°c 2008ShaneRyoo0

PROGRAM OPTIMIZA TION STRATEGIES FOR DATA-PARALLEL
MANY-CORE PROCESSORS

BY

SHANE RYOO

B.S., University of lllinois at Urbana-Champaign,2000
M.S., University of lllinois at Urbana-Champaign,2004

DISSERTATION

Submitted in partial ful Timent of the requiremerns
for the degreeof Doctor of Philosopty in Electrical and Computer Engineering
in the Graduate Collegeof the
University of Illinois at Urbana-Champaign,2008

Urbana, lllinois

Doctoral Committee:

Professorwen-meiW. Hwu, Chair
ProfessorDavid A. Padua

Assaiate ProfessorSteven S. Lumetta
Assistart ProfessorMatthew |. Frank

ABSTRACT

Program optimization for highly parallel systemshashistorically beenconsidered
an art, with experts doing much of the performancetuning by hand. With the
introduction of inexpensiw, single-hip, massiwely parallel platforms, more dewel-
operswill be creating highly data-parallel applications for these platforms while
lacking the substartial experienceand knowledgeneededto maximize application
performance. In addition, hand-optimization even by motivated and informed
deeloperstakesa signi cant amourt of time and generallystill underutilizesthe
performanceof the hardware by double-digit percenages. This createsa needfor
structured and automatable optimization techniquesthat are capableof nding
a near-optimal program con guration for this new classof architecture.

My work discussewariousstrategiesfor optimizing programson a highly data-
parallel architecture with ne-grained sharing of resources. | rst investigate
useful strategiesin optimizing a suite of applications. | then introduce program
optimization carving, an approad that discovers high-performanceapplication
con gurations for data-parallel, many-core architectures. Instead of applying a
particular phaseordering of optimizations, it starts with an optimization spaceof
major transformations and then reducesthe spaceby examining the static code
and pruning con gurations that do not maximize desirablequalities in isolation
or combination. Careful selectionof pruning criteria for applications running on
the NVIDIA GeForce 8800GTX reducesthe optimization spaceby as much as

98% while nding con gurations within 1% of the best performance. Random

sampling,in cortrast, canrequire nearly v e times asmarny con gurationsto nd
performancewithin 10% of the best. | also examinethe technique's e®ectieness

when varying pruning criteria.

To my parents, for their love and supyort.

ACKNOWLEDGMENTS

My graduate studies would have not been completed without the support and
cortribution of numerousindividuals and parties. | am very grateful to everyone
who helped me grow as a personand as a researtier. | would like to recognize
many of them here, and apologizeto any whom | have acciderally omitted.

| ‘rst thank my father and mother, my sister Cherie, and Louise for their
cortinuoussupport. Their faith in my decisionto pursueengineeringand graduate
study hasbeenan andior in my life.

Many thanks go to the former and current members of the IMPACT researt
group and other researberswithin the Certer for Reliable and High-Performance
Computing who have cortributed to this work. They include Christopher Ro-
drigues, Sam Stone, John Stratton, Sara SadeghiBaghsorkhi, Sain-ZeeUeng,
John Kelm, Robert Kidd, StephanieTsao, Christopher Kung, lan Steiner, and
JamesPlayer. | thank the numerouspast and current menbersof IMPACT who
have cortributed to our compiler infrastructure. Finally, | thank the former stu-
derts who helped me in my researt endeaors, particularly John Sias, Hillery
Hunter, and Ronald Barnes.

| thank Matt Frank and Steve Lumetta for servingon my committee and lend-
ing their experienceand intellect to my work. | thank David Paduafor servingon
my committee and for his substartial cortribution to parallel computing compi-
lation, much of which senesasthe foundation for my work. | alsothank Michael

Wolfe for his advice and suggestions.

| would like to recognizeand thank the U.S. Departmernt of Defense,the
American Scciety for EngineeringEducation, the University of lllinois, the UIUC
College of Engineering, the Graduate Collegeat UIUC, the UIUC Departmert
of Electrical and Computer Engineering,and the Roy J. Carver Charitable Trust
for their nancial support of my graduate studies. Intel, HP, and NVIDIA have
supported our group with equipmen donationsand loansduring my tenure. Our
researt is supported by the GigascaleSystemsReseart Center, which is funded
under the Focus Certer Researb Program, a SemiconductorResearb Corpora-
tion program. Initial experimerts with NVIDIA GPUs were made possible by
NSF CNS grant 05-51665.

Finally, I thank my adviser, ProfessorWen-mei Hwu, for teaching me the
fundamenals of computer architecture and optimizing compilersduring my un-
dergraduateeducation, for giving me the opportunity to perform graduate study
and researt in the IMPACT researt group, and for his cortinued guidanceand
support. Without his dedicationto teading at all levels, his willingnessto take on
new studerts without demonstratedbadkground in compilers, his generosiy and
compassionand his determination in doing researt that othersthink impossible,

this work would not have beenpossible.

Vi

TABLE OF CONTENTS

LIST OF TABLES e

LIST OF FIGURES

LIST OF ABBREVIATIONS

CHAPTER 1 INTRODUCTION

11
1.2
1.3

Obstacles
Architectural Models
Contributions and Organization

CHAPTER 2 ARCHITECTURE

2.1
2.2

2.3
2.4

ThreadingModel
Microarchitecture
2.2.1 EXeCutionreSourCeS v v v v v v i it e e e e
2.2.2 Memories
Architectural Interactions
Software Environment and Support

CHAPTER 3 OPTIMIZATIONS

3.1
3.2
3.3

PerformancePrinciples L.
Optimization Example: Matrix Multiplication
Categoriesof Optimization
3.3.1 Memory bandwidth optimization
3.3.2 Dynamic instruction reduction.
3.3.3 Increasingthread-lewel parallelism.
3.3.4 Increasingintrathread parallelism
3.3.5 Workredistribution oL
3.3.6 Resourcebalancing,

CHAPTER 4 APPLICATION STUDY

4.1
4.2

General PerformanceTrends of Optimized Applications
CaseStudies.
4.2.1 H.264: Sumof absolutedi®erences
4.2.2 Fluid dynamicsusingthe Lattice-Boltzmann method

Vii

4.2.3 Magneticresonancamagingin non-Cartesiantrajectory

SPACE. e e e 60
4.3 Optimization Practice 64
4.3.1 Memoryoptimization 64
4.3.2 Registerusage. 66

4.3.3 Balancingthread-leel parallelismwith individual thread
performance. e 68
CHAPTER 5 OPTIMIZATION CARVING 70
5.1 Example Revisited: Matrix Multiplication Optimization Space. . 73
5.2 Descriptionof the Tednique 79
5.2.1 Thresholdcarving. 81
5,22 Tradeo®carving. i 82
5.3 Optimization Carving for the GeForce8800 83
5.3.1 O®-tip bandwidth 83

5.3.2 Instruction stream ezciency versusexecution resource
utilization L 84
5.3.3 Individual metrics and a singlecostfunction 87
5.3.4 Applying metrics to matrix multiplication 89
CHAPTER 6 EXPERIMENTS 92
6.1 Methodology 92
6.2 Initial Results 93
6.3 Comparisonto RandomSampling 96
6.4 VaryingMetrics e 101
6.4.1 Simpler metric: Discourting syndironization e®ects. . . . 101
6.4.2 Modelingcyclecourt 106
6.5 Impact of PerformanceFactors Not Included in Metrics 113
6.6 Future Work 114
CHAPTER 7 RELATED WORK 118
7.1 Parallel ProgramminglLanguages 118
7.2 Optimizations and PerformanceTuning 120
7.3 PhaseOrdering 121
7.4 Optimization SpaceExploration 122
7.5 GPU Application Mapping and Optimization 124
CHAPTER 8 CLOSING REMARKS 126
8.1 Applicability to Future Many-Core Processors. 126
8.2 Thoughts on Optimization 129

APPENDIX A CALCULATION OF THE EXPECTED MAXIMUM

VALUE OF A SAMPLE o 132
Al With Replacemeh 133
A.2 Without Replacemeh 134

REFERENCES

AUTHOR'S BIOGRAPHY

2.1
2.2

4.1
4.2

5.1

5.2

6.1
6.2
6.3
6.4
6.5

LIST OF TABLES

Properties of GeForce8800Memories.
Constraints of GeForce8800and CUDA

Application Suite
Application Performancefor Typical Long-Running Execution
Proles

ResourceUsageand Performancefor 16x16Matrix Multiplica-
tion Con gurations Excluding RegisterSpilling
Compile Time for Seweral Kernelswith Basic Optimizations

Parameter Seart Properties.
Optimization Carving SpaceReduction
RandomSamplingResults
SpaceReduction Using Simpli ed Utilization Metric
SpaceReduction Using Cycle-BasedUtilization Metric

11

2.1
2.2
2.3
2.4
2.5
2.6

3.1
3.2

4.1
4.2
4.3
4.4
4.5
4.6

5.1
5.2
5.3
5.4
5.5
5.6

6.1
6.2

6.3

6.4

6.5

LIST OF FIGURES

Examplesof modelingspaces.

CUDA compilation®ow.
Matrix multiplication example.
CUDA thread organization.
Organization of the GeForce8800..
CUDA thread scheduling within anSM.
Contrasting noncoalesce@nd coalescedaccesatterns..

Matrix multiplication optimization examples..
Graphical depictions of the memory acces9atterns of di®erert
matrix multiplication versions..

Simplied SADkernel.
LBM algorithm.
Partial code for performStreamCollide
Addresspattern for two consecutie loadsin LBM.
Sequemal algorithm to computeQ.
Sequetial algorithm to computeF"d.

Matrix multiplication optimization spaceruntime.
Matrix multiplication optimization spaceperformance.
SAD optimization space..
Coulombic potertial grid code..
Performancemetrics versusexecutiontime for CP..
Matrix multiplication examplefor calculating metrics..

Optimization carving for four bencimark kernels.
Expected maximum performance of a random sample of the
optimization space..
Expected maximum performance of random sampling of the
Pareto-optimal con gurations from optimization carving and
the ertire optimization space.
A hypothetical instruction schedule for a thread block of the
matrix multiplication kernelfrom Figure5.6..
Optimization carving using the simpli ed utilization metric.

