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ABSTRACT

Program optimization for highly parallel systemshashistorically beenconsidered

an art, with experts doing much of the performancetuning by hand. With the

introduction of inexpensive, single-chip, massively parallel platforms, more devel-

opers will be creating highly data-parallel applications for theseplatforms while

lacking the substantial experienceand knowledgeneededto maximizeapplication

performance. In addition, hand-optimization even by motivated and informed

developers takesa signi¯cant amount of time and generallystill underutilizes the

performanceof the hardware by double-digit percentages. This createsa needfor

structured and automatable optimization techniquesthat are capableof ¯nding

a near-optimal program con¯guration for this new classof architecture.

My work discussesvariousstrategiesfor optimizing programson a highly data-

parallel architecture with ¯ne-grained sharing of resources. I ¯rst investigate

useful strategiesin optimizing a suite of applications. I then introduce program

optimization carving, an approach that discovers high-performanceapplication

con¯gurations for data-parallel, many-core architectures. Instead of applying a

particular phaseordering of optimizations, it starts with an optimization spaceof

major transformations and then reducesthe spaceby examining the static code

and pruning con¯gurations that do not maximize desirablequalities in isolation

or combination. Careful selectionof pruning criteria for applications running on

the NVIDIA GeForce 8800GTX reducesthe optimization spaceby as much as

98% while ¯nding con¯gurations within 1% of the best performance. Random
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sampling, in contrast, can requirenearly ¯v e times asmany con¯gurations to ¯nd

performancewithin 10%of the best. I alsoexaminethe technique's e®ectiveness

when varying pruning criteria.
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CHAPTER 1

INTRODUCTION

In the past decade,computer processordesignshave shifted to multiple coresper

die due to power and performancelimitations. While this computing power is

often utilized by multiple applications today, vendorsare searching for solutions

that enablea singleapplication to achieve speedupby running on multiple cores.

The number of coresis expected to increaseat a near-exponential rate for the

next several years,making ¯nding a solution a pressingissuefor the application

and software tools community. The issueis compoundedby most developers' lack

of familiarit y with highly data-parallel systems,and the di®erencesbetweenthese

single-chip systemsand older parallel architectures. This dissertation shows that

systematicprinciplesand automatabletools canbe usedto optimize programsfor

this emergingclassof architecture.

1.1 Obstacles

Programming and optimizing applications for highly parallel systemshas histor-

ically been the domain of relatively few experts, with performancetuning done

primarily by hand. Becauseof the relative scarcity of highly parallel applications

and the expenseof highly parallel systems, there was limited opportunit y for

exhaustive performanceexperimentation. Today, however, single-chip, massively

data-parallel systemssuch as the NVIDIA GeForce 8 SeriesGPUs are available

for approximately one U.S. dollar per single-precisionGFLOP, several orders of
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magnitudelessexpensive than supercomputersa decadeago. Other architectures,

such as the IBM Cell BroadbandEngine [1], Ageia PhysX processor[2], and cus-

tom processordesigns[3], also provide signi¯cant speedup to applications that

map well to those architectures. For the past few years, developers have been

usingtheserelatively low-costsystemsto perform work that would otherwisetake

a large computecluster of traditional microprocessorsystemsto accomplish.

Unfortunately, the level of e®ortand expertise required to maximize applica-

tion performanceon thesekinds of systemshasnot signi¯cantly decreased,and if

anything has increased.There are several reasonsfor this issue:

1. The appropriate granularit y of parallelism for the target architecture may

not be the \natural" one in which the developer conceived the problem.

This di®erenceis particularly true for developers who are usedto develop-

ing applications for clustered systems. It may be necessaryto changean

application's computation granularit y in order to improve its performance

on the system. The burden of ¯nding the appropriate granularit y is gener-

ally left to the application developer, who must sampleacrossa wide range

of points in the con¯guration spaceto ¯nd a reasonablygood con¯guration.

Becausegranularit y selectionis generallydoneearly in the software design

process,an application developer who doesnot initially try or accommodate

for multiple granularities runs the risk of being trapped at a local perfor-

mancemaximum when iterativ ely optimizing the application via a greedy

approach.

2. The local memoryavailable to each processingelement in the systemis very

restricted comparedto oldercomputeclusters. The costof spilling data from

low-latency memoriesto larger, higher latency memoriesis signi¯cant. This

cost is particularly high whenthosememoriesareon a separatedie from the
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processingunits. Even with intimate knowledgeof both application and ar-

chitecture, an application developer must experiment with con¯gurations to

seewhich map well to the architecture. Becauseof the increasingcomplex-

it y of both applications and architectures, the accuracyof an application

developer's knowledgewill generally be °awed during initial development

and take substantial time to develop. In addition, programsoften change

over time to include new application features, changing the local memory

usageamount or patterns.

3. Di®erent product lines or even successive generationsof the sameproduct

line may require reapplication of the optimization processto take advantage

of the new system. New features and capabilities will changewhich con-

¯gurations provide maximal performance. Thesefeaturesalso may not be

initially understood by application developers.

4. Applications may needto be mapped to multiple, di®eringprocessingplat-

formsto determinethe onethat providesthe mostcost-e®ectiveperformance

for the product needsand goals. Although the embeddedspacehashad the

sameissuefor sometime, it will be present in the desktop and scienti¯c

computing spacesuntil a particular paradigm establishesdominance.

The commonthemeis that of rapid, nonintuitiv e or unexpectedchangesin the

systemsthat an application developer targets. Sincethe architecture and appli-

cations are continuously changing, application developers cannot be expected to

consistently ¯nd a near-optimal con¯guration of a substantial application. Fur-

thermore, traditional compilation cannot be expectedto ¯nd a near-optimal con-

¯guration in the short term, as compiler writers will needa signi¯cant amount

of time and e®ort to learn how to usethe featuresof the target architecture and

createprocessesand algorithms that optimize many applications well.
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Figure 1.1: Examplesof modeling spaces.

1.2 ArchitecturalModels

In engineeringand the sciences,a practitioner hasa choiceof models from which

to choose. Figure 1.1 depicts abstract representations of the spaceof models for

a domain. The common tradeo® made when selectinga model is the error of

the model relative to the cost of using that model. Ideally the progressionwill

be relatively smooth and a clear choice is evident for user needs,as shown with

line (a) . For compilersthat target single-coresuperscalarprocessors,a relatively

cheap architectural model consisting primarily of instruction stream e±ciency

has beene®ective for many yearsbecausearchitectural featuresand capabilities

reduce the impact of other potential performancefactors. Compilers for Intel

Itanium processors,on the other hand, must be more complex to provide high

performance,since the architecture does not easily reduce to a few high-order

concerns[4].

Many model spacesare generally not smooth, looking more like line (b) in

Figure 1.1. The reasonfor this staircase-like structure is that multiple factors,

each incurring signi¯cant cost, must be integrated beforea signi¯cant reduction

in modeling error is achieved. First-order concernsare relatively inexpensive to
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model but are not very usablefor predicting behavior and performance.Second-

order concernsare more accuratebut incur substantial usagecosts. A low-error

model is actual hardware or a cycle-accuratesimulator of the system.

I believe that line (b) in Figure 1.1 more closely resembles the model space

for the emerging class of single-chip many-core processors. In somecasesthe

error will rise with higher costsuntil a critical modeling massis achieved, which

meansthat a particular model may be lesscorrect than one that is lessprecise

and has lower cost. For example, measuringperformancewith the number of

instructions executedmay be misleadingif the architecture may take a di®erent

number of cycles to executeeach one: a version of a program with more low-

latency instructions may havehigherperformancethan anotherversionwith fewer

high-latency instructions. Thus, application and compiler developersrun the risk

of using an architectural model that hashigher cost and lessaccuracythan a less

precisemodel. This issueis one of the more signi¯cant problems in attempting

to optimize applications for architectures like the GeForce8 SeriesGPUs.

1.3 Contributions andOrganization

The purposeof this dissertation is to establishthe systematicprinciples and dis-

cussautomatable tools that can be usedto optimize programsfor the emerging

classof single-chip, data-parallel, many-core architectures. A few principles can

be usedto guideinitial mappingof applicationsto the systemand achieve reason-

able performance.However, I believe iterativ e optimization techniquesapplied to

thesesystemswill beunableto keeppacewith rapidly changingtechnologyand of-

ten leave signi¯cant performanceunrealizeddue to the nature of the architecture.

The small sizeof many kernelsand the limited number of performance-a®ecting

optimizations for each kernel enablesan alternate approach developed to ¯nd
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near-optimal con¯gurations of applications for this classof architectures, which I

term optimization carving.1

Instead of assumingthat the architectural and program models have little

error, optimization carving usesmetrics to select multiple con¯gurations that

maximize metrics modeling high-order concerns.Theseare likely to be local per-

formancemaxima in the optimization space,but it is probable that one of them

is the global maximum. The con¯gurations are then executedwith typical input

data to determine the one with the highest performance. It di®ersfrom an ex-

haustive spacesearch in that it only variesthoseparametersthat cansigni¯cantly

changeperformanceand doesnot executecon¯gurations that are unlikely to be

local maxima. As long as the ranking and modeling of concernsis reasonably

correct, the technique is likely to selecta good program con¯guration. Optimiza-

tion carving can also be usedas a tool to validate model assumptionsabout the

system,similar to prior work [5].

The contributions of this work are as follows:

1. Characterizationof the NVIDIA GeForce8 seriesarchitecture and the abil-

it y of applications with certain characteristics to map well to the architec-

ture. This information is presented in Chapter 2.

2. Presentation of performanceand optimization principles for the GeForce

8 seriesin the beginning of Chapter 3. I begin with basic principles that

apply to all computerarchitecturesand then discusshow they shouldbe ob-

served on the NVIDIA GeForce8 Series.Becauseof the wealth of execution

resourcesand the long latenciesto memory, programsmust be decomposed

into many threads in order to utilize the hardware well. Developers must

also utilize the local memoriesto achieve good performance,as data local-

1The word \carv e" is used in the context of sculpting stone, where unwanted portions are
removed, leaving the ¯nished product behind.
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it y is not enabledby default in the programming model. I use a matrix

multiplication kernel to demonstrateadherenceto the principles in ¯nding

a high-performancekernel con¯guration.

3. Categorization of optimizations basedon their e®ectson applications ex-

ecuting on the GeForce 8 Seriesin the latter part of Chapter 3. Some

of the categoriesare optimizations that reducememory bandwidth usage

or improve the e±ciency of executing code. I discussexplicit examplesof

optimizations within each category. I also discusshow optimizations may

interact with each other in ways that may be unexpected to application or

compiler developers. The major sidee®ectof many optimizations is the use

of additional registers,which may reducethread-level parallelism (TLP).

4. Presentation of the performanceof a suite of applications mapped to the

GeForce 8 Series,in Chapter 4. Several applications are studied in further

depth with their performancee®ectsexplained. I alsodiscussthe optimiza-

tions which have the most signi¯cant e®ectson performance,speci¯cally

memory optimizations, control of register usageto maintain TLP, and bal-

ancing TLP with per-thread performance.This is presented in Chapter 4.

5. Introduction of optimization carving and discussionof its usefor optimizing

applications executing on the GeForce 8 Seriesprocessorsin Chapter 5. I

assertthat it is generallynot possiblefor application developersor compil-

ers to ¯nd the best con¯guration through an iterativ e process,particularly

becausethey cannot control part of the code generation processon the

GeForce8 Series.As an alternative approach, I proposeoptimization carv-

ing, which beginswith a largeoptimization spaceand then prunesit to ¯nd

con¯gurations which are likely to be the best one.
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6. Presentation of results of optimization carving for one target architecture,

the GeForce 8800GTX, in Chapter 6. I experiment with di®erent metric

calculations that can be used when applying the technique and analyze

why they do better or worsethan the original calculation. Resultsare also

comparedto random samplingof the space.

Related work is discussedin Chapter 7. I ¯nish with concluding remarks in

Chapter 8.
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CHAPTER 2

ARCHITECTURE

This work usesthe GeForce 8800GTX 1 graphics processingunit (GPU) as the

hardware target for my study. Previous generationsof GPUs consisted of a

highly specializedpipeline to which any nongraphicsapplication must be mapped

through graphicsapplication programming interfaces(APIs). This processoften

involves reworking application algorithms to ¯t the API's model. The GeForce

8800,however, consistsof a large set of processorcoresthat can directly address

a global memory. Although still specializedfor graphicsprocessing,this general

addressability allows for a more general and °exible programming model than

previousGPU generationsand allows developers to easily implement a wider va-

riety of data-parallel kernels. It sharesthe sametraits with other contemporary

single-chip, many-core processors:a large number of processingunits that can

simultaneously executeindependent threads in parallel, a limited amount of lo-

cal memory per executionunit, and limited o®-chip bandwidth comparedto the

available executionresources.

In this chapter, I discussthe programming model provided by NVIDIA, the

Compute Uni¯ed DeviceArchitecture (CUDA) and the tools provided to support

it. I then discussthe architecture of the GeForce 8800 and how its structure

createsan a±nit y for certain kinds of applications. A more completedescription

of thesecanbe found in [6,7]. I alsodiscusssomeof the complexity that may arise

1There are presently several versionsof the GeForce 8800GPU. Referencesto GeForce 8800
are implied to be the GTX model in this work.
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Figure 2.1: CUDA compilation °ow.

when mapping applications to the architecture and optimizing them. Finally, I

describe someof the software tools provided by NVIDIA, which are usefulduring

the optimization process.

2.1 ThreadingModel

The CUDA programming model is ANSI C extended by several keywords and

constructs. The GPU is treated asa coprocessorthat executesdata-parallelkernel

code. The developer suppliesa single sourceprogram encompassingboth host

(CPU) and kernel (GPU) code. Theseare separatedand compiled as shown in

Figure 2.1. Each CUDA program consistsof multiple phasesthat areexecutedon

either the CPU or the GPU. The phasesthat exhibit little or no data parallelism

are implemented in host code, which is expressedin ANSI C and compiled with

the host C compiler as shown in Figure 2.1. The phasesthat exhibit rich data

parallelism are implemented as kernel functions in the devicecode. Thesekernel

functions are compiledby the NVIDIA CUDA C compiler (cudacc)and the GPU

object code generator.

A kernel function de¯nesthe code in single-programmultiple-data (SPMD) [8]

style, to be executedby each thread invoked for a data-parallel phase. These

kernelstypically comprisethousandsto millions of lightweight threads per invo-

cation. Creating enough threads to fully utilize the hardware often requires a

10



� � � � � � � � � � � 	 
 � �  � � � � � � � � � � 	 
 � �  � � � � � � � � � � 	 
 � � �

� � � � � � � � � � � � � � � � � � � � 	 
 � � � � � � � 
 � 	 
 � � � � � � � � � �
� � � 
 � � � � � � � � � �  � � � � � � ! � " � 	 
 � �  � � � � � � � #� � � ! �
$� � 
 � � � � � � � � � �  � � � � � � ! � " � 	 
 � �  � � � � � � � #� � � ! �
%� � 
 � � � � � � � � � �  � � � � � � ! � " � 	 
 � �  � � � � � � � #� � � ! �

� � � � � � � 	 &� � � 	 
 � � � � � � � � � � � � � � � � ' � � � � � � � � �  � � �
( � � 
 � � � � � � 	 &� � 	 
 � �  � ' � � � � �  � � � � � � � #� � � 
� � � � � � � � � � � � � � 
 � � � � � � 	 &) � � � * � +�  � � � ! �
, � � 
 � � � � � � 	 &� � 	 
 � �  � ' � � � � �  � � � � � � � #� � � 
� � � � � � � � � � � � � � 
 � � � � � � 	 &) � � � * � +�  � � � ! �

� � � � � - � � 
 	 � � . � � 
 � � � � � 	 � � � � � � � � �
/ � � � � %� 0� � � 1� � � /  � � / ! �
2� � � � %� � � � � � $, /  � $, / ! �

� � � � � 3. � � 
 � � � � ' � � 1� � � � �
4� � � � � � . � 
 � 555� � � � �  � 0� � � 1� � 666� � 	 
 � �  � � 	 
 � �  � � 	 
 � � ! �

� � � � � 	 &� � � � 
 � � � 0� � 1� � � � ' � � �
7� � 
 � � � � � � 	 &� ' � � � � �  � � 	 
 � �  � � � � � � � #� � � 
� � � � � � � � � � � � � � 
 � � � � � � 	 &+�  � � � * � ) � � � ! �

� � � �� � � � � 	�
 � � �

� � � � � 0� � � � �  � � �
� � � � � . � 
 � � � � � � � � � � �  � � � � � � � � �  � � � � � � � � � !
8
� � � � � � � � � 
 � � � � � � � � � . � � � � � ' � � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � . � � 9� � / � � � 0� � � 1: � . ; &� <� � ' � � � � : � . ; &
� � =

� � � � � : � � � � � � � #� � � � � 
 � � �  � � � � 0� � � � � � >
� � � � � � � � � � � � 	 � 9� >�

� � � � � � � � � 9� >� � � � 5� ?� � � ' � � � � <<!
� � � � 8
� � � � � � � � � � 	 � <9� � @� � � � . � A� � � � @� � � � . � A�
� � � � � � � � � � . � <<�
� � � � � � � � � � . � � <9� ?� � � ' � �
� � � � B
� � � @� � � � . � A� 9� � � � � 	 �
B

�  � �� � � ��
 � � �

Figure 2.2: Matrix multiplication example.

¯ne-grained decomposition of work. For example,each element of a result array

might be computed by a separatethread if the computation for each element is

relatively independent. It should be noted that ¯ne-grained decomposition may

createinter-thread instruction redundancy.

Host code initiates kernelexecutionby usingCUDA-speci¯c function call syn-

tax. There are several restrictions on kernel functions: they cannot userecursion

or static variable declarations,and must have a nonvariable number of arguments.

The host code transfers data to and from the GPU's global memory using API

calls.

I use a densematrix multiplication example, operating on two 4096x4096

matrices, to illustrate the CUDA threading model. This example is shown in

Figure 2.2. In this example,each thread calculatesone element of the product

matrix. This calculation involvesa dot product of a row of the ¯rst input array

and a columnof the secondinput array, shown asthe kernelfunction matrixMul()

in Figure 2.2(b). Each thread beginswith a pointer to a row of the ¯rst input

matrix and a pointer to a column of the secondinput matrix. It calculatesa dot

product and writes the value into the corresponding element of the output array.
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Figure 2.3: CUDA thread organization.
2D thread blocks are shown here; thread blocks can be up to three dimensions.

Threads executingon the GeForce 8800are organizedinto a three-level hier-

archy, depicted in Figure 2.3. At the highest level, all threads in a data-parallel

executionphaseform a grid. The matrix multiplication code in Figure 2.2 forms

a grid consistingof a total of 224 threads.

Each grid consistsof many thread blocks. All thread blocks in a grid have the

samenumber of threads. A grid can be at most 216 ¡ 1 blocks in either of two

dimensions,and each block has unique coordinates. On line 7 of Figure 2.2, the

grid performing the matrix multiplication consistsof 256 thread blocks in each

dimension,for 216 thread blocks in total.

Each thread block is a three-dimensionalarray of threads, whosedimensions

are alsoexplicitly de¯ned by the application developer. Theseare scheduledasa

unit on the hardware. Threadshave unique coordinateswithin their thread block

and up to 512 threads can exist in a thread block. On line 6 of Figure 2.2, each

thread block consistsof 16x16threads; the third dimensionis not used.

Threadsin a thread block cansharedata through a low-latency, on-chip shared

memory and can perform barrier synchronization by invoking the syncthreads
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primitiv e. This abilit y to coordinate the executionof threadsdistinguishesCUDA's

programmingmodel from the shaderprogrammingof previousGPGPU models;I

show how coordination canboost performancein the next chapter. It is important

to note that the very local nature of the barrier synchronization enablesit to be

performedby a fast hardware mechanismand probably doesnot incur more than

a few processorcyclesonceall threads in a thread block reach the barrier.

Barrier synchronization within thread blocks is the only supported synchro-

nization on this architecture. No options for synchronization at any other level are

explicitly supported; for example,barrier synchronization acrossthread blockscan

only be safelyaccomplishedby terminating a kernel. The only possiblemethod of

communication betweenthreads in separatethread blocks is to usea \mailb ox"

memory location in the global addressspace,assumingthat the developer canen-

surethat both sendingand receivingthreadsare simultaneouslyscheduledon the

device. The lack of synchronization mechanismsbeyond barrier synchronizations

limits the ways in which parallelismcan be expressedin CUDA, but it alsomakes

it easierfor novice parallel programmersto reasonabout the correctnessof their

code.

When the host code invokesa kernel, it setsthe grid and thread block dimen-

sionsby passingthem asparameters.On lines6-7of Figure 2.2(a), two structures

of typedim3aredeclared:the ¯rst is for thread blocks, which arede¯ned as16£ 16

groupsof threads. The secondis for the grid, which consistsof 256£ 256 thread

blocks. The following line of code invokes the kernel. Kernel code is shown in

Figure 2.2(b). First, each thread calculatesthe starting positionsin the input ma-

trices basedon its unique block and thread coordinates. It then iterates through

a loop to calculate the result and store it to memory.

The multiple memoryspacesof a GPU's memorysystemareexposedby CUDA

to application developers. The host's memory is separatefrom the device'smem-
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ory. The host usesAPI calls to allocate memory on the GPU and transfer data

between host and device memories. Di®erent memory spaceson the device are

alsoseparatefrom oneanother. Major speedupis possiblewhen certain applica-

tion characteristicscan utilize the propertiesof local memories,but the developer

bears the responsibility of selectingthe appropriate data placement and layout

for a given application. This selectionrequiresknowledgeof the characteristicsof

each memory, as is explainedin the next section.

Finally, the hardware groups threads into warps of up to 32 threads. The

threads in a warp operate in lockstep, with a single instruction being issuedto

eight threads per cycle for four cycles. Warps are not speci¯ed in the CUDA

model, but are signi¯cant for optimization and performancepurposes. Someof

the key points are:

² Thread blocks that do not consistof an integral number of warps will leave

executionresourcesidle.

² All threads in a warp issuein SIMD (single-instruction multiple-data) fash-

ion, and a performancepenalty will be incurred if threads in the samewarp

follow di®erent control paths. Predication support canmitigate someof this

penalty, but the NVIDIA compiler doesnot aggressively predicatecode.

² Memory accessesof threads in the samewarp can interact in synergisticor

antagonistic ways. Warps should be organizedso that threads in the same

warp do not have bank or port con°icts.

² Becausethreads in a warp operate in lockstep, there are guarantees on

memory accessthat enable communication through shared memory that

would be unsafeotherwise becauseof race conditions. One optimization

which capitalizes on this property is the use of a single warp to perform
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Figure 2.4: Organization of the GeForce8800.

a reduction that accessesvaluesin a tree pattern without synchronization.

Synchronization is unnecessaryin this casebecausethe useof a singlewarp

createsordering guaranteesamongthe threads in the warp. Optimizations

using this property are not covered in depth in this work.

Theseissuesare discussedfurther in the next section.

2.2 Microarchitecture

This sectiondescribes the microarchitecture of the GeForce 8800. I ¯rst discuss

the execution resourcesof the system. Becausethe di®erent memoriesplay a

major role in optimization, theseare described separately.

2.2.1 Execution resources

Figure 2.4 depicts the microarchitecture of the GeForce8800. The GPU consists

of 16 streaming multiprocessors(SMs), each containing eight streaming proces-

sors (SPs), or processorcores,running at 1.35 GHz. There is a single instruc-
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tion issueunit per SM. Each SP has one 32-bit, single-precision°oating-point

(FP), multiply-add arithmetic unit that can also perform 32-bit integer arith-

metic operations. Additionally , each SM has two special function units (SFUs)

that executemore complex FP operations such as reciprocal squareroot, sine,

and cosine; two of these operations can be issuedper processorcycle, per SM.

The arithmetic units and the SFUs are fully pipelined, yielding 388.8GFLOPS

(16SM ¤ 18FLOP=SM ¤ 1:35GHz) of peak theoretical performancefor the GPU.

