures directed at broader computing domains is work by Jimenez-

Gonzalez et al. [82]. They present an evaluation of communication bandwidth

between different storage and computing components of the Cell Broadband En-

gine, and general guidelines in terms of optimizations, communication, data access

patterns, and programming models for full utilization.

Iterative approaches to space exploration, such as the approach taken by the

SPIRAL project [83], start at one or several basic configuration points and then

apply optimizations in an attempt to find a good optimization configuration. In

this work I do not take an iterative approach, since such an approach is easily

trapped in a local maximum. Instead I examine the effects of optimizations on

the GeForce 8800. Transformations tightly interact on the GeForce 8 Series GPUs

and must be evaluated based on their joint effects to avoid being trapped at local

maxima. Methods to direct iterative approaches to optimization will be important

when particular resource usage targets are defined or when even a partial space

exploration is prohibitively expensive.

123

7.5 GPU Application Mapping and Optimization

Owens et al. review previous work in mapping general purpose computation to

GPUs in [84]. In general, previous GPU programming systems limit the size and

complexity of GPU code due to their underlying graphics API-based implemen-

tations. CUDA supports kernels with much larger code sizes via a new hardware

interface and instruction caching. The ability to write larger and more complex

kernel codes gives rise to this work.

Previous GPU generations and their APIs also had restricted memory access

patterns, usually allowing only sequential, contiguous writes to a linear array.

This restriction is due primarily to limits in graphics APIs and corresponding

limits in the GPU’s specialized pixel and vertex processors. Accelerator [60] does

not allow separate access to an individual element in parallel arrays: operations

are performed on all array elements. Brook [59] also executes its kernel for every

element in the stream, with some exceptions. The GeForce 8800 allows for general

addressing of memory by each thread, which supports a much wider variety of

algorithms. However, the increased generality also makes it important to apply

locality enhancement optimizations to applications in order to conserve memory

bandwidth and hide memory latency.

Liao et al. [85] developed a framework on top of Brook [59] to perform ag-

gressive data and computation transformations. Their goal was to speed up GPU

streaming applications on CPU multiprocessors. Breternitz et al. [86] also devel-

oped a compiler to generate efficient code on a CPU for SIMD graphic workloads

by extending the base ISA to SSE2 [87]. These efforts differ from this work, which

investigates the effects of optimizations specifically on a contemporary GPU ar-

chitecture.

124

Previous attempts at general purpose programming on GPU systems have

been limited in size and complexity. In particular, inflexibility of memory ac-

cesses [59, 60] and memory performance [88, 89] were major hurdles. A previous

study on performance tuning for GPU [90] was also constrained by the program-

ming environment and the necessity of mapping algorithms to existing GPU struc-

tures. The CUDA programming model, along with the hardware support of the

GeForce 8800, allows larger, more complex kernel code to access the low-latency,

high-bandwidth on-chip memory in a more general manner.

Traditional GPUs also provided limited cache bandwidth for nongraphics ap-

plications on the GPU. Fatahalian et al. [88] discuss how low-bandwidth cache

designs on GPUs prevent general purpose applications from benefiting from the

computational power available on these architectures. Work by Govindaraju et

al. [89] uses an analytical cache performance prediction model for GPU-based al-

gorithms. Their results indicate that memory optimization techniques designed

for CPU-based algorithms may not be directly applicable to GPUs. With the in-

troduction of reasonably sized, low-latency, high-bandwidth, on-chip memories in

new generations of GPUs, this issue and its optimizations have become less criti-

cal. The efficient use of these on-chip memories still requires creative programmer

effort.

One of the important optimizations for these processors is management of

data layout. Automated efforts on data layout began with distributed memory

machines [91]. Recent work has focused on removing the need for application de-

velopers to manually designate the use of specific memories in CUDA. Baskaran et

al. [92] have developed a technique to automatically map global memory accesses

to the shared scratchpad memory on the GeForce 8 Series. They are currently

working on techniques to map data to the caches on the GPU.

125

CHAPTER 8

CLOSING REMARKS

Because of power constraints and performance bottlenecks, computer processors

now consist of an increasing number of processing cores per silicon die. This sit-

uation requires an evaluation of the properties of applications that achieve good

performance on such processors and the optimization techniques required to take

advantage of the large number of execution resources. This situation is little

different from previous eras of parallel computing research, but the newest data-

parallel platforms are very inexpensive, opening up the area to nearly anyone that

has interest in performing research on these platforms. It is also not clear how

these systems should evolve, opening up possibilities for researchers to define fun-

damental computer architecture for many years to come. As a computer architect

and compiler designer, I feel that now is an exciting time to be working in these

areas.

8.1 Applicability to Future Many-Core Processors

I began this work with an examination of the GeForce 8800 GTX GPU and the

CUDA programming model. Although highly specialized as a graphics architec-

ture, the GeForce 8800 permits exploration of some of the fundamental concepts

and issues that every single-chip, many-core processor will have in the future.

The most notable of these are data management and use of local memories, the

balance between multithreading and efficient use of resources, and the use of

126

specialized function units and caches to improve performance beyond that of a

minimal design.