Xi

103
105

6.6 Reciprocal square-rmt executiontime for varying numbers of

thread blocksperSM.o oo oL 106
6.7 Example PTX code from a matrix multiplication kernel with

I1x4rectangulartiling. oL 108
6.8 Sdeduling warpsto hide compulsorystall time. 108
6.9 Tradeo®carving usingthe original utilization metric calculation

for CP with coalesceccon gurations. 112
6.10 Execution time of MRI-FHD with cadecon®icts. 114

Xii

AP
CPU
CSE
DRAM
EPIC
FLOPS
FP
GPU
ILP
LICM
MLP
SIMD
SFU
SM
SP
SPMD
TLP
VLIW

LIST OF ABBREVIATIONS

Application Programming Interface
Cerntral ProcessingUnit

Common SubexpressionElimination
Dynamic Random AccessMemory
Explicitly Parallel Instruction Computing
Floating-Point Operations Per Second
Floating-Point

Graphics ProcessingUnit
Instruction-Level Parallelism
Loop-Invariant Code Motion
Memory-Lewel Parallelism
Single-Instruction Multiple-Data
Special Function Unit

Streaming Multipro cessor

Streaming Processor
Single-ProgramMultiple-Data
Thread-Leel Parallelism

Very Long Instruction Word

Xiii

CHAPTER 1

INTRODUCTION

In the past decade,computer processordesignshave shifted to multiple coresper
die due to power and performancelimitations. While this computing power is
often utilized by multiple applications today, vendorsare searting for solutions
that enablea singleapplication to achieve speedupby running on multiple cores.
The number of coresis expected to increaseat a near-expnertial rate for the
next seweral years,making nding a solution a pressingissuefor the application
and software tools commnunity. The issueis compoundedby most dewelopers' lack
of familiarity with highly data-parallel systems,and the di®erencebetweenthese
single-tip systemsand older parallel architectures. This dissertation shavs that
systematicprinciples and automatabletools can be usedto optimize programsfor

this emergingclassof architecture.

1.1 Obstacles

Programming and optimizing applications for highly parallel systemshas histor-
ically beenthe domain of relatively few experts, with performancetuning done
primarily by hand. Becauseof the relative scarcity of highly parallel applications
and the expenseof highly parallel systems,there was limited opportunity for
exhaustive performanceexperimertation. Today, howewer, single-dip, massiely
data-parallel systemssud asthe NVIDIA GeForce 8 SeriesGPUs are available

for appraximately one U.S. dollar per single-precisionGFLOP, se\eral orders of

magnitude lessexpensive than supercomputersa decadeago. Other architectures,
suc asthe IBM Cell Broadband Engine [1], Ageia PhysX processor2], and cus-
tom processordesigns[3], also provide signi cant speedupto applications that
map well to those architectures. For the past few years, dewelopers have been
usingtheserelatively low-costsystemsto perform work that would otherwisetake
a large compute cluster of traditional microprocessorsystemsto accomplish.
Unfortunately, the level of e®ortand expertise required to maximize applica-
tion performanceon thesekinds of systemshasnot signi cantly decreasedand if

anything hasincreased.There are se\eral reasonsfor this issue:

1. The appropriate granularity of parallelism for the target architecture may
not be the \natural® one in which the deweloper conceied the problem.
This di®erences particularly true for developers who are usedto dewelop-
ing applications for clustered systems. It may be necessaryto changean
application's computation granularity in order to improve its performance
on the system. The burden of nding the appropriate granularity is gener-
ally left to the application deweloper, who must sampleacrossa wide range
of points in the con guration spaceto nd a reasonablygood con guration.
Becausegranularity selectionis generallydone early in the software design
processan application deweloper who doesnot initially try or accommalate
for multiple granularities runs the risk of being trapped at a local perfor-
mance maximum when iterativ ely optimizing the application via a greedy

approad.

2. The local memory available to ead processingelemer in the systemis very
restricted comparedto older computeclusters. The costof spilling data from
low-latency memoriesto larger, higher latency memoriesis signi cant. This

costis particularly high whenthosememoriesare on a separatedie from the

processingunits. Evenwith intimate knowledgeof both application and ar-
chitecture, an application developer must experimert with con gurations to
seewhich map well to the architecture. Becauseof the increasingcomplex-
ity of both applications and architectures, the accuracy of an application
deweloper's knowledge will generally be °awed during initial dewelopmen
and take substartial time to dewelop. In addition, programs often change
over time to include new application features, changing the local memory

usageamourt or patterns.

3. Di®eren product lines or even successig generationsof the sameproduct
line may require reapplication of the optimization processo take advantage
of the new system. New featuresand capabilities will change which con-
“gurations provide maximal performance. Thesefeaturesalso may not be

initially understood by application dewelopers.

4. Applications may needto be mapped to multiple, di®eringprocessingplat-
formsto determinethe onethat providesthe most cost-e®ectie performance
for the product needsand goals. Although the embeddedspacehashad the
sameissuefor sometime, it will be presen in the desktop and scieri ¢

computing spacesuntil a particular paradigm establishesdominance.

The commonthemeis that of rapid, nonintuitiv e or unexpectedchangesn the
systemsthat an application deweloper targets. Sincethe architecture and appli-
cations are cortinuously changing, application dewelopers cannot be expected to
consistertly nd a near-optimal con guration of a substartial application. Fur-
thermore, traditional compilation cannot be expectedto nd a near-optimal con-
“guration in the short term, as compiler writers will needa signi cant amourt
of time and e®ortto learn how to usethe featuresof the target architecture and

create processesnd algorithms that optimize many applications well.

3

—

L

\ 4

Figure 1.1: Examplesof modeling spaces.

1.2 ArchitecturalModels

In engineeringand the sciencesa practitioner hasa choice of modelsfrom which
to choose. Figure 1.1 depicts abstract represetations of the spaceof models for
a domain. The common tradeo® made when selectinga model is the error of
the model relative to the cost of using that model. Ideally the progressionwill
be relatively smaooth and a clear choiceis evidert for user needs,as shovn with
line (a) . For compilersthat target single-coresuperscalarprocessorsa relatively
cheap architectural model consisting primarily of instruction stream ezciency
has beene®ectie for many yearsbecausearchitectural featuresand capabilities
reduce the impact of other potential performancefactors. Compilers for Intel
Itanium processors,on the other hand, must be more complexto provide high
performance, since the architecture does not easily reduceto a few high-order
concerns[4].

Many model spacesare generally not smaoth, looking more like line (b) in
Figure 1.1. The reasonfor this staircase-lile structure is that multiple factors,
ead incurring signi cant cost, must be integrated beforea signi cant reduction

in modeling error is achieved. First-order concernsare relatively inexpensiwe to

model but are not very usablefor predicting behavior and performance. Second-
order concernsare more accurate but incur substartial usagecosts. A low-error
model is actual hardware or a cycle-accuratesimulator of the system.

| believe that line (b) in Figure 1.1 more closely resenbles the model space
for the emerging classof single-hip many-core processors. In some casesthe
error will rise with higher costsuntil a critical modeling massis adcieved, which
meansthat a particular model may be lesscorrect than one that is lessprecise
and has lower cost. For example, measuring performancewith the number of
instructions executedmay be misleadingif the architecture may take a di®erer
number of cyclesto executeead one: a version of a program with more low-
latency instructions may have higher performancethan anotherversionwith fewer
high-latency instructions. Thus, application and compiler dewelopersrun the risk
of using an architectural model that hashigher costand lessaccuracythan a less
precisemodel. This issueis one of the more signi cant problemsin attempting

to optimize applications for architectures like the GeForce 8 SeriesGPUs.

1.3 Cortributions and Organization

The purposeof this dissertationis to establishthe systematicprinciples and dis-
cussautomatable tools that can be usedto optimize programsfor the emerging
classof single-dip, data-parallel, many-core architectures. A few principles can
be usedto guideinitial mapping of applicationsto the systemand achieve reason-
able performance.Howewer, | beliewe iterativ e optimization techniquesapplied to
thesesystemswill be unableto keeppacewith rapidly changingtechnologyand of-
ten leave signi cant performanceunrealizeddue to the nature of the architecture.
The small size of many kernelsand the limited number of performance-a®ecting

optimizations for ead kernel enablesan alternate approad deweloped to nd

near-optimal con gurations of applications for this classof architectures, which |
term optimization carving.

Instead of assumingthat the architectural and program models have little
error, optimization carving usesmetrics to select multiple con gurations that
maximize metrics modeling high-order concerns.Theseare likely to be local per-
formancemaxima in the optimization space,but it is probablethat one of them
is the global maximum. The con gurations are then executedwith typical input
data to determine the one with the highest performance. It di®ersfrom an ex-
haustive spaceseart in that it only variesthoseparametersthat cansigni cantly
change performanceand does not executecon gurations that are unlikely to be
local maxima. As long as the ranking and modeling of concernsis reasonably
correct, the techniqueis likely to selecta good program con guration. Optimiza-
tion carving can alsobe usedasa tool to validate model assumptionsabout the
system, similar to prior work [5].

The cortributions of this work are as follows:

1. Characterization of the NVIDIA GeForce 8 seriesarchitecture and the abil-
ity of applications with certain characteristicsto map well to the architec-

ture. This information is presenied in Chapter 2.

2. Presenation of performanceand optimization principles for the GeForce
8 seriesin the beginning of Chapter 3. | begin with basic principles that
apply to all computer architectures and then discusshow they shouldbe ob-
senedonthe NVIDIA GeForce8 Series.Becauseof the wealth of execution
resourcesand the long latenciesto memory, programsmust be decompsed
into many threads in order to utilize the hardware well. Dewvelopers must

also utilize the local memoriesto adchieve good performance,as data local-

1The word \carve" is usedin the corntext of sculpting stone, where unwanted portions are
removed, leaving the "nished product behind.

ity is not enabledby default in the programming model. | use a matrix
multiplication kernelto demonstrateadherenceto the principlesin nding

a high-performancekernel con guration.

. Categorization of optimizations basedon their e®ectson applications ex-
ecuting on the GeForce 8 Seriesin the latter part of Chapter 3. Some
of the categoriesare optimizations that reduce memory bandwidth usage
or improve the exciency of executingcode. | discussexplicit examplesof
optimizations within ead category | also discusshow optimizations may
interact with ead other in ways that may be unexpectedto application or
compiler dewvelopers. The major side e®ectof many optimizations is the use

of additional registers,which may reducethread-lewel parallelism (TLP).

. Preseniation of the performanceof a suite of applications mapped to the
GeForce 8 Series,in Chapter 4. Se\eral applications are studied in further
depth with their performancee®ectexplained. | alsodiscussthe optimiza-
tions which have the most signi cant e®ectson performance, speci cally
memory optimizations, cortrol of register usageto maintain TLP, and bal-

ancing TLP with per-thread performance.This is presenied in Chapter 4.

. Introduction of optimization carving and discussionof its usefor optimizing
applications executing on the GeForce 8 Seriesprocessoran Chapter 5. |
assertthat it is generallynot possiblefor application dewelopers or compil-
ersto nd the bestcon guration through an iterative process,particularly
becausethey cannot cortrol part of the code generation processon the
GeForce 8 Series.As an alternative approad, | proposeoptimization carv-
ing, which beginswith a large optimization spaceand then prunesit to nd

con gurations which are likely to be the best one.

6. Presenation of results of optimization carving for one target architecture,
the GeForce 8800GTX, in Chapter 6. | experimert with di®eret metric
calculations that can be used when applying the technique and analyze
why they do better or worsethan the original calculation. Resultsare also

comparedto random sampling of the space.

Related work is discussedn Chapter 7. | nish with concluding remarksin

Chapter 8.