Each SM has8192registersthat aredynamically partitioned amongthe threads

running on it. The registersare contained within a banked register ¯le, the work-

ings of which have not beenexplained in detail by NVIDIA. The latency of the

register ¯le is generallyassumedto be two SP cycles.

As explainedin the previoussection,threadson an SM are grouped into bun-

dles of 32 threads called warps. Warps are formed from continuous sectionsof

threads in a thread block: the ¯rst 32 threads in a block form the ¯rst warp, etc.

A scoreboard indicateswhenall of a warp's operandsareready for execution. The

SM then executesthe sameinstruction for the 32 threads in the warp. An SM

issuesonly one instruction at a time for all threads in a warp; when threads in a

warp take di®erent control paths, it is assumedthat multiple passeswith suppres-

sion of threads on divergent paths are required to completeexecution [9]. Thus,

executionis slowed asmuch asif each thread had executedall control paths. It is

generallydesirableto group threadsto avoid this situation, if possible.Also, if the

number of threads per thread block is not evenly divisible by the warp size,any

remaining issueslots are wasted. Due to this design, the architecture naturally

favors applications with little divergent control °ow; kernelswith large regionsof

data-dependent control °ow aregenerallyunsuitable for this architecture. Knowl-

edgeof warps also helps in avoiding memory bank con°icts, which are discussed

in the next subsection.
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Figure 2.5: CUDA thread scheduling within an SM.
Warps are interleaved to tolerate intrawarp stalls.

SMscanperformzero-overheadschedulingto interleavewarpsonan instruction-

by-instruction basisto hide the latencyof globalmemoryaccessesand long-latency

arithmetic operations. When onewarp stalls, the SM canquickly switch to a ready

warp in the samethread block or a ready warp in any other thread block assigned

to the SM. This abilit y to utilize thread-level parallelismallows an SM to tolerate

long memory latenciesby executingwork from other threads/warps while a warp

is stalled. The dynamic warp scheduler reportedly adoptsa round-robin schedule

amongready warps to ensurefairness.

Figure 2.5 shows an exampleof thread scheduling on the architecture. Warp

1 from thread block 1 is able to executethe ¯rst six instructions without stalling.

Becauseits operandsfor instruction 7 arenot ready, the SM switchesexecutionto

warp 1 from thread block 2. Similarly, that warp's operandsfor the third instruc-

tion are not ready, so the SM switchesto warp 1 from thread block 3. Execution

on the SM stalls only if noneof its resident warps have ready operands. Because

warps are independent with the exception of synchronizations between those in

the samethread block, there is relatively high execution scheduling freedomin

many applications.

Each SM supports a maximum of 768 simultaneously active thread contexts.

An integral number of up to eight thread blocks are scheduled to an SM at any

time, to the limit imposedby resourceconstraints. When scheduling a thread

block, the hardwareautomatically allocatesthe necessaryamount of several hard-
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ware resources,primarily thread contexts, sharedmemory, and registers. When

optimizing kernel code, developersneedto be aware of how theselimits a®ectthe

number of parallel threads that can run on the device. Optimizations may have

negative e®ectsin somecasesbecausea small changein resourceusecan cause

fewer thread blocks, and thus many fewer threads, to be simultaneouslyexecuted.

This issueis discussedfurther in the next chapter.

In addition to theseexplicit execution resources,the texture cache also can

be programmedto perform interpolation and other operations useful in graphics

applications. Speci¯c usesof this feature are discussedin Chapter 4.

2.2.2 Memories

The GeForce 8800has 86.4 GB/s of bandwidth to its o®-chip memory. Never-

theless,with computational resourcessupporting nearly 400 GFLOPS of peak

performanceand each FP instruction operating on up to 12 bytes of sourcedata,

applications can easily saturate that bandwidth. In the worst case,the GeForce

8800can demand2.25TB/s (1.35GHz * [128multiply-add operations* 12 bytes

+ 32 SFU operations* 4 bytes]) of memorybandwidth. Therefore,asdepictedin

Figure 2.4and described in Table2.1, the GeForce8800hasseveral on-chip mem-

ories that can be usedto exploit an application's data locality and data sharing

to reducethe demandfor o®-chip memory bandwidth.

The GPU's memoriesare highly specializedand have di®erent latenciesand

throughput limitations. Memoriesfurnish fast or e±cient accessonly for particu-

lar patterns of memory references.Poor useof local memories,or an intrinsically

poor ¯t between an application's memory requirements and the architecture's

available memory, can result in poor application performanceon the architecture.

On the other hand, applications that can e®ectively use the local memoriescan
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Table 2.1: Properties of GeForce8800Memories

Memory Location Size Latency Read-
Only

Description

Global o®-chip 768
MB
total

200-300
cycles

no Large DRAM. All data reside here at the
beginning of kernel execution. Directly ad-
dressablefrom a kernel using pointers. Back-
ing store for constant and texture memories.
Used more e±ciently when multiple threads
simultaneously accesscontiguous elements of
memory, enabling the hardware to coalesce
memory accessesto the sameDRAM page.

Shared on-chip 16
KB
per
SM

' register
latency

no Local scratchpad that can be shared among
threads in a thread block. Organized into 16
banks. It is often possible to organize both
threads and data so that bank con°icts sel-
dom or never occur.

Constant on-chip
cache

64
KB
total

' register
latency

yes 8 KB cache per SM, with data originally re-
siding in global memory. The 64 KB limit is
set by the programming model. Often used
for lookup tables. The cache is single-ported,
so simultaneous requestswithin an SM must
be to the sameaddressor delays will occur.

Texture on-chip
cache

up to
global

> 100
cycles

yes 16 KB cache per two SMs, with data origi-
nally residing in global memory. Capitalizes
on 2D locality. Can perform hardware inter-
polation and havecon¯gurable returned-value
behavior at the edges of textures, both of
which are useful in certain applications such
as video encoders.

Local o®-chip up to
global

same as
global

no Spacefor register spilling, etc.

achievesuperlinearspeedupscomparedto traditional processors.Developersmust

usetheir understandingof the memory systemto structure both data and kernel

code for high performance.

Global memory is a large, long-latencymemory that exists as o®-chip DRAM

and is the default storagelocation. Kernel output data must be written to global

memory in order to be readable after kernel termination. When acting as a

graphics processor,most accessesin the architecture are to textures or lookup

tables. Becauseof this, global memory is optimized to provide data in aligned,

contiguous, 16-word lines. This pattern is termed a coalesced access.
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Coalescedaccessescan be achieved by designingkernelsso that each thread

in a half-warp accessesthe corresponding word, in ascendingthread order, in an

aligned,16-word sectionof data. The memory systemdetectsthe threads jointly

accessingthe completeline and aggregatesthe accessesinto a singleaccess.This

optimization is termed global memorycoalescing. Other patterns canachieve only

a small fraction of the e®ective memory bandwidth of coalescedaccesses.Unless

memory requestsare relatively rare, application performancewill generally be

limited by memory bandwidth when memory accessesare not coalesced.

Attempting to coalesceglobal memory accessesmay require major changesto

data structures in both host and devicecode. For example,data organizedas an

array of structureswill causethreadsto load nonunit-strided addresseswhenthey

access̄ elds of adjacent structures. Figure 2.6 shows an example of this, with

threadsaccessinga ¯eld x of contiguous elements in an array of structures. Loads

to non-contiguous memory addressesdoesnot enableglobal memory coalescing,

asshown in Figure 2.6(a): a separatememory requestis required for each thread.

Reorganizingthe data as separatearrays, as is done in Figure 2.6(b), will place

these¯elds next to each other and naturally set up global memory coalescingif

the alignment requirements are satis¯ed.

The shared memory is a low-latency scratchpad memory in each SM that is

useful for data that is either written and reusedor sharedamong threads in a

thread block. In CUDA kernel code, sharedvariables (generally arrays) are de-

clared with speci¯c sizes2 and an instance of the variable exists for each thread

block. This memory is accessibleonly during execution of its thread block and

its contents are discardedafter the thread block completesexecution. Data must

be loaded to and from sharedmemory similar to global memory: transfers from

2Support for sharedvariableswith sizesdetermined at run time exists but is not usedin this
work.
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Figure 2.6: Contrasting noncoalescedand coalescedaccesspatterns.

global memory to shared memory must go through the registers of individual

threads. The sharedmemory consistsof 16 banks; simultaneousrequeststo dif-

ferent addressesin the samebank will con°ict and causea stall. Accessesto the

sameaddressin the samebank are broadcastto requestingthreads.

The useof scratchpadmemorieshasbeencommonin embeddedsystems.How-

ever, sharedmemory has one major capability beyond those, which is enabling

reuseof data acrossthe entire thread block with the assistanceof synchronization.

For example,if each thread in a thread block readsa portion of a block of data,

they can cooperatively load the valuesof the data into registersand then store

them into the sharedmemory for useby the entire thread block. An exampleof

this within a matrix multiplication kernel is visited in the next chapter.

There are two read-only data caches. The ¯rst, the constant cache, holds a

working setof the constant memorydata. It hasthe abilit y to broadcastthe same

value to all threads in a warp, making it useful for lookup tables and other data

where data and memory accesspatterns can be manipulated to ¯t this pattern.

This abilit y providesan e®ectivememorybandwidth many timesgreaterthan that
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provided to global DRAM. The applications with the most dramatic speedupsin

Chapter 4 are the onesthat can take advantage of this capability. When threads

do not load the samevalue from the cache, it takesseveral cyclesto provide all

requestedvalues.

The texture cache is the other data cache and holds a working set of the

texture memory data. It has a much longer latency than the constant cache

but is useful for data with 2D spatial locality. It does not su®eras greatly as

the constant cache from irregular memory read patterns. The texture cache can

also interpolate values and provide boundary values for 2D arrays, which is a

useful feature for graphicsapplications. Useof the texture cache requiresspecial

API calls with the input texture and coordinates passedas parameters, while

addressingthe constant cache is done implicitly by declaring a data structure

with the constant keyword.

Memory bank and port con°icts are issuesthat must be addressedwhen de-

veloping applications for this architecture. In general,simultaneous accessesto

the samelocation are desirablefor the constant cache and individual banksof the

sharedmemory. If threads in the samewarp load di®erent locations, the memory

will take additional cyclesto satisfy the request. For example,assumethat the

primary datum of an application is an array of structures, each 16 words long,

which is placedin sharedmemory. Threads in a warp, accessingthe same¯eld of

successive objects, will attempt to accessdi®erent locationswithin the samebank

and thereforecon°ict. This con°ict can be avoidedwith data repartitioning; e.g.,

two separatearrays, one of 15-word sizeand the other 1-word, will not result in

con°icts when the same¯eld is accessedfor di®erent objects. Data padding is

another technique to addressthis problem.

Unlike bank con°icts in sharedmemory, reorganizingthe data in global mem-

ory is generallymore di±cult becauseit requireseither data structure changesin
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Table 2.2: Constraints of GeForce8800and CUDA

Resourceor Con¯guration Limit
Parameter
Threads per SM 768threads
Thread Blocks per SM 8 blocks
32-bit Registersper SM 8192registers
SharedMemory per SM 16 384bytes
Threads per Thread Block 512 threads

the host code portions of the application or a separatedata reorganizationphase,

either in host or kernel code. One possiblework-around is to load data in bulk

into sharedmemory and then use it as necessary, even if little reuseor no use

occurs for someof the loaded data. Data structures of new applications whose

execution is primarily in parallel kernelsshould be designedand constructed to

avoid theseissues.

2.3 ArchitecturalInteractions

Accurately predicting the e®ectsof one or more compiler optimizations on the

performanceof a CUDA kernel is often quite di±cult, largely becauseof interac-

tions amongthe architectural constraints listed in Table 2.2. Many optimizations

that improve the performanceof an individual thread tend to increasea thread's

resourceusage.However, aseach thread's resourceusageincreases,the total num-

ber of threads that can occupy an SM decreases.Occasionallythis decreasein

thread count occursin a dramatic fashionbecausethreadsare assignedto an SM

at the granularit y of thread blocks. In short, there is often a tradeo®betweenthe

performanceof individual threads and the thread-level parallelism on an SM.
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For example,consideran application that uses256 threads per block, 10 reg-

isters per thread, and 4 KB of sharedmemory per thread block. This application

can schedule3 thread blocks and 768threadson each SM. However, an optimiza-

tion that increaseseach thread's registerusagefrom 10 to 11 (an increaseof only

10%) will decreasethe number of thread blocks per SM from three to two, which

decreasesthe number of threadson an SM by 33%. In this case,the GeForce8800

can only assigntwo thread blocks (512 threads) to an SM becausea third block

would increasethe number of threads to 768, with total register usageof 8448

(768 threads* 11 registers/thread), above the 8192registersper SM available. In

contrast, an optimization that increaseseach thread block's sharedmemory us-

ageby 1 KB (an increaseof 25%) doesnot decreasethe number of thread blocks

per SM. The optimization spaceis inherently nonlinear, with register usagein

particular often triggering changesbecausemany optimizations a®ectit.

It is important to note that additional optimizations or a changein the granu-

larit y of work that each thread performsmay eventually obtain moreperformance,

even though an initial changesigni¯cantly reducedperformance.This possibility

makes iterativ e optimization uncertain and di±cult, sinceone cannot be certain

that a seeminglyhigh-performancecon¯guration is not a local performancemaxi-

mum. Chapter 3 goesinto moredetail on the e®ectsof the variousoptimizations.

2.4 SoftwareEnvironment andSupport

For CUDA compilation, NVIDIA provides a compiler wrapper called nvcc that

handlesall parts of the compilation °ow, including linking hostandkernelbinaries.

The compiler also supports several options that programmerscan use to debug

kernelsand to gain intuition on their performance.Two °ags areespecially useful:

-ptx and -cubin . The amount of time it takes to run nvcc with these°ags is
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much shorter than actual compilation becauseonly the kernel code is processed

when using the °ags.

Nvcc compiles kernel code to an assembly-like representation termed PTX .

PTX is normally encoded in an object ¯le for consumption by the CUDA run-

time, which processesthis code, performsfurther optimization such asinstruction

scheduling, and generateshardware-speci¯c code for execution. The purposeof

PTX is to provide code portabilit y and to abstract the exact workings of the

architecture away from application developers.

The -ptx °ag for nvccoutputs PTX codein a human-readabletext format. Al-

though PTX is not the exact code that is executedon the hardware, it often gives

insights into why performancedegradesor improvesafter a manual optimization

is applied. In particular, information such as instruction count, instruction mix,

and a rough idea of scheduling can be reliably utilized. For example,unrolling

a loop with strided memory accessescreatessuccessive operations that operate

at di®erent o®setsfrom a baseaddress. PTX shows the reduction in address

calculationsthat results from this transformation.

The CUDA runtime that generatesexecutablemachine code reschedulesin-

structions and allocatesregisters.The runtime introducesan uncontrollable factor

during program optimization and makes the e®ectsof optimizations on local re-

sourceusagelesspredictable. In addition, if the PTX code usesmore registers

than are physically available, the kernel will fail to execute.

The -cubin °ag outputs the resourceusageof GPU kernel code, including

the shared memory used per thread block and registers used per thread. The

resourceusageis critical to understanding the performanceof the code because

each SM runs the number of thread blocks that can ¯t into the local resources.

As previously discussed,a small changein code can result in resourceusagethat

changesthe number of thread blocks executingon an SM, which can signi¯cantly
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impact performance.The information provided by -cubin is usedin this work to

calculatethe number of thread blocks that cansimultaneouslyresideon each SM.
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CHAPTER 3

OPTIMIZATIONS

This chapter discussesoptimization principles and strategies for data-parallel,

many-core processors,such as the GeForce 8800. I ¯rst explain the principles

that should be kept in mind when optimizing applications for the architecture. I

then apply theseprinciples to a matrix multiplication kernel. The chapter closes

with descriptionsof speci¯c categoriesof optimization with, concreteexamples.

3.1 PerformancePrinciples

There are three basic principles to considerwhen optimizing an application for

any platform. Performanceof an application on a highly parallel systemis gener-

ally measuredby its throughput of usefulinstructions. For applicationswith good

performanceon the GeForce 8800, theseare generally °oating-point operations.

The °oating-point throughputof an application dependson the percentageof its

instructions that are °oating-point operations. The GPU is capable of issuing

172.8billion operationsper secondon the SPs. Theseinclude fusedmultiply-add

operations, which are counted as two operations for throughput calculations. If

a quarter of an application's instruction mix are fused multiply-adds, then its

performancecan be at most 2 * 1/4 FP per op * 172.8billion ops per second=

86.4GFLOPS. This performancecan be achieved when the SPsare fully utilized.

Assuming that utilization of execution resourcesis not reduced,decreasingthe

number of non°oating-point operations is bene¯cial to performance.Transforma-
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tions that reducethe proportion of these instructions are discussedin the next

sections.

Periods in which the execution resources are not utilized, due to stalls, de-

tract from performance. A stall generallymeansthat there are no threads whose

operandsare available for execution. Becauseof the long (and ever increasing)

latency to o®-chip memory, the primary utilization concernoften is ensuringthat

enoughindependent work existsto be executedwhile threadsarestalled on global

memory accesses.

As noted in the previous chapter, there is signi¯cant scheduling freedomon

the GeForce8800. First, an SM can continue to executeindependent instructions

after a long-latency instruction within the samewarp. Second,di®erent warps

in the samethread block can executewhile a warp is stalled on a long-latency

operation. Third, up to eight independent thread blocks can be simultaneously

assignedto an SM. A wide variety of techniques enhanceone or more of these

aspectsof schedulability, although they can incur an instruction e±ciency cost.

Lastly, global memory bandwidth can limit the throughputof the system. The

86.4 GB/s global memory bandwidth on the GeForce 8800must feed the 388.8

GFLOPS of execution resources,so only a small fraction of instructions can be

global memory accessesif the hardware is to be utilized e®ectively. Chapter 4

shows examplesof optimized applications that are still bandwidth-limited on the

GeForce 8800. This issuewill continue to be a ¯rst-order concernfor many-core

processors,as execution resourcescan increaseat a near-exponential rate while

bandwidth into and out of a chip will grow at a much slower rate.

These principles apply to any form of processor. The methods of following

theseprinciples, however, can di®erbetweenarchitectures. For the GeForce8 Se-

ries and similar GPUs, the processfor optimizing applicationscan be constructed

from a list of ¯v e principles.
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1. Leverage zero-overhead thread scheduling to hide memory latency .

The latency of global memory is at least 200cycles,requiring 1600or more

instructions to cover the latency for the eight SPs in each SM. The ar-

chitecture provides zero-overhead warp scheduling to enable thread-level

parallelism to supply instructions to hide this latency, whereastraditional

processorshavebeenlimited to usinginstruction-level parallelism(ILP) and

sometimesa small amount of TLP. The impact on program developers is

that their applications may need to be decomposedto a much ¯ner level

than they previously practiced to provide a su±cient number of threads.

2. Threads within a thread blo ck can comm unicate via synchroniza-

tion, but there is no built-in global comm unication mechanism for

all threads. From the hardware designperspective, this designavoids the

needfor virtualization of hardware resources,enablesthe execution of the

sameCUDA program acrossprocessorfamily memberswith a varying num-

ber of SMs,and makesthe executionhardware relatively scalable.However,

this limits the kinds of parallelismthat canbe utilized within a singlekernel

call, and a®ectswhich algorithms map well to the architecture.

3. Optimize use of on-chip memory to reduce global memory band-

width usage and redundan t execution. For most unoptimized applica-

tions the primary performancebottleneck is globalmemorybandwidth. The

bandwidth limitation was recognizedby researchers over a decadeago [10,

11], but mainly in the context of superscalarprocessors.With initial ver-

sions of applications, optimizations generally will not improve application

performanceunlessthe application usesbandwidth more e±ciently asa re-

sult. Working memory within a group of coresconsistsprimarily of a large

register ¯le and the sharedmemory. Sharedmemory's strength is enabling
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the sharingof data amongthreads in a thread block. Texture and constant

cachescan also reducethe load on global memory bandwidth. Developers

still have to control the number of registersand sharedmemory usedper

thread block, sinceusingtoo many of theseresourcescanreducethe number

of thread blocks simultaneously running per SM, exposingmemory stalls.

4. Group threads to avoid SIMD penalties and memory port/bank

con°icts. CUDA is basedon the SPMD model, but its current implemen-

tation on the GeForce8800imposesSIMD modeamongthreadsin the same

warp. Good performancerequiresthat threads in a warp follow mainly the

samecontrol °ow path during execution. In somealgorithms, threads can

be reorganizedto avoid divergent control °ow. Appropriate thread grouping

can alsopreserve performanceby avoiding memoryport and bank con°icts,

as well as enableglobal memory coalescing.

5. Trade resource usage to impro ve utilization of hardw are resources

and e±ciency of the instruction stream. Becauseof the wide variety

of executionresources,it is possibleto useresourcesto freeup demandson

other resourcesand improve overall systemperformance.For example,the

contents of registerscan be spilled to sharedor global memory to reduce

the number of registersper thread and thuspotentially increaseconcurrency

on the system. Conversely, using more registersper thread can reducethe

number of loads and stores executedper thread and increaseinstruction

streame±ciency, although this shift may reducethe total number of threads

simultaneously running on the system. Examples for speci¯c applications

are discussedin Section4.3.

The next section illustrates how theseprinciples enablee±cient optimization

for a simple kernel running on a many-coreprocessor.
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3.2 OptimizationExample:Matrix Multiplication

This sectionappliesthe optimization principles described in the previoussection

to a matrix multiplication kernel. Matrix multiplication is a highly parallel algo-

rithm with heavy data sharingacrossthreads. To calculatean element of a result

matrix, one takes the dot product of the corresponding row of the ¯rst input

matrix and the column of the secondinput matrix. Figure 3.1 shows multiple

versionsof a matrix multiplication kernel, while Figure 3.2 depicts their mem-

ory accesspatterns. Experiments were performedon a 4096x4096densematrix.

Starting values for indexA, indexB, and indexC are determined by block and

thread coordinates. I use thread blocks consistingof 256 threads arranged in a

16x16square.

Figure 3.1(a) shows a simple matrix multiplication kernel: each thread loops

through a sequencethat loads two valuesfrom global memory, multiplies them,

and accumulates the value. This code provides 10.58GFLOPS of performance.

Beforemaking any assumptionsabout the sourceof performancelimitations, the

developer can calculate the theoretical performanceof the code assuming full

SP utilization. There is one fused multiply-add out of eight operations in the

inner loop, for an estimatedpotential throughput of 43.2GFLOPS. Sinceseveral

hundred threadsare beingexecutedper SM and all threadsaccessglobal memory

for their input data, the problem appearsto be lack of available global memory

bandwidth.

Although the algorithm hasinherent data reuse,this implementation doesnot

capitalize on that. All memory operations accessglobal memory. One quarter of

the operations executedduring the loop are loads from o®-chip memory, which

would require a bandwidth of 173GB/s (128 processorcores* 1/4 instructions *

4 B/instruction * 1.35GHz) to fully utilize the instruction issuebandwidth, which
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Figure 3.1: Matrix multiplication optimization examples.
Code di®erencesfrom tiled versionare shown in bold.
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Figure 3.2: Graphical depictionsof the memoryaccesspatterns of di®erent matrix
multiplication versions.
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is more than twice the available amount. In order to achieve better performance,

a developer must reducethe number of accessesof global memory.

For a given application, there are three choicesfor local memories: texture

cache, constant cache, and shared memory. The appropriate choice for ma-

trix multiplication is the shared memory; constant cache is unsuitable because

threads in a warp will simultaneously load di®erent valuesfor at least one input

matrix, and the accesspatterns and amount of reusefavor sharedmemory over

texture cache. By using memory tiling [12{15], the kernel's global memory ac-

cessescan be reducedby a factor equal to the length of a squaretile. The choice

of thread block is a major decisionbecauselarger tile sizesincreasedata sharing

and thus global memory e±ciency, but potentially reduceschedulability because

fewer thread blocks can be executedper SM. On the GeForce 8800 there are a

limited number of usefulsizesbecauseof the requirements for global memory co-

alescing,the needto have full warps for good SP utilization, and the maximum

of 512 threads per thread block.