I mentioned several times in this work that off-chip bandwidth is a first-order

concern for most applications. This issue is unlikely to change in the future; the

number of transistors per die and potential execution resources will increase at a

faster rate than off-chip bandwidth. Management of data locality and reuse should

be the initial focus of application and compiler developers for these systems. There

are two issues here that must be addressed in the future:

• Due to software engineering concerns, programmers define data structures

with multiple fields to logically group data. Many of these fields may not

be used in a given kernel or application phase, and waste bandwidth when

they are loaded from DRAM and sent through the memory system, either

on the GeForce 8800 or a traditional processor with caches. In addition, the

GeForce 8800 requires global memory coalescing when possible to achieve

good performance, which, due to the SIMD nature of the SM, means that

developers must either split up the structure (generally poor software engi-

neering practice) or load entire structures in bulk into shared memory. This

work motivates the need for additional research into reconciling software

engineering needs with the desire for performance.

• Expressing data locality in code can be done easily with local variables, but

many application developers are used to a flat memory space and often op-

erate directly on variables in memory, relying on hardware caches to manage

reuse and locality. Copying to local memory space in previous architecture

generations generally resulted in poor performance because the loaded data

would usually be in the processor’s cache anyway. Future many-core proces-

sors are likely to have a scratchpad-style memory or lockable cache to ensure

127

both locality and availability for some data. Whether the CUDA method

of declaring some thread-specific local variables should be used or a com-

piler should attempt to automatically determine and map the appropriate

variables to those memories is open to question.

The partitionable register file and shared memory on each SM of the GeForce

8800 enable an interesting tradeoff between the number of threads on each SM

and the amount of resources available to each thread. Since the ideal balance will

be different for every application, this arrangement enables tuning of application

performance beyond what an architecture with a constant amount of resources

per thread allows. It is not entirely clear what the chip area and design costs are

for enabling this flexibility, but the performance benefit has shown that the idea

has merit.

The specialized caches and the SFUs on the GPU provided significant per-

formance benefit to the MRI kernels, but it is not entirely clear whether such

features would be useful in a more general system. Value broadcast from the

constant cache is enabled by the SIMD nature of the SM, ensuring that threads

in a warp execute the same load instruction at the same time. How to preserve

this advantage when threads can simultaneously take divergent control paths is

unclear. On the other hand, given the abundance of transistors expected in fu-

ture processors, we may see functionality similar to that of the SFUs’ in future

many-core processors that are intended for a wider variety of applications.

One of the largest optimization issues is the discontinuity in the optimiza-

tion space due to the strict limits on local memories. Limited local memory is

a fundamental trait of many-core processors, and it will be important to find

hardware and software mechanisms to mitigate the discontinuities. It should be

remembered that application development is an iterative process, with new fea-

tures added in successive versions. These will often require additional memory,

128

potentially exceeding available local memory and causing performance to drop

precipitously compared to the previous version. Structures such as intermediate

caches or other storage that lie between local memories and off-chip DRAM are

conceptually simple, but it will be important to provide automated or mostly

automated mechanisms to make their use simple for developers.

8.2 Thoughts on Optimization

The GeForce 8800 is highly threaded and enables fine-grained sharing of resources

among threads. Thus, the effects of well-known optimizations on this architecture

can be different from their effects on more traditional multicore systems. With-

out understanding the effects of optimizations, a useful, systematic optimization

process is not possible. I discussed several categories of optimizations and their

effects on this architecture. I also discussed how these optimizations can interact

in unexpected ways, particularly how register usage can reduce the number of

threads simultaneously executing on the system.

The change needed in developers’ assumptions may be one of the largest obsta-

cles in adoption of massively data-parallel, many-core systems. Until developers

build up intuition of how applications map to this platform and how optimizations

affect application performance, they will not be able to extract good performance

from the system. The most prominent example is the relatively small effect of

prefetching and the possibility of significant TLP loss due to increased register

usage. One of the goals of this work is to develop that intuition and communicate

it to others.

Manual, iterative optimization on this system may become trapped in a lo-

cal performance maximum and underutilize the execution resources of the GPU.

Rather than attempt an iterative optimization process, I instead proposed pro-

129

gram optimization carving. This technique avoids becoming trapped in local

performance maxima by examining the entire optimization space and pruning

away configurations that are unlikely to be local maxima (and thus not the global

maximum). This technique is capable of eliminating up to 98% of the space while

still retaining the optimal configuration. I have shown that the technique can be

far superior to random selection for some applications. I have also shown that

less precise metrics provide similar functionality but are not effective at reducing

the space. More precise metrics may be better at reducing the space but run the

risk of being inaccurate and pruning the top-performing configurations.

I anticipate that some compiler developers will instinctively rebel against the

idea of generating multiple code configurations and insist that the best code ver-

sion can be created through careful tuning. Even for the author, it took some time

to become accustomed to the idea, but on the GeForce 8800 there is little choice

because of the lack of developer control of resource usage. More generally, the

complexity of compilers and architecture, as well as the enormous range of appli-

cations, means that compilation systems will not have the perfect understanding

of all the factors necessary to get the “best” optimization configuration via iter-

ative optimization using greedy approaches. This issue might be of little concern

except that on many-core systems the difference may be substantial (double-digit

percentage or more), and some developers desire the additional performance.