CHAPTER 2

ARCHITECTURE

This work usesthe GeForce 8800GTX ! graphics processingunit (GPU) asthe
hardware target for my study. Previous generationsof GPUs consisted of a
highly specializedpipelineto which any nongraphicsapplication must be mapped
through graphicsapplication programming interfaces(APIs). This processoften
involves reworking application algorithms to t the API's model. The GeForce
8800, howewer, consistsof a large set of processorcoresthat can directly address
a global memory. Although still specializedfor graphics processing.this general
addressabiliyy allows for a more generaland °exible programming model than
previous GPU generationsand allows dewelopersto easilyimplemert a wider va-
riety of data-parallel kernels. It sharesthe sametraits with other contemporary
single-dip, many-core processors:a large number of processingunits that can
simultaneously executeindependert threads in parallel, a limited amourt of lo-
cal memory per executionunit, and limited o®-dip bandwidth comparedto the
available executionresources.

In this chapter, | discussthe programming model provided by NVIDIA, the
Compute Uni ed DeviceArchitecture (CUDA) and the tools provided to support
it. | then discussthe architecture of the GeForce 8800 and how its structure
createsan aznit y for certain kinds of applications. A more completedescription

of thesecanbefoundin [6,7]. | alsodiscusssomeof the complexity that may arise

There are presenly seweral versionsof the GeForce 8800GPU. Referenceso GeForce 8800
are implied to be the GTX model in this work.

-
E—F

Figure 2.1: CUDA compilation °ow.

when mapping applications to the architecture and optimizing them. Finally, |
descrite someof the software tools provided by NVIDIA, which are usefulduring

the optimization process.

2.1 ThreadingModel

The CUDA programming model is ANSI C extended by se\eral keywords and
constructs. The GPU is treated asa coprocessotthat executesdata-parallel kernel
code. The dewloper suppliesa single source program encompassingooth host
(CPU) and kernel (GPU) code. Theseare separatedand compiled as shown in
Figure 2.1. Each CUDA program consistsof multiple phaseghat are executedon
either the CPU or the GPU. The phasesthat exhibit little or no data parallelism
are implemerted in host code, which is expressedn ANSI C and compiled with
the host C compiler as showvn in Figure 2.1. The phasesthat exhibit rich data
parallelism are implemerted as kernel functions in the devicecode. Thesekernel
functions are compiledby the NVIDIA CUDA C compiler (cudacc)and the GPU
object code generator.

A kernelfunction de nesthe codein single-programmultiple-data (SPMD) [8]
style, to be executedby ead thread invoked for a data-parallel phase. These
kernelstypically comprisethousandsto millions of lightweight threads per invo-

cation. Creating enoughthreads to fully utilize the hardware often requires a

10

©
o

% p o

(=
&) * 4 #I # 0 S
8) — | 9 >
9 > 5?2 <<!
: ' 8
/ %0 1 [!
2 % $,/ 8,/ e .A @ .A
) 3 . <<
3 1 C <92
: B
4 . 555 0 1 666 ! e . A9
& 0 1 B
7 & #
&+)y

Figure 2.2: Matrix multiplication example.

“ne-grained decompsition of work. For example,eat elemen of a result array
might be computed by a separatethread if the computation for eat elemer is
relatively independent. It should be noted that ne-grained decompsition may
createinter-thread instruction redundancy

Host code initiates kernel executionby using CUDA-speci ¢ function call syn-
tax. There are se\eral restrictions on kernel functions: they cannot userecursion
or static variable declarations,and must have a nonvariable number of argumerts.
The host code transfers data to and from the GPU's global memory using API
calls.

| use a densematrix multiplication example, operating on two 4096x4096
matrices, to illustrate the CUDA threading model. This exampleis shavn in
Figure 2.2. In this example,ead thread calculatesone elemen of the product
matrix. This calculation involvesa dot product of a row of the rst input array
and a columnof the secondnput array, showvn asthe kernelfunction matrixMul()
in Figure 2.2(b). Eac thread beginswith a pointer to a row of the rst input
matrix and a pointer to a column of the secondinput matrix. It calculatesa dot

product and writes the value into the correspnding elemen of the output array.

11

Figure 2.3: CUDA thread organization.
2D thread blocks are showvn here;thread blocks can be up to three dimensions.

Threads executingon the GeForce 8800are organizedinto a three-lewel hier-
archy, depictedin Figure 2.3. At the highestlevel, all threadsin a data-parallel
executionphaseform a grid. The matrix multiplication code in Figure 2.2 forms
a grid consistingof a total of 22 threads.

Ead grid consistsof many thread blacks All thread blocks in a grid have the
samenumber of threads. A grid can be at most 216 ; 1 blocks in either of two
dimensions,and ead block has unique coordinates. On line 7 of Figure 2.2, the
grid performing the matrix multiplication consistsof 256 thread blocks in eat
dimension, for 2!® thread blocks in total.

Ead thread block is a three-dimensionalarray of threads whosedimensions
are alsoexplicitly de ned by the application deweloper. Theseare scheduledasa
unit on the hardware. Threadshave unique coordinateswithin their thread block
and up to 512threads can exist in a thread block. On line 6 of Figure 2.2, eath
thread block consistsof 16x16threads;the third dimensionis not used.

Threadsin athread block cansharedata through a low-latency, on-cip shared

memory and can perform barrier syndronization by invoking the __syncthreads

12

primitiv e. This ability to coordinate the executionof threadsdistinguishesCUDA's
programming model from the shaderprogramming of previousGPGPU models; |

show how coordination canboost performancein the next chapter. It isimportant

to note that the very local nature of the barrier syndironization enablesit to be
performedby a fast hardware medanismand probably doesnot incur more than

a few processorcyclesonceall threadsin a thread block read the barrier.

Barrier syndironization within thread blocks is the only supported syndro-
nization on this architecture. No optionsfor syndronization at any other level are
explicitly supported; for example,barrier syncronization acrosshread blocks can
only be safelyaccomplishedby terminating a kernel. The only possiblemethod of
communication betweenthreads in separatethread blocks is to usea \mailb ox"
memory location in the global addressspace,assumingthat the developer canen-
surethat both sendingand receivingthreads are simultaneously scheduledon the
device. The lack of syndronization mehanismsbeyond barrier syndronizations
limits the ways in which parallelism can be expressedn CUDA, but it alsomakes
it easierfor novice parallel programmersto reasonabout the correctnessof their
code.

When the host code invokesa kernel, it setsthe grid and thread block dimen-
sionsby passingthem asparameters.On lines 6-7 of Figure 2.2(a), two structures
of typedim3aredeclared:the rst isfor thread blocks, which arede ned as16£ 16
groups of threads. The secondis for the grid, which consistsof 256 256 thread
blocks. The following line of code invokesthe kernel. Kernel code is shavn in
Figure 2.2(b). First, eat thread calculatesthe starting positionsin the input ma-
trices basedon its unique block and thread coordinates. It then iterates through
a loop to calculatethe result and storeit to memory

The multiple memoryspace®fa GPU's memorysystemare exposedby CUDA

to application dewelopers. The host's memoryis separatefrom the device'smem-

13

ory. The host usesAPI calls to allocate memory on the GPU and transfer data
between host and device memories. Di®erert memory spaceson the device are
also separatefrom one another. Major speedupis possiblewhen certain applica-
tion characteristicscan utilize the properties of local memories,but the deweloper
bearsthe responsibility of selectingthe appropriate data placemen and layout
for a given application. This selectionrequiresknowledgeof the characteristicsof
eath memory, asis explainedin the next section.

Finally, the hardware groups threads into warps of up to 32 threads. The
threads in a warp operate in lockstep, with a single instruction being issuedto
eight threads per cycle for four cycles. Warps are not speci ed in the CUDA
model, but are signi cant for optimization and performancepurposes. Someof

the key points are:

2 Thread blocks that do not consistof an integral number of warps will leave

executionresourceddle.

2 All threadsin a warp issuein SIMD (single-instruction multiple-data) fash-
ion, and a performancepenalty will be incurred if threadsin the samewarp
follow di®eren cortrol paths. Predication support can mitigate someof this

penalty, but the NVIDIA compiler doesnot aggressiely predicate code.

2 Memory accessesf threads in the samewarp caninteract in synergisticor
antagonistic ways. Warps should be organizedso that threadsin the same

warp do not have bank or port con’icts.

2 Becausethreads in a warp operate in lockstep, there are guarartees on
memory accessthat enable comnunication through shared memory that
would be unsafe otherwise becauseof race conditions. One optimization

which capitalizes on this property is the use of a single warp to perform

14

Figure 2.4: Organization of the GeForce 8800.

a reduction that accessesaluesin a tree pattern without syndronization.
Syndironization is unnecessaryn this casebecausehe useof a singlewarp
createsordering guararteesamongthe threadsin the warp. Optimizations

using this property are not coveredin depth in this work.

Theseissuesare discussedurther in the next section.

2.2 Microarditecture

This sectiondescritesthe microarcitecture of the GeForce 8800. | rst discuss
the execution resourcesof the system. Becausethe di®eren memoriesplay a

major role in optimization, theseare descriked separately

2.2.1 Execution resources

Figure 2.4 depicts the microarditecture of the GeForce 8800. The GPU consists
of 16 streaming multiprocessors(SMs), ead containing eight streaming proces-

sors (SPs), or processorcores,running at 1.35 GHz. There is a single instruc-

15

tion issueunit per SM. Each SP has one 32-bit, single-precision®oating-point
(FP), multiply-add arithmetic unit that can also perform 32-bit integer arith-
metic operations. Additionally, eatch SM has two special function units (SFUSs)
that executemore complex FP operations such as reciprocal squareroot, sine,
and cosine;two of these operations can be issuedper processorcycle, per SM.
The arithmetic units and the SFUs are fully pipelined, yielding 388.8 GFLOPS
(16SM e 18FLOP=SMr 1:35GHz) of peak theoretical performancefor the GPU.

Each SM has8192registersthat aredynamically partitioned amongthe threads
running onit. The registersare cortained within a banked register le, the work-
ings of which have not beenexplainedin detail by NVIDIA. The latency of the
register le is generallyassumedo be two SP cycles.

As explainedin the previoussection,threads on an SM are grouped into bun-
dles of 32 threads called warps. Warps are formed from cortinuous sectionsof
threadsin a thread block: the rst 32threadsin a block form the rst warp, etc.
A scorelnard indicateswhenall of a warp's operandsare ready for execution. The
SM then executesthe sameinstruction for the 32 threadsin the warp. An SM
issuesonly oneinstruction at a time for all threadsin a warp; whenthreadsin a
warp take di®eremn cortrol paths, it is assumedhat multiple passesvith suppres-
sion of threads on divergen paths are required to completeexecution[9]. Thus,
executionis sloved asmuch asif ead thread had executedall cortrol paths. It is
generallydesirableto group threadsto avoid this situation, if possible.Also, if the
number of threads per thread block is not evenly divisible by the warp size,any
remaining issueslots are wasted. Due to this design,the architecture naturally
favors applications with little diverger cortrol °ow; kernelswith large regionsof
data-depender control °ow are generallyunsuitable for this architecture. Knowl-
edgeof warps also helpsin avoiding memory bank con®icts, which are discussed

in the next subsection.