For matrix multiplication, I choosea thread block and memory tile size of

16x16 becausethe memory system coalescesaccessesof 16 aligned, contiguous

words, using o®-chip bandwidth e®ectively. This con¯guration reducesthe total

number of global loadsperformedby each thread by a factor of 16. The code for

this versionis shown in Figure 3.1(b), with a graphicaldepiction in Figure 3.2(b).

Two 16x16 sharedmemory arrays are declared,one for each input matrix tile.

Each thread loads a single element from each tile: cooperatively they load both

16x16 tiles into registers. The elements each thread loads are chosenso that

half-warps load full lines from memory, enablingcoalescedmemory accesses.The

threads then store the tiles into the sharedmemory. Finally, a small loop calcu-

lates the partial dot product. Two synchronizations are required for correctness:

the ¯rst ensuresthat valuesin the sharedmemory are written beforebeing used
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by other threads;the secondensuresthat all threadshave¯nished usingthe values

in sharedmemory beforea new tile is loaded.

The 16x16tiled version of matrix multiplication achieves46.49GFLOPS, or

approximately 4.5X the executionthroughput of the initial version. This perfor-

manceis slightly higher than the estimated potential throughput of the original

code, so it appears that the application achieves full usageof the SPs. The use

of 16x16tiles reducesglobal loads by a factor of 16 over the nontiled con¯gura-

tion, which reducesthe demandon global memory bandwidth to approximately

an eighth of the available bandwidth. Since utilization appears to be high, a

developer can now focuson improving the e±ciency of the code.

Code e±ciency can be improved by reducing the number of operations that

are not °oating-point calculations. Branches and addresscalculations are two

examplesthat areeasilyremoved. Figure 3.1(c) showsremoval of theseoperations

via loop unrolling. By unrolling the inner loop, addresscalculation instructions are

eliminatedby replacingvariablearray indiceswith constant o®sets.By completely

unrolling the loop, all branch instructions have beeneliminated. This versionof

the matrix multiplication kernel can often achieve double or greater performance

over the simple tiled version.

Another method of improving e±ciency is to perform rectangular tiling, as

shown in Figure 3.1(d) and depictedin Figure 3.2(c). This transformation changes

the granularit y of computation such that a single thread calculatesmultiple ele-

ments in the result matrix. The primary bene¯t to e±ciency is registertiling [16]:

the value As[ty][i] only needsto be loadedinto a register oncefor the calcula-

tion of two di®erent result elements, reducingthe total number of loads. The total

number of executedcontrol °ow operationsis alsoreduced.Rectangulartiling can

be combined with unrolling for further gains. The next sectionwill discussother

ways in which rectangular tiling may a®ectperformance.
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A ¯nal optimization that should be mentioned is prefetching, which some

developersperform instinctively. In the code shown in Figure 3.1(e), loadsof the

valuesfor the next tiles to beprocessedareinitiated prior to calculating the partial

dot product, hiding the latency of the global memoryaccess.This transformation

improvesindividual thread performance,which is generallyeasyfor a developer to

reason.However, prefetching in this situation improvesperformanceonly slightly.

Prefetching can signi¯cantly improve executionresourceutilization on traditional

processorsbecauseit reducesor eliminatesthe exposedstall time prior to the use

of a loadedvalue. On a highly threadedsystemsuch asthe GeForce8800,exposed

stall time is generally covered by the execution of other threads, so prefetching

doesnot have as great a performanceimpact.

Prefetching can sometimesdecreaseoverall performanceby reducing thread-

level parallelism. In the caseof matrix multiplication, prefetching requires two

additional registersper thread to receive the prefetchedvalues,which canresult in

fewer thread blocks executingon each SM. Experiments on matrix multiplication

in Section5.1show that prefetching hasa minor e®ecton performanceat bestand

in one casedecreasesperformancedue to reducedTLP. The optimized versions

of applications in Chapter 4 generallydo not useprefetching.

3.3 Categoriesof Optimization

One fact that is ignored by many novice developers is that \optimizations" are

simply transformations that may decreaseapplication performanceunlessthey

target a speci¯c behavior which inhibits application performancefor the target

application and architecture. Thus, optimization should always be done by ¯rst

consideringwhat e®ectsare desired, then analyzing which transformation will

producethe e®ectwith minimal negative sidee®ects.In this sectionI divide the

36



three principles in Section3.1 into various categoriesof optimization that apply

to the GeForce8800,then mention speci¯c examplesof optimizations.

The basicstrategy for achieving good kernelcodeperformanceon the GeForce

8800 is to ¯rst ensurethat executing threads are not starved for data: global

memorybandwidth shouldnot be the limiting factor on performance.After that,

optimizations should balancean e±cient instruction stream with high utilization

of executionresources.

Optimizations rarely improve an aspect of machine-level behavior in an iso-

lated manner. Many optimizations a®ectseveral aspects, producing a give-and-

take situation between di®erent categories. Moreover, many optimizations in-

creaseresourceusageand thus compete for a limited budget of registers,thread

contexts, and sharedmemory. The most commonway in which optimizations in-

teract and interfere on the GeForce8800is by their e®ectson registerusage.For

example,an optimization that increasesthe number of independent instructions

after a long-latencyinstruction generallyusesadditional registers.This optimiza-

tion causesregister usageof each thread and thread block to increase,which in

turn can causethe number of thread blocks assignedto each SM to decrease.I

mention speci¯c casesbelow.

3.3.1 Memory bandwidth optimization

The ¯rst classof optimizations deals with reducing pressureon memory band-

width, particularly global memory. Attempts to improve instruction e±ciency

or execution resourceutilization matter little to performance if the executing

threadsare starved for data. This problem wasrecognizedby Ding and Kennedy

for traditional processors[11]; the issueis exacerbatedfor data-parallel many-core

processors.Listed hereare sometechniquesfor reducingglobal memory accesses.
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Ding and Kennedy mention several in [17], with more sophisticated techniques

described in [18].

² Capitalize on the reuse of data via local, low-latency memories. I

showed an exampleof the useof sharedmemory in a matrix multiplication

kernel. The caches also assist in reuse of data. Utilizing the memories

e®ectively may require restructuring of computation using transformations

such as loop interchange[19] to createan amenableaccesspattern.

² Impro ve data localit y by coalescing global memory accessesto fully

utilize the width of the global memory bus. Noncoalescedaccessesutilize

only a fraction of the total memory bandwidth. Optimizations include:

{ Using shared memory as a bu®er to load data in bulk , then

accessingthem in whatever pattern the programmer ¯nds convenient

from that memory. Even if bank con°icts occur during sharedmemory

accesses,overall performancemay improve even without much data

reuse. Note that memory tiling naturally achieves this e®ect. It is

conceivable that loading somedata that will not be usedmay be worth

the e®ectsof coalescing,although no examplehasbeenencountered in

this study.

{ Reorganizing data and restructuring the application so that

the data the kernel accesses are located in aligned, contigu-

ous regions of memory . One exampleis to split an array of struc-

tures into multiple arrays sothat ¯elds that formerly requirednonunit-

strided accessare now adjacent in memory. Doing somanually is gen-

erally consideredpoor software engineeringpractice, but it may be

possiblefor the compiler to perform the transformation or for a smart

memory system to reorganizedata at runtime. Work by Yamada et
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al. [20] proposeda combined hardware and software technique to ad-

dressthis issue.Truong et al. [21] recognizedthe positive cache e®ects

of similar optimizations on di®erent instancesof dynamically allocated

objects, while Chilimbi et al. automate the optimizations [22].

It is possiblefor applicationsto still be performance-limitedby global memory

bandwidth evenafter theseoptimizations havebeenperformed. Such applications

often have little data reuseand have data organizationsthat cannot be signi¯-

cantly modi¯ed or require major e®ort to be modi¯ed.

3.3.2 Dynamic instruction reduction

The secondcategory is to reducethe dynamic instruction count per thread, or

increasethe e±ciency of the instruction stream. Becausetheseare commontech-

niquesfor improving the performanceof applicationsexecutingon traditional su-

perscalarprocessors,their ¯rst-order e®ectsare generallywell understood. Some

of the most e®ective examplesof theseoptimizations are listed below, along with

a short description of their intended e®ectsand commonsidee®ects.

² Common subexpression elimination (CSE) . This optimization removes

repeated calculations of an expression,such as an arithmetic operation or

the load of a value, and instead usesthe saved value of a previous compu-

tation from a register. It tends to useadditional registersunlessa sequence

of redundant expressionscan be eliminated.

² Lo op-in varian t code motion (LICM). Related to common subexpres-

sion elimination, this optimization involvesthe movement of an expression

within a loop body to a program point prior to the loop. LICM is pos-

sible when the sourcesof the expressiondo not change during the loop's
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executionand when the expressionis calculated on every path of the loop

(for nonspeculative motion). Similar to CSE, it tends to usesadditional

registers.

² Lo op unrolling. When a loop hasa constant or otherwiseconstrainedtrip

count, it is often advantageousto \unroll" the loop by an even divisor of

the trip count, replacing it with a loop that iterates fewer times but per-

forms several times more work per iteration. This optimization has several

bene¯ts:

{ Fewer loop iteration instructions, such asbranchesand induction vari-

able increments, are executed.

{ Instructions can be combined. For example,a loop may increment a

pointer and then load from the location. When the loop is unrolled,

insteadof multiple increment operations,subsequent loadsincorporate

an o®setand a single increment operation is performed. The unrolled

matrix multiplication kernelin Figure 3.1(c) is an exampleof this e®ect.

Complete unrolling of a loop is the extreme caseof loop unrolling, and is

very pro¯table for loops with small bodies since the majorit y of dynamic

operationsmay be loop counter and branch instructions. It alsofreesup the

registerthat wasusedasthe loop counter. Loop unrolling must be balanced

againstadditional pressureon instruction cache capacity, so in generalonly

the innermost loopsof a kernelwill be the onesunrolled. It may alsotrigger

other optimizations that changeresourceusage.
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3.3.3 Increasingthread-level parallelism

The goal of the third category of optimization is to improve execution resource

utilization by providing enoughthreads/warps to hide the stalling e®ectsof long

latency and blocking operations. Examplesof long latency operations are loads

from global or texture memories. Blocking operations include barrier synchro-

nization, which stops a warp's execution until all warps in the sameblock have

reached the barrier.

A commonoptimization in this category is to decreasethe thread block size

and increasethe number of thread blocks. This optimization can increasethe

number of thread blocks assignedto each SM and provide moreindependent warps

from other thread blocks when one thread block reachesa barrier. However, this

transformation often requireschanging the granularit y of computation. In cases

where memory tiling is utilized, it may have the e®ectof reducing data sharing

and increasingpressureon memory bandwidth.

3.3.4 Increasingintrathread parallelism

The fourth category of optimization, intrathread parallelism, ensuresthe avail-

abilit y of independent instructions within a thread. These optimizations have

a multiplicativ e e®ectwith thread-level parallelism, so small changescan have

major e®ectson performance.Theseoptimizations can be broken down into two

subcategories.

² Instruction-lev el parallelism. ILP-increasingcode transformationshave

been extensively studied and applied to many architectures, particularly

EPIC/VLIW architectures. John Sias' Ph.D. dissertation [23] discusses

many of thesein detail. One interesting caseis loop unrolling, which is also

an e±ciency-increasingoptimization. An exampleis shown in Figure 3.1(c),
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where the loads from sharedmemory for the di®erent tiles can executein

any order.

This subcategoryis primarily the jurisdiction of the instruction schedulerof

the CUDA runtime. It appearsto rescheduleoperationsto hide intrathread

stalls, sometimesto the detriment of interthread parallelism. As with opti-

mizationsto reduceinstruction count, schedulingto reduceintrathread stalls

may increaseregister usageand potentially reduce the number of thread

blocks on each SM.

² Memory overlap. A specialcaseof ILP, memoryoperationscanbe sched-

uled to amortizeandoverlap latencies,reducingthe likelihood that execution

resourceswill stall on global memory accesses.The GeForce8800supports

a large number of in-°igh t memory accesses,making the overlap of memory

accesslatenciesa key aspect of performanceon that architecture. This cate-

gory breaksdown into memory-level parallelism(MLP) [24]and prefetching.

{ Memory-level parallelismrefersto the reorderingof memoryoperations

to ensurethat many loadsare in °ight beforea stalling useis encoun-

tered. For example,in Figure 3.1(b), loadsof elements of arrays A and

B can be scheduledbeforethe store to As in order to amortize the ex-

posedlatenciesof the loads. This concept is similar to the overlap of

cache misseson traditional processors[25]. Proper extraction of MLP

also causesmore work to be available from each thread block during

the stall, sinceeach warp can executetwo load operations prior to a

consumingstore. This optimization is generallythe domainof nvccand

is di±cult for a developer to control manually, but is still an important

aspect of extracting performancefrom applications.
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{ The developer can explicitly insert prefetching code to initiate long-

latency global loadsasearly aspossibleand hide its latency with other

instructions. An exampleis shown in Figure 3.1(e). As discussedin the

matrix multiplication example, the abundant TLP supported by the

architecture reducesthe performancebene¯ts of prefetching relative to

its e®ectson traditional processors.In addition, prefetching generally

requires additional registers in code regions where register usageis

already high, sometimescausingfewer thread blocks to resideon each

SM. Good management of ILP and MLP canminimize the incremental

bene¯t of prefetching.

3.3.5 Work redistribution

The ¯fth categoryinvolvesredistribution of work acrossthreadsand thread blocks.

Theseoptimizations can changeboth instruction e±ciency and resourceutiliza-

tion, with somee®ectson memory bandwidth usage. Becauseof their nature,

optimizations in this category can have unpredictable results due to changesin

register usage.

Thread block and memory tile shape and size selection is one optimization

that falls into this category. Although tiling is primarily doneto improve memory

bandwidth usage,the size of the tile also has e±ciency and utilization implica-

tions. Large tiles generallyhave higher e±ciency than smaller tiles, but reduced

scheduling °exibilit y (utilization) sincea larger percentage of threads must stall

at barrier synchronizations.

One example is rectangular tiling in Figure 3.1(d): instead of each thread

computing oneresult, they computemultiple results. This transformation allows

registertiling (alsoreferredto asunroll-and-jam), wherevaluescanbe reusedin a
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register within a singlethread to eliminate loads. The total number of threads is

reduced,which may potentially reducethread-level parallelism. Another bene¯t is

the reduction in the total number of control °ow operationsexecutedby a kernel:

more usefulwork is doneper thread block and the total number of thread blocks

is reduced. There is often a small increasein ILP, but the increasein register

usageoften causesfewer threads and thread blocks to be executedper SM.

Another optimization that is occasionallyuseful is to distribute work across

multiple invocations of a kernel. This optimization is sometimesnecessaryto use

the constant cache, due to its size limitation. Splitting execution acrossmul-

tiple invocations may also help improve cache behavior. The additional kernel

invocation overheadis generallynegligiblecomparedto the kernelexecutiontime.

3.3.6 Resourcebalancing

The last category is best termed resourcebalancing. The purposeof theseop-

timizations is to make changesin resourceusageto alleviate pressureon over-

subscribed resourcesand shift to underutilized ones to produce better overall

performance. Unless the whole system is taken into account, the optimization

may be counterintuitiv e. Becauseof the large amount of execution resources,

most optimizations involve giving up instruction e±ciency to optimize another

aspect of execution.

One optimization in this category is the movement of data from capacity-

constrained,low-latency memoriesto larger, high-latencymemoriesto allow more

threads to run simultaneously. For example, explicit register spilling to shared

or global memory can be performed by the application developer to allow more

thread blocks to be simultaneouslyexecutedper SM. The resulting con¯guration

may achieve higher performance,despite the reduced instruction e±ciency, be-
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causethe additional thread blocks improve overall resourceutilization. Similarly,

a kernel with small input and output data setsbut large working setsmay ¯nd

it advantageousto spill data to global memory to avoid congestingregistersor

sharedmemory.
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CHAPTER 4

APPLICATION STUDY

This chapter discussesan application mapping study performed in Spring 2007.

Several groupsof students ported applications to the GeForce8800with the goal

of achieving maximal speedup. Theseapplicationswereof interest to existing de-

velopersand users,who saw value in obtaining signi¯cant performanceincreases.

They are more interesting and useful than microbenchmarks becauseof their

larger code sizesand data sets,and variety of instructions and control °ow. Work

of a similar nature has been performed by Che et al. [26]. I discussthe appli-

cability and e®ectivenessof the principles and techniquesin Chapter 3 on these

applications.

To accommodate the SIMD nature of the SMson the GPU, threadsof an appli-

cation must follow nearly uniform paths of executionto have good performance.

They should also have regular memory accessesand high compute-to-memory

ratios or signi¯cant data reuse.Table 4.1 lists applications that have thesechar-

acteristicsin varying amounts and have beenported to CUDA, alongwith source

and kernel lines of code (excluding comments and whitespace).
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Table 4.1: Application Suite
Application Description Source

Lines
Kernel
Lines

CPU
Execution

Paral-
lelized

H.264 A modi¯ed version of the 464.h264refbenchmark from SPEC CPU2006. This application is
an H.264 (MPEG-4 AVC) video encoder. A serial dependencebetween motion estimations of
macroblocks in a video frame is removed to enableparallel execution of the motion estimation
code. Although this modi¯cation changesthe output of the program, it is allowed by the H.264
standard.

34811 194 35%

LBM A modi¯ed version of the 470.lbm benchmark from SPEC CPU2006. This application usesthe
Lattice-Boltzmann Method for simulating 3D °uid dynamics. The program has been changed
to usesingle-precision°oating-p oint and print fewer status reports.

1481 285 > 99%

RC5-72 This application acceleratesdistributed.net's RSA RC5-72bit challenge,which performs brute-
force encryption key generation and matching.

1979 218 > 99%

FEM Finite element modeling. Simulation of dynamic behavior of 3D graded materials. 1874 146 99%
RPES Rys polynomial equation solver. Calculates 2-electron repulsion integrals, which are a sub-

problem of molecular dynamics.
1104 281 99%

PNS Petri Net Simulation. Simulation of a mathematical representation of a distributed system. 322 160 > 99%
SAXPY Single-precision°oating-p oint implementation of saxpy from high-performanceLINPACK, used

as part of a Gaussianelimination routine.
952 31 > 99%

TPACF Implementation of two point angular correlation function, usedto ¯nd the probabilit y of ¯nding
an astronomical body at a given angular distance from another astronomical body.

536 98 96%

FDTD Finite-di®erencetime-domain. 2D electromagneticwave propagation simulation in an arbitrary ,
user-de¯ned medium.

1365 93 16.4%

MRI-Q Computation of a matrix Q, representing the scanner con¯guration, used in a 3D magnetic
resonanceimage reconstruction algorithm in non-Cartesian space.

490 33 > 99%

MRI-FHD Computation of an image-speci¯c matrix F H d, used in a 3D magnetic resonanceimage recon-
struction algorithm in non-Cartesian space.

343 39 > 99%

CP Computation of electric potential in a volumecontaining point charges.Basedon direct Coulomb
summation, as described in [27].

409 47 > 99%
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Benchmark versionsof someof the applicationsare presently available at [28].

The larger codes often required more modi¯cation to port to CUDA; the most

extremecasewas H.264,which involved a large-scaleloop distribution to extract

the motion estimation kernel from nonparallel application code. The percentage

of single-thread CPU execution time spent in kernels is given to show the to-

tal application speedupthat can be achieved as limited by Amdahl's Law. For

example,FDTD's kerneltakesonly 16.4%of executiontime, limiting potential ap-

plication speedupto 1.2X. In general,kernelexecutionoccupiedthe vast majorit y

of executionfor theseapplications when run entirely on a singleCPU core.

Application selection is biased towards particular classesof problems such

as linear algebra and stencil and grid-basedcomputations. Most of these have

data structures laid out in simple arrays, enabling easy coalescingof memory

accessesby developers. Kernels generallyhave little variancein control °ow and

corresponding predictabilit y in memory accesses.

Table 4.2 shows characteristicsof the optimized application implementations

using CUDA version0.8.1 The data for matrix multiplication are listed for com-

parison.2 The maximum number of simultaneously active threads shows the

amount of thread parallelism available on the hardware at a given time, taking

resourceconstraints into account, with a maximum of 12 288acrossthe 16 SMs.

There is a wide range of values, with little correlation of number of threads to

actual speedup. The total threads in a given kernel often number in the millions.

The number of registersand the amount of sharedmemory per thread show the

degreeof local resourceutilization.

1Due to incompatibilities in both basearchitecture and CUDA versions,several of the appli-
cations could not be directly mapped to the evaluation system used in later chapters. Rather
than remove the applications, I choseto keepthe performanceinformation for the older system.

2The GPU speedup for matrix multiplication uses a highly optimized library with SSE2
support ascomparison. Kernel speedupcomparedto a CPU binary without SIMD support and
optimized only for cache usageis on the order of 100X.
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Table 4.2: Application Performancefor Typical Long-Running Execution Pro¯les
Appli-
cation

Max Simul-
taneously

Activ e
Threads

Registers
per

Thread

Shared
Mem per
Thread

(B)

Global
Memory to

Computation
Cycles Ratio

GPU Exec
%

CPU-
GPU

Transfer
%

Architectural
Bottleneck(s)

Kernel
Speedup
on GPU

Appli-
cation

Speedup

Mat
Mul

12 288 9 8.1 0.276 16.2% 4% Instruction issue 7.0X 2.0X

H.264 3936 30 55.1 0.006 2.6% 4.5% Register ¯le
capacity and
cache latencies

20.2X 1.47X

LBM 3200 32 84.2 0.415 98.3% 0.4% Sharedmemory
capacity

12.5X 12.3X

RC5-72 3072 42 0.3 ' 0 64.3% 0.5% Instruction issue 17.1X 11.0X
FEM 4096 18 61 1.135 91.4% ¿ 1% Global memory

bandwidth
11.0X 10.1X

RPES 4096 23 24.8 0.01 37.5% 1% Instruction issue 210X 79.4X
PNS 2048 32 9.9 0.241 98% ¿ 1% Global memory

capacity
24.0X 23.7X

SAXPY 12 288 7 0.3 0.375 88% 4.5% Global memory
bandwidth

19.4X 11.8X

TPACF 4096 24 52.2 0.0002 34.3% ¿ 1% Sharedmemory
capacity

60.2X 21.6X

FDTD 12 288 11 8.1 0.516 1.8% 0.9% Global memory
bandwidth

10.5X 1.16X

MRI-Q 8192 11 20.1 0.008 > 99% ¿ 1% Instruction issue 457X 431X
MRI-
FHD

8192 12 20.1 0.006 99% 1% Instruction issue 316X 263X

CP 6144 20 0.4 0.0005 > 99% ¿ 1% Instruction issue 102X 102X
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Other information in the table includes the ratio of global memory cyclesto

computation cyclesafter sharedmemory and caches are utilized to their fullest

extent, expressingthe global memory bandwidth requirements of the most time-

consumingkernel of each application. Section 4.1 discusseshow this ratio cor-

relates to performance. GPU execution time expresseshow much of the total

execution time the application kernelsoccupy on the GPU. CPU-GPU transfer

time is shown for comparisonwith the computation time. One interesting caseis

H.264: a highly optimized version spendsmore time in data transfer than GPU

execution. The last item is the architectural bottleneck(s) that appears to be

limiting theseimplementations from achieving higher performance.

The two rightmost columnsof Table 4.2 list the performanceof ported appli-

cations. The baseline,single-threadCPU performanceis measuredon an Opteron

248systemrunning at 2.2 GHz with 1 GB main memory. The choiceof processor

was made with the intent of having a high-performance,single-coreprocessor;

similar CPU performanceis found with newer, high clock rate multicore architec-

tures.3 CPU versionswere heavily optimized for applications with outstanding

GPU speedupto ensurethat comparisonswere fair: SIMD instructions and fast

math libraries were someof the more e®ective optimizations. Applications were

compiled with gcc version 4.1.3, with -O3 or the maximum optimization level

that worked correctly. Both the speedupof CUDA kernel executionover single-

thread CPU kernel executionand total application speedupweremeasured,with

all °oating-point numbers set to single-precision.Measurements weremadewith

typical long-running inputs; e.g.,for SPECCPU benchmarks the referenceinputs

were used. I do not discussthe precision requirements of applications in this

3My claim of similar performance does not factor in performance using the CPU's SIMD
execution resources:recently releasedprocessorscan have double or more SIMD resourcesthan
the processorusedhere. Experiments in later chapters and work on individual applications [29,
30] were performed with a more contemporary evaluation system. As explained previously,
several of theseapplications could not be directly ported to the newer system.
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work, although experiments have shown that at least two applications, LBM and

FDTD, su®erfrom insu±cient °oating-point precision.