Future work in this area includes techniques to further prune the search space

or find near-best configurations more reliably. A combination of space search

and iterative optimization may also be effective in finding near-optimal configu-

rations of applications (although multiple carvings could be considered a iterative

approach). Finally, developer tools can make the optimization task more auto-

mated and visible. Visualization tools in particular can help guide developers’

thinking into the fundamental issues of bandwidth, efficiency, and utilization.

130

As the computing community continues to move forward with many-core pro-

cessors, we should reexamine our assumptions about the systems and tools we

develop as well as what application developers are willing to do or are capable

of doing. This work has shown that assumptions about optimization effects may

be less valid because of the nature of the target architecture. By questioning our

assumptions, we are forced to revisit the fundamentals of performance and pro-

grammability. Such a mindset will be vital to making continued, rapid progress

in the development of single-chip, many-core processors.

131

APPENDIX A

CALCULATION OF THE EXPECTED

MAXIMUM VALUE OF A SAMPLE

This appendix describes the calculation of the expected maximum value of a

randomly selected sample from a list of numbers. The calculation is used for

comparison to the optimization carving technique demonstrated in Section 6.3.

That section actually uses expected minimum values, which translate to expected

maximum performance. I demonstrate the expected maximum value calculation

here because I believe it to be more natural to most readers; the calculation of

expected minimum value is a straightforward derivation. I first work through the

calculation assuming replacement of selected values as a simple example, then

demonstrate the calculation without replacement.

I start with a list of numbers S, sorted in ascending order. |S| is the size of

S. For simplicity I assume there are no repeated values in the list. Si is defined

as the ith-smallest element of S, where 1 ≤ i ≤ |S|. A sample X is a collection

of elements taken from S and is of size n. The calculation shown here is for the

expected value of the maximum element of X.

The calculation of the expected maximum value of X is conceptually simple

if broken down into several parts. The calculation is based around finding the

probability of the maximum value of X being Si for each i. The first stage is

the calculation of the probability that all elements in X are less than or equal

to Si. From this, one can calculate the probability of the maximum value of X

being exactly Si. The calculation concludes with the computation of the expected

value, which is the probability of Si being the maximum of X, times Si, for

132

every i in S. In Section A.1 I allow X to contain repeated elements of S. For

optimization carving, configurations are sampled no more than once. This is

modeled in Section A.2 by not allowing X to contain repeated elements of S.

A.1 With Replacement

I first make the observation that the probability that an element chosen randomly

from S has a value smaller than or equal to Si is (i/|S|). Assuming replacement

of elements after being chosen, the probability of the values of all elements in X

being smaller than or equal to Si is (i/|S|)n. This is shown in Equation (A.1).

P (∀x ∈ X : x ≤ Si) = P ((X1 ≤ i) ∧ . . . ∧ (Xn ≤ i))

=
n
∏

k=1

P (Xk ≤ i)

=

(

i

|S|

)n

(A.1)

Next, I calculate the probability of the maximum of X being Si, or more

precisely, the maximum value of the elements within X being exactly Si. The

probability that the maximum of X is greater than Si is one minus the probability

that all values in the sample are less than or equal to Si. This is the same as

Equation (A.1), so the the calculation that the maximum is greater than Si can

be performed as shown in Equation (A.2).

P (max [X] > Si) = 1 −
n
∏

k=1

P (Xk ≤ i)

= 1 −

(

i

|S|

)n
(A.2)

133

The probability of the maximum of X being Si is the same as the probability

that the maximum is greater than Si−1 but no more than Si. This calculation is

shown in Equation (A.3).

P (max [X] = Si) = P (max [X] > Si−1) − P (max [X] > Si)

=

[

1 −

(

i − 1

|S|

)n]

−

[

1 −

(

i

|S|

)n]

=

(

i

|S|

)n

−

(

i − 1

|S|

)n

(A.3)

The expected value of the maximum value of the sample X can be calculated

by summing the products of Si and the probability that the maximum of the

sample is Si for all i in S. This calculation is shown in Equation (A.4).

E [max [X]] =

|S|
∑

i=1

[P (max [X] = i) · Si]

=

|S|
∑

i=1

[((

i

|S|

)n

−

(

i − 1

|S|

)n)

Si

]

(A.4)

A.2 Without Replacement

For optimization carving, choosing a sample is done without replacement of ele-

ments already chosen from the list. A sample consisting of the entire sample space

should provide the element with the maximum value in the space, which is not

the case with replacement. Without replacement, the size and the valid number

of remaining choices decreases with an increase in the size of the sample. The

probability of the values of all elements in X being smaller than or equal to Si is

shown in Equation (A.5). For this calculation, n must be less than i; otherwise,

134

the maximum value of X will be equal to or greater than Si and the probability

of the maximum being equal to Si is one or zero, respectively.