16

- >

Figure 2.5: CUDA thread sdheduling within an SM.
Warps are interleaved to tolerate intrawarp stalls.

SMscanperform zero-averheadsdedulingto interleave warpson an instruction-
by-instruction basisto hide the latency of global memoryaccesseand long-latency
arithmetic operations. When onewarp stalls, the SM canquickly switch to aready
warp in the samethread block or a readywarp in any other thread block assigned
to the SM. This ability to utilize thread-lewel parallelismallows an SM to tolerate
long memory latenciesby executingwork from other threads/warps while a warp
is stalled. The dynamic warp sdedulerreportedly adopts a round-robin schedule
amongready warps to ensurefairness.

Figure 2.5 shavs an exampleof thread sdeduling on the architecture. Warp
1 from thread block 1 is ableto executethe rst six instructions without stalling.
Becausdts operandsfor instruction 7 are not ready, the SM switchesexecutionto
warp 1 from thread block 2. Similarly, that warp's operandsfor the third instruc-
tion are not ready, sothe SM switchesto warp 1 from thread block 3. Execution
on the SM stalls only if noneof its residert warps have ready operands. Because
warps are independent with the exception of syndironizations betweenthose in
the samethread block, there is relatively high execution sdheduling freedomin
many applications.

Eadh SM supports a maximum of 768 simultaneously active thread contexts.
An integral number of up to eight thread blocks are scheduledto an SM at any
time, to the limit imposedby resourceconstrains. When steduling a thread

block, the hardware automatically allocatesthe necessaryamourt of seweral hard-

17

ware resourcesprimarily thread corntexts, sharedmemory, and registers. When
optimizing kernelcode, dewelopersneedto be aware of how theselimits a®ectthe
number of parallel threads that can run on the device. Optimizations may have
negative e®ectsin somecasesbecausea small changein resourceuse can cause
fewer thread blocks, and thus many fewer threads, to be simultaneously executed.
This issueis discussedurther in the next chapter.

In addition to these explicit execution resourcesthe texture cade also can
be programmedto perform interpolation and other operations usefulin graphics

applications. Speci ¢ usesof this feature are discussedn Chapter 4.

2.2.2 Memories

The GeForce 8800 has 86.4 GB/s of bandwidth to its o®-tip memory Newer-
theless, with computational resourcessupporting nearly 400 GFLOPS of peak
performanceand eat FP instruction operating on up to 12 bytes of sourcedata,
applications can easily saturate that bandwidth. In the worst case,the GeForce
8800candemand2.25TB/s (1.35GHz * [128 multiply-add operations* 12 bytes
+ 32 SFU operations* 4 bytes]) of memory bandwidth. Therefore,asdepictedin
Figure 2.4 and descrikedin Table 2.1, the GeForce8800hasse\eral on-chip mem-
oriesthat can be usedto exploit an application's data locality and data sharing
to reducethe demandfor o®-thip memory bandwidth.

The GPU's memoriesare highly specializedand have di®eren latenciesand
throughput limitations. Memoriesfurnish fast or excient accesonly for particu-
lar patterns of memory references.Poor useof local memories,or an intrinsically
poor t between an application's memory requiremers and the architecture's
available memory, canresult in poor application performanceon the architecture.

On the other hand, applications that can e®ectiely usethe local memoriescan

18

Table 2.1: Properties of GeForce 8800Memories

Memory | Location| Size Latency | Read: Description
Only
Global | o®-tip | 768 200-300 | no Large DRAM. All data reside here at the
MB cycles beginning of kernel execution. Directly ad-
total dressablefrom a kernel using pointers. Back-
ing store for constart and texture memories.
Used more exciently when multiple threads
simultaneously accesscortiguous elemerts of
memory, enabling the hardware to coalesce
memory accesseso the sameDRAM page.
Shared | on-chip | 16 ' register| no Local scratchpad that can be shared among
KB latency threads in a thread block. Organizedinto 16
per banks. It is often possibleto organize both
SM threads and data so that bank con®icts sel-
dom or never occur.
Constart| on-chip | 64 ' register] yes | 8 KB cace per SM, with data originally re-
cade KB latency siding in global memory. The 64 KB limit is
total set by the programming model. Often used
for lookup tables. The cade is single-ported,
so simultaneous requestswithin an SM must
be to the sameaddressor delays will occur.
Texture | on-chip | up to | >100 yes | 16 KB cade per two SMs, with data origi-
cace global | cycles nally residing in global memory. Capitalizes
on 2D locality. Can perform hardware inter-
polation and have con gurable returned-value
behavior at the edgesof textures, both of
which are useful in certain applications suc
asvideo encaers.
Local o®-dip | up to | sameas | ho Spacefor register spilling, etc.
global | global

achieve superlinear speedupscomparedto traditional processorsDevelopersmust

usetheir understandingof the memory systemto structure both data and kernel

code for high performance.

Glokal memoryis a large, long-latency memory that exists as o®-dip DRAM

and is the default storagelocation. Kernel output data must be written to global

memory in order to be readable after kernel termination. When acting as a

graphics processor,most accessesn the architecture are to textures or lookup

tables. Becauseof this, global memory is optimized to provide data in aligned,

contiguous, 16-word lines. This pattern is termed a coales&d access.

19

Coalescedaccessesan be adhieved by designingkernelsso that eat thread
in a half-warp accessethe correspnding word, in ascendingthread order, in an
aligned, 16-word sectionof data. The memory systemdetectsthe threads jointly
accessinghe completeline and aggregateghe accessesto a singleaccess.This
optimization is termed glokal memory coalescing Other patterns canacieve only
a small fraction of the e®ective memory bandwidth of coalescedaccessesUnless
memory requestsare relatively rare, application performancewill generally be
limited by memory bandwidth when memory accesseare not coalesced.

Attempting to coalesceaglobal memory accessemay require major changesto
data structuresin both host and devicecode. For example,data organizedas an
array of structureswill causethreadsto load nonunit-strided addressesvhenthey
access elds of adjacen structures. Figure 2.6 shavs an example of this, with
threadsaccessin@ eld x of cortiguous elemerts in an array of structures. Loads
to non-contiguous memory addressesloes not enableglobal memory coalescing,
asshawvn in Figure 2.6(a): a separatememory requestis requiredfor eat thread.
Reorganizingthe data as separatearrays, asis donein Figure 2.6(b), will place
these elds next to ead other and naturally set up global memory coalescingif
the alignmert requiremerts are satis ed.

The shared memory is a low-latency scratchpad memory in ead SM that is
useful for data that is either written and reusedor sharedamong threadsin a
thread block. In CUDA kernel code, sharedvariables (generally arrays) are de-
clared with speci ¢ sizeg and an instance of the variable exists for ead thread
block. This memory is accessibleonly during execution of its thread block and
its contents are discardedafter the thread block completesexecution. Data must

be loadedto and from sharedmemory similar to global memory: transfers from

2Support for sharedvariableswith sizesdetermined at run time exists but is not usedin this
work.

20

Figure 2.6: Contrasting noncoalescednd coalescedhccesgatterns.

global memory to shared memory must go through the registers of individual
threads. The sharedmemory consistsof 16 banks; simultaneousrequeststo dif-
ferert addressesn the samebank will con®ict and causea stall. Accessedo the
sameaddressin the samebank are broadcastto requestingthreads.

The useof scratdhpad memorieshasbeencommonin embeddedsystems.How-
ewver, sharedmemory has one major capability beyond those, which is enabling
reuseof data acrossthe entire thread block with the assistanceof syndronization.
For example,if eat thread in a thread block readsa portion of a block of data,
they can cooperatively load the valuesof the data into registersand then store
them into the sharedmemory for useby the entire thread block. An exampleof
this within a matrix multiplication kernelis visited in the next chapter.

There are two read-only data cades. The rst, the constant cache holds a
working setof the constart memorydata. It hasthe ability to broadcastthe same
value to all threadsin a warp, making it usefulfor lookup tables and other data
where data and memory accesgatterns can be manipulated to t this pattern.

This ability providesan e®ectiv memorybandwidth many times greaterthan that

21

provided to global DRAM. The applicationswith the most dramatic speedupsin
Chapter 4 are the onesthat can take advantage of this capability. When threads
do not load the samevalue from the cade, it takesse\eral cyclesto provide all
requestedvalues.

The texture cacheis the other data cade and holds a working set of the
texture memory data. It has a much longer latency than the constart cade
but is useful for data with 2D spatial locality. It doesnot su®eras greatly as
the constart cade from irregular memory read patterns. The texture cade can
also interpolate values and provide boundary values for 2D arrays, which is a
useful feature for graphicsapplications. Use of the texture cade requiresspecial
API calls with the input texture and coordinates passedas parameters, while
addressingthe constart cade is done implicitly by declaring a data structure
with the __constant __ keyword.

Memory bank and port con’icts are issuesthat must be addressedwvhen de-
veloping applications for this architecture. In general, simultaneous accesse$o
the samelocation are desirablefor the constart cadhe and individual banksof the
sharedmemory If threadsin the samewarp load di®erer locations, the memory
will take additional cyclesto satisfy the request. For example,assumethat the
primary datum of an application is an array of structures, ead 16 words long,
which is placedin sharedmemory Threadsin a warp, accessinghe same eld of
successig objects, will attempt to accessli®erer locationswithin the samebank
and thereforecon®ict. This con’ict canbe avoided with data repatrtitioning; e.g.,
two separatearrays, one of 15-word sizeand the other 1-word, will not result in
con’icts when the same eld is accessedor di®eren objects. Data padding is
another technique to addressthis problem.

Unlike bank con®icts in sharedmemory, reorganizingthe data in global mem-

ory is generallymore ditcult becausdt requireseither data structure changesin

22

Table 2.2: Constraints of GeForce 8800and CUDA

Resourceor Con guration Limit
Parameter

Threads per SM 768threads
Thread Blocks per SM 8 blocks
32-bit Registersper SM 8192reqisters
SharedMemory per SM 16 384 bytes
Threads per Thread Block | 512threads

the host code portions of the application or a separatedata reorganizationphase,
either in host or kernel code. One possiblework-around is to load data in bulk
into shared memory and then useit as necessaryewen if little reuseor no use
occurs for someof the loaded data. Data structures of new applications whose
executionis primarily in parallel kernelsshould be designedand constructed to

avoid theseissues.