4.1 GeneralPerformanceTrendsof Optimized
Applications

In general,signi¯cant kerneland application speedupis obtained acrossthe suite,

asshown in Table4.2. Compute-intensive kernelswith relatively few global mem-

ory accessesachieve high performance.Kernels that are not ascompute-intensive

still achieve respectableperformanceincreasesbecauseof the GeForce8800'sabil-

it y to run a large number of threads simultaneously. Low-latency °oating-point

executionis a major factor in speedup,asis the useof cachesand sharedmemory

to reducelatenciesand global bandwidth usage.Careful organization of threads

and data wasgenerallyusefulin optimizing the usageof the specializedmemories,

most notably in the MRI kernels.

The applications in Table 4.2 with the highest performancegains, namely

TPACF, RPES, MRI-Q, MRI-FHD, and CP, have low global accessratios and

spend most of their execution performing computation or accessinglow-latency

memories. They also generateenoughthreads to hide potential stalls on long-

latency operations and maintain high pipelined °oating-point throughput.

One major reasonfor the high performanceof the MRI kernelsis that a sub-

stantial number of executedoperationsare trigonometry functions; the SFUsexe-

cute thesemuch faster than CPU fast math libraries. SFU performanceaccounts

for approximately 30%of the speedupof thosekernels.Signi¯cant e®ortwasspent

improving the CPU versions(approximately 4.3 times faster than the original

code) to ensurethat the CPU-GPU performancecomparisonwasreasonable[31].

The CP kernel has a signi¯cant number of reciprocal squareroot operations and
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hasa similar performanceadvantage on the GPU. The opposite e®ect,wherethe

processormust emulate functionality that is not supported natively in the in-

struction set, exists in RC-5: the GeForce 8800lacks a modulus-shift operation.

Performanceof the code if a native modulus-shift were available is estimated to

be several times higher.

Another reasonfor the MRI kernels' high performance,as well as that of CP,

is that threads can be organizedso that every thread reads the samesequence

of memory addresseswithin the primary data-parallel loop. Sinceevery thread

in a warp reads the samevalue, the data naturally map to constant memory,

making global memorybandwidth limitations a nonissue.The advantageof using

constant memory in the MRI kernelsis discussedin more detail in Section4.2.3.

The H.264kernel is notable for its useof texture memory to accomplishcalcu-

lations that would be performedasnormal processorinstructions in a CPU-based

implementation. The texture memory provides both 2D locality and boundary-

value calculations. Although the kernel spends20% of execution time stalled on

texture memory, this con¯guration is still 2.8 times faster over global-only access.

Section4.2.1discussesthe H.264kernel in more depth.

LBM, FEM, and FDTD are notable for being time-sliced simulators, where

a portion of the simulation area is processedper thread. For each time step,

updates must propagate through the system, requiring global synchronization.

Sincethere is no e±cient meansto sharedata and perform barrier synchronization

acrossthread blocks, the kernel processesa single time step and then terminates

to ensurethat all data writes to global memory in the previous time step are

visible to the next time step. This pattern placeshigh demandon global memory

bandwidth sincethe kernelmust fetch the entire working set from global memory

and store it back after performing a small amount of computation. PNS does

not have this issuebecausea separatesimulation is performed per thread. One
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possiblesolution to this issueis to relax the global synchronization requirement

by changingapplication algorithms.

Memory-relatedbottlenecks appear in LBM, FEM, PNS,SAXPY, and FDTD,

all of which have high memory-to-computeratios. Thesehigh ratios causebot-

tlenecks in two ways. First, LBM and PNS are limited in the number of threads

that can be run due to memory capacity constraints: sharedmemory for the for-

mer, global memory for the latter. Second,FEM, SAXPY, and FDTD saturate

memory bandwidth. Even though the latter two have the highest number of si-

multaneously active threads of the suite, having many threads doesnot address

the large memory to compute ratio, which causesmemory bandwidth to be the

primary performancebottleneck.

4.2 CaseStudies

This section focuseson three applications and details their mapping to CUDA.

I explain what makes the application easy or di±cult to map to the architec-

ture, the changesrequired to achieve higher performanceover a straightforward

implementation, and the obstaclesto further increasesin performance.

4.2.1 H.264: Sum of absolutedi®erences

The SPEC CPU2006benchmark 464.h264refis an implementation of an H.264

video encoder (also referred to as MPEG-4 AdvancedVideo Coding). The orig-

inal code, running on a single core of an X86 processor,spends approximately

60%of its executiontime in the routine SetupFastFullPelSearch and its callee

functions. This routine compares¯xed-size regions from two frames of a video

to determine how well the blocks match. The metric used for the quality of a

match is called a sum of absolutedi®erences (SAD): the absolute value of the
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di®erencebetweenpels (video pixels) at the samelocation of the two regionsis

calculated, and the sum of those di®erencesfor all pixels is the result. E±cient

and fast SAD computation hasbeenresearched extensively due to its importance

in contemporary video encoders [32]: a high-quality encoder can producesmaller

bitstreams or a higher quality encoded video.

The CPU-only versionusedfor performancecomparisonwas hand-optimized

for a more fair comparison. In the inner loop that corresponds to the 4x4 SAD

kernel,an indirect function call wasreplacedwith a conditional branch and inlined

function calls. The optimized versionwasalsorewritten to usethe abs library call

instead of a lookup table for the calculation of absolutevalues. The rest of the

application was left unmodi¯ed. The modi¯ed CPU-only implementation spends

only 35%of its time in the SetupFastFullPelSearch routine.

The encoder's designmadeextracting data parallelism di±cult. The encoder

partitions video frames into 16x16 pel macroblocks, which are processedsingly

through all stagesof encoding. Data parallelism is limited within the processing

of a single macroblock, consistingof loops with few iterations and small bodies.

Furthermore, real data dependencesbetweenencoding of neighboring macroblocks

serializemany stagesof the encoding process.The portion of the code perform-

ing motion estimation was distributed out of the loop and optimized for GPU

execution,which required signi¯cant developer e®ort.

In severalstagesof encoding, the encoding parametersfor a macroblock depend

on resultsproducedfor neighboring macroblocks in the sameframe. For example,

in motion estimation a starting point for the search is obtained by averagingthe

best-¯t locations of neighboring blocks that have already been processed.This

dependencewas broken to parallelize the code, which is acceptableby the H.264

standard but may result in lower-quality and larger encodings for fast-moving

video. More frame-level parallelization may be possiblewith algorithm changes,
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but changing the algorithm is a designdecisionthat a®ectsthe quality and size

of the encoded output and would be madewith the target platform and purpose

in mind.

When encoding a CIF-size4 (352x288)video with a 16-pel search range, 1.7

million 4x4 SADsand 1 million larger SADsaregeneratedto encodeoneP-frame.

The hugedegreeof parallelismacrossmany uniform andsimpleSAD computations

makes it appealing for GPU execution. The SPEC version of the encoder was

rewritten to computeall SADs for a frame at once,rather than interleaving SAD

computation with other steps of encoding. This change increasesthe available

parallelism and amortizes the time spent in data transfers. Three GPU kernels

werecreatedto replacethe function SetupFastFullPelSearch . The ¯rst kernel,

taking 61%of GPU time, computesSADs over 4x4 areas. The secondand third

kernels,taking 31%and 8% of GPU time, respectively, compute SADs for larger

areasusing the results of the ¯rst kernel. The discussionbelow focuseson the

¯rst kernel sinceit comprisesmost of the computation on the GPU.

An initial GPU implementation computesone 4x4 SAD per thread, yielding

a 15X kernel speeduprelative to the CPU-only code. However, speedupcan be

doubledby writing the kernel to exploit data reuseby selectively groupingcompu-

tation into threadsand thread blocks and by applying software-managedcaching,

loop transformations, and instruction-level optimizations. Theseare described in

detail below.

To illustrate the available data reuse,the code for a simpli¯ed sequential ver-

sion of the SAD computation loop is shown in Figure 4.1. Each executionof lines

5-10 reads a 4x4 squarearea of two video frames and computesa single SAD

4CIF stands for Common Intermediate Format. With regards to image size, H.264 tends
to split into two categories. The ¯rst is the mobile market, where small screensare the norm.
H.264 is also used for high-de¯nition video, with length and width in the thousands of pels.
Both categoriesbene¯t from high-quality motion estimation: mobile devicesrequire lessdata
to be transmitted, and high-de¯nition can achieve better video quality with similar data usage.
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1 for (blockY = 0; blockY < height / 4; blockY++)
2 for (blockX = 0; blockX < width / 4; blockX++)
3 for (offY = -16; offY <= 16; offY++)
4 for (offX = -16; offX <= 16; offX++)
5 sad = 0;
6 for (pixY = 0; pixY < 4; pixY++)
7 for (pixX = 0; pixX < 4; pixX++)
8 sad += abs(reference[blockY*4+offY+pixY][blockX*4+offX+pixX]
9 - frame[blockY*4+pixY][blockX*4+pixX]);
10 sad_array[blockY][blockX][offY][offX] = sad;

Figure 4.1: Simpli¯ed SAD kernel.

value. Iterations of the loops at lines 3-4 selectdi®erent 4x4 areasof the refer-

enceframe for comparison. These4x4 areaspartially overlap with one another.

The two outermost loops selectdi®erent 4x4 areasof the frame being encoded.

Readsfrom frame are fully reusedacrossthe loops at lines 3-4, sincethe array

index is not dependent on offX or offY . The two outer loops carry no reusein

frame. There is partial reusein reference acrossall of the outer four loops,since

the 36x36area from reference usedfor each block is shifted by 4 pels between

iterations of either loop.

Each thread block is responsible for several iterations of the outer two loops.

Reuseis exploitedin frame by caching the data in sharedmemory, and in reference

by using the texture cache. Within a thread block, each thread executesseveral

iterations of the middle two loops,taking advantage of register tiling [16] to elim-

inate redundant memory accesses.The innermost loop is completely unrolled

and the offX loop is unrolled by a factor of 3; register pressureprevents further

pro¯table unrolling.

Memory accessdelays account for more than half of the kernel's execution

time. Memory transfersrelated to software-managedcaching of input and output

data, using the sharedmemory to enabledmemory coalescing,consume5.5% of

execution. In contrast, operating directly out of global memory increaseskernel

executiontime by a factor of 2.8. Another 21%is consumedreadingvaluesfrom a
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constant memory array to obtain index valuesfor the spiral search pattern. This

array ¯ts entirely in the cache, but threads in this kernel do not read the same

addressin the samecycle,causingserializedreadsfrom the singleconstant cache

port. While texture memory provides 2D imagecaching and special behavior for

out-of-bounds image accesses,both of which assist performance,24% of kernel

executionis spent waiting on results of texture fetches. Cache missesaccount for

lessthan 3%of that 24%. The largeper-threadregisterusagelimits the number of

threadsper SM to 256or fewer, which is not su±cient TLP to hide the latency of

a texture fetch. 123 threads per block5 was chosento utilize closeto 256 threads

per SM, primarily to minimize the e®ectsof texture fetch latency.

The remaining half of the 4x4 SAD kernel's execution time is spent in com-

putation out of the register ¯le and shared memory. The code was optimized

through manual application of classicaloptimizations to reduce the instruction

count in threads,primarily strength reductionof integermultiplication anddivide-

modulus operations. One GPU-speci¯c optimization was to broadcast values

through sharedmemory rather than recomputethem in each thread.

The other two GPU kernelsload SADscalculatedby the ¯rst kernel,add them

together, and write the new SADs to global memory. They are nearly identical,

di®ering only in addresscalculations. The inner loop is very memory-intensive

with 11 global memory instructions and 9 other instructions. Thus, the most

important optimizations wereto take advantage of global memory coalescingand

to keepmany threadsactive simultaneouslyto enhancethread- and memory-level

parallelism.

While latency tolerance through thread parallelism a®ordsspeedup in the

primary kernel with a shader-style computation model, additional speedupwas

achievablethrough CUDA's programmingmodel by consolidatinga largeramount

5This seeminglyodd number is primarily due to the way the 33x33search area is divided.
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of work into threads and then applying loop-level optimizations. These opti-

mizations usedadditional registersover a naÄ³ve version, reducing the number of

in-°igh t threads and exposingmore of the hardware's latency. However, they re-

ducedthe dynamic instruction count su±ciently to improve overall performance.

Overall, the largest remaining bottleneck is not in GPU computation (2.6% of

application execution time) but in moving memory betweenthe CPU and GPU

(4.5%),which exceedsthe time spent in GPU computation and limits the available

speedup.

4.2.2 Fluid dynamicsusing the Lattice-Boltzmann method

The SPECCPU2006benchmark 470.lbmis a °uid dynamicssimulator that imple-

ments the Lattice-Boltzmann method. The program simulates the collisionsbe-

tween°uid particles acrossa seriesof time steps. The most heavily executedcode

region is an iteration-parallel loop within the function performStreamCollide ,

which accounts for over 99%of single-coreCPU-only executiontime whenrunning

the SPEC referenceinput.

Figure 4.2 outlines the basic algorithm. The primary data structure for the

programis a 3D grid of cells,which represents the spacethrough which °uid °ows.

Each cell within the grid characterizesa set of °uid particles and their velocities

toward neighboring cells. Somecellsare designatedas obstaclesto interfere with

the °uid particles and are treated accordingly during simulation. Each cell is a

20-element °oating-point array: oneelement is usedasa °ag to specify properties

related to the cell, oneis usedfor °ow information for the cell itself, and the other

18 are usedto specify velocities towards neighboring cellsthat sharean edgewith

the cell (6 facesand 12 edges).
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initializeGrid(src)
initializeGrid(dst)
for(each time step)

if (mode == CHANNEL)
handleInOutFlow(src)

performStreamCollide(dst,src)
swapGrids(dst,src)

Figure 4.2: LBM algorithm.

for (all cells in the grid)
/* check to see if cell is not an obstacle */
if (!(src[off+19] & OBSTACLE))

rho = src[off+0] + src[off+1] + ... + src[off+18];

/* calculate directional vectors */
ux = src[off+3] - src[off+4] + ... - src[off+18];
. . .
/* compute and store velocity field elements to neighboring cells */
dst[above_off+1] = . . .
dst[below_off+2] = . . .
. . .

else
/* copy velocity field elements of current cell to neighboring cells */

Figure 4.3: Partial code for performStreamCollide .

Figure 4.3 shows partial code of the performStreamCollide function. Every

thread operates on a single cell of the grid and all 20 array elements are con-

sumed. A major issueis that the usagepattern of data is dispersed,as depicted

in Figure 4.4(a), which takesa memorycycleper datum to satisfy when theseare

loaded from global memory. Becauseall data of each cell are used, threads can

cooperate to bu®erthe data in sharedmemory and gain performancefrom access

coalescing,as shown in Figure 4.4(b). By also unrolling loops, this implemen-

tation has 12.3X performancespeedupover the CPU-only version on the SPEC

referenceinput. An unoptimized version, in comparison,achieves6X speedup.

Further optimization of performStreamCollide was limited due to the al-

gorithm's accesspatterns and resourcelimitations of the GPU. First, the 16 KB

available in an SM's sharedmemorycanbu®erdata for only 200threads(16 KB /
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Figure 4.4: Addresspattern for two consecutive loads in LBM.
(a) Requiresa memory cycle per addressdue to non-contiguous access.

(b) Can obtain several valuesper cycle via coalescingbut requiresshared
memory bu®ering.

(20 elements/thread * 4 B/element)). Second,a globalsynchronization is required

at the end of every time step, which CUDA can only provide with a kernel ter-

mination. As a result, the contents of sharedmemory are not preserved between

kernel invocations and a given element is usedat most three times beforebeing

discarded. Lastly, stores of result data are not coalesced,although the bu®ers

used to coalescememory reads could be utilized to achieve the samee®ectfor

memory writes.

4.2.3 Magnetic resonanceimaging in non-Cartesiantra jectory
space

The reader is likely to be familiar with the use of magnetic resonanceimaging

(MRI) in the medical domain. MRI usesalgorithms basedon inverse Fourier

transformsto reconstructan imagefrom a set of RF signalscollectedfrom a sam-

ple in a slowly time-varying magnetic¯eld gradient. What is not commonlyknown

is that conventional MRI does not have high resolution comparedto radiation-

basedimagingbecauseit makestradeo®sto reducethe computation requirements
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of the algorithm. Cartesian/grid-basedscansarecommonlyusedsothat an image

can be reconstructedusing a fast Fourier transform (FFT). However, this choice

often producesimagingartifacts, particularly in 3D images,limiting its usefulness

for identifying small featuresin biological tissue. While radial- and spiral-based

scanscan producehigher-quality images,they require signi¯cantly more compu-

tational power, as the computations to reconstruct the imagemust be performed

in an arbitrary, non-Cartesiantra jectory (\k-") space.The computational power

suppliedby the GPU makesit possibleto perform reconstructionusingthesescans

in a practical amount of time, opening up the possibility of fast, high-resolution

MRI. Work by Stoneet al. [31] discussesthis application and its optimizations in

greater depth.

d(t) =
Z

½(x)e¡ i 2¼kxdx + ´ (4.1)

F H d = (F H F )½= Q½ (4.2)

Equation (4.1) shows the generic MRI reconstruction problem: d(t) is the

measuredinput, ½ is the desired image, k represents the tra jectory, and ´ is

external noise. This equation can be transformed into Equation (4.2): F is the

Fourier matrix and F H is its conjugate transpose. The algorithm operates by

precomputing a matrix Q and a vector F H d and then ¯nding an iterativ e linear

solution via conjugategradient. The time-intensive part of this algorithm is the

computation of Q and F H d. Q is speci¯c to the scannercon¯guration and only

needsto becomputedoncefor a givenscannersetup,while F H d is speci¯c to both

the scannerand the imagebeing reconstructed,and is computedon a per-image

basis. Both computations involve matrix or vector multiplication by a Fourier

matrix whoseelements are generatedon the °y. Figure 4.5 shows the code to

computeQ, while Figure 4.6 shows the F H d computation.
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for (idxK = 0; idxK < numK; idxK++)
phiMag[idxK] = phiR[idxK] * phiR[idxK] + phiI[idxK] * phiI[idxK];

for (idxK = 0; idxK < numK; idxK++)
for (idxX = 0; idxX < numX; idxX++)

expArg = 2 * PI * (kx[idxK] * x[idxX] + ky[idxK] * y[idxX]
+ kz[idxK] * z[idxX]);

Qr[idxX] += phiMag * cos (expArg);
Qi[idxX] += phiMag * sin (expArg);

Figure 4.5: Sequential algorithm to computeQ.

for (idxK = 0; idxK < numK; idxK++)
realRhoPhi[idxK] = phiR[idxK] * dR[idxK] + phiI[idxK] * dI[idxK];
imagRhoPhi[idxK] = phiR[idxK] * dI[idxK] - phiI[idxK] * dR[idxK];

for (idxK = 0; idxK < numK; idxK++)
for (idxX = 0; idxX < numX; idxX++)

expArg = 2 * PI * (kx[idxK] * x[idxX] + ky[idxK] * y[idxX]
+ kz[idxK] * z[idxX]);

cosArg = cos(expArg);
sinArg = sin(expArg);
rFHD[idxX] += realRhoPhi[idxK] * cosArg - imagRhoPhi[idxK] * sinArg;
iFHD[idxX] += imagRhoPhi[idxK] * cosArg + realRhoPhi[idxK] * sinArg;

Figure 4.6: Sequential algorithm to computeF H d.

The experimental results were collectedon an image sizeof 64x64x64pixels

and a tra jectory sizeof 147 258. The highest CPU-only performancewas mea-

suredat 0.199GFLOPS for Q and 0.263GFLOPS for F H d using single-precision

°oating-point, fast math code generationfor trigonometry functions, SSEvector

instructions, and manual tuning of the code. This performancecorrespondsto an

executiontime of approximately 5 hours for Q and 40 minutes for F H d.

Direct, unoptimizedports of the kernelsto the GPU arerespectively 81X (18.8

GFLOPS) and 73X (22.9GFLOPS) faster than the CPU-only versions,but higher

performancecanbeachieved. The primary performanceoptimization wasto store

tra jectory valuesfor each step in constant memory. To enablethis optimization,

the computation was divided into steps small enough that each step's data ¯t

entirely in the constant cache. The loops of both kernelswere interchangedso
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that threads simultaneously iterate over the idxK indices in their inner loop,

thus loading the samevalue from constant memory in a given cycle. The large

register¯le alsoallows ¯v e values(x, y, z, Qr, and Qi) to be held in registersfor

each thread during the inner loop. The optimized kernel has the character of a

texture shader: it loadsa small number of values,proceedsthrough a sequenceof

°oating-point operationsand constant-memory lookups,and ¯nally storesa small

number of valuesout to memory.

There are a signi¯cant number of trigonometric calculations, approximately

onefor every sevenstandard°oating-point operations. Fast math codegeneration

wasusedon both CPU-only and GPU versions.On the GPU, fast math usesthe

SFUs rather than perform a software Taylor expansion. Fast math does not

unduly a®ect the image quality; the signal-to-noiseratios are reduced by only

3 dB andstill exceedgenerallyacceptedquality standardsby 25dB. Thesechanges

result in a throughput of 96.1GFLOPS for Q and 74.0GFLOPS for F H d, or 457X

and 316X respectively over CPU-only performance. Further speedupappearsto

be limited primarily by the availabilit y of instruction issuebandwidth: a higher

issueand executionrate in each SM would improve application performance.

Several aspectsof the GPU designcontribute to this application's impressive

speedup. First, the SPs and SFUs are heavily optimized for °oating-point per-

formance,so °oating-point instructions, particularly the trigonometry functions,

take fewer clock cyclesthan on the CPU. Second,the GPU can maintain high

pipelined°oating-point throughput without dependencestalls by overlapping the

execution of separate threads. Third, the abundanceof registers reduced the

number of memory instructions and the associated stall times on the GPU. In

contrast, the CPU-only code has a large proportion of °oating-point loads and

stores,due to the CPU's limited register capacity and the lack of direct register

transfer instructions betweenthe SSEand FP units. Finally, the broadcastabilit y
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of the constant cache enablesa much higher e®ective memory bandwidth than is

possibleon traditional processors.

Continued work by Stoneet al. [30] further improved the performanceof both

CPU-only and GPU versionsof the application. They use a newer, four-core

processorwith wider SSEcapabilitiesasthe baseplatform, usethe Intel compiler

to achieve higher per-thread performance,and thread the code to utilize all cores

on the superscalarprocessor.The authors wereable to improve the performance

of the CPU-only implementation so that the GPU's performanceadvantage was

reducedto 23times over a four-coreCPU-only implementation, asopposedto over

100times in the resultsshown here. They found that only whenconstant memory

and the SFUs were used did the GPU achieve signi¯cant performancebene¯t

over a highly optimized, superscalar,multicore solution. This indicates that for

the MRI kernelsand similar applications, the primary bottlenecks of superscalar

processorsare memory bandwidth and trigonometry calculation e±ciency.

4.3 OptimizationPractice

This sectiondiscussesthe relative e®ectsof optimizations and speci¯c experiences

with the applications studied. It is intended as a guide to developers optimizing

their applicationsand to give speci¯c examplesof methods to follow the principles

in Section3.1.

4.3.1 Memory optimization

Optimization of memory accessesis generally necessaryto achieve signi¯cant

speedup for the applications in the suite. For someapplications the choice of

using texture or constant memory is intuitiv e, such as texture memory for H.264

and other video applications. It may be necessaryto transform the code in order
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to exposethe proper memoryaccesspatterns to e±ciently utilize thesememories.