P (∀x ∈ X : x ≤ Si) = P ((X1 ≤ Si) ∧ ... ∧ (Xn ≤ Si))

=

(

i

|S|

)(

i − 1

|S| − 1

)

...

(

i − n + 1

|S| − n + 1

)

=

(

i!

(i − n)!

(|S| − n)!

|S|!

)

(A.5)

The probability of the maximum of X being Si is calculated similarly to that

of Equations (A.2) and (A.3). The calculations are shown in Equations (A.6) and

(A.7).

P (max [X] > Si) = 1 − P (∀x ∈ X : x ≤ Si)

= 1 −

(

i!

(i − n)!

(|S| − n)!

|S|!

) (A.6)

P (max [X] = Si) = P (max [X] > Si−1) − P (max [X] > Si)

=

[

1 −

(

(i − 1)!

(i − 1 − n)!

(|S| − n)!

|S|!

)]

−

[

1 −

(

i!

(i − n)!

(|S| − n)!

|S|!

)]

=

[

i!

(i − n)!
−

(i − 1)!

(i − 1 − n)!

]

(|S| − n)!

|S|!

=

[

i! − (i − 1)!(i − n)

(i − n)!

]

(|S| − n)!

|S|!

=

[

i(i − 1)! − (i − n)(i − 1)!

(i − n)!

]

(|S| − n)!

|S|!

=
n(i − 1)!

(i − n)!

(|S| − n)!

|S|!

(A.7)

135

The computation for the expected value of the maximum of the sample is

shown in Equation (A.8). The summation begins with i = n, since the maximum

of X cannot be any smaller than Sn. A derivation of this equation for minimum

expected value is used to calculate the expected maximum performance of samples

of various sizes in Section 6.3.

E [max [X]] =

|S|
∑

i=n

[P (max [X] = i) · Si]

=

|S|
∑

i=n

[(

n(i − 1)!

(i − n)!

(|S| − n)!

|S|!

)

Si

]

=
n(|S| − n)!

|S|!

|S|
∑

i=n

[

(i − 1)!

(i − n)!
Si

]

(A.8)

136

REFERENCES

[1] D. Pham et al., “The design and implementation of a first-generation CELL
processor,” in IEEE International Solid-State Circuits Conference, February
2005.

[2] AGEIA, “PhysX by AGEIA,” March 2008. [Online]. Available:
http://www.ageia.com.

[3] D. E. Shaw et al., “Anton, a special-purpose machine for molecular dynamics
simulation,” in Proceedings of the 34th Annual International Symposium on
Computer Architecture, December 2007, pp. 1–12.

[4] J. W. Sias, S.-Z. Ueng, G. A. Kent, I. M. Steiner, E. M. Nystrom, and
W. W. Hwu, “Field-testing IMPACT EPIC research results in Itanium 2,”
in Proceedings of the 31st Annual International Symposium on Computer
Architecture, June 2004, pp. 26–39.

[5] V. S. Adve, C. Koelbel, and J. M. Mellor-Crummey, “Compiler support for
analysis and tuning data parallel programs,” in Proceedings of the 1994 Work-
shop on Parallel Processing Tools and Environments, May 1994.

[6] NVIDIA, “NVIDIA CUDA,” February 2008. [Online]. Available:
http://www.nvidia.com/cuda.

[7] J. Nickolls and I. Buck, “NVIDIA CUDA software and GPU parallel com-
puting architecture,” presented at Microprocessor Forum, San Jose, CA, May
2007.

[8] M. J. Atallah, Ed., Algorithms and Theory of Computation Handbook. Boca
Raton, FL: CRC Press, 1998.

[9] S. Woop, J. Schmittler, and P. Slusallek, “RPU: A programmable ray process-
ing unit for realtime ray tracing,” ACM Transactions on Graphics, vol. 24,
no. 3, pp. 434–444, July 2005.

[10] D. Burger, J. R. Goodman, and A. Kagi, “Memory bandwidth limitations
of future microprocessors,” in Proceedings of the 23rd Annual International
Symposium on Computer Architecture, May 1996, pp. 78–89.

137

[11] C. Ding and K. Kennedy, “Bandwidth-based performance tuning and pre-
diction,” in Proceedings of the IASTED International Conference on Parallel
Computing and Distributed Systems, November 1999.

[12] M. Wolfe, “Iteration space tiling for memory hierarchies,” in Proceedings of
the Third SIAM Conference on Parallel Processing for Scientific Computing,
December 1987, pp. 357–361.

[13] F. Irigoin and R. Triolet, “Supernode partitioning,” in Proceedings of the
1988 Conference on Principles of Programming Languages, January 1988,
pp. 319–329.

[14] M. E. Wolf and M. S. Lam, “A data locality optimizing algorithm,” in Pro-
ceedings of the ACM SIGPLAN 1991 Conference on Programming Language
Design and Implementation, June 1991, pp. 30–44.

[15] M. S. Lam, E. E. Rothberg, and M. E. Wolf, “The cache performance and
optimizations of blocked algorithms,” in Proceedings of the 4th International
Conference on Architectural Support for Programming Languages and Oper-
ating Systems, April 1991, pp. 63–74.