2.3 Architectural Interactions

Accurately predicting the e®ectsof one or more compiler optimizations on the
performanceof a CUDA kernelis often quite ditcult, largely becauseof interac-
tions amongthe architectural constrairts listed in Table 2.2. Many optimizations
that improve the performanceof an individual thread tend to increasea thread's
resourceusage.Howeer, asead thread's resourceusageincreasesthe total num-
ber of threads that can occupy an SM decreases.Occasionallythis decreasen
thread court occursin a dramatic fashionbecausehreads are assignedo an SM
at the granularity of thread blocks. In short, there is often a tradeo®betweenthe

performanceof individual threads and the thread-lewel parallelism on an SM.

23

For example,consideran application that uses256 threads per block, 10 reg-
isters per thread, and 4 KB of sharedmemory per thread block. This application
can schedule3 thread blocks and 768threadson ead SM. Howewer, an optimiza-
tion that increasesad thread's register usagefrom 10to 11 (an increaseof only
10%) will decreasehe number of thread blocks per SM from three to two, which
decreaseshe number of threadson an SM by 33%. In this casethe GeForce8800
can only assigntwo thread blocks (512 threads) to an SM becausea third block
would increasethe number of threads to 768, with total register usageof 8448
(768threads* 11 registers/thread), above the 8192registersper SM available. In
cortrast, an optimization that increasesead thread block's shared memory us-
ageby 1 KB (an increaseof 25%) doesnot decreasdhe number of thread blocks
per SM. The optimization spaceis inherertly nonlinear, with register usagein
particular often triggering changesbecausemany optimizations a®ectit.

It isimportant to note that additional optimizations or a changein the granu-
larity of work that ead thread performsmay evertually obtain more performance,
ewven though an initial changesigni cantly reducedperformance. This possibility
makesiterativ e optimization uncertain and dixcult, sinceone cannot be certain
that a seeminglyhigh-performancecon guration is not a local performancemaxi-

mum. Chapter 3 goesinto more detail on the e®ectf the various optimizations.

2.4 Sofivare Environmen and Support

For CUDA compilation, NVIDIA provides a compiler wrapper called nvac that
handlesall parts of the compilation °ow, including linking hostand kernelbinaries.
The compiler also supports se\eral options that programmerscan useto debug
kernelsand to gainintuition ontheir performance.Two °ags are esgecially useful:

-ptx and -cubin . The amourt of time it takesto run nvcc with these°ags is

24

much shorter than actual compilation becauseonly the kernel code is processed
when using the °ags.

Nvcc compileskernel code to an asserbly-like represemation termed PTX.
PTX is normally encaded in an object le for consumption by the CUDA run-
time, which processeshis code, performsfurther optimization sud asinstruction
sctheduling, and generateshardware-speci ¢ code for execution. The purpose of
PTX is to provide code portability and to abstract the exact workings of the
architecture away from application dewelopers.

The -ptx °ag for nvccoutputs PTX codein a human-readableext format. Al-
though PTX is not the exactcode that is executedon the hardware, it often gives
insights into why performancedegradesor improvesafter a manual optimization
is applied. In particular, information sud asinstruction court, instruction mix,
and a rough idea of stheduling can be reliably utilized. For example, unrolling
a loop with strided memory accessesreatessuccessig operations that operate
at di®eren o®setsfrom a baseaddress. PTX shows the reduction in address
calculationsthat results from this transformation.

The CUDA runtime that generatesexecutablemadine code restedulesin-
structions and allocatesregisters. The runtime introducesan uncortrollable factor
during program optimization and makesthe e®ectsof optimizations on local re-
sourceusagelesspredictable. In addition, if the PTX code usesmore registers
than are physically available, the kernel will fail to execute.

The -cubin °ag outputs the resourceusageof GPU kernel code, including
the shared memory used per thread block and registersused per thread. The
resourceusageis critical to understandingthe performanceof the code because
ead SM runs the number of thread blocks that can t into the local resources.
As previously discusseda small changein code can result in resourceusagethat

changesthe number of thread blocks executingon an SM, which can signi cantly

25

impact performance. The information provided by -cubin is usedin this work to

calculatethe number of thread blocks that can simultaneouslyresideon ead SM.

26

CHAPTER 3

OPTIMIZATIONS

This chapter discussesoptimization principles and strategies for data-parallel,
many-core processors,sud as the GeForce 8800. | rst explain the principles
that should be kept in mind when optimizing applications for the architecture. |

then apply theseprinciples to a matrix multiplication kernel. The chapter closes

with descriptionsof speci ¢ categoriesof optimization with, concreteexamples.

3.1 Performancé’rinciples

There are three basic principles to considerwhen optimizing an application for
any platform. Performanceof an application on a highly parallel systemis gener-
ally measuredby its throughput of usefulinstructions. For applicationswith good
performanceon the GeForce 8800, theseare generally °oating-point operations.
The °oating-point throughputof an application degendson the percentageof its
instructions that are °oating-point operations. The GPU is capable of issuing
172.8billion operations per secondon the SPs. Theseinclude fusedmultiply-add
operations, which are courted as two operations for throughput calculations. If
a quarter of an application's instruction mix are fused multiply-adds, then its
performancecan be at most 2 * 1/4 FP per op * 172.8billion ops per second=
86.4GFLOPS. This performancecan be achieved whenthe SPsare fully utilized.
Assuming that utilization of execution resourcesis not reduced, decreasingthe

number of non°oating-point operationsis bene cial to performance. Transforma-

27

tions that reducethe proportion of theseinstructions are discussedin the next
sections.

Periods in which the exeution resoures are not utilized, due to stalls, de-
tract from performane. A stall generallymeansthat there are no threads whose
operandsare available for execution. Becauseof the long (and ewer increasing)
latency to o®-dip memory, the primary utilization concernoften is ensuringthat
enoughindependen work existsto be executedwhile threadsare stalled on global
memory accesses.

As noted in the previous chapter, there is signi cant sceduling freedomon
the GeForce8800. First, an SM can cortinue to executeindependert instructions
after a long-latency instruction within the samewarp. Second,di®eren warps
in the samethread block can executewhile a warp is stalled on a long-latency
operation. Third, up to eight independert thread blocks can be simultaneously
assignedto an SM. A wide variety of techniques enhanceone or more of these
aspects of schedulability, although they can incur an instruction exciency cost.

Lastly, glolal memory bandwidth can limit the throughputof the system The
86.4 GB/s global memory bandwidth on the GeForce 8800 must feedthe 388.8
GFLOPS of executionresources,so only a small fraction of instructions can be
global memory accesse# the hardware is to be utilized e®ectiely. Chapter 4
shows examplesof optimized applicationsthat are still bandwidth-limited on the
GeForce 8800. This issuewill cortinue to be a rst-order concernfor many-core
processorsas execution resourcescan increaseat a near-exmnertial rate while
bandwidth into and out of a chip will grow at a much slower rate.

These principles apply to any form of processor. The methods of following
theseprinciples, howewer, can di®erbetweenarchitectures. For the GeForce8 Se-
ries and similar GPUs, the processfor optimizing applications can be constructed

from a list of v e principles.

28

1. Leverage zero-overhead thread scheduling to hide memory latency .
The latency of global memory s at least 200 cycles,requiring 16000r more
instructions to cover the latency for the eight SPsin eath SM. The ar-
chitecture provides zero-overhead warp sdeduling to enable thread-leel
parallelism to supply instructions to hide this latency, whereastraditional
processordave beenlimited to usinginstruction-level parallelism (ILP) and
sometimesa small amourt of TLP. The impact on program dewelopers is
that their applications may needto be decommsedto a much ner level

than they previously practiced to provide a suxcient number of threads.

2. Threads within a thread block can communicate via synchroniza-
tion, but there is no built-in global comm unication mechanism for
all threads. From the hardware designperspective, this designavoids the
needfor virtualization of hardware resourcesgenablesthe execution of the
sameCUDA program acrossprocessoifamily memberswith a varying num-
ber of SMs, and makesthe executionhardware relatively scalable. Howeer,
this limits the kinds of parallelismthat canbe utilized within a singlekernel

call, and a®ectswhich algorithms map well to the architecture.

3. Optimize use of on-chip memory to reduce global memory band-
width usage and redundan t execution. For most unoptimized applica-
tions the primary performancebottlened is global memorybandwidth. The
bandwidth limitation was recognizedby researbers over a decadeago[10,
11], but mainly in the cortext of superscalarprocessors.With initial ver-
sions of applications, optimizations generally will not improve application
performanceunlessthe application usesbandwidth more exciently asa re-
sult. Working memory within a group of coresconsistsprimarily of a large

register Te and the sharedmemory. Sharedmemory's strength is enabling

29

the sharing of data amongthreadsin a thread block. Texture and constart
cadescan also reducethe load on global memory bandwidth. Dewelopers
still have to control the number of registersand shared memory used per
thread block, sinceusingtoo many of theseresourcesanreducethe number

of thread blocks simultaneously running per SM, exposing memory stalls.

4. Group threads to avoid SIMD penalties and memory port/bank
con®icts. CUDA is basedon the SPMD model, but its current implemen-
tation on the GeForce8800imposesSIMD mode amongthreadsin the same
warp. Good performancerequiresthat threadsin a warp follow mainly the
samecortrol °ow path during execution. In somealgorithms, threads can
be reorganizedio avoid divergert cortrol °ow. Appropriate thread grouping
can alsopresene performanceby avoiding memory port and bank con®icts,

aswell as enableglobal memory coalescing.

5. Trade resource usage to impro ve utilization of hardw are resources
and exciency of the instruction stream. Becauseof the wide variety
of executionresourcesijt is possibleto useresourcedo free up demandson
other resourcesand improve overall systemperformance. For example,the
contents of registerscan be spilled to sharedor global memory to reduce
the number of registersper thread and thus potenrtially increaseconcurrency
on the system. Conversely using more registersper thread can reducethe
number of loads and stores executed per thread and increaseinstruction
streamezxciency, although this shift may reducethe total number of threads
simultaneously running on the system. Examplesfor speci ¢ applications

are discussedn Section4.3.

The next sectionillustrates how theseprinciples enableexcient optimization

for a simple kernel running on a many-core processor.

30

3.2 OptimizationExample:Matrix Multiplication

This sectionappliesthe optimization principles described in the previous section
to a matrix multiplication kernel. Matrix multiplication is a highly parallel algo-
rithm with heavy data sharingacrossthreads. To calculatean elemen of a result
matrix, one takesthe dot product of the correspnding row of the rst input
matrix and the column of the secondinput matrix. Figure 3.1 shavs multiple
versionsof a matrix multiplication kernel, while Figure 3.2 depicts their mem-
ory accesatterns. Experimerts were performedon a 4096x4096densematrix.
Starting values for indexA, indexB, and indexC are determined by block and
thread coordinates. | usethread blocks consisting of 256 threads arrangedin a
16x16square.

Figure 3.1(a) shows a simple matrix multiplication kernel: ead thread loops
through a sequencdhat loadstwo valuesfrom global memory, multiplies them,
and accunulates the value. This code provides 10.58 GFLOPS of performance.
Before making any assumptionsabout the sourceof performancelimitations, the
deweloper can calculate the theoretical performance of the code assumingfull
SP utilization. There is one fused multiply-add out of eight operations in the
inner loop, for an estimated potertial throughput of 43.2GFLOPS. Sincese\eral
hundred threads are being executedper SM and all threads accesglobal memory
for their input data, the problem appearsto be lack of available global memory
bandwidth.