Otherwise,sharedmemory is the default choicefor reducingredundant loadsand

thus pressureon memory bandwidth. Its use is straightforward when there are

either no sharedvaluesbetweenthreads (each thread has its own private space)

or whenneighboring threadssharedata in a simpleblocked/tiled pattern, similar

to matrix multiplication. Care must be taken so that threads in the samewarp

accessdi®erent banksof the sharedmemory; e.g.,array elements may needto be

padded to ensurenoncon°icting accesses.More complex applications often use

more sophisticateddata structures, requiring splitting of data structures or other

e®ortby the developer.

One use of shared memory is as a bu®er to improve the accesspattern of

global memory. As stated previously, memorybandwidth is easilysaturatedwhen

accessesare not coalescedinto 16-word, aligned regions. LBM, FEM, FDTD,

and other lattice computations usearrays of small structures in global memory.

Threadssimultaneouslyread or write a given ¯eld of multiple elements and these

¯elds are not contiguous in memory. Each noncontiguous accessis a separate

DRAM accessrequest,overwhelming the device'smemory bandwidth. In LBM

the problem can be alleviated using contiguous accessesto transfer the arrays in

bulk into sharedmemory; this transformation is discussedin Section4.2.2. The

bu®eringoptimization may alsobe possiblewith FDTD if a substantial amount of

data reorganizationis performed,but FEM usesan irregular meshdata structure

that has few contiguous accesseseven with data reorganization.

Evenwith the useof sharedmemory, coalescingaccessesto globalmemorygen-

erally improvesperformance.In somecases,noncoalescedaccessescausememory

bandwidth to be a performancebottleneck, ase®ective bandwidth is signi¯cantly

lower without coalescing.It is alsoimportant to remember that the SIMD nature

of warp instruction issueon the SMs meansthat a warp cannot executeuntil
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all of its input operands are available. Becausenoncoalescedaccessesmust be

processedsequentially , they causea warp's memory instructions to have a longer

latency than if accesseswerecoalesced.As a result, noncoalescedaccessesrequire

more parallelism to cover their latencies. The performancedi®erencemay not

be multiple times, but in generalglobal coalescingis worth the cost of any extra

instructions that may be neededin order to coalesceaccesses.

Tiling factors of thread blocks also play a role in performance. Large thread

blocks have the potential to increasedata sharing but increasethe coarseness

of thread block-to-SM scheduling and can reduceTLP. The choice of tile shape

shouldbe ¯rst motivated by global memory coalescingand other memory system

optimizations, such as the useof sharedmemory for applications with large per-

thread data sets,or the constant cache. After tiling, optimizations such asregister

tiling can be performedto further improve performance.

As previously discussed,prefetching is not often usedas an optimization be-

causeit generallyhas little positive e®ectand often causesreducedperformance

due to decreasedTLP. I refer to Chapter 3 for further discussionon prefetching.

4.3.2 Registerusage

In Section3.1, I stated that performancedependson the percentageof \core" op-

erations(instruction e±ciency) and the utilization of executionresources.On the

GeForce8800,utilization is achieved through TLP on the SM, with a multiplica-

tiv e e®ectfrom threads' ILP and MLP. E±ciency is addressedthrough \classical"

compiler optimizations. In a highly optimized application, improving oneis often

doneat the cost of the other. On the GeForce8800,e®ortsto improve e±ciency

may inadvertently damageutilization by the reduction of TLP, due to an increase

in registersper thread. This TLP reduction canreduceoverall kernelperformance.
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Therearemany optimizations which canincreaseregisterusage,many of which

are described and cited in compiler texts [33{35]. They are generallyperformed

with the intent of reducingthe number of executedinstructions or replacingslower

operationswith faster ones(e.g., integermultiply of a power of two replacedwith

a shift operation). The common optimizations that increaseregister usageare

CSE and redundant load elimination, which are performed by nvcc. Developer-

directed loop unrolling also may increaseregister usageby exposing instruction

scheduling opportunities to the runtime.

In general, developers should be aware of potential changesin register and

shared memory usagethat can result from optimizations, as detailed in Chap-

ter 3. Limiting the scope and scaleof optimizations can also help control usage.

Optimization on the innermost, most frequently executedkernels generally has

bene¯cial e®ectswithout a major increasein register usage.

Three techniquescan alsohelp mitigate thesee®ects:

² The performanceloss from register usageis most apparent in application

con¯gurations with few, large thread blocks. Con¯guring an implementa-

tion to usea larger number of smaller thread blocks results in fewer threads

being lost whenonefewer thread block canbe simultaneouslyscheduledper

SM. Using smaller thread blocks is to be avoided unlessother performance

bene¯ts areexpected: kernelsemploying tiling optimizations usually bene¯t

from large thread block sizesbecausethey eliminate more memory opera-

tions. In tiled kernels,onemay have to try a rangeof block sizesto ¯nd the

best con¯guration.

² A developer canexplicitly spill and ¯ll values,normally mappedto registers,

to shared or global memory. Register spilling is done by default for the

matrix multiplication kernelusedin this work, asit addsonly two additional
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instructions to each thread's execution while saving at least one register.

Overzealousregister control can hurt performancedue to the additional

executedoperations.

² Registerpressure-sensitivecodeschedulingalgorithmsandoptimization stra-

tegies,such as that proposedin [36], have beeninvestigatedin the context

of instruction-level parallelism compilers. Additional research is neededto

apply these strategies to architectures such as the GeForce 8800 because

the \correct" number of registersto use is uncertain, as discussedin Sec-

tion 4.3.3.

4.3.3 Balancing thread-level parallelism with individual thread
performance

From the point of view of a developer performing transformations by hand, op-

timization becomesan e®ort of improving individual thread performancewhile

maintaining enoughthreads to hide memory latenciesand utilize execution re-

sourcese®ectively. Developers must considerthat the highest-performing con¯g-

urations may have relatively few threadsand thread blocks per SM. For example,

Table 4.2 shows that someapplication implementations use only a third of the

available thread contexts. Even when there is an option to use more threads,

thesecon¯gurations havesuperior performancebecausethe ILP within the threads

makesup for reducedTLP comparedto other con¯gurations, while codee±ciency

is higher due to the optimizations which use the larger number of registersper

thread.

Developersshould be alsoaware that a con¯guration found by manual, itera-

tiv e optimization may be a local performancemaximum. For example,in H.264,

an initial implementation had many threads simultaneously executing per SM,
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each with a small number of registers. An exhaustive optimization spacesearch

found that a con¯guration with fewer threads,each with more registers,achieved

higher performanceby performing fewer memory operations. This con¯guration

was often stalled on accessesto texture memory, but executione±ciency during

nonstalledperiods was higher than that of other con¯gurations.

Attempting to manually ¯nd the best balanceof parallelism and a highly ef-

¯cient instruction stream is di±cult for the GeForce 8800 for several reasons.

First, there are generallymultiple potential high-performancecon¯gurations and

they will be dissimilar in several optimizations, meaning that it is possible to

be trapped at a local maximum during iterativ e optimization using a greedyap-

proach. Second,resourceusageand instruction scheduling is not under complete

control of the developer, so targeting particular parallelism levels is di±cult at

best. Instead, in the next chapter I proposea technique that begins with the

entire optimization spaceand prunesit to ¯nd con¯gurations which are likely to

have high performance.
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CHAPTER 5

OPTIMIZATION CARVING

When developing an application with a high performancerequirement, a devel-

oper beginswith a mental model of the target platform and createsthe application

with this model in mind. Oneusually starts with the ¯rst-order concernfor perfor-

mance,which historically has beenthe application algorithm and its instruction

count. After ¯nding a seeminglyreasonablebasecon¯guration, the application

will be tested and then iterativ ely optimized until an acceptablecon¯guration is

found.

This approach is often adopted by compilersthat generatehigh-performance

code for traditional uniprocessorsand multipro cessors: algorithms cannot be

changed,so the e±ciency of the instruction stream is the ¯rst-order performance

concern.A plethora of instruction removal, redundancyelimination, and strength

reduction optimizations have beendeveloped to addressthis concern.

However, the iterativ e optimization approach hasmajor detriments when ap-

plied to many-core compilation. The broad issueswere discussedin the ¯rst

chapter, and somespeci¯cs are discussedhere:

1. It is well understood by the compiler community that particular orderings

of optimizations can trap optimization processinginto a local performance

maximum. Optimization phaseordering [37,38] has not received as much

attention as it could have. The reasonis that the performancedi®erence

betweentwo con¯gurations of an application executingon a single-coresu-

perscalaror EPIC/VLIW processormight beon the orderof several percent.
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On many-coreplatforms such asthe GeForce8800,a performancedi®erence

of several times is possible. Optimizations for the systemhave complexef-

fects, and a poor decisionby an application developer or compiler can trap

the application in a local performancemaximum. This possibility makesit

imperative to perform a broad search of the spacewhen increasedapplica-

tion performanceis valuable.

2. Contemporary many-corearchitectureshavea wealth of executionresources,

but theseare separatedboth by physical spaceand by architecture struc-

ture, such as the lack of direct global-to-scratchpad memory transfers on

the GeForce 8800. The cost of communication is signi¯cant, which is well-

understood by parallel program optimization experts. However, the degree

of tradeo®son many-coresystemsis di®erent: for example,there is a much

more vague tradeo®between whether a processingunit should recompute

a value locally or obtain that value from another processingunit, due to

shorter communication latenciesbetweenprocessingunits on the samechip.

Determining a good combination of tradeo®swill be di±cult for most de-

velopers.

3. We are currently in a period of rapid innovation in both applications and

architecture; the GPU innovation cycle is particularly short. New features

are introducedvery regularly, with someresidingon hardware and disabled

until their correctnesscan be validated. However, it takes time and e®ort

for application developers and compiler designersto utilize new features;

they will not be well understood for a signi¯cant amount of time. Also, to

preserve competitiv e advantage, limited information may be available about

these features. The primary examplesencountered during the application

study for the GeForce8800wereglobalmemorycoalescing,cacheattributes,
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and SFU performance.Iterativ e compilation is likely to make the wrong as-

sumptionsabout how to usethesefeaturesandcreatesuboptimal application

optimization con¯gurations. In addition, becauseapplication featuresare

addedover time, a con¯guration that worked well for a previousversionof

the application may not stay that way. Changesmay invalidate assumptions

about the e®ectsof optimizations and generallyrequire reapplication of the

optimization process.

Instead of selectinga single starting con¯guration and iterativ ely optimizing

it, I proposean approach that beginswith a largespaceof con¯gurations and then

prunesaway thosethat are likely poor performers.This pruning is donebasedon

knowledgeof the primary and secondaryperformanceconcernsfor the application

and architecture, quanti¯ed as metrics. BecauseI found a single cost function

to be ine®ective acrossmultiple applications, the technique usesthresholdsand

Pareto-optimal curvesto determinewhich con¯gurations should be pruned. The

purposeof the technique is to ¯nd a near-optimal con¯guration without detailed,

accurateknowledgeof the systemby either a developer or the compiler.

I begin this chapter with one of the most simple examplesof application op-

timization, that of matrix multiplication, and explain why it can be di±cult to

¯nd the best con¯guration. I then describe the optimization carving technique

and how metrics are usedto prune the optimization space. I identify and create

metrics for the GeForce8800and then apply them to the optimization of kernels

for the architecture.
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5.1 ExampleRevisited:Matrix Multiplication
OptimizationSpace

The purpose of this section is to show the primary performancefacets of the

architecture and the discontinuity of the optimization space,using the matrix

multiplication kernel used in previous chapters. I start with a tiled con¯gura-

tion of matrix multiplication, and vary several parametersto explore the entire

optimization space.The parametersusedfor matrix multiplication are:

² Tile size: I choosethread blocks of size8x8 and 16x16. They processan

integral multiple of data tiles. Tiling reducesmemory bandwidth usage.

² Unrolling factor: The innermostloop of the kernelhasbeenunrolled by an

even divisor of the loop trip count, varying betweenone(no unrolling) and

completeunrolling of the loop. Unrolling reducesthe number of dynamic

instructions executed.

² Rectangular tiling factor: The default con¯guration, 1x1, processesone

tile in the ¯rst input matrix and one tile in the secondinput matrix at a

time. Increasingthe rectangular tiling factor to 1x2 processestwo tiles in

the secondinput matrix for every one in the ¯rst, and so on. Rectangular

tiling enablesthe register tiling optimization and reducesmemory band-

width usage.

² Prefetc hing: In an e®ort to improve ILP and reduce exposed memory

latency, a prefetching optimization is applied to overlap global memory load

latencieswith computation.

Figure 3.1on page32showscodeexamplesof theseoptimizations, while Figure 3.2

depicts their memory accesspatterns.
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Figure 5.1: Matrix multiplication optimization spaceruntime.
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Figure 5.2: Matrix multiplication optimization spaceperformance.

Figure 5.1 shows the run time of thesecon¯gurations, while Figure 5.2 shows

the performancein GFLOPS. Onecon¯guration, with 16x16tiles, 1x4 rectangular

tiling, and prefetching, doesnot executebecauseit is oversubscribed on registers.

There are several performancetrends shown by the results.

² When bandwidth is the major performancelimitation of the kernel, little

elsematters; e.g., increasinginstruction stream e±ciency or ILP and MLP

(through prefetching) hasno appreciablee®ect.This e®ectis shown for the

8x8 tiles: the tiling format doesnot allow for coalescingof global memory
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accessesand its performanceis severely restricted by memory bandwidth

limitations. Although rectangular tiling alleviates the pressureon band-

width, other optimizations still have little e®ectuntil memory bandwidth

is removed as a performancelimitation via global memory coalescingusing

16x16tiles.

² Unrolling is a hit-or-miss proposition for increasing performanceon this

architecture. The reasonfor performancelosses,other than instruction cache

e®ects,is that the runtime createsan instruction schedule that increases

registerusageand allows fewer thread blocks to be simultaneouslyexecuted

per SM. This e®ectcausesa loss of SP utilization that must be gained,

if possible, through further optimization: complete unrolling is generally

superior to an unroll factor of 4.

² Increasingthe rectangular tiling factor generally improvesperformance. It

improvesthe e±ciency of the instruction stream,global memorybandwidth

utilization, and ILP. However, to takeadvantageof registertiling, additional

registers must be used, which in one casereducesthe number of thread

blocks executingper SM and kernel performance.

² As mentioned in Chapter 3, prefetching hasa limited bene¯t for this system

becausethere is often much useful work that can be done while a long-

latency load requestis being satis¯ed. It provides a minor improvement in

performancewhen there are su±cient registers to not causefewer thread

blocks to be executedper SM. For bandwidth-limited con¯gurations, such

as thosewith 8x8 tiling factors, there is no appreciablebene¯t.

Table5.1shows the resourceusageof the 16x16matrix multiplication con¯gu-

rations, excluding register spilling. It shows how the application of optimizations
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Table5.1: ResourceUsageand Performancefor 16x16Matrix Multiplication Con-
¯gurations Excluding RegisterSpilling

Rectangular
Tiling
Factor

Unrolling
Factor

Prefetching Registers
per
Thread

Thread
Blocks per
SM

Performance
(GFLOPS)

1 no 11 2 53.13
1 yes 13 2 55.17
2 no 11 2 66.40

1 2 yes 13 2 70.52
4 no 12 2 54.71
4 yes 14 2 78.54

complete no 13 2 54.58
complete yes 13 2 79.22

1 no 13 2 84.53
1 yes 15 2 86.60
2 no 14 2 98.17

2 2 yes 16 2 100.76
4 no 16 2 90.30
4 yes 19 1 87.26

complete no 16 2 109.51
complete yes 16 2 108.22

1 no 18 1 98.66
1 yes 20 1 107.96
2 no 19 1 92.18
2 yes 24 1 99.09

4 4 no 24 1 88.21
4 yes 29 1 94.01

complete no 27 1 119.82
complete yes 35 0 doesnot

execute

may sometimesdecreaseperformance:oneexampleis shown with the con¯gura-

tions that are 1x2 rectangularly tiled with unroll factor of 4. In this case,the

prefetching optimization reducesperformancebecauseonly one thread block can

be executingon the SM at a given time, as opposedto two thread blocks for the

nonprefetching con¯guration.

Registerspilling can sometimesenablean additional thread block to be resi-

dent per SM. Major performancedi®erencesare not demonstratedwith the use

of registerspilling on this matrix multiplication kernelbecausetwo thread blocks,

each with 256 threads, contain enoughwork to hide each others' global memory
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accesslatencies.Explicit registerspilling with CUDA v1.0 only causessomecon-

¯gurations with two thread blocks to move to three blocks per SM, which results

in a small performanceincreaseat best. The 0.8 versionof CUDA usedin previ-

ous experiments [39] causedsomecon¯gurations to move from one thread block

to two per SM, resulting in a more signi¯cant performanceincrease.

The optimal con¯guration of matrix multiplication is a 16x16tiled, 1x4rectan-

gular tiled, completelyunrolled con¯guration. This result is initially nonintuitiv e

to most developers: the con¯guration allows only a single thread block execut-

ing per SM, causingblock synchronizations to have a more signi¯cant e®ecton

scheduling. However, the sheernumber of operations, due to rectangular tiling,

createsa signi¯cant amount of ILP. This tradeo®betweenTLP and ILP will be

unique for every application becauseof the variation in work granularit y. A point

I wish to make is that very few, if any, developerswill arrive at this con¯guration

by guessinga starting point and iterativ ely optimizing. For example, there is a

continuousdecreasein performancefor unroll factorsof 2 and 4 for the 16x16tile,

1x4 rectangular tiled con¯guration.

There area signi¯cant number of optimization con¯gurations to be considered

for an application as simple as matrix multiplication. Figure 5.3 shows the op-

timization spacefor an SAD kernel adapted from H.264, which is several times

larger in code size. In this kernel, the best con¯guration usesfewer threads (just

under 64) than a hand-optimizedversion(just under 128). The large \p eaks" in

the graph generallyrepresent transitions whereper-threadresourceusagepermits

fewer thread blocks to be resident per SM, relative to the samecon¯guration with

slightly fewer threadsper thread block. Becausea developer is likely to emphasize

thread-level parallelism in an initial versionof the code, iterativ e approacheswill

beginat con¯gurations towards the right sideof the graph. It is unclearduring an

iterativ e optimization processwhether superior performancecan be gainedby go-
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Figure 5.3: SAD optimization space.
Lines connectcon¯gurations that di®eronly in their SADs-per-thread parameter.

ing to fewer threadsper thread block, especially sincemany of the con¯gurations

at the performancevalley with approximately 60 threads per block have worse

performancethan con¯gurations at the other valleys.

Previous work in optimization spaceexploration [39,40] for this system dis-

cussesthe optimization spacesand searchesfor SAD and other kernelsin greater

detail. The primary ¯ndings of theseworks are: For applicationswith multiple di-

mensionsof optimization, no hand-optimizedcon¯guration wasthe bestonefound

by an exhaustive search; the best wasgenerallyunexpectedto the developerswho

optimized the kernel; and the best and hand-optimized con¯gurations di®ered

in several optimization parameters,making it unlikely that automated, iterativ e

optimization using a greedyapproach would have found the best con¯guration,

starting from the hand-optimizedone.

An expert with in-depth understanding of both the algorithm, including its

behavior and memory usagepatterns, and the hardware, including its memory
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bandwidth and resourcecharacteristics,may have beenableto bypasssomeof the

pitfalls presented here. However, the goal of this work is to develop a technique

that allows developers with imperfect understandingof the systemto still ¯nd a

near-optimal con¯guration.

5.2 Descriptionof the Technique

Conceptually, optimization carving beginswith the entire optimization spacefor

an application. By examining metrics extracted from application con¯gurations

for the system,it removescon¯gurations in the spacethat areunlikely to get high

performance. This approach is in contrast to traditional compilation techniques

that can be likened to oil drilling: an initial guessis made and strong e®ort is

put forth to ¯nd a desirable result from that point. Each carving prunes the

optimization space,eventually leaving a few potentially optimal con¯gurations

that can then be evaluated via hardware executionto determinethe superior one.

There are several reasonswhy optimization carving is practical or reasonable,

particularly for the GeForce8800:

² The kernel codesstudied herehave a small number of independent con¯gu-

ration axes. The optimization search spaceis relatively small.

² The e®ectsof code transformations,particularly in combination, are unpre-

dictable. This situation is especially true for the GeForce 8800, because

of the application developer's lack of control over the runtime's instruction

scheduling and register allocation. Thus, iterativ e optimization is unlikely

to ¯nd a con¯guration with closeto the best performance.

² On single-chip, many-corearchitectures, con¯gurations that are trapped in

local performancemaxima may be signi¯cantly removed from the optimal
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in both performanceand transformations, as shown in previous work [39,

40]. A partial search of the optimization spacemay achieve a substantial

performanceadvantage over iterativ e optimization.

Optimization carving is done in order of performance impact. First-order

issuesare addressed̄ rst, then second-order,and so on. Carving must be done

correctly to ¯nd a near-optimal con¯guration, but it is easierto understandand

correctly model the high-order performanceconcernsof an architecture than the

exact e®ectsof optimizations. The technique as presented here beginswith the

completeoptimization spaceand full knowledgeof resourceusagefor this reason.

How to perform more speculative optimization carving is left for future work.

I anticipate that optimization carving would be more e®ective if it is cus-

tomized to the needsof each particular application. In addition, for architectures

other than the GeForce8800,more complexcarving may be necessaryto usefully

prune the search space.For this work, I addressthe needsof the kernelsstudied in

the previouschapter on a relatively simple but highly parallel architecture. This

choiceresults in a simple, two-stagecarving processthat is easily explained.

Although it might seemthat optimization carving hasa su±ciently high cost

that usersmay as well perform a full optimization spacesearch, I assert that

signi¯cant time savings is achieved with the technique. Kernel code dominates

executed instructions and often execution time, but not static instructions or

compile time, so static analysiscan be very inexpensive. Table 5.2 shows com-

pilation times for several GPU kernelsand their test harnesses:compilation for

discovering the static code and resourceusageof the kernel takessigni¯cantly less

time than completecompilation. Although the harnesscode doesnot needto be

recompiledfor every con¯guration, my point is that statically generatingkernel

code is lessexpensive than full compilation, even beforefactoring in compilation

time for completeapplications or executiontime for each con¯guration.
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Table 5.2: Compile Time for Several Kernels with Basic Optimizations

Kernel -cubin Compile
Time

Complete
Compile Time

Matrix Multiplication 0.278s 0.972s
CP 0.300s 0.887s
SAD 0.288s 0.873s
MRI-FHD 0.266s 0.893s

I de¯ne two kinds of carving, thresholdcarving and tradeo®carving. Each has

di®erent selectioncriteria, discussedhere.

5.2.1 Threshold carving

Threshold carving is performed when someperformanceaspect must be satis-

¯ed or mitigated in order to achieve good performance. The prime exampleon

the GeForce8800is o®-chip memory bandwidth: as shown in Figure 5.2, perfor-

manceis not positively impacted by e±ciency-increasingoptimizations when the

hardware is constantly stalled on o®-chip memory accesses.

Selectionfor threshold carving involvespruning all con¯gurations that do not

surpasseither a relative or absolute threshold, quanti¯ed in a metric. In the

matrix multiplication example,the developer or compiler performing the carving

could require that all global memoryaccessesbe coalescible,or that the estimated

bandwidth requirement of the application be below a certain limit. This require-

ment represents an absolutethreshold. A relative threshold might be established

for an application wherememorybandwidth is always a bottleneck, in which case

only the con¯gurations with the best memory usageare evaluated.

81



5.2.2 Tradeo®carving

Tradeo®carving hasa di®erent nature from thresholdcarving: in somecases,it is

not clear that oneshould maximizeor minimize a particular performanceaspect.

An examplementioned in previouschapters is instruction streame±ciency: some

redundant computation may improve performanceby allowing more threads to

executein parallel or by reducing communication betweenthreads. The purpose

of tradeo®carving is to retain all con¯gurations that balancetwo or moreaspects

of an application becausethe optimal balanceis unclear.

Selectionfor tradeo®carving involves metrics for two or more aspects of an

application. The con¯gurations that are retained are those that lie on a Pareto-

optimal curve: no point on the curve is inferior in every dimensionto any other

point in the space. Any con¯guration that is inferior in every dimensionto any

other con¯guration is pruned.