[16] D. Callahan, S. Carr, and K. Kennedy, “Improving register allocation for
subscripted variables,” Proceedings of the ACM SIGPLAN 1990 Conference
on Program Language Design and Implementation, pp. 53–65, June 1990.

[17] C. Ding and K. Kennedy, “The memory bandwidth bottleneck and its ame-
lioration by a compiler,” in Proceedings of the 14th International Symposium
on Parallel and Distributed Processing, May 2000, pp. 181–190.

[18] C. Ding and K. Kennedy, “Improving effective bandwidth through compiler
enhancement of global cache reuse,” Journal of Parallel and Distributed Com-
puting, vol. 64, no. 1, pp. 108–134, January 2004.

[19] J. Allen and K. Kennedy, “Automatic loop interchange,” in Proceedings of
the 1984 ACM SIGPLAN Symposium on Compiler Construction, June 1984,
pp. 233–246.

[20] Y. Yamada, J. Gyllenhaal, G. Haab, and W. W. Hwu, “Data relocation
and prefetching for large data sets,” in Proceedings of the 27th Annual
ACM/IEEE International Symposium on Microarchitecture, 1994, pp. 118–
127.

[21] D. N. Truong, F. Bodin, and A. Seznec, “Improving cache behavior of dynam-
ically allocated data structures,” in Proceedings of the Seventh International
Conference on Parallel Architectures and Compilation Techniques, October
1998, pp. 322–329.

138

[22] T. Chilimbi, B. Davidson, and J. Larus, “Cache-conscious structure defini-
tion,” in Proceedings of the ACM SIGPLAN 1991 Conference on Program-
ming Language Design and Implementation, May 1999, pp. 13–24.

[23] J. W. Sias, “A systematic approach to delivering instruction-level paral-
lelism in EPIC systems,” Ph.D. dissertation, University of Illinois at Urbana-
Champaign, 2005.

[24] Y. Chou, B. Fahs, and S. Abraham, “Microarchitecture optimizations for
exploiting memory-level parallelism,” in Proceedings of the 31th Annual In-
ternational Symposium on Computer Architecture, June 2004, pp. 76–88.

[25] V. S. Pai and S. Adve, “Code transformations to improve memory paral-
lelism,” in Proceedings of the 32nd Annual IEEE/ACM International Sym-
posium on Microarchitecture, November 1999, pp. 147–155.

[26] S. Che, J. Meng, J. Sheaffer, and K. Skadron, “A performance study of
general purpose applications on graphics processors,” in The First Workshop
on General Purpose Processing on Graphics Processing Units, October 2007.

[27] J. E. Stone, J. C. Phillips, P. L. Freddolino, D. J. Hardy, L. G. Trabuco, and
K. Schulten, “Accelerating molecular modeling applications with graphics
processors,” Journal of Computational Chemistry, vol. 28, no. 16, pp. 2618–
2640, December 2007.

[28] IMPACT Research Group, “Parboil benchmark suite,” March 2008. [Online].
Available: http://www.crhc.uiuc.edu/IMPACT/parboil.php.

[29] C. I. Rodrigues, D. J. Hardy, J. E. Stone, K. Schulten, and W. W. Hwu, “GPU
acceleration of cutoff pair potentials for molecular modeling applications,” in
Proceedings of the ACM International Conference on Computing Frontiers,
to be published.

[30] S. S. Stone, J. P. Haldar, S. C. Tsao, W. W. Hwu, Z. Liang, and B. P. Sutton,
“Accelerating advanced MRI reconstructions on GPUs,” in Proceedings of the
ACM International Conference on Computing Frontiers, to be published.

[31] S. Stone, H. Yi, J. Haldar, W. W. Hwu, B. Sutton, and Z. Liang, “How GPUs
can improve the quality of magnetic resonance imaging,” in The First Work-
shop on General Purpose Processing on Graphics Processing Units, October
2007.

[32] H.-M. Hang, Y.-M. Chou, and S.-C. Cheng, “Motion estimation for video
coding standards,” Journal of VLSI Signal Processing, vol. 17, pp. 113–136,
1997.

[33] A. Aho, M. Lam, R. Sethi, and J. Ullman, Compilers: Principles, Techniques,
and Tools, 2nd ed. Reading, MA: Addison-Wesley, 2006.

139

[34] K. Kennedy and R. Allen, Optimizing Compilers for Modern Architectures:
A Dependence-Based Approach. San Francisco, CA: Morgan Kaufmann
Publishers, 2002.

[35] S. Muchnick, Advanced Compiler Design and Implementation. San Fran-
cisco, CA: Morgan Kaufmann Publishers, 1997.

[36] R. Gupta and R. Bodik, “Register pressure sensitive redundancy elimina-
tion,” in Proceedings of the 8th International Conference on Compiler Con-
struction, LNCS 1575, March 1999, pp. 107–121.

[37] S. R. Vegdahl, “Phase coupling and constant generation in an optimizing
microcode compiler,” in Proceedings of the 15th Annual Workshop on Micro-
programming, October 1982, pp. 125–133.