Although the algorithm hasinherert data reuse,this implemertation doesnot
capitalize on that. All memory operations accesglobal memory. One quarter of
the operations executedduring the loop are loads from o®-dip memory, which
would require a bandwidth of 173GB/s (128 processorcores* 1/4 instructions *

4 Blinstruction * 1.35GHz) to fully utilize the instruction issuebandwidth, which

31

% #
1

1 # ! #

$ $

% 11
|
&
$ $
& &
|
!
! " # !
$! #
$
% 11
!
% I
!
&
&
$
$
&

Figure 3.1: Matrix multiplication optimization examples.
Code di®erencegrom tiled versionare shown in bold.

32

#

Figure 3.2: Graphical depictionsof the memoryacces$atterns of di®erer matrix
multiplication versions.

33

is more than twice the available amourt. In orderto acieve better performance,
a deweloper must reducethe number of accessesf global memory,

For a given application, there are three choicesfor local memories: texture
cade, constart cade, and shared memory The appropriate choice for ma-
trix multiplication is the shared memory; constart cade is unsuitable because
threadsin a warp will simultaneously load di®eren valuesfor at least oneinput
matrix, and the accesatterns and amourt of reusefavor sharedmemory over
texture cade. By using memory tiling [12{15], the kernel's global memory ac-
cessegan be reducedby a factor equalto the length of a squaretile. The choice
of thread block is a major decisionbecausdarger tile sizesincreasedata sharing
and thus global memory exciency, but potertially reducesdedulability because
fewer thread blocks can be executedper SM. On the GeForce 8800there are a
limited number of useful sizesbecauseof the requiremerts for global memory co-
alescing,the needto have full warps for good SP utilization, and the maximum
of 512threads per thread block.

For matrix multiplication, | choosea thread block and memory tile size of
16x16 becausethe memory system coalescesaccesse®f 16 aligned, cortiguous
words, using o®-dip bandwidth e®ectiely. This con guration reducesthe total
number of global loads performedby ead thread by a factor of 16. The code for
this versionis shown in Figure 3.1(b), with a graphical depiction in Figure 3.2(b).
Two 16x16 shared memory arrays are declared, one for ead input matrix tile.
Ead thread loads a single elemen from ead tile: cooperatively they load both
16x16tiles into registers. The elemens ead thread loads are chosenso that
half-warps load full linesfrom memory, enabling coalescednemory accessesThe
threads then store the tiles into the sharedmemory Finally, a small loop calcu-
lates the partial dot product. Two syndronizations are required for correctness:

the rst ensuresthat valuesin the sharedmemory are written beforebeing used

34

by other threads;the secondensureghat all threadshave nished usingthe values
in sharedmemory beforea newtile is loaded.

The 16x16tiled versionof matrix multiplication acdieves46.49GFLOPS, or
appraximately 4.5X the executionthroughput of the initial version. This perfor-
manceis slightly higher than the estimated potential throughput of the original
code, soit appearsthat the application achievesfull usageof the SPs. The use
of 16x16tiles reducesglobal loads by a factor of 16 over the nortiled con gura-
tion, which reducesthe demandon global memory bandwidth to appraximately
an eighth of the available bandwidth. Since utilization appearsto be high, a
deweloper can now focus on improving the exciency of the code.

Code exciency can be improved by reducing the number of operations that
are not °oating-point calculations. Branches and addresscalculations are two
examplesthat are easilyremoved. Figure 3.1(c) shovsremoval of theseoperations
via loop unrolling. By unrolling the inner loop, addresscalculationinstructions are
eliminated by replacingvariable array indiceswith constart o®sets.By completely
unrolling the loop, all branch instructions have beeneliminated. This version of
the matrix multiplication kernel can often achieve double or greater performance
over the simpletiled version.

Another method of improving exciency is to perform rectangular tiling, as
shown in Figure 3.1(d) and depictedin Figure 3.2(c). This transformation changes
the granularity of computation sud that a single thread calculatesmultiple ele-
merts in the result matrix. The primary bene t to exciency is registertiling [16]:
the value As[ty][i] only needsto be loadedinto a register oncefor the calcula-
tion of two di®erert result elemerts, reducingthe total number of loads. The total
number of executedcortrol °ow operationsis alsoreduced. Rectangulartiling can
be combined with unrolling for further gains. The next sectionwill discussother

ways in which rectangulartiling may a®ectperformance.

35

A nal optimization that should be mertioned is prefetching, which some
dewelopers perform instinctively. In the code shovn in Figure 3.1(e), loadsof the
valuesfor the next tiles to be processedreinitiated prior to calculatingthe partial
dot product, hiding the latency of the global memoryaccess.This transformation
improvesindividual thread performance which is generallyeasyfor a developer to
reason.Howewer, prefetching in this situation improvesperformanceonly slightly.
Prefetching can signi cantly improve executionresourceutilization on traditional
processordecausdt reducesor eliminatesthe exposedstall time prior to the use
of aloadedvalue. On a highly threadedsystemsud asthe GeForce8800,exposed
stall time is generally covered by the execution of other threads, so prefetciing
doesnot have as great a performanceimpact.

Prefetching can sometimesdecrease overall performanceby reducing thread-
level parallelism. In the caseof matrix multiplication, prefetcing requirestwo
additional registersper thread to receiwe the prefetchedvalues,which canresultin
fewer thread blocks executingon ead SM. Experimerts on matrix multiplication
in Section5.1show that prefetching hasa minor e®ecton performanceat bestand
in one casedecreaseperformancedue to reducedTLP. The optimized versions

of applicationsin Chapter 4 generallydo not use prefetcing.

3.3 Categorie®f Optimization

One fact that is ignored by many novice dewelopersis that \optimizations" are
simply transformations that may decreaseapplication performanceunlessthey
target a speci ¢ behavior which inhibits application performancefor the target
application and architecture. Thus, optimization should always be doneby rst
consideringwhat e®ectsare desired, then analyzing which transformation will

producethe e®ectwith minimal negative side e®ects.In this sectionl divide the

36

three principles in Section 3.1 into various categoriesof optimization that apply
to the GeForce 8800,then mertion speci ¢ examplesof optimizations.

The basicstrategy for adhieving good kernelcode performanceon the GeForce
8800is to rst ensurethat executingthreads are not starved for data: global
memory bandwidth should not be the limiting factor on performance.After that,
optimizations should balancean excient instruction streamwith high utilization
of executionresources.

Optimizations rarely improve an aspect of machine-level behavior in an iso-
lated manner. Many optimizations a®ectse\eral aspects, producing a give-and-
take situation between di®eren categories. Moreover, many optimizations in-
creaseresourceusageand thus compete for a limited budget of registers,thread
contexts, and sharedmemory The most commonway in which optimizations in-
teract and interfere on the GeForce 8800is by their e®ectson register usage.For
example,an optimization that increaseshe number of independen instructions
after a long-latencyinstruction generallyusesadditional registers. This optimiza-
tion causesregister usageof eat thread and thread block to increase,which in
turn can causethe number of thread blocks assignedto eath SM to decrease.l

mertion speci ¢ casesbelow.

3.3.1 Memory bandwidth optimization

The rst classof optimizations dealswith reducing pressureon memory band-
width, particularly global memory. Attempts to improve instruction exciency
or execution resourceutilization matter little to performanceif the executing
threads are starved for data. This problem was recognizedby Ding and Kennedy
for traditional processorgl11];the issueis exacerbatedfor data-parallel many-core

processors Listed hereare sometechniquesfor reducing global memory accesses.

37

Ding and Kennedy mertion seeral in [17], with more sophisticated techniques

descriked in [18].

2 Capitalize on the reuse of data via local, low-latency memories. |
shoved an exampleof the useof sharedmemoryin a matrix multiplication
kernel. The cades also assistin reuseof data. Utilizing the memories
e®ectively may require restructuring of computation using transformations

sud asloop interchange[19] to createan amenableaccesgattern.

2 Impro ve data locality by coalescing global memory accessesto fully
utilize the width of the global memory bus. Noncoalescediccessesitilize

only a fraction of the total memory bandwidth. Optimizations include:

{ Using shared memory as a bu®er to load data in bulk, then
accessinghem in whatewer pattern the programmer nds corveniert
from that memory. Evenif bank con®icts occur during sharedmemory
accessesgpverall performancemay improve even without much data
reuse. Note that memory tiling naturally acieves this e®ect. It is
conceiablethat loading somedata that will not be usedmay be worth
the e®ectf coalescingalthough no examplehasbeenencourered in

this study.

{ Reorganizing data and restructuring the application so that
the data the kernel accessesare located in aligned, contigu-
ous regions of memory . One exampleis to split an array of struc-
tures into multiple arrays sothat elds that formerly required nonunit-
strided accessare now adjacernt in memory Doing so manually is gen-
erally consideredpoor software engineeringpractice, but it may be
possiblefor the compiler to perform the transformation or for a smart

memory systemto reorganizedata at runtime. Work by Yamada et

38

al. [20] proposeda combined hardware and software technique to ad-
dressthis issue. Truong et al. [21] recognizedthe positive cadhe e®ects
of similar optimizations on di®eren instancesof dynamically allocated

objects, while Chilimbi et al. automate the optimizations [22].

It is possiblefor applicationsto still be performance-limitedby global memory
bandwidth even after theseoptimizations have beenperformed. Sud applications
often have little data reuseand have data organizationsthat cannot be signi -

cartly modi ed or require major e®ortto be modi ed.

3.3.2 Dynamic instruction reduction

The secondcategory is to reducethe dynamic instruction court per thread, or
increasethe exciency of the instruction stream. Becausetheseare commontech-
niquesfor improving the performanceof applications executingon traditional su-
perscalarprocessorstheir rst-order e®ectsare generallywell understaod. Some
of the most e®ectie examplesof theseoptimizations are listed below, alongwith

a short description of their intended e®ectsand commonside e®ects.

2 Common subexpression elimination (CSE) . This optimization removes
repeated calculations of an expression,suc as an arithmetic operation or
the load of a value, and instead usesthe saved value of a previous compu-
tation from a register. It tendsto useadditional registersunlessa sequence

of redundart expressiongan be eliminated.

2 Loop-invariant code motion (LICM). Relatedto common subexpres-
sion elimination, this optimization involvesthe movemer of an expression
within a loop body to a program point prior to the loop. LICM is pos-

sible when the sourcesof the expressiondo not change during the loop's

39

executionand when the expressionis calculated on every path of the loop
(for nonspeculative motion). Similar to CSE, it tends to usesadditional

registers.