During tradeo®carving,good con¯gurations may lie just o®the Pareto-optimal

curve becausethe metrics may not capture all performanceaspects of the archi-

tecture. The probability of this situation is higher with more detailed metrics,

particularly those that introduce more variables into the calculations, because

any e®ectsthat are not exactly modeledare likely to in°ate the metric valuesfor

poor-performing con¯gurations. This possibility of \false precision" meansthat

metrics usedfor tradeo®carving shouldeither be very simpleor extremely exact.

Another method for avoiding this situation is to retain con¯gurations that are

within a certain distance from the Pareto-optimal curve, although the reduced

pruning increasesthe number of con¯gurations to be evaluated. I explorethe use

of more precisemetrics in Section6.4.2.
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5.3 OptimizationCarvingfor the GeForce8800

In this sectionI discussthe useof optimization carving for applicationsexecuting

on the GeForce 8800. To keepthe demonstration of the technique simple, I use

two carving stages.More carving stagesare easily conceived; for example,if the

application being optimized has a known issuewith on-chip network con°icts or

instruction cache thrashing, another carving stagecanbe createdto addressthat.

5.3.1 O®-chip bandwidth

The ¯rst-order performanceconcernfor the GeForce8800is global memoryband-

width. As shown in Section 5.1, only optimizations that a®ectglobal memory

bandwidth have any e®ectwhen bandwidth is a performancebottleneck. Thus,

the optimization space's¯rst carving is a threshold carving targeting e±cient

global memory bandwidth usage.

Global memory bandwidth usageis easily estimated by examining the per-

centageof memoryaccessesin the instruction streamand determining the average

number of bytes being transferredper cycle. The global memorycoalescinge®ect

can also be included by observingwhether memory accessesin kernel code are

to contiguous locations within a warp and are aligned (o®setby a multiple of 16

from the beginningof the structure).

The performanceof many of the applicationsstudied hereis limited by global

memorybandwidth for versionsthat do not take advantageof reuseor coalescing.

This carving focusesattention on those optimizations that improve bandwidth

and in many caseseliminates it as a bottleneck.
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5.3.2 Instruction stream e±ciency versusexecutionresource
utilization

When the performanceof the GeForce8800is not limited by memory bandwidth

capacity, it is determinedby two factors: instruction streame±ciency and execu-

tion resourceutilization. In many casesone can be traded o®for the other with

potential improvement in performance.An exampleof this tradeo®is the useof

sharedmemory to capitalize on data reuse: instead of loading a value multiple

times from global memory, a thread can load the value once, store it in shared

memory(an extra instruction), and subsequently load the value from there. Even

though additional instructions must be executedto initialize the sharedmemory,

the thread no longer is stalled on global memory accessand thereforecan make

faster progress. On the other hand, threads that use too much shared mem-

ory may causefewer threads to be simultaneously executedper SM, potentially

reducingperformance.

The conceptsof e±ciency and utilization are very generaland can be applied

to any computer architecture. However, it is possible to calculate reasonably

accurate metrics for applications executing on the GeForce 8800. The initial

versionsdeveloped for this work are explainedbelow.

E±ciency =
1

Instr ¤ Threads
(5.1)

Equation (5.1) estimatesthe instruction e±ciency of the kernel to be run on

the GPU by counting the total number of instructions that will beexecuted.Instr

is an estimate of the number of dynamic instructions that will be executedper

thread on the GPU, derived from the PTX code generatedby nvcc. For this

work, the averageiteration counts of the major loops in the kernel are manually

annotated to obtain this data. Someinstructions count as multiple instructions;
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32-bit integer multiplication is the primary example, taking multiple processor

cyclesto executeon the GeForce8800. Threads is the number of threadsthat will

run on the GPU for a given problem size,known to the developer when writing

the code. This value is madeexplicit in the invocation of the kernel function and

does not have to be an absolute value as long as the relative valuesof di®erent

con¯gurations are correct.

In the absenceof a memory bandwidth bottleneck and assumingnearly full

SP utilization, I expect that e±ciency will correlate directly to the performance

of di®erent con¯gurations. Becauseit counts the total number of instructions

executed,the metric measuresthe instructions that are redundant acrossthreads.

This metric penalizescon¯gurations that have more redundancy, such as ones

with ¯ner-grained threads.

Utilization =
Instr

Regions

·
WT B ¡ 1

2
+ (BSM ¡ 1)(WT B )

¸
(5.2)

Equation (5.2) estimatesthe utilization of the computeresourceson the GPU.

The goalof this metric is to encapsulatethe schedulability of warps in the system.

Utilization is estimated primarily by looking at TLP and determining how often

a warp is expected to wait and the amount of available work from independent

warps. The fraction Instr
Regions represents the averagenumber of nonstalling instruc-

tions a singlewarp is expectedto executebeforeencountering an instruction that

causesit to stall. Again, Instr is the per-thread number of dynamic instructions

that will be executedon the GPU. Regions is the number of dynamic instruction

intervals delimited by warp-stalling instructions or the start or end of the ker-

nel. Examplesof warp-stalling instructions are thosethat consumethe results of

long latency operations(generallyglobal and texture memory loads)and synchro-

nization operations. SFU instructions are consideredto have long latency when
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longer latency operations are not present. Issuessuch as memory bank and port

con°icts, SFU oversubscription,and so on have beenignored becausetheir e®ect

is small comparedto the stall time incurred by global memory accesses.

The quantit y within the brackets represents the number of independent warps

in the SM, other than the onecurrently executing,that canbe executedwhile the

warp-stalling instruction is being resolved.

² The ¯rst term in the bracket is the number of other warps in the same

thread block as the currently executingwarp. WT B is the number of warps

in a thread block, which is determined by dividing the number of threads

in a thread block by 32. There is a division by two becauseif the blocking

instruction is a synchronization instruction, on averagehalf of the warps in

the sameblock still needto executeuntil they alsoreach the synchronization

point. This assumptionrepresents the worst case,since load stalls do not

have a similar requirement.

² The secondterm in the bracket is the number of warps from other thread

blocks on the SM that canbe executed.BSM is the number of thread blocks

assignedto each SM. The runtime assignsthe maximum number of thread

blocks possibleto each SM, up to eight, without violating local resource

usage.Consequently, this number can be calculatedfrom the local resource

usageobtained via -cubin .

Synchronization instructions are grouped with the consumersof long latency

memory operations in order to simplify the calculation of the Regions term, even

though they display di®erent behavior. Execution at a barrier synchronization

proceedsonly when all of the threads in a thread block have reached that point,

whereasstalls on usesof global load operationsdo not stall the executionof other

warps. I anticipate that the division by two in the ¯rst term in the bracket captures
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the ¯rst order e®ects.The next chapter experiments with metric calculationsof

both lesserand greater detail.

There is a distinct upper limit on how e±ciently the executionresourcescan

be used. If utilization were used in a single cost metric (e.g., e±ciency * uti-

lization), it would be expectedthat the value would be capped or asymptotically

approach the peak theoretical limit of 10 operationsper cycle,per SM. However,

becausemy intent is to use this metric as part of a Pareto-optimal selection,it

is only necessarythat the superiority or inferiorit y of a con¯guration relative to

other con¯gurations is retained. I do not model capped or asymptotic utilization

becauseit is unnecessaryfor this purpose. Becauseof this decision,the relative

utilization valuesof con¯gurations may not be meaningful.

There are aspects of application behavior which are not modeled in the met-

rics. Someexamplesof theseare cache behavior, SFU performance,the penalty

incurred when threads in the samewarp take di®erent control paths, and mem-

ory bank and port con°icts. Theseare generallynot ¯rst-order concernsfor the

kernelsstudied in this work, although I show oneexceptionin the experiments.

As discussedpreviously, running nvcc with -cubin and -ptx °ags is faster

than full compilation of a kernel or application. Computing the e±ciency and

utilization metrics is relatively fast after this information and a few numerical

inputs from the developer or a pro¯le are obtained. This approach allows for fast

exploration of a large search space.

5.3.3 Individual metrics and a singlecost function

In the initial phaseof this work, an attempt was made to create a single cost

function that would approximate the performanceof the code. This approach is

akin to using static schedulesto estimate EPIC/VLIW code performance. The
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z = gridspacing * (float) k;

for (j=0; j<grid.y; j++)
y = gridspacing * (float) j;

for (i=0; i<grid.x; i++)
x = gridspacing * (float) i;
energy = 0.0f;

for (n=0; n<atomarrdim; n+=4)
float dx = x - atoms[n];
float dy = y - atoms[n+1];
float dz = z - atoms[n+2];
energy += atoms[n+3] / sqrtf(dx*dx + dy*dy + dz*dz);

energygrid[grid.x*grid.y*k + grid.x*j + i] = energy;

Figure 5.4: Coulombic potential grid code.

e±ciency and utilization metrics both carry part of the information neededto

predict the performanceof a kernel con¯guration, but experiencehasshown that

neither is su±cient in isolation for usefulperformancecomparisons.The CP kernel

is usedas an exampleto show what aspect of performanceis captured by each

metric.

The CP kernel,shown in Figure 5.4,computeselectricpotentials at every point

in a 3D grid. Oneof its usesis in setting up initial conditionsfor aqueousmolecular

dynamics simulations. In the original con¯guration, each thread computesthe

potential at a single grid point with a loop that processesone charge in each

iteration. The optimization with the largest e®ectis tiling the computation at

the thread level, computing multiple grid points per thread. This optimization

greatly improvese±ciency by eliminating redundant °oating-point computation.

Figure 5.5 shows how CP's executiontime and performancemetrics vary with

the results-per-threadtiling factor. The normalizedreciprocalsof the performance

metrics are plotted, so lower is superior in both plots. The e±ciency data points

overlapandappearasa singlecurve. E±ciency closelyfollowsthe actual execution

time at tiling factors of 1, 2, 4, and 8. Although utilization varies over this
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Figure 5.5: Performancemetrics versusexecutiontime for CP.

range,it remainssu±ciently high that decreasesin utilization do not signi¯cantly

slow down the machine's execution throughput. At a tiling factor of 16, the

decreasein utilization reducesthe machine's throughput, countering a further

increasein e±ciency. For this kernel, e±ciency improves monotonically while

utilization worsensmonotonically with increasingtiling factor, and the optimum

con¯guration balancesboth metrics.

It should be noted that CP does not stressglobal memory bandwidth. In

applications where memory bandwidth was often but not always a bottleneck,

it was more di±cult to estimate the performanceof kernelsusing a single cost

function.

5.3.4 Applying metrics to matrix multiplication

The matrix multiplication kernel shown in Figure 5.6 is usedto demonstratethe

calculation of the metrics. The kernel is ¯rst compiled with -cubin to obtain
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Figure 5.6: Matrix multiplication examplefor calculating metrics.
This code is the sameas Figure 3.1(c) with regionsdelineatedfor clarity.

the resourceusage,which shows that each thread uses13 registers, and each

thread block uses2088bytes of sharedmemory for its 256 threads. Determining

the number of resident thread blocks per SM is doneby referring to the per-SM

resourcelimits in Table 2.2. In this case,register usageis the limiting factor:

BSM = b8192=(13 ¤ 256)c = 2. The number of warps per thread block is WT B =

d256=32e = 8.

The kernel is then compiledwith -ptx to determineits executionpro¯le. The

loop is annotated with a trip count of 256, found by dividing the matrix size

(4096) by the tile length (16). With this annotation, the number of dynami-

cally executedinstructions can be determinedstatically. A singlethread executes

15 150instructions, including 512barriers and 256load-consumerpairs: I assume
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that the load from B is performedprior to the store to sharedmemory array As,

sothat the global load latenciesare overlapped and the store to Bs doesnot incur

a stall. Thus, Instr = 15 150 and Regions = 769. The ¯nal pieceof informa-

tion neededis the number of threads in the kernel. There is one thread for each

element of the 4k x 4k output matrix: Threads = 224. From these numbers,

E±ciency = 3:93¤ 10¡ 12 and Utilization = 227. The relationship of thesemet-

rics amongdi®erent con¯gurations is moremeaningful than their absolutevalues.

Even relative valuesare not necessarilycomparable,sincethe utilization metric

doesnot taper o®to a constant value as would the true utilization of a system.
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CHAPTER 6

EXPERIMENTS

This chapter discussesthe useof optimization carving to ¯nd high-performance

con¯gurations of several applications. I also compare the results of the tech-

nique to random sampling of the entire optimization space,and examinethe use

of di®erent computations for the utilization metric. I closethe chapter with a

discussionof the shortcomingsof the technique as usedhere.

6.1 Methodology

The results in this chapter were obtained with CUDA version 1.0. Experiments

wereperformedon an Intel Core2ExtremeQuadrunning at 2.66GHz with 4 GB of

main memory. The presented data represent runs with smaller inputs than those

consideredtypical, which allows an exploration of the entire optimization space

in a reasonableamount of time for comparisonto optimization carving results.

Informal experiments have shown that executiontime will scaleaccordinglywith

an increasein input data size for theseapplications on this architecture, due to

the regular and otherwise data-independent execution of the kernels. The data

are gatheredfrom a single run of each con¯guration; repeatedexperiments have

shown that the gatheredrun times are reliable.

Table 6.1 lists the applications studied, the optimization parametersvaried,

the number of con¯gurations in the optimization space,and the total time needed

to evaluate the performanceof every con¯guration in the optimization space.
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Table 6.1: ParameterSearch Properties

Kernel ParametersVaried Total Con-
¯gurations

Total Eval-
uation Time

Matrix
Multiplication
(MM)

memory tile/thread block size, rect-
angular tile dimension, unroll factor,
prefetching, register spilling

93 363.3s

CP thread block size,per-thread tiling, co-
alescingof output

38 159.5s

SAD per-thread tiling, unroll factor (3
loops), work per thread block

908 7.677s

MRI-FHD thread block size, unroll factor, work
per kernel invocation

896 2875s

These applications were selectedfrom the larger suite presented in Chapter 4

becausethere werea large variety of optimizations that could be combined, with

interesting e®ectsand sometimesdiscontinuous results. The SAD kernel is the

¯rst kernel of the three in the H.264 application, discussedin Section4.2.1. It is

modi¯ed to not follow a spiral search pattern, thus avoiding the constant cache

port con°icts encountered in the original version. Optimizations varied for carving

wereperformedat the sourcecode level; e.g., loopsof di®erent unroll factors were

manually written and selectedat compile time.

6.2 Initial Results

Figure 6.1showsPareto plots of the metric valuesfor each optimization con¯gura-

tion for all of the applications. Threshold carving was performedonly for matrix

multiplication. The maximum metric values have been normalized to one for

comparisonpurposes.Most Pareto plots are con¯gured sothat smallervaluesare

superior and the optimal curvesare closeto the origin; I have kept larger values

assuperior becauseit is more intuitiv e, although it createsPareto-optimal curves

which may appear odd to readers. In generalthe best performanceshould come

from con¯gurations with both high e±ciency and utilization, meaningpoints to-
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Figure 6.1: Optimization carving for four benchmark kernels.
The best performing con¯guration is circled in each graph. Con¯gurations

pruned by threshold carving are marked with squaresrather than `+'. In (d),
each point actually represents as many as seven con¯gurations with

indistinguishablee±ciency and utilization.

wards the upper right corner of the graph. Thesepoints createa Pareto-optimal

curve, which is drawn in the ¯gure. The best performing con¯guration for each

application is circled. Con¯gurations that are inferior to another con¯guration in

only one metric value are eligible for inclusion on the Pareto-optimal curve; for

example,there are several con¯gurations in CP and MRI-SAD that have the best

e±ciency and varying utilization values.

The matrix multiplication kernel has thread blocks of size8x8 and 16x16 in

its con¯guration space. Although a developer with detailed knowledgeof global

memorycoalescingwould know to exclude8x8 blocks, the requirements for global

memory coalescingwere not well understood when theseexperiments were ¯rst

94



Table 6.2: Optimization Carving SpaceReduction
Kernel Selected

Con¯gura-
tions

Space
Reduction

Selected
Evaluation
Time

Time Re-
duction

SelectedBest Rela-
tiv e to Overall Best

Matrix Multi-
plication (MM)

8 91% 10.2 s 97% 100%

CP 10 74% 42.95s 73% 100%
SAD 19 98% 62.21ms 99% 100%
MRI-FHD 58 93% 270.0s 91% 99.2%

performed. I usethis opportunit y to show the e®ectsof thresholdcarving: con¯g-

urations pruned by threshold carving are marked with a squarerather than `+'.

This pruning changesthe Pareto-optimal curve in subsequent tradeo® carving,

as can be seenby the squareson the \outside" of the curve in Figure 6.1(a).

Thesecon¯gurations run signi¯cantly more slowly than the plot would indicate

becausethey are limited by memory bandwidth. A Pareto-optimal curve that

includesthesecon¯gurations will still ¯nd the best con¯guration, but at the cost

of evaluating several con¯gurations with poor performance.

Table 6.2 shows the number of con¯gurations selectedby carving and the

resulting reductions in spaceand evaluation time, which were signi¯cant. It also

shows the relative performanceof the best con¯guration on the Pareto-optimal

curve comparedto the best performancefound via exhaustive search. For three

kernels, the Pareto-optimal subsetcontains the best overall con¯guration. The

best con¯guration of the MRI-FHD kernel does not lie on the Pareto-optimal

curve, but the second-best con¯guration does, with a performancedi®erenceof

less than 1%. The variation in runs is relatively close to this di®erence,and

there are several points on the Pareto-optimal curve that are within 2% of the

best performance. As I discussin Section6.3, the MRI-FHD kernel has a large

number of high-performancecon¯gurations.
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It is di±cult to make a judgment about whether a given value of utilization

is \good" or \bad." As previously stated, the utilization metric measuresthe

relative abilit y of a con¯guration to utilize the executionunits, but the di®erences

in valuesareof lessimportance. For example,considerthat the bestcon¯guration

for matrix multiplication in Figure 6.1(a) hasoneof the lowest utilization values

of the entire space.The reasonlow utilization is not a reliable predictor of poor

performancefor matrix multiplication is becauseall con¯gurations are quite good

at ensuringthat executionresourcesarealmostalwaysoccupied. Thus, instruction

stream e±ciency is the primary determinant of performancefor this kernel. This

fact is not necessarilytrue for the other kernels.

Figure 6.1(d) shows the Pareto plot for the MRI-FHD application. In this

graph, con¯gurations tend to be clusteredin groupsof seven, appearing as a sin-

gle point. This e®ectis due to the fact that MRI-FHD is not a blocked algorithm

in the way that matrix multiplication is, so changesin thread block size a®ect

neither the e±ciency nor the utilization of this kernel. Di®erencesin actual per-

formance within each cluster are small, generally a few percent. Hence, when

several con¯gurations have identical or nearly identical metrics and similar opti-

mization parameters,it may besu±cient to randomly selecta singlecon¯guration

from that cluster, rather than evaluating all the con¯gurations.

6.3 Comparisonto RandomSampling

The last stageof optimization carving requiresexecutionof the remaining con¯g-

urations to determine the best one. A question that arisesis whether a random

sampleof the optimization spacemight be capableof achieving similar results. In

this section I comparerandom sampling of the optimization spaceto the results

of optimization carving.
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Table 6.3: Random SamplingResults

Kernel Best
Con¯g-
uration
Time

Optimization
Carving
Con¯gura-
tions

Expected
Maximum
Performance
of SameSize
Random
Sample

Random
Sample
Performance
Relative to
Best

Random
Sample
Size for
90% of
Best

Random
Sample
Size for
95% of
Best

MM (16x16
only)

1.147s 8 1.404s 81.7% 20 37

CP 2.679s 10 2.869s 93.4% 8 15
SAD 2.029ms 19 2.479ms 81.8% 78 93
MRI-FHD 3.727s 58 3.763s 99.0% 2 4

The value of interest in random sampling is the highest performanceof the

con¯gurations in the sample. I term this valuethe expected maximumperformance

of a sample. Conceptually, a sample of unit size has an expected maximum

performanceequal to the expectedvalue (arithmetic mean) of the space.On the

other end of the scale,a sampleconsistingof the entire spacewould provide the

maximum performancein the space. This calculation is not described in any

introductory statistics or probability text I have referenced,so I describe it in

Appendix A.

Figure 6.2 shows the expected maximum performanceof random samplesof

varying size, while Table 6.3 shows the size of the samplesrequired to have an

expected maximum performanceof 90% and 95% of the best con¯guration. For

matrix multiplication I use only 16x16 thread blocks, since thread blocks that

do not take advantage of global memory coalescinghave mediocre performance

(shown in Figure 5.1 on page 74) and can be eliminated prior to sampling. A

vertical dotted line corresponds to the number of selectedcon¯gurations from

optimization carving for comparison.
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Figure 6.2: Expectedmaximum performanceof a random sampleof the optimization space.
A vertical dotted line marks the number of con¯gurations that optimization carving selects.
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Random sampling is an e®ective method for ¯nding good con¯gurations for

the CP and MRI-FHD kernels, with an expected maximum performanceclose

to the best con¯guration's performancewith a small random sample. It is ef-

fective becausethere are many con¯gurations with near-best performancein the

optimization spacesof thosekernels.

Matrix multiplication and SAD require much larger random samplesfor a

near-best con¯guration to be expected. Unlike CP and MRI-FHD, there are only

a few con¯gurations with performancenear the best, and even thesecan still be

several percent away from the best. The right combination of local memorytiling,

register tiling, and loop unrolling givessigni¯cant performanceadvantagesto the

highest-performing con¯gurations.

One possibility that should be examined is whether randomly sampling the

pruned spaceproduced by optimization carving can ¯nd a near-best con¯gura-

tion e®ectively. The dotted lines in Figure 6.3 show the expected maximum

performanceof a random sample of the Pareto-optimal con¯gurations selected

by optimization carving. The important observation is that, with the exception

of matrix multiplication, small samplesof the Pareto-optimal con¯gurations may

not be signi¯cantly better than sampling of the entire space,and are worse for

MRI-FHD. Not every Pareto-optimal con¯guration should be expected to have

good performance;oneshouldonly expect that the best performing con¯guration

is Pareto-optimal. Larger samplesof the pruned spaceoften have a much better

expectedmaximum performancebecauseit is more likely that the best or a near-

best con¯guration is included in the sample, since the pruned spaceis smaller.

MRI-FHD is a notable exception,whereoptimization carving is not signi¯cantly

superior to randomsampling. It appearsthat variations in the performanceof the

MRI-FHD kernel are due to di®erencesin how the con¯gurations interact with

the constant cache and SFUs,neither of which is modeledin the metrics.
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Figure 6.3: Expected maximum performanceof random sampling of the Pareto-optimal con¯gurations from optimization
carving and the entire optimization space.
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6.4 VaryingMetrics

The key factors in the usability of the technique are the e®ectivenessof relatively

simple metrics and the results' robustnessto approximations and inaccuraciesin

the metrics. In this section I develop both simpler and more complex versions

of the metric for execution resourceutilization. I use these to perform tradeo®

carvingsand comparethe results to thoseof the initial metrics.

6.4.1 Simpler metric: Discounting synchronization e®ects

Here, I createa simpler versionof the utilization metric and test its e®ectiveness

versusEquation (5.2) in reducing the search spacewhile still ¯nding a near-best

optimization con¯guration. In selectingwhich aspects to include in the simpler

metric, I observe that stalls due to global loadsand the longestlatency operations

are the greatestdetriment to machine utilization for our application suite. The

primary way to avoid theselossesis to executemore threads in parallel per SM.

This intuition is codi¯ed into Equation (6.1). I remove the stalling e®ectsof syn-

chronizations and assumethat barrier synchronization is no more expensive than

any other instruction. Instead of regionsbeing delineatedby consumersof global

loads and synchronizations, I now only count regions delineated by consumers

of global loads or the longest latency operations, represented by LongRegions.