[38] D. Whitfield and M. L. Soffa, “An approach to ordering optimizing trans-
formations,” in Proceedings of the Second ACM SIGPLAN Symposium on
Principles and Practice of Parallel Programming, 1990, pp. 137–146.

[39] S. Ryoo, C. I. Rodrigues, S. S. Stone, S. S. Baghsorkhi, S.-Z. Ueng, and W. W.
Hwu, “Program optimization study on a 128-core GPU,” in The First Work-
shop on General Purpose Processing on Graphics Processing Units, October
2007.

[40] S. Ryoo, C. I. Rodrigues, S. S. Stone, S. S. Baghsorkhi, S.-Z. Ueng, J. A.
Stratton, and W. W. Hwu, “Program optimization space pruning for a mul-
tithreaded GPU,” in Proceedings of the 2008 International Symposium on
Code Generation and Optimization, April 2008, pp. 195–204.

[41] M. Zhao, B. Childers, and M. L. Soffa, “Predicting the impact of optimiza-
tions for embedded systems,” in Proceedings of the 2003 Conference on Lan-
guages, Compilers, and Tools for Embedded Systems, June 2003, pp. 1–11.

[42] V. S. Adve, J. Mellor-Crummey, M. Anderson, J.-C. Wang, D. A. Reed, and
K. Kennedy, “An integrated compilation and performance analysis environ-
ment for data parallel programs,” in Proceedings of the 1995 ACM/IEEE
Conference on Supercomputing, November 1995, pp. 50–67.

[43] D. J. Kuck, R. H. Kuhn, B. Leasure, and M. Wolfe, “The structure of an
advanced vectorizer for pipelined processors,” in Proceedings of the 4th In-
ternational Computer Software and Applications Conference, October 1980,
pp. 709–715.

[44] D. J. Kuck et al., “The effects of program restructuring, algorithm change,
and architecture choice on program performance,” in Proceedings of the 13th
International Conference on Parallel Processing, August 1984, pp. 129–138.

140

[45] F. E. Allen, M. Burke, P. Charles, R. Cytron, and J. Ferrante, “An overview
of the PTRAN analysis system for multiprocessing,” in Proceedings of the 1st
International Conference on Supercomputing, June 1987, pp. 194–211.

[46] J. R. Allen and K. Kennedy, “PFC: A program to convert Fortran to parallel
form,” in Supercomputers: Design and Applications, K. Hwang, Ed. Los
Alamitos, CA: IEEE Computer Society Press, August 1984, pp. 186–203.

[47] R. Allen, D. Callahan, and K. Kennedy, “Automatic decomposition of sci-
entific programs for parallel execution,” in Proceedings of the 14th ACM
SIGACT-SIGPLAN Symposium on Principles of Programming Languages,
January 1987, pp. 63–76.

[48] J. R. Allen and K. Kennedy, “Automatic translation of Fortran programs to
vector form,” ACM Transactions on Programming Languages and Systems,
vol. 9, no. 4, pp. 491–542, October 1987.

[49] W. Blume et al., “Polaris: The next generation in parallelizing compilers,”
University of Illinois at Urbana-Champaign, Tech. Rep. 1375, 1994. [Online].
Available: polaris.cs.uiuc.edu/publications/1375.pdf.

[50] M. W. Hall, J. M. Anderson, S. P. Amarasinghe, B. R. Murphy, S.-W. Liao,
E. Bugnion, and M. S. Lam, “Maximizing multiprocessor performance with
the SUIF compiler,” IEEE Computer, vol. 29, no. 12, pp. 84–89, 1996.

[51] R. Allen and K. Kennedy, “Automatic translation of Fortran programs to
vector form,” ACM Transactions on Programming Langugages and Systems,
vol. 9, no. 4, pp. 491–542, 1987.

[52] M. J. Wolfe, Optimizing Supercompilers for Supercomputers. Cambridge,
MA: MIT Press, 1990.

[53] OpenMP Architecture Review Board Members, OpenMP Application Pro-
gram Interface, OpenMP Architecture Review Board, May 2005.

[54] K. E. Iverson, A Programming Language. New York, NY: John Wiley and
Sons, 1962.

[55] J. C. Adams, W. S. Brainerd, J. T. Martin, B. T. Smith, and J. L. Wagener,
Fortran 90 Handbook: Complete ANSI/ISO Reference. New York, NY:
Intertext Publications, Inc.,/McGraw-Hill, Inc., 1992.

[56] D. B. Loveman, “High performance Fortran,” IEEE Parallel & Distributed
Technology: Systems & Applications, vol. 1, no. 1, pp. 25–42, February 1993.

[57] M. Snir, S. W. Otto, D. W. Walker, J. Dongarra, and S. Huss-Lederman,
MPI: The Complete Reference. Cambridge, MA: MIT Press, 1995.

141

[58] W. R. Mark, R. S. Glanville, K. Akeley, and M. J. Kilgard, “Cg: a system for
programming graphics hardware in a C-like language,” in SIGGRAPH ’03:
ACM SIGGRAPH 2003 Papers, 2003, pp. 896–907.