Loop unrolling. When aloop hasa constar or otherwiseconstrainedtrip
court, it is often advantageousto \unroll* the loop by an ewven divisor of
the trip court, replacing it with a loop that iterates fewer times but per-
forms seweral times more work per iteration. This optimization has se\eral

bene ts:

{ Fewer loop iteration instructions, sud as branchesand induction vari-

able incremerts, are executed.

{ Instructions can be conmbined. For example,a loop may incremen a
pointer and then load from the location. When the loop is unrolled,
instead of multiple incremert operations, subsequenloadsincorporate
an o®setand a singleincremen operation is performed. The unrolled

matrix multiplication kernelin Figure 3.1(c)is an exampleof this e®ect.

Complete unrolling of a loop is the extreme caseof loop unrolling, and is
very pro table for loops with small bodies sincethe majority of dynamic
operationsmay be loop counter and branch instructions. It alsofreesup the
registerthat wasusedasthe loop courter. Loop unrolling must be balanced
againstadditional pressureon instruction cade capacity, soin generalonly
the innermostloopsof a kernelwill be the onesunrolled. It may alsotrigger

other optimizations that changeresourceusage.

40

3.3.3 Increasingthread-lewel parallelism

The goal of the third category of optimization is to improve execution resource
utilization by providing enoughthreads/warps to hide the stalling e®ectsof long
latency and blocking operations. Examplesof long latency operations are loads
from global or texture memories. Blocking operations include barrier syndro-
nization, which stops a warp's executionuntil all warps in the sameblock have
readed the barrier.

A common optimization in this categoryis to decreasehe thread block size
and increasethe number of thread blocks. This optimization can increasethe
number of thread blocks assignedo eat SM and provide moreindependen warps
from other thread blocks when onethread block reachesa barrier. Howewer, this
transformation often requireschanging the granularity of computation. In cases
where memory tiling is utilized, it may have the e®ectof reducing data sharing

and increasingpressureon memory bandwidth.

3.3.4 Increasingintrathread parallelism

The fourth category of optimization, intrathread parallelism, ensuresthe avail-
ability of independert instructions within a thread. These optimizations have
a multiplicativ e e®ectwith thread-lewel parallelism, so small changescan have
major e®ectson performance. Theseoptimizations can be broken down into two

subcategories.

2 Instruction-lev el parallelism. ILP-increasingcode transformations have
been extensiwely studied and applied to many architectures, particularly
EPIC/VLIW architectures. John Sias' Ph.D. dissertation [23] discusses
many of thesein detail. Oneinteresting caseis loop unrolling, which is also

an exciency-increasingoptimization. An exampleis shavn in Figure 3.1(c),

41

where the loads from shared memory for the di®eren tiles can executein

any order.

This subcategoryis primarily the jurisdiction of the instruction scedulerof
the CUDA runtime. It appearsto resheduleoperationsto hide intrathread
stalls, sometimesto the detriment of interthread parallelism. As with opti-
mizationsto reduceinstruction count, schedulingto reduceintrathread stalls
may increaseregister usageand potentially reducethe number of thread

blocks on eah SM.

Memory overlap. A specialcaseof ILP, memoryoperationscanbe sted-
uledto amortizeand overlap latencies,reducingthe likelihood that execution
resourceswill stall on global memory accessesThe GeForce 8800supports
a large number of in-°ight memory accessesnaking the overlap of memory
accesdatenciesa key aspect of performanceon that architecture. This cate-

gory breaksdown into memory-le\el parallelism (MLP) [24]and prefetcing.

{ Memory-lewel parallelismrefersto the reorderingof memory operations
to ensurethat many loadsare in °ight beforea stalling useis encoun-
tered. For example,in Figure 3.1(b), loadsof elemerts of arrays Aand
B can be stheduledbeforethe store to Asin order to amortize the ex-
posedlatenciesof the loads. This conceptis similar to the overlap of
cade misseson traditional processord25]. Proper extraction of MLP
also causesmore work to be available from ead thread block during
the stall, since ead warp can executetwo load operations prior to a
consumingstore. This optimization is generallythe domain of nvccand
is dixcult for a deweloper to cortrol manually, but is still animportant

aspect of extracting performancefrom applications.

42

{ The dewloper can explicitly insert prefetching code to initiate long-
latency global loadsasearly aspossibleand hide its latency with other
instructions. An exampleis shavn in Figure 3.1(e). As discussedn the
matrix multiplication example, the abundart TLP supported by the
architecture reducesthe performancebene ts of prefetching relative to
its e®ectson traditional processors.In addition, prefetching generally
requires additional registersin code regions where register usageis
already high, sometimescausingfewer thread blocks to resideon eath
SM. Good managemenhof ILP and MLP canminimize the incremenal

bene t of prefetcing.

3.3.5 Work redistribution

The fth categoryinvolvesredistribution of work acrosshreadsand thread blocks.
These optimizations can change both instruction exciency and resourceutiliza-
tion, with somee®ectson memory bandwidth usage. Becauseof their nature,
optimizations in this category can have unpredictable results due to changesin
register usage.

Thread block and memory tile shape and size selectionis one optimization
that falls into this category Although tiling is primarily doneto improve memory
bandwidth usage,the size of the tile also has exciency and utilization implica-
tions. Large tiles generally have higher exciency than smaller tiles, but reduced
scheduling °exibilit y (utilization) sincea larger perceriage of threads must stall
at barrier syndronizations.

One exampleis rectangular tiling in Figure 3.1(d): instead of eadh thread
computing oneresult, they compute multiple results. This transformation allows

registertiling (alsoreferredto asunroll-and-jam), wherevaluescanbe reusedin a

43

registerwithin a singlethread to eliminate loads. The total number of threadsis
reduced,which may potentially reducethread-lewel parallelism. Another bene t is
the reduction in the total number of cortrol °ow operations executedby a kernel:
more usefulwork is doneper thread block and the total number of thread blocks
is reduced. There is often a small increasein ILP, but the increasein register
usageoften causedewer threads and thread blocks to be executedper SM.
Another optimization that is occasionallyuseful is to distribute work across
multiple invocations of a kernel. This optimization is sometimesnecessaryto use
the constart cade, due to its size limitation. Splitting execution acrossmul-
tiple invocations may also help improve cade behavior. The additional kernel

invocation overheadis generallynegligiblecomparedto the kernelexecutiontime.

3.3.6 Resourcebalancing

The last category is best termed resourcebalancing. The purpose of these op-

timizations is to make changesin resourceusageto alleviate pressureon over-

subscribed resourcesand shift to underutilized onesto produce better overall

performance. Unlessthe whole systemis taken into accour, the optimization

may be courterintuitiv e. Becauseof the large amournt of execution resources,
most optimizations involve giving up instruction exciency to optimize another
aspect of execution.

One optimization in this category is the movemert of data from capacity-
constrained,low-latency memoriesto larger, high-latency memoriesto allow more
threads to run simultaneously For example, explicit register spilling to shared
or global memory can be performed by the application deweloper to allow more
thread blocks to be simultaneously executedper SM. The resulting con guration

may achieve higher performance,despite the reducedinstruction ezciency, be-

44

causethe additional thread blocks improve overall resourceutilization. Similarly,
a kernel with small input and output data setsbut large working setsmay nd
it advantageousto spill data to global memory to avoid congestingregistersor

sharedmemory,

45

CHAPTER4

APPLICATION STUDY

This chapter discussesan application mapping study performedin Spring 2007.
Se\eral groupsof studerts ported applicationsto the GeForce 8800with the goal

of achieving maximal speedup. Theseapplications were of interestto existing de-

velopers and users,who sav value in obtaining signi cant performanceincreases.
They are more interesting and useful than microbendimarks becauseof their

larger code sizesand data sets,and variety of instructions and cortrol °ow. Work

of a similar nature has been performed by Che et al. [26]. | discussthe appli-

cability and e®ectienessof the principles and techniquesin Chapter 3 on these
applications.

To accommalate the SIMD nature of the SMson the GPU, threadsof an appli-
cation must follow nearly uniform paths of executionto have good performance.
They should also have regular memory accessesand high compute-to-memory
ratios or signi cant data reuse. Table 4.1 lists applications that have thesechar-
acteristicsin varying amourts and have beenported to CUDA, alongwith source

and kernellines of code (excluding commerns and whitespace).

46

LY

Table 4.1: Application Suite

Application | Description Sourceg Kernel CPU
Lines | Lines | Execution
Paral-
lelized

H.264 A modi ed version of the 464.h264refbenchmark from SPEC CPU2006. This application is | 34811 194 35%
an H.264 (MPEG-4 AVC) video encader. A serial dependencebetween motion estimations of
macroblocks in a video frame is removed to enable parallel execution of the motion estimation
code. Although this modi cation changesthe output of the program, it is allowed by the H.264
standard.

LBM A modi ed version of the 470.lom bencdhmark from SPEC CPU2006. This application usesthe | 1481 | 285 > 99%
Lattice-Boltzmann Method for simulating 3D °uid dynamics. The program has beenchanged
to usesingle-precision®oating-p oint and print fewer status reports.

RC5-72 This application acceleratesdistributed.net's RSA RC5-72bit challenge,which performs brute- | 1979 | 218 > 99%
force encryption key generation and matching.

FEM Finite elemen modeling. Simulation of dynamic behavior of 3D graded materials. 1874 | 146 99%

RPES Rys polynomial equation solver. Calculates 2-electron repulsion integrals, which are a sub- | 1104 | 281 99%
problem of molecular dynamics.

PNS Petri Net Simulation. Simulation of a mathematical represenation of a distributed system. 322 160 > 99%

SAXPY Single-precision®oating-p oint implemertation of saxpy from high-performanceLINPACK, used | 952 31 > 99%
aspart of a Gaussianelimination routine.

TPACF Implementation of two point angular correlation function, usedto nd the probability of nding 536 98 96%
an astronomical body at a given angular distance from another astronomical body.

FDTD Finite-di®erencetime-domain. 2D electromagneticwave propagation simulation in an arbitrary, | 1365 93 16.4%
user-de ned medium.

MRI-Q Computation of a matrix Q, represerning the scanner con guration, usedin a 3D magnetic | 490 33 > 99%
resonanceimage reconstruction algorithm in non-Cartesian space.

MRI-FHD Computation of an image-sgeci ¢ matrix F™ d, usedin a 3D magnetic resonanceimage recon- | 343 39 > 99%
struction algorithm in non-Cartesian space.

CP Computation of electric potential in a volume containing point charges. Basedon direct Coulomb | 409 47 > 99%

summation, as described in [27].

Bentmark versionsof someof the applications are presenly available at [28].
The larger codes often required more modi cation to port to CUDA; the most
extreme casewas H.264, which involved a large-scaldoop distribution to extract
the motion estimation kernel from nonparallel application code. The percenage
of single-thread CPU execution time spernt in kernelsis given to show the to-
tal application speedupthat can be achieved as limited by Amdahl's Law. For
example,FDTD's kerneltakesonly 16.4%of executiontime, limiting potertial ap-
plication speedupto 1.2X. In general kernelexecutionoccupiedthe vast majority
of executionfor theseapplicationswhenrun ertirely on a single CPU core.