Becausethe e®ectsof synchronizations are no longer being considered,all other

warps are potentially available for executionduring a stall, so I calculate the to-

tal number of warps executing on the SM and subtract one. Compared to the

previous utilization calculation, this metric will increase,relative to other con-

¯gurations, the utilization valuesof con¯gurations that have fewer thread blocks

with many warps and do not perform prefetching.
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Utilization simple =
Instr

LongRegions
[BSM WT B ¡ 1] (6.1)

The reasonI remove the e®ectsof synchronizations is that the previousmetric

potentially \double-counts" the e®ectsof load stalls. First, barrier synchroniza-

tion on the GeForce 8800 appears to be extremely fast, unlike on traditional

multipro cessingsystems.Thus, synchronizationsstall executionof a thread block

only when the warps that have not reached the barrier cannot executeuseful in-

structions due to another stall. Thesestalls will generally be due to loads from

texture and global memory that have not returned their values. However, most

synchronizations exist to ensurethat valueshave beenstored to sharedmemory

for use by all threads, and these precedingstores often consumethe results of

global loads. Thus, a warp generally encounters a synchronization stall when

another warp is stalled on the useof a load.

In addition, a combination of a good instruction schedule, a good dynamic

thread scheduling policy, and many warps per SM may ensurethat synchroniza-

tions rarely causesigni¯cant stalls. Considerthe matrix multiplication instruction

schedulein Figure 6.4, corresponding to the code in Figure 5.6 on page90. When

a warp enters the loop, loads of elements in arrays A and B are executedfor the

¯rst warp. No forward progresscan be made in that warp becausethe next in-

struction is a store of value being loaded,soexecutionproceedsto other warps in

the thread block. Once thosehave stalled, executionproceedsto another thread

block if multiple aresimultaneouslyrunning on an SM. Oncethe resultsof the ¯rst

set of loadsarrive, the ¯rst warp can executeloadsand other instructions before

encountering the synchronization barrier. Due to MLP, several other warps' load

resultshave alsoarrived by that time and executioncan continued unstalled until

the last warp in the thread block reaches the barrier. Becauseall other warps
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Figure 6.4: A hypothetical instruction schedule for a thread block of the matrix
multiplication kernel from Figure 5.6.
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have reached the barrier, executioncan proceedunabatedpast the barrier. With

this schedule,the barrier never causesexecutionto stall on the SM.

Finally, there are no synchronizations in the inner loops of the kernelsother

than matrix multiplication. The previous metric penalizescon¯gurations with

larger thread blocks due to the division by two: warps in the samethread block

should theoretically be equally schedulableaswarps in di®erent blocks for kernels

without synchronization.

Figure 6.5showsthe resultsof optimization carvingusingthe simpli¯ed utiliza-

tion metric for the four applications. Matrix multiplication carving is performed

only with 16x16thread block con¯gurations for clarity. Someshifting of the lo-

cations of con¯gurations has occurred, but in general the plots appear similar

to results using the original metric calculation, with the largest di®erencebeing

further clustering of formerly scatteredcon¯gurations in the MRI-FHD plot. For

matrix multiplication, the Pareto-optimal line hasnot changedfrom Figure 6.1(a),

containing the samecon¯gurations. Similar to the original metric calculation, the

best con¯guration is on the Pareto-optimal curve for all but the MRI-FHD plot.

Table 6.4 comparesthe number of points on the Pareto-optimal curve using

the original and simpli¯ed utilization metrics. In applications other than matrix

multiplication there is a signi¯cant increasein the number of points on the curve,

mainly becausethere is lessto di®erentiate con¯gurations in the simpli¯ed metric.

Eventhough the simpli¯ed metric still servesits purpose,for three kernelsa larger

number of con¯gurations must be evaluated to ¯nd the con¯guration with the

highest performance.

The MRI-FHD kernel is notable in that even though the simpli¯ed metric

producesa Pareto-optimal curve with three times the number of con¯gurations

of the original utilization metric, no con¯guration on the curve is closerthan 5%

in performancefrom the best con¯guration. Given that 152 con¯gurations are
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Figure 6.5: Optimization carving using the simpli¯ed utilization metric.

evaluated, the simpli¯ed metric fares poorly compared to random sampling of

the optimization space.As stated previously, the primary di®erencebetweenthe

simpli¯ed and original utilization metrics is that the simpli¯ed metric improves

the standingof con¯gurations that have fewer thread blocks and morethreadsper

block. A simple experiment shows that there may be a signi¯cant performance

penalty when a singlethread block with heavy SFU usageis executedper SM, as

opposedto multiple, smaller thread blocks.

Table 6.4: SpaceReduction Using Simpli¯ed Utilization Metric

Kernel Total
Con¯gurations

# of Original
Selections

# of Simpli-
¯ed Selections

Performance
Relative to Best

MM (16x16only) 45 8 8 100%
CP 38 10 18 100%
SAD 908 19 23 100%
MRI-FHD 896 58 152 94.9%
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Figure 6.6: Reciprocal square-root executiontime for varying numbers of thread
blocks per SM.

The test kernel for this experiment consistsof a kernel that loopsover a single

reciprocal square-root operation 2000times. The number of thread blocks on an

SM is varied while the total number of threads is kept roughly constant (slight

variations aremadeto createan integral multiple of half-warps,to avoid impacting

instruction scheduling and the memory system). Figure 6.6 shows the results.

Although the variations from 2 to 8 thread blocks may be due to variations in the

total number of threads, there is a clear performanceloss when a single thread

block is running on an SM. The MRI-FHD kernel illustrates a situation where

behavior of an architectural feature was not anticipated or initially understood

by application developers or optimizers, making the metric and the optimization

carving technique lesse®ective.

6.4.2 Modeling cycle count

It is evident that the metricsdisplayedsofar arerelatively crude. I havediscussed

the combined e®ectsof ILP, TLP, and MLP but have not attempted to relate

their e®ectswithin a single metric until this point. Here, I attempt to capture

the behavior of the application kernels more precisely by factoring in the stall
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time and work performedby each thread as a fraction of a single thread block's

minimum executiontime.

In the previous utilization calculations, a region represents a nonstalling in-

struction sequenceand by association the stall period between it and the next

region. This abstract stall time is assumedto be the samefor all con¯gurations.

In reality, ILP and MLP e®ectscanreducethe exposedstall time for a singlewarp

by executingother instructions after a load operation. They have a multiplicativ e

e®ectwith TLP. Kernelswith low TLP and high ILP comparedto other con¯gu-

rations are unfairly penalizedwith the previousutilization calculations,and may

have much higher utilization and overall performancethan the metric predicts. I

shown an examplehere.

Consider the code in Figure 6.7, taken from a 1x4 rectangularly tiled matrix

multiplication kernel with 16x16thread blocks. The ¯rst load will take approxi-

mately 200SP cyclesto return its values. Four more load operationscan execute

immediately after the ¯rst. These¯v e loadsexecutein 20 SP cycles,after which

the warp must stall for load results. In a 16x16thread block, there area total of 8

warps, and each warp can executefor 20 cyclesbeforeencountering a stall. Thus,

approximately 160 cyclesof the ¯rst load's latency are covered by the execution

of other load instructions in a singlethread block. High ILP is oneof the factors

that enablesthe 1x4 rectangularly tiled kernel to achieve the best performanceof

the matrix multiplication con¯gurations.

Figure 6.8depictshow the schedulingof warpshidesa singlewarp's compulsory

stall time. Compulsory stall time is the latency from loadsor other long-latency

operations, reducedby the executionof operations from the samewarp after the

long-latency operation is issued. Work from other threads hides the compulsory

stall time and helpsthe SM avoid stalls. Conceptually, utilization shouldrepresent

the percentage of executiontime wherethe SM is not stalled. Here, I attempt to
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1 ld.global.f32 $f5, [$rd9+0];
2 ld.global.f32 $f6, [$rd16+0];
3 ld.global.f32 $f7, [$rd16+64];
4 ld.global.f32 $f8, [$rd16+128];
5 ld.global.f32 $f9, [$rd16+192];
6 st.shared.f32 [$rd20+0], $f5;
7 st.shared.f32 [$rd23+0], $f6;

...

Figure 6.7: Example PTX code from a matrix multiplication kernel with 1x4
rectangular tiling.
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Figure 6.8: Scheduling warps to hide compulsorystall time.

calculate utilization by determining the amount of compulsorystall time that is

not coveredby the work from the thread blocks executingon the SM.

It shouldbe noted that within a synchronization region, or the regionbetween

two barrier synchronizations, warps in the samethread block must be executing

code within the sameregion. However, work in other thread blocks can come

from any part of the kernel. This fact should be correctly factored into the

calculation of the metric. For example, the synchronization region with global

loads in matrix multiplication can have relatively few instructions comparedto

the synchronization region that performs the partial dot product calculation. A

relatively small percentage of the thread block's total work is available to cover

the latency of the global loads.

Another important detail is that only a portion of the work of other thread

blocks is available to cover a stall, sinceother thread blocks will encounter their

own stalls. I assumethat the amount of this work is the total number of instruc-
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tions executedby a thread divided by the total number of long latency stalls,

or I nstr
Long Regions . For the simple kernels used here, using this value is probably a

reasonableassumption. However, there is a possibility that thread blocks running

on the sameSM will have a tendency to be either in-phaseor out-of-phasewith

each other, with potential increasesor decreasesin the number of instructions

available for executionduring a stall. How to predict this situation and include

it in the utilization metric is left for future work.

I ¯rst introduce the conceptof a thread block's minimum execution time for

a synchronization region, mintime sr , shown in Equation (6.2). The letters sr

stand for synchronization region. The available work from a single warp in a

synchronization region is warpworksr , calculated directly from the instructions

between the synchronization operations. The compulsory stall time for a single

warp in each synchronization region is stal lsr and is measuredby taking the

latency of a long-latency instruction (200 cycles for global memory loads) and

subtracting the work from operations between the long-latency instruction and

its consuminginstruction in the samewarp. If the warps in a thread block can

cover all of the latencies,then the minimum execution time is equivalent to the

total number of work cycles in the thread block. Otherwise, somepart of the

compulsorystall time is exposedand must be coveredby work from other thread

blocks. One important note is that this calculation and the following onesare

optimistic about the abilit y of other warps' work to cover a stall: the warps

may encounter their own stalls after performing a fraction of their work in the

synchronization region, as depicted in Figure 6.8.

mintimesr = warpworksr + max[stallsr ; (WT B ¡ 1)warpworksr ] (6.2)
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I next calculatethe amount of work that an SM canexecuteduring a synchro-

nization region, worksr , shown in Equation (6.3). The work from a thread block

is addedto available work from other thread blocks. Only a portion of the other

thread blocks' work is available to cover a stall, asI previouslydescribed,but there

may be multiple stalls within a synchronization, represented by LongRegionssr .

The combined work may completely cover the latencies in the synchronization

region, in which casethe value of worksr is capped at mintime sr . I cap the value

becausethe SM reachesmaximum utilization when all latenciesare hidden.

worksr = min
·
mintime sr ; WT B ¢warpworksr

+
(BSM ¡ 1)(WT B )I nstr ¢LongRegionssr

LongRegions

¸ (6.3)

Equation (6.4) shows the newutilization metric, which approximates the frac-

tion of execution time that the SM is executing instructions. The denominator

represents the total time that a single thread block requiresto executethe code,

calculated by adding up the minimum execution times for all synchronization

regions. The numerator is the total amount of work that an SM can schedule

during the period represented by the denominator. Capping the value of worksr

at mintime sr for each synchronization region prevents extra work in one syn-

chronization regionfrom covering the latenciesin another synchronization region,

which was possiblein the previousutilization calculationsbut cannot happen in

reality.

Utilization cycle =

al l srX
worksr

al l srX
mintime sr

(6.4)

I make several assumptionsabout SFU behavior. SFU latency is assumed

to be 20 cycles. I assumethat the SM can issueinstructions to SPs after four
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cyclesof issuingSFU instructions, but must ¯nish issuingSFU instructions before

issuing another set of SFU instructions; otherwise, the SM must stall. Finally,

I assumeno e®ectsfrom executioncapacity limitations are exhibited. A related

assumptionI make is that warps in the samethread block are as schedulableas

warps in other thread blocks, although Figure 6.6 shows otherwise.

BecauseI do not have accessto a cycle-accuratescheduler, I manually sched-

uled instructions and calculated the work and exposedstall time for each con¯g-

uration. SAD and MRI-FHD are not included in this experiment becauseof the

large number of con¯gurations in those kernels. I assumethat the compiler and

runtime schedule instructions to maximize MLP and minimize compulsory stall

time. It should be noted that this assumptioncan createsigni¯cant error if it is

incorrect: if two load latenciesare sequential instead of overlapped, a warp will

have twice as much compulsorystall time.

SinceCP generally bene¯ts from global memory coalescing,for the baseline

comparison I remove noncoalescedcon¯gurations from the optimization space.

Tradeo®carving selectsnine con¯gurations for evaluation, asshown in Figure 6.9;

only oneof the con¯gurations on the original Pareto-optimal curve in Section6.2

did not have coalescing.

Table6.5 shows the resultsof using the newutilization calculation on the MM

and CP kernels. Unlike the previousexperiments, I no longer include con¯gura-

tions that are equivalent in onemetric value and inferior in another comparedto

other con¯gurations. The reasonis that all con¯gurations in both kernelshave

maximum utilization: the available work should be able to cover all latenciesin

each synchronization region.

Only the best MM con¯guration is selectedby carving. The advantage of

capping the utilization for each synchronization region is that carving can deter-

mine that all con¯gurations have very high utilization. In reality, the best MM
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Figure 6.9: Tradeo®carving using the original utilization metric calculation for
CP with coalescedcon¯gurations.

Table 6.5: SpaceReduction Using Cycle-BasedUtilization Metric

Kernel Total
Con¯gurations

# Original
Selections

# Cycle-Based
Selections

Performance
Relative to Best

MM (16x16only) 45 8 1 100%
CP (coalesced
only)

19 9 3 79%

con¯guration should have lower utilization than other con¯gurations: the warps

in the singlethread block cannot completelycover the stall time of the ¯rst load,

sincethey cannot executeall of their work beforeencountering their own stalls.

This inaccuracycould be correctedby splitting synchronization regionsinto sev-

eral work-and-stall regions,similar to the LongRegions of the previousutilization

calculation. Re¯nement of the calculation is left for future work.

The Pareto-optimal con¯gurations for CP have a loop unroll factor of 16, as

opposedto the best-performing con¯guration with an unroll factor of 8. More

unrolling gives those con¯gurations higher e±ciency at the cost of fewer total

warps per SM (4 or 6) than the best con¯guration, which has 10 warps per SM.
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The second-and third-b est con¯gurations, which have the samee±ciency as the

best con¯guration, have 8 warps per SM. It appearsthat the additional warps in

the best con¯gurations have a positive e®ecton utilization that is not modeledby

the metric. One likely reasonis that the the code being executedon the system

may be essentially the sameas the PTX code, which placesthe consumersof the

results of reciprocal squareroot operations directly after their producers. The

manually scheduledcode usedasthe input for the metric calculation movesthose

instructions downward in the schedule, for much higher ILP and far lower com-

pulsory stall time. If the executedcode resembles the PTX code, SFU latencies

will be exposedand the additional warps will be necessaryto cover the latencies.

The CP caseillustrates a potential danger of using more precisemetric cal-

culations: unlessthey capture executiondetails very accurately, they may inad-

vertently penalizeand possibly prune top-performing con¯gurations. Accidental

pruning can be mitigated by not pruning points that are close to the Pareto-

optimal curve, which is counter to the purpose of using more precisemetrics.

Given this danger, the useof precisemetrics will probably be most useful when

the optimization spaceneedsto be severely pruned, even at the risk of missing

the best con¯guration in the overall optimization space.

6.5 Impactof PerformanceFactorsNot Includedin
Metrics

Although the con¯gurations selectedby optimization carving contained a near-

best optimization con¯guration for the test kernels,oneshouldexaminethe e®ec-

tiv enessof the technique when the metrics do not incorporate certain aspects of

performancebehavior. I observe oneaspect here, that of cache behavior.
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Figure 6.10: Execution time of MRI-FHD with cache con°icts.

ConsiderFigure 6.10,which depicts the performanceof a preliminary version

of the MRI-FHD kernel as the tiling factor (number of data points processed

by each thread block) changes.The performancemetrics indicate that e±ciency

and utilization remain constant as the tiling factor changes,predicting no signif-

icant change in performance. However, experiments revealed that performance

decreasesas the tiling factor increases,as shown in Figure 6.10.

The sharp contrast betweenthe predicted performancetrend and the actual

performanceled the developer of the MRI kernelsto considerthat the layout and

traversal of data in constant memory might be causingfrequent constant cache

con°icts. Changingthe data layout yielded a kernel that is insensitive to changes

in the tiling factor and performanceup to 17% faster than the previous best

con¯guration.

6.6 Future Work

In this sectionI discussfuture work related to programoptimization carving. One

thrust concernsmethods to reducethe amount of compilation or con¯gurations
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searchedfor optimization carving. Another thrust is alternate approachesfor ¯nd-

ing high-performanceapplication con¯gurations. Finally, I discussthe possibility

of architectural support for mitigating the discontinuity of the optimization space

and tools to help developers in the optimization process.

The e®ectivenessof the metrics would improve with the inclusion of e®ects

of architectural features that are ¯rst-order performancedeterminants for some

applications. The MRI-FHD kernel is the prime exampleof the need for more

re¯ned metrics. More precisemodeling would also enable the combination of

the e±ciency and utilization metrics into a single cost function. Even if the

cost function assumesno memory bandwidth limitations, it would remove the

need to do a tradeo®carving, replacing it with a threshold carving basedon a

combined cost function. As stated previously, sofar I have not beenable to ¯nd a

su±ciently accuratecost function that consistently ¯nds near-best con¯gurations

acrossmultiple, relatively simple kernels.

It is feasible for a runtime system like that of the GeForce 8800 to auto-

matically perform many of the code optimizations usedby optimization carving.

If performancefeedback information wereproducedduring execution,it could be

consumedby the runtime to optimize kernels,enablingspeedupof the kernelprior

to its completion. Run time modi¯cation of kernelsis relatively easyto manage

for programswritten for CUDA, due to the independenceof thread blocks: newly

initiated thread blocks can executeoptimized code, while thread blocks already

running can completeexecutionof unoptimized code.

The fundamental issue that optimization carving addressesis the di±cult y

for either an automatic system or a human developer to determine what mix

of optimization dimensions,such as tiling, will achieve high performanceon the

GeForce8800. However, it is often much easierto determinewhich of two similar

con¯gurations will have greater performance. For example, most of the matrix
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multiplication kernelsstudied herehave decreasedperformancewhenunrolling by

a factor of four becausethe number of thread blocks simultaneouslyexecutingon

an SM is reducedcomparedto con¯gurations unrolled by a factor of two. Sincethe

number of thread blocks per SM cannot changefurther whenunrolling completely

(assumingno oversubscriptionof registers),it is likely that completeunrolling will

have resultssuperior to thoseof unrolling by a factor of four. It would bedesirable

to avoid compiling or evaluating con¯gurations with poor unrolling factors. This

approach requires either preciseknowledgeabout the e®ectsof optimization or

prediction of their e®ects,similar to work by Zhao et al. on codesfor embedded

processors[41].

A more directed approach for optimizing code for the GeForce 8800 is to

target speci¯c granularities of parallelism and maintain them throughout the op-

timization process.Insteadof trying variousoptimizations without regardto their

e®ects,the compiler can compilemultiple con¯gurations that have varying values

of speci¯c characteristics, such as the number of thread blocks simultaneously

executing per SM or the degreeof register tiling. It can then control optimiza-

tions that allow con¯gurations to stay within the speci¯ed limits. Although the

compiler will still needto compilemultiple con¯gurations, targeting speci¯c gran-

ularities would reduce the number of con¯gurations that need to be compiled,

e®ectively targeting the con¯gurations on the Pareto-optimal curve from tradeo®

carving. This approach alsorequirescareful study of optimization phaseordering

and prediction of optimization e®ectsin order to prevent the accidental bypassof

desirablecon¯gurations.

One major issuewith the GeForce 8800 architecture is that the number of

thread blocks assignedto each SM is directly related to a thread block's local

resourceusage. Although this issue is a fundamental limitation for many-core

processors,the problem is exacerbatedby unpredictable performancechanges
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when small changesare madeto the kernel. It may be possibleto createsupport

in the runtime to automatically spill registerswhen it would allow signi¯cantly

better utilization of executionresources.This technique could be enhancedwith

architectural support to spill registersto unusedlocal memory, avoiding additional

burden on global memory bandwidth.

A more integrated and structured environment for optimizing kernelswould

make the application developer's e®orts more focused and e±cient. Environ-

ments such as those constructed by Adve et al. [42] have been constructed for

past systems,languages,and compilers. The issueis complicatedby the opacity

of somearchitectural feature of the GeForce8800,but the basicsof global mem-

ory bandwidth, instruction e±ciency, and resourceutilization can be combined

with visualization tools to improve developer e±ciency. This approach can be

integrated with pro¯ling information and feedback into the compiler and runtime

to automate much of the optimization process.
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CHAPTER 7

RELATED WORK

Code transformation and optimization for parallel programs have a long his-

tory, with much of the foundational work performed by the Parafrase [43,44],

PTRAN [45],andPFC [46{48]projects, followedlater by Polaris [49]andSUIF [50].

This work builds on past work by examininga particular classof parallel architec-

ture, namelysingle-chip, many-corearchitectures that enable¯ne-grained sharing

of local executionresourcesand memories,and how to optimize applications for

the architecture.

7.1 ParallelProgrammingLanguages

Data-parallel programming languagesare consideredan intermediate approach

between automatic parallelization and vectorization e®orts [51,52] and explicit

parallel programming models such as OpenMP [53] to support parallel comput-

ing. APL was one of the ¯rst data-parallel languagesand was developed from

notation work by Iverson[54]. Fortran 90 [55] was one of the most widely used

data-parallel languagesand wasnotablefor its useof array assignment statements.

Later, High PerformanceFortran (HPF) [56] was introducedas a standard data-

parallel languageto support programswith SPMD. However, the complexity of

data distribution and communication optimization techniques, as discussedin

the ¯nal two chapters of [34], was a di±cult challenge. As a result, application

developersbecameinvolved in explicitly handling data distribution and communi-
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cation; messagepassinglibraries such asMPI [57]becamea popular programming

model for scalableparallel systems. CUDA has similar management capability,

where the developer explicitly managesdata layout in DRAM and local mem-

ory spaces,data caching, thread communication within thread blocks, and other

resourcesto achieve high performance.

The interest in general-purposeGPU programming has beendriven by rela-

tiv ely recent improvements in the programmability of graphics hardware. The

releaseof Cg [58] signi¯ed the recognition that GPUs were programmablepro-

cessorsand that a higher-level languagewas neededto develop applications for

them. Others felt that the abstractions provided by Cg and other shading lan-

guageswere insu±cient and built higher-level languageconstructs. Brook [59]

enablesthe usageof the GPU as a streaming coprocessor. Accelerator [60] is

another systemthat usesdata-parallel arrays to perform general-purposecompu-

tation on the GPU. A Microsoft C# library providesdata typesand functions to

operateon data-parallel arrays. Data-parallel array computation is transparently

compiled to shaderprogramsby the Accelerator runtime.

Other e®ortsto provide a more productive stream processingprogramming

environment for developing multithreaded applications include the RapidMind

StreamingExecution Manager[61] and PeakStreamVirtual Machine [62]. These

mainly target high-performance computing applications that are amenable to

stream processing. Their achieved performancemay be inferior to customized

GPU/CPU code due to virtual machine and dynamic compilation overhead as

well as the inabilit y to use platform-speci¯c features. CUDA supports kernels

with much larger code sizesand avoids the use of graphics APIs, although it

currently doesnot map to other architectures asthe RapidMind and PeakStream

environments do. The hardwareaspectsof mappinggeneral-purposecomputation

to GPUs is discussedlater in the chapter.
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A programminginterfacealternativeto CUDA is availablefor the AMD Stream

Processor,usingthe R580GPU, in the form of the Closeto Metal (CTM) compute

runtime driver [63]. Instead of abstracting away architecture-level instructions,

CTM completely exposesthe ISA to the programmerfor ¯ne-grained control.