[59] I. Buck, “Brook specification v0.2,” Stanford University, Tech. Rep.
CSTR 2003-04, October 2003. [Online]. Available: http://merrimac.stan-
ford.edu/brook/brookspec-v0.2.pdf.

[60] D. Tarditi, S. Puri, and J. Oglesby, “Accelerator: Using data parallelism to
program GPUs for general-purpose uses,” in Proceedings of the 12th Interna-
tional Conference on Architectural Support for Programming Languages and
Operating Systems, October 2006, pp. 325–335.

[61] M. D. McCool, K. Wadleigh, B. Henderson, and H.-Y. Lin, “Performance
evaluation of GPUs using the RapidMind development platform,” poster at
the 2006 ACM/IEEE Conference on Supercomputing, Tampa, FL, 2006.

[62] PeakStream Staff, “The PeakStream platform: High productivity software
development for multi-core processors,” PeakStream Inc., Tech. Rep., 2006.

[63] AMD, “AMD stream computing,” March 2008. [Online]. Available:
http://ati.amd.com/products/streamprocessor/index.html.

[64] P. H. Wang et al., “EXOCHI: Architecture and programming environment
for a heterogeneous multi-core multithreaded system,” in Proceedings of the
2007 ACM SIGPLAN Conference on Programming Language Design and
Implementation, June 2007, pp. 156–166.

[65] H. Zima and B. Chapman, Supercompilers for Parallel and Vector Computers.
Reading, MA: Addison-Wesley Publishing Company, 1991.

[66] V. Sarkar and R. Thekkath, “A general framework for iteration-reordering
loop transformations,” in Proceedings of the ACM SIGPLAN 1992 Confer-
ence on Programming Language Design and Implementation, June 2007, pp.
175–187.

[67] C. Click and K. D. Cooper, “Combining analyses, combining optimizations,”
ACM Transactions on Programming Languages and Systems, vol. 17, no. 2,
pp. 181–196, March 1995.

[68] K. Kennedy and K. S. McKinley, “Optimizing for parallelism and data local-
ity,” in Proceedings of the 6th International Conference on Supercomputing,
July 1992, pp. 323–334.

[69] S. Carr, K. S. McKinley, and C.-W. Tseng, “Compiler optimizations for
improving data locality,” in Proceedings of the Sixth International Conference
on Architectural Support for Programming Languages and Operating Systems,
October 1994, pp. 252–262.

142

[70] K. D. Cooper, P. J. Schielke, and D. Subramanian, “Optimizing for reduced
code space using genetic algorithms,” in Proceedings of the 1999 ACM SIG-
PLAN Workshop on Languages, Compilers, and Tools for Embedded Systems,
May 1999, pp. 1–9.

[71] P. A. Kulkarni, D. B. Whalley, G. S. Tyson, and J. W. Davidson, “Evaluation
heuristic optimization phase order search algorithms,” in Proceedings of the
2007 International Symposium on Code Generation and Optimization, March
2007, pp. 157–169.

[72] K. D. Cooper, A. Grosul, T. J. Harvey, S. Reeves, D. Subramanian, L. Torc-
zon, and T. Waterman, “Exploring the structure of the space of compilation
sequences using randomized search algorithms,” The Journal of Supercom-
puting, vol. 36, no. 2, pp. 135–151, 2006.

[73] M. E. Wolf, D. E. Maydan, and D.-K. Chen, “Combining loop transforma-
tions considering caches and scheduling,” in Proceedings of the 29th Annual
ACM/IEEE International Symposium on Microarchitecture, December 1996,
pp. 274–286.

[74] H. Han, G. Rivera, and C.-W. Tseng, “Software support for improving local-
ity in scientific codes,” in Proceedings of the 8th International Workshop on
Compilers for Parallel Computers, January 2000.

[75] S. Ghosh, M. Martonosi, and S. Malik, “Precise miss analysis for program
transformations with caches of arbitrary associativity,” in Proceedings of the
8th International Conference on Architectural Support for Programming Lan-
guages and Operating Systems, October 1998, pp. 228–239.

[76] T. Kisuki, P. M. W. Knijnenburg, and M. F. P. O’Boyle, “Combined selection
of tile sizes and unroll factors using iterative compilation,” in Proceedings of
the 2000 International Conference on Parallel Architectures and Compilation
Techniques, October 2000, pp. 237–248.

[77] M. Haneda, P. M. W. Knijnenburg, and H. A. G. Wijshoff, “Automatic
selection of compiler options using non-parametric inferential statistics,” in
Proceedings of the 14th International Conference on Parallel Architectures
and Compilation Techniques, September 2005, pp. 123–132.

[78] F. Agakov, E. Bonilla, J. Cavazos, B. Franke, G. Fursin, M. F. P. O’Boyle,
J. Thomson, M. Toussaint, and C. K. I. Williams, “Using machine learning to
focus iterative optimization,” in Proceedings of the 4th Annual International
Symposium on Code Generation and Optimization, March 2006, pp. 295–305.

143

[79] L. Almagor, K. D. Cooper, A. Grosul, T. J. Harvey, S. W. Reeves, D. Sub-
ramanian, L. Torczon, and T. Waterman, “Finding effective compilation se-
quences,” Proceedings of the 2004 ACM SIGPLAN/SIGBED Conference on
Languages, Compilers, and Tools for Embedded Systems, pp. 231–239, March
2004.

[80] S. Triantafyllis, M. Vachharajani, N. Vachharajani, and D. I. August, “Com-
piler optimization-space exploration,” in Proceedings of the 2003 Interna-
tional Symposium on Code Generation and Optimization, March 2003, pp.
204–215.

[81] K. Vaswani, M. J. Thazhuthaveetil, Y. N. Srikant, and P. J. Joseph, “Mi-
croarchitecture sensitive empirical models for compiler optimizations,” in
Proceedings of the 2007 International Symposium on Code Generation and
Optimization, March 2007, pp. 131–143.

[82] D. Jimenez-Gonzalez, X. Martorell, and A. Ramirez, “Performance analysis
of Cell Broadband Engine for high memory bandwidth applications,” in Pro-
ceedings of the IEEE International Symposium on Performance Analysis of
Systems and Software, April 2007, pp. 210–219.

[83] M. Püschel, B. Singer, J. Xiong, J. M. F. Moura, J. Johnson, D. Padua,
M. Veloso, and R. W. Johnson, “SPIRAL: A generator for platform-adapted
libraries of signal processing algorithms,” Journal of High Performance Com-
puting and Applications (Special Issue on Automatic Performance Tuning),
vol. 18, no. 1, pp. 21–45, 2004.

[84] J. D. Owens, D. Luebke, N. Govindaraju, M. Harris, J. Krüger, A. E. Lefohn,
and T. J. Purcell, “A survey of general-purpose computation on graphics
hardware,” Computer Graphics Forum, vol. 26, no. 1, pp. 80–113, 2007.

[85] S.-W. Liao, Z. Du, G. Wu, and G.-Y. Lueh, “Data and computation transfor-
mations for Brook streaming applications on multiprocessors,” in Proceedings
of the 4th International Symposium on Code Generation and Optimization,
March 2006, pp. 196–207.

[86] M. Breternitz Jr., H. Hum, and S. Kumar, “Compilation, architectural sup-
port, and evaluation of SIMD graphics pipeline programs on a general-
purpose CPU,” in Proceedings of the 12th International Conference on Par-
allel Architectures and Compilation Techniques, 2003, pp. 135–145.

[87] Intel Technical Staff, Intel 64 and IA-32 Architectures Software Developer’s
Manual, Intel, May 2007.

[88] K. Fatahalian, J. Sugerman, and P. Hanrahan, “Understanding the efficiency
of GPU algorithms for matrix-matrix multiplication,” in Proceedings of the
2004 ACM SIGGRAPH/EUROGRAPHICS Conference on Graphics Hard-
ware, August 2004, pp. 133–137.

144

[89] N. K. Govindaraju, S. Larsen, J. Gray, and D. Manocha, “A memory model
for scientific algorithms on graphics processors,” in Proceedings of the 2006
ACM/IEEE Conference on Supercomputing, no. 89, August 2006, pp. 89–99.

[90] C. Jiang and M. Snir, “Automatic tuning matrix multiplication performance
on graphics hardware,” in Proceedings of the 14th International Conference
on Parallel Architecture and Compilation Techniques, September 2005, pp.
185–196.

[91] K. Kennedy and U. Kremer, “Automatic data layout for distributed mem-
ory machines,” ACM Transactions on Programming Languages and Systems
(TOPLAS), vol. 20, no. 4, pp. 869–916, July 1998.

[92] M. M. Baskaran, U. Bondhugula, S. Krishnamoorthy, J. Ramanujam,
A. Rountev, and P. Sadayappan, “Automatic data movement and compu-
tation mapping for multi-level parallel architectures with explicitly managed
memories,” in Proceedings of the 13th ACM SIGPLAN Symposium on Prin-
ciples and Practice of Parallel Programming, February 2008, pp. 1–10.

145

AUTHOR’S BIOGRAPHY

Shane Ryoo was born on 18 July 1978 in Chicago, Illinois. He received a Bachelor

of Science degree in Electrical Engineering with Highest Honors from the Univer-

sity of Illinois at Urbana-Champaign in May of 2000. He continued his studies

at the University of Illinois, with a Master of Science in Electrical Engineering in

May of 2004 and his Doctor of Philosophy in Electrical and Computer Engineering

in May of 2008. Shane’s primary research interests lie in program optimization

and the architectural features and software analyses that enable high-performance

execution.

Shane was a recipient of the National Defense Science and Engineering Grad-

uate Fellowship, as well as a University of Illinois Fellowship, ECE Distinguished

Fellowship, and Carver Fellowship. Shane served as a research assistant under

Wen-mei W. Hwu for eight years. During his studies, Shane performed internships

at Advanced Micro Devices in Austin, Texas, and Intel Corporation in Portland,

Oregon, and Folsom, California.

146