Intel's C for HeterogeneousIntegration (CHI) programming environment [64]

is a di®erent approach to tightly integrate acceleratorssuch as GPUs and gen-

eral purposeCPU corestogether, basedon the proposedEXOCHI model. EX-

OCHI supports a sharedvirtual memory heterogeneousmultithreaded program-

ming model with minimal OS intrusion. In the CUDA execution model, the

GPU is a device with a separatememory spacefrom the CPU's. As a result,

all data communication and synchronization betweenCPU and GPU is explicitly

performedthrough the GPU devicedriver.

7.2 OptimizationsandPerformanceTuning

Chapter 3 discussesthe e®ectsof optimizations on the GeForce8800. Many clas-

sical optimization techniquesfor data-parallel architectures are described in [34,

35,65]. The e®ectsof such optimizations, especially in combination, can be un-

expected due to their e®ectson local resourceusage,as discussedin [66,67]. In

particular, tiling at both the sharedmemory and register levelshasmajor e®ects

on performanceand is the causeof signi¯cant discontinuities in the optimization

spacesof someapplications.

The memory subsystemof the GeForce8800favors accesspatterns which can

be enabledby data layout transformations. The encompassingwork on compiler-

driven optimization for data locality was performed by Kennedy et al. [68,69].

They split data locality optimization into three stages:loop optimizations, tiling,

and register tiling. The ¯ne-grained sharing of resourcespermits a variable num-
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ber of threads and registersper thread to executeon this architecture, and this

particular ordering of concernshas the potential of being trapped at a local per-

formancemaximum.

Later work in this areafocusedmainly on cache behavior of di®erent instances

of dynamically allocated objects on superscalarprocessors,whereasperformance

on the GPU involves structuring of accesses,usually to single arrays of struc-

tures, so that contiguous memory regionsare simultaneously accessed.Yamada

et al. [20] proposea combined hardware and software approach to improve mem-

ory performance.Truong et al. [21]usea library, driven by pro¯le information, to

reorganize¯elds of data or separatestructures into di®erent ¯elds for better per-

formance. Chilimbi et al. usedautomated techniques[22] for the samepurpose.

The needfor developers to understand the behavior of optimizing compilers

for data-parallel architectures was discussedin work by Adve et al. [5]. They

discussthe need to identify the modeling assumptionsmade about the system

and a mechanism to validate those assumptions;optimization carving is a tech-

nique that doesboth of thesefor the GeForce8 SeriesGPUs. NVIDIA provides

tools, such as the -ptx and -cubin °ags of nvcc, to give developers visibilit y

into compiler behavior for assistingperformanceoptimization. They have also

recently enabledrun-time pro¯ling of applications on newer products. However,

the GeForce8800is not su±ciently observable for application developersto easily

¯nd optimal con¯gurations, and no support for compiler or runtime consumption

of performanceinformation is currently exposedto third-part y developers.

7.3 PhaseOrdering

Phaseordering concernsthe order in which optimizations are applied and the

decisionsof whether to apply them or not. There is much previouswork in phase
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ordering, particularly for classicaloptimizations directed towards single-thread

applications. Vegdahl published one of the ¯rst papers on phaseordering [37],

looking at the interaction of codegenerationand compaction. Whit¯eld and So®a

developed a framework to control phaseordering to improve performance[38].

Cooper et al. [70] usegeneticalgorithms to ¯nd good phaseorderings. Kulkarni

et al. mention other previouswork [71].

This work is not directly related to phaseordering becausethe optimizations

varied in the study aree®ectively orthogonaland applied unconditionally, making

phaseorderinga nonissue.Chapter 3 insteadfocuseson understandingthe e®ects

of optimizations on this classof architecture, while Chapter 5 shows how di®erent

optimizations interact. Prior work [39] hasexaminedhow optimal con¯gurations

di®er from hand-optimized onesfor several applications. This work contributes

to future construction of e®ective phaseorderingsfor this classof architecture.

If a compiler targets particular resourceusages(thread blocks per SM, dimen-

sionsof thread blocks, etc.) insteadof usingoptimization carving, phaseordering

will becomean important issuein ¯nding the bestoptimization con¯guration that

matchesthe desiredresourceusage.This issueis discussedbrie°y in Section6.6.

Studies such as that performed by Cooper et al. [72] or more recently Kulkarni

et al. [71] will be necessaryto ¯nd good phaseorderings for particular program

characteristics. The e®ectsof optimizations may needto be predicted, similar to

what Zhao et al.'s framework performsfor embeddedsystemscompilation [41].

7.4 OptimizationSpaceExploration

Program optimization carving aspresented hereis derived from a full exploration

of the optimization space,an approach that hasbeenexploredby othersin various

fashions.Wolf et al. [73] introduceda compiler that exploresthe entire optimiza-
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tion spaceto ¯nd the optimal optimization con¯guration, but they do not use

metrics to prune the space.Han et al. [74] alsousestatic modelsto search for the

optimal tiling and padding sizefor a conventional multipro cessor.Work hasalso

been done to study the interaction among di®erent optimizations and between

optimizations and the hardware without a full search. Theseare basedon analyt-

ical models [75,76], statistical models [77], geneticalgorithms [72], and adaptive

learningand intelligent search techniques[78{81] to ¯nd an optimal con¯guration.

The optimization carving technique is most similar to the work of Wolf et al.,

but the performancemetrics presented hereare customizedfor a massively data-

parallel architecture with a large memory bandwidth and latency-hiding memory

system. To my knowledge,the only similar study of this emergingclassof data-

parallel architecturesdirected at broadercomputing domainsis work by Jimenez-

Gonzalezet al. [82]. They present an evaluation of communication bandwidth

betweendi®erent storageand computing components of the Cell Broadband En-

gine,and generalguidelinesin termsof optimizations, communication, data access

patterns, and programming models for full utilization.

Iterativ e approachesto spaceexploration, such as the approach taken by the

SPIRAL project [83], start at one or several basic con¯guration points and then

apply optimizations in an attempt to ¯nd a good optimization con¯guration. In

this work I do not take an iterativ e approach, since such an approach is easily

trapped in a local maximum. Instead I examinethe e®ectsof optimizations on

the GeForce8800. Transformationstightly interact on the GeForce8 SeriesGPUs

and must be evaluated basedon their joint e®ectsto avoid being trapped at local

maxima. Methodsto direct iterativ eapproachesto optimization will be important

when particular resourceusagetargets are de¯ned or when even a partial space

exploration is prohibitiv ely expensive.
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7.5 GPU ApplicationMappingandOptimization

Owenset al. review previous work in mapping generalpurposecomputation to

GPUs in [84]. In general,previousGPU programmingsystemslimit the sizeand

complexity of GPU code due to their underlying graphicsAPI-based implemen-

tations. CUDA supports kernelswith much larger code sizesvia a new hardware

interface and instruction caching. The abilit y to write larger and more complex

kernel codesgivesrise to this work.

PreviousGPU generationsand their APIs also had restricted memory access

patterns, usually allowing only sequential, contiguous writes to a linear array.

This restriction is due primarily to limits in graphics APIs and corresponding

limits in the GPU's specializedpixel and vertex processors.Accelerator [60] does

not allow separateaccessto an individual element in parallel arrays: operations

are performedon all array elements. Brook [59] alsoexecutesits kernel for every

element in the stream,with someexceptions.The GeForce8800allows for general

addressingof memory by each thread, which supports a much wider variety of

algorithms. However, the increasedgenerality also makes it important to apply

locality enhancement optimizations to applications in order to conserve memory

bandwidth and hide memory latency.

Liao et al. [85] developed a framework on top of Brook [59] to perform ag-

gressive data and computation transformations. Their goalwasto speedup GPU

streamingapplications on CPU multipro cessors.Breternitz et al. [86] alsodevel-

oped a compiler to generatee±cient code on a CPU for SIMD graphic workloads

by extendingthe baseISA to SSE2[87]. Thesee®ortsdi®erfrom this work, which

investigatesthe e®ectsof optimizations speci¯cally on a contemporary GPU ar-

chitecture.
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Previous attempts at general purpose programming on GPU systemshave

been limited in size and complexity. In particular, in°exibilit y of memory ac-

cesses[59,60] and memory performance[88,89] were major hurdles. A previous

study on performancetuning for GPU [90] was alsoconstrainedby the program-

ming environment and the necessity of mappingalgorithms to existing GPU struc-

tures. The CUDA programming model, along with the hardware support of the

GeForce8800,allows larger, more complexkernel code to accessthe low-latency,

high-bandwidth on-chip memory in a more generalmanner.

Traditional GPUs alsoprovided limited cache bandwidth for nongraphicsap-

plications on the GPU. Fatahalian et al. [88] discusshow low-bandwidth cache

designson GPUs prevent generalpurposeapplications from bene¯ting from the

computational power available on thesearchitectures. Work by Govindaraju et

al. [89] usesan analytical cache performanceprediction model for GPU-basedal-

gorithms. Their results indicate that memory optimization techniquesdesigned

for CPU-basedalgorithms may not be directly applicableto GPUs. With the in-

troduction of reasonablysized,low-latency, high-bandwidth, on-chip memoriesin

new generationsof GPUs, this issueand its optimizations have becomelesscriti-

cal. The e±cient useof theseon-chip memoriesstill requirescreative programmer

e®ort.

One of the important optimizations for these processorsis management of

data layout. Automated e®ortson data layout beganwith distributed memory

machines[91]. Recent work hasfocusedon removing the needfor application de-

velopersto manually designatethe useof speci¯c memoriesin CUDA. Baskaran et

al. [92] have developed a technique to automatically map global memory accesses

to the sharedscratchpad memory on the GeForce 8 Series. They are currently

working on techniquesto map data to the cacheson the GPU.
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CHAPTER 8

CLOSINGREMARKS

Becauseof power constraints and performancebottlenecks, computer processors

now consistof an increasingnumber of processingcoresper silicon die. This sit-

uation requiresan evaluation of the properties of applications that achieve good

performanceon such processorsand the optimization techniquesrequired to take

advantage of the large number of execution resources. This situation is little

di®erent from previouserasof parallel computing research, but the newest data-

parallel platforms arevery inexpensive, openingup the areato nearly anyonethat

has interest in performing research on theseplatforms. It is also not clear how

thesesystemsshouldevolve, openingup possibilitiesfor researchersto de¯ne fun-

damental computerarchitecture for many yearsto come. As a computerarchitect

and compiler designer,I feel that now is an exciting time to be working in these

areas.

8.1 Applicability to Future Many-CoreProcessors

I beganthis work with an examination of the GeForce 8800GTX GPU and the

CUDA programming model. Although highly specializedas a graphicsarchitec-

ture, the GeForce8800permits exploration of someof the fundamental concepts

and issuesthat every single-chip, many-core processorwill have in the future.

The most notable of theseare data management and useof local memories,the

balance between multithreading and e±cient use of resources,and the use of
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specializedfunction units and caches to improve performancebeyond that of a

minimal design.

I mentioned several times in this work that o®-chip bandwidth is a ¯rst-order

concernfor most applications. This issueis unlikely to changein the future; the

number of transistors per die and potential executionresourceswill increaseat a

fasterrate than o®-chip bandwidth. Management of data locality and reuseshould

bethe initial focusof application andcompilerdevelopersfor thesesystems.There

are two issueshere that must be addressedin the future:

² Due to software engineeringconcerns,programmersde¯ne data structures

with multiple ¯elds to logically group data. Many of these¯elds may not

be usedin a given kernel or application phase,and waste bandwidth when

they are loaded from DRAM and sent through the memory system,either

on the GeForce8800or a traditional processorwith caches. In addition, the

GeForce 8800requiresglobal memory coalescingwhen possibleto achieve

good performance,which, due to the SIMD nature of the SM, meansthat

developersmust either split up the structure (generally poor software engi-

neeringpractice) or load entire structures in bulk into sharedmemory. This

work motivates the need for additional research into reconciling software

engineeringneedswith the desirefor performance.

² Expressingdata locality in code can be doneeasilywith local variables,but

many application developersare usedto a °at memory spaceand often op-

eratedirectly on variablesin memory, relying on hardwarecachesto manage

reuseand locality. Copying to local memory spacein previousarchitecture

generationsgenerallyresulted in poor performancebecausethe loadeddata

would usually be in the processor'scacheanyway. Future many-coreproces-

sorsare likely to havea scratchpad-style memoryor lockablecache to ensure
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both locality and availabilit y for somedata. Whether the CUDA method

of declaring somethread-speci¯c local variables should be usedor a com-

piler should attempt to automatically determine and map the appropriate

variablesto thosememoriesis open to question.

The partitionable register ¯le and sharedmemory on each SM of the GeForce

8800enablean interesting tradeo®between the number of threads on each SM

and the amount of resourcesavailable to each thread. Sincethe ideal balancewill

be di®erent for every application, this arrangement enablestuning of application

performancebeyond what an architecture with a constant amount of resources

per thread allows. It is not entirely clear what the chip areaand designcostsare

for enabling this °exibilit y, but the performancebene¯t has shown that the idea

hasmerit.

The specializedcaches and the SFUs on the GPU provided signi¯cant per-

formance bene¯t to the MRI kernels, but it is not entirely clear whether such

features would be useful in a more general system. Value broadcast from the

constant cache is enabledby the SIMD nature of the SM, ensuringthat threads

in a warp executethe sameload instruction at the sametime. How to preserve

this advantage when threads can simultaneously take divergent control paths is

unclear. On the other hand, given the abundanceof transistors expected in fu-

ture processors,we may seefunctionality similar to that of the SFUs' in future

many-coreprocessorsthat are intended for a wider variety of applications.

One of the largest optimization issuesis the discontinuity in the optimiza-

tion spacedue to the strict limits on local memories. Limited local memory is

a fundamental trait of many-core processors,and it will be important to ¯nd

hardware and software mechanismsto mitigate the discontinuities. It should be

remembered that application development is an iterativ e process,with new fea-

tures added in successive versions. Thesewill often require additional memory,
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potentially exceedingavailable local memory and causing performanceto drop

precipitously comparedto the previous version. Structures such as intermediate

cachesor other storagethat lie betweenlocal memoriesand o®-chip DRAM are

conceptually simple, but it will be important to provide automated or mostly

automated mechanismsto make their usesimple for developers.

8.2 Thoughts on Optimization

The GeForce8800is highly threadedand enables̄ ne-grained sharingof resources

amongthreads. Thus, the e®ectsof well-known optimizations on this architecture

can be di®erent from their e®ectson more traditional multicore systems. With-

out understandingthe e®ectsof optimizations, a useful, systematicoptimization

processis not possible. I discussedseveral categoriesof optimizations and their

e®ectson this architecture. I alsodiscussedhow theseoptimizations can interact

in unexpected ways, particularly how register usagecan reduce the number of

threads simultaneouslyexecutingon the system.

The changeneededin developers' assumptionsmay beoneof the largestobsta-

cles in adoption of massively data-parallel, many-core systems. Until developers

build up intuition of how applicationsmap to this platform and how optimizations

a®ectapplication performance,they will not be able to extract good performance

from the system. The most prominent example is the relatively small e®ectof

prefetching and the possibility of signi¯cant TLP loss due to increasedregister

usage.Oneof the goalsof this work is to develop that intuition and communicate

it to others.

Manual, iterativ e optimization on this system may becometrapped in a lo-

cal performancemaximum and underutilize the executionresourcesof the GPU.

Rather than attempt an iterativ e optimization process,I instead proposedpro-
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gram optimization carving. This technique avoids becoming trapped in local

performancemaxima by examining the entire optimization spaceand pruning

away con¯gurations that are unlikely to be local maxima (and thus not the global

maximum). This technique is capableof eliminating up to 98%of the spacewhile

still retaining the optimal con¯guration. I have shown that the technique can be

far superior to random selectionfor someapplications. I have also shown that

lessprecisemetrics provide similar functionality but are not e®ective at reducing

the space.More precisemetrics may be better at reducing the spacebut run the

risk of being inaccurateand pruning the top-performing con¯gurations.

I anticipate that somecompiler developers will instinctively rebel against the

idea of generatingmultiple code con¯gurations and insist that the best code ver-

sioncanbecreatedthrough careful tuning. Evenfor the author, it took sometime

to becomeaccustomedto the idea, but on the GeForce8800there is little choice

becauseof the lack of developer control of resourceusage. More generally, the

complexity of compilersand architecture, aswell as the enormousrangeof appli-

cations, meansthat compilation systemswill not have the perfect understanding

of all the factors necessaryto get the \b est" optimization con¯guration via iter-

ative optimization using greedyapproaches. This issuemight be of little concern

exceptthat on many-coresystemsthe di®erencemay be substantial (double-digit

percentage or more), and somedevelopersdesirethe additional performance.

Future work in this areaincludestechniquesto further prune the search space

or ¯nd near-best con¯gurations more reliably. A combination of spacesearch

and iterativ e optimization may also be e®ective in ¯nding near-optimal con¯gu-

rations of applications(although multiple carvingscould be considereda iterativ e

approach). Finally, developer tools can make the optimization task more auto-

mated and visible. Visualization tools in particular can help guide developers'

thinking into the fundamental issuesof bandwidth, e±ciency, and utilization.
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As the computing community continuesto move forward with many-corepro-

cessors,we should reexamineour assumptionsabout the systemsand tools we

develop as well as what application developers are willing to do or are capable

of doing. This work has shown that assumptionsabout optimization e®ectsmay

be lessvalid becauseof the nature of the target architecture. By questioningour

assumptions,we are forced to revisit the fundamentals of performanceand pro-

grammability. Such a mindset will be vital to making continued, rapid progress

in the development of single-chip, many-coreprocessors.
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APPENDIX A

CALCULATION OF THE EXPECTED
MAXIMUM VALUE OF A SAMPLE

This appendix describes the calculation of the expected maximum value of a

randomly selectedsample from a list of numbers. The calculation is used for

comparisonto the optimization carving technique demonstrated in Section 6.3.

That sectionactually usesexpectedminimum values,which translate to expected

maximum performance. I demonstratethe expectedmaximum value calculation

here becauseI believe it to be more natural to most readers;the calculation of

expectedminimum value is a straightforward derivation. I ¯rst work through the

calculation assumingreplacement of selectedvalues as a simple example, then

demonstratethe calculation without replacement.

I start with a list of numbers S, sorted in ascendingorder. jSj is the sizeof

S. For simplicity I assumethere are no repeatedvaluesin the list. Si is de¯ned

as the i th-smallest element of S, where 1 · i · jSj. A sampleX is a collection

of elements taken from S and is of sizen. The calculation shown here is for the

expectedvalue of the maximum element of X .

The calculation of the expected maximum value of X is conceptually simple

if broken down into several parts. The calculation is basedaround ¯nding the

probability of the maximum value of X being Si for each i . The ¯rst stage is

the calculation of the probability that all elements in X are lessthan or equal

to Si . From this, one can calculate the probability of the maximum value of X

beingexactly Si . The calculation concludeswith the computation of the expected

value, which is the probability of Si being the maximum of X , times Si , for
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every i in S. In Section A.1 I allow X to contain repeated elements of S. For

optimization carving, con¯gurations are sampled no more than once. This is

modeledin SectionA.2 by not allowing X to contain repeatedelements of S.

A.1 With Replacement

I ¯rst make the observation that the probability that an element chosenrandomly

from S has a value smaller than or equal to Si is (i=jSj). Assumingreplacement

of elements after being chosen,the probability of the valuesof all elements in X

being smaller than or equal to Si is (i=jSj)n . This is shown in Equation (A.1).

P(8x 2 X : x · Si ) = P((X 1 · i ) ^ : : : ^ (X n · i ))

=
nY

k=1

P(X k · i )

=
µ

i
jSj

¶ n

(A.1)

Next, I calculate the probability of the maximum of X being Si , or more

precisely, the maximum value of the elements within X being exactly Si . The

probability that the maximum of X is greaterthan Si is oneminus the probability

that all values in the sampleare lessthan or equal to Si . This is the sameas

Equation (A.1), so the the calculation that the maximum is greater than Si can

be performedas shown in Equation (A.2).

P(max [X ] > Si ) = 1 ¡
nY

k=1

P(X k · i )

= 1 ¡
µ

i
jSj

¶ n
(A.2)
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The probability of the maximum of X being Si is the sameas the probability

that the maximum is greater than Si ¡ 1 but no more than Si . This calculation is

shown in Equation (A.3).

P(max [X ] = Si ) = P(max [X ] > Si ¡ 1) ¡ P(max [X ] > Si )

=
·
1 ¡

µ
i ¡ 1
jSj

¶ n ¸
¡

·
1 ¡

µ
i

jSj

¶ n ¸

=
µ

i
jSj

¶ n

¡
µ

i ¡ 1
jSj

¶ n

(A.3)

The expectedvalue of the maximum value of the sampleX can be calculated

by summing the products of Si and the probability that the maximum of the

sampleis Si for all i in S. This calculation is shown in Equation (A.4).

E [max[X ]] =
jSjX

i =1

[P(max [X ] = i ) ¢Si ]

=
jSjX

i =1

·µµ
i

jSj

¶ n

¡
µ

i ¡ 1
jSj

¶ n¶
Si

¸ (A.4)

A.2 Without Replacement

For optimization carving, choosing a sampleis done without replacement of ele-

ments alreadychosenfrom the list. A sampleconsistingof the entire samplespace

should provide the element with the maximum value in the space,which is not

the casewith replacement. Without replacement, the sizeand the valid number

of remaining choicesdecreaseswith an increasein the size of the sample. The

probability of the valuesof all elements in X being smaller than or equal to Si is

shown in Equation (A.5). For this calculation, n must be lessthan i ; otherwise,
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the maximum value of X will be equal to or greater than Si and the probability

of the maximum being equal to Si is oneor zero, respectively.

P(8x 2 X : x · Si ) = P((X 1 · Si ) ^ ::: ^ (X n · Si ))

=
µ

i
jSj

¶ µ
i ¡ 1

jSj ¡ 1

¶
:::

µ
i ¡ n + 1

jSj ¡ n + 1

¶

=
µ

i !
(i ¡ n)!

(jSj ¡ n)!
jSj!

¶
(A.5)

The probability of the maximum of X being Si is calculatedsimilarly to that

of Equations(A.2) and (A.3). The calculationsare shown in Equations(A.6) and

(A.7).

P(max [X ] > Si ) = 1 ¡ P(8x 2 X : x · Si )

= 1 ¡
µ

i !
(i ¡ n)!

(jSj ¡ n)!
jSj!

¶ (A.6)

P(max [X ] = Si ) = P(max [X ] > Si ¡ 1) ¡ P(max [X ] > Si )

=
·
1 ¡

µ
(i ¡ 1)!

(i ¡ 1 ¡ n)!
(jSj ¡ n)!

jSj!

¶¸
¡

·
1 ¡

µ
i !

(i ¡ n)!
(jSj ¡ n)!

jSj!

¶¸

=
·

i !
(i ¡ n)!

¡
(i ¡ 1)!

(i ¡ 1 ¡ n)!

¸
(jSj ¡ n)!

jSj!

=
·

i ! ¡ (i ¡ 1)!(i ¡ n)
(i ¡ n)!

¸
(jSj ¡ n)!

jSj!

=
·

i (i ¡ 1)! ¡ (i ¡ n)( i ¡ 1)!
(i ¡ n)!

¸
(jSj ¡ n)!

jSj!

=
n(i ¡ 1)!
(i ¡ n)!

(jSj ¡ n)!
jSj!

(A.7)
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The computation for the expected value of the maximum of the sample is

shown in Equation (A.8). The summation beginswith i = n, sincethe maximum

of X cannot be any smaller than Sn . A derivation of this equation for minimum

expectedvalueis usedto calculatethe expectedmaximum performanceof samples

of various sizesin Section6.3.

E [max[X ]] =
jSjX

i = n

[P(max [X ] = i ) ¢Si ]

=
jSjX

i = n

·µ
n(i ¡ 1)!
(i ¡ n)!

(jSj ¡ n)!
jSj!

¶
Si

¸

=
n(jSj ¡ n)!

jSj!

jSjX

i = n

·
(i ¡ 1)!
(i ¡ n)!

Si

¸

(A.8)
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