Application selectionis biased towards particular classesof problems sud
as linear algebra and stencil and grid-based computations. Most of these have
data structures laid out in simple arrays, enabling easy coalescingof memory
accesseby dewelopers. Kernels generally have little variancein cortrol “ow and
correspnding predictability in memory accesses.

Table 4.2 shows characteristics of the optimized application implemertations
using CUDA version0.81 The data for matrix multiplication are listed for com-
parison? The maximum number of simultaneously active threads shawvs the
amourt of thread parallelism available on the hardware at a given time, taking
resourceconstrairts into accoun, with a maximum of 12 288 acrossthe 16 SMs.
There is a wide range of values, with little correlation of number of threads to
actual speedup. The total threadsin a given kernel often number in the millions.
The number of registersand the amourt of sharedmemory per thread show the

degreeof local resourceutilization.

1Due to incompatibilities in both basearchitecture and CUDA versions,seeral of the appli-
cations could not be directly mapped to the evaluation systemusedin later chapters. Rather
than remove the applications, | choseto keepthe performanceinformation for the older system.

2The GPU speedup for matrix multiplication usesa highly optimized library with SSE2
support ascomparison. Kernel speedupcomparedto a CPU binary without SIMD support and
optimized only for cache usageis on the order of 100X.

48

6v

Table 4.2: Application Performancefor Typical Long-Running Execution Pro les

Appli- Max Simul- Registers | Shared Global GPU Exec CPU- Architectural Kernel Appli-
cation taneously per Mem per Memory to % GPU Bottleneck(s) Speedup cation
Active Thread Thread Computation Transfer on GPU Speedup
Threads (B) Cycles Ratio %

Mat 12 288 9 8.1 0.276 16.2% 4% Instruction issue 7.0X 2.0X

Mul

H.264 3936 30 55.1 0.006 2.6% 4.5% Register Te 20.2X 1.47X
capacity and
cade latencies

LBM 3200 32 84.2 0.415 98.3% 0.4% Sharedmemory 12.5X 12.3X
capacity

RC5-72 3072 42 0.3 "0 64.3% 0.5% Instruction issue 17.1X 11.0X

FEM 4096 18 61 1.135 91.4% ¢ 1% Global memory 11.0X 10.1X
bandwidth

RPES 4096 23 24.8 0.01 37.5% 1% Instruction issue 210X 79.4X

PNS 2048 32 9.9 0.241 98% ¢ 1% Global memory 24.0X 23.7X
capacity

SAXPY 12 288 7 0.3 0.375 88% 4.5% Global memory 19.4X 11.8X
bandwidth

TPACF 4096 24 52.2 0.0002 34.3% ¢ 1% Sharedmemory 60.2X 21.6X
capacity

FDTD 12 288 11 8.1 0.516 1.8% 0.9% Global memory 10.5X 1.16X
bandwidth

MRI-Q 8192 11 20.1 0.008 > 99% ¢ 1% Instruction issue 457X 431X

MRI- 8192 12 20.1 0.006 99% 1% Instruction issue 316X 263X

FHD

CP 6144 20 0.4 0.0005 > 99% ¢ 1% Instruction issue 102X 102X

Other information in the table includesthe ratio of global memory cyclesto
computation cyclesafter shared memory and cacesare utilized to their fullest
extert, expressingthe global memory bandwidth requiremens of the most time-
consumingkernel of eat application. Section4.1 discusseshow this ratio cor-
relates to performance. GPU executiontime expresseshow much of the total
executiontime the application kernelsoccupy on the GPU. CPU-GPU transfer
time is shovn for comparisonwith the computation time. One interesting caseis
H.264: a highly optimized version spendsmore time in data transfer than GPU
execution. The last item is the architectural bottlened(s) that appearsto be
limiting theseimplemertations from adieving higher performance.

The two rightmost columnsof Table 4.2 list the performanceof ported appli-
cations. The baseline,single-threadCPU performanceis measuredon an Opteron
248systemrunning at 2.2 GHz with 1 GB main memory. The choiceof processor
was made with the intent of having a high-performance, single-coreprocessor;
similar CPU performanceis found with newer, high clock rate multicore architec-
tures® CPU versionswere heavily optimized for applications with outstanding
GPU speedupto ensurethat comparisonswere fair: SIMD instructions and fast
math libraries were someof the more e®ectie optimizations. Applications were
compiled with gcc version 4.1.3, with -O3 or the maximum optimization level
that worked correctly. Both the speedupof CUDA kernel executionover single-
thread CPU kernel executionand total application speedupwere measured,with
all °oating-point numberssetto single-precision.Measuremeits were made with
typical long-running inputs; e.g.,for SPEC CPU bendimarksthe referencenputs

were used. | do not discussthe precision requiremens of applications in this

3My claim of similar performance does not factor in performance using the CPU's SIMD
execution resources:recertly releasedprocessorscan have double or more SIMD resourcesthan
the processorusedhere. Experimerts in later chapters and work on individual applications [29,
30] were performed with a more corntemporary evaluation system. As explained previously,
seweral of these applications could not be directly ported to the newer system.

50

work, although experimerts have shown that at leasttwo applications, LBM and

FDTD, su®erfrom insuzcient °oating-point precision.

4.1 GeneralPerformancd8rendsof Optimized
Applications

In general,signi cant kerneland application speedupis obtained acrossthe suite,
asshown in Table4.2. Compute-intensive kernelswith relatively few global mem-
ory accesseadieve high performance.Kernelsthat are not ascompute-inensive
still achieve respectableperformanceincreasedecausenf the GeForce8800'sabil-
ity to run a large number of threads simultaneously Low-latency °oating-point
executionis a major factor in speedup,asis the useof cadhesand sharedmemory
to reducelatenciesand global bandwidth usage. Careful organization of threads
and data wasgenerallyusefulin optimizing the usageof the specializedmemories,
most notably in the MRI kernels.

The applications in Table 4.2 with the highest performance gains, namely
TPACF, RPES, MRI-Q, MRI-FHD, and CP, have low global accessratios and
spend most of their execution performing computation or accessingow-latency
memories. They also generateenoughthreads to hide potential stalls on long-
latency operations and maintain high pipelined °oating-point throughput.

One major reasonfor the high performanceof the MRI kernelsis that a sub-
stantial number of executedoperationsare trigopnometry functions; the SFUsexe-
cute thesemuch faster than CPU fast math libraries. SFU performanceaccouris
for approximately 30%o0f the speedupof thosekernels. Signi cant e®ortwasspent
improving the CPU versions (approximately 4.3 times faster than the original
code) to ensurethat the CPU-GPU performancecomparisonwas reasonableg31].

The CP kernel hasa signi cant number of reciprocal squareroot operations and

51

hasa similar performanceadvantage on the GPU. The opposite e®ect,wherethe
processormust emulate functionality that is not supported natively in the in-
struction set, existsin RC-5: the GeForce 8800lacks a modulus-shift operation.
Performanceof the code if a native modulus-shift were available is estimated to
be seweral times higher.

Another reasonfor the MRI kernels'high performance,aswell asthat of CP,
is that threads can be organizedso that ewvery thread readsthe samesequence
of memory addresseswithin the primary data-parallel loop. Sinceewery thread
in a warp readsthe samevalue, the data naturally map to constart memory,
making global memory bandwidth limitations a nonissue.The advantage of using
constart memoryin the MRI kernelsis discussedn more detail in Section4.2.3.

The H.264kernelis notable for its useof texture memoryto accomplishcalcu-
lations that would be performedasnormal processorinstructions in a CPU-based
implemenrtation. The texture memory provides both 2D locality and boundary-
value calculations. Although the kernel spends20% of executiontime stalled on
texture memory, this con guration is still 2.8times faster over global-only access.
Section4.2.1discusseshe H.264 kernelin more depth.

LBM, FEM, and FDTD are notable for being time-sliced simulators, where
a portion of the simulation areais processedper thread. For ead time step,
updates must propagate through the system, requiring global syndronization.
Sincethere is no excient meansto sharedata and perform barrier syndronization
acrossthread blocks, the kernel processes singletime step and then terminates
to ensurethat all data writes to global memory in the previous time step are
visible to the next time step. This pattern placeshigh demandon global memory
bandwidth sincethe kernel must fetch the ertire working setfrom global memory
and store it badk after performing a small amourt of computation. PNS does

not have this issuebecausea separatesimulation is performed per thread. One

52

possiblesolution to this issueis to relax the global syndronization requiremert
by changing application algorithms.

Memory-relatedbottlenedks appearin LBM, FEM, PNS, SAXPY, and FDTD,
all of which have high memory-to-computeratios. Thesehigh ratios causebot-
tleneds in two ways. First, LBM and PNS are limited in the number of threads
that canbe run dueto memory capacity constrains: sharedmemory for the for-
mer, global memory for the latter. Second,FEM, SAXPY, and FDTD saturate
memory bandwidth. Even though the latter two have the highest number of si-
multaneously active threads of the suite, having many threads doesnot address
the large memory to compute ratio, which causesmemory bandwidth to be the

primary performancebottlened.

4.2 CaseStudies

This sectionfocuseson three applications and details their mapping to CUDA.
| explain what makes the application easyor dixcult to map to the architec-
ture, the changesrequired to achieve higher performanceover a straightforward

implemertation, and the obstaclesto further increasesn performance.

4.2.1 H.264: Sum of absolutedi®erences

The SPEC CPU2006 bendhmark 464.h264refis an implemertation of an H.264
video encaler (also referredto as MPEG-4 AdvancedVideo Coding). The orig-
inal code, running on a single core of an X86 processor,spends approximately
60% of its executiontime in the routine SetupFastFullPelSearch and its callee
functions. This routine compares xed-size regionsfrom two frames of a video
to determine how well the blocks match. The metric usedfor the quality of a

match is called a sum of absolutedi®erenes (SAD): the absolute value of the

53

di®erencebetween pels (video pixels) at the samelocation of the two regionsis
calculated, and the sum of those di®erencedor all pixels is the result. Excient
and fast SAD computation hasbeenresearbied extensiwely due to its importance
in cortemporary video encalers[32]: a high-quality encaler can produce smaller
bitstreams or a higher quality encaled video.

The CPU-only versionusedfor performancecomparisonwas hand-optimized
for a more fair comparison. In the inner loop that correspndsto the 4x4 SAD
kernel,anindirect function call wasreplacedwith a conditional branch andinlined
function calls. The optimized versionwasalsorewritten to usethe abs library call
instead of a lookup table for the calculation of absolute values. The rest of the
application was left unmodi ed. The modi ed CPU-only implemertation spends
only 35% of its time in the SetupFastFullPelSearch routine.

The encaler's designmade extracting data parallelism dixcult. The encaler
partitions video framesinto 16x16 pel macroblaks which are processedsingly
through all stagesof encaling. Data parallelism is limited within the processing
of a single macroblock, consisting of loops with few iterations and small bodies.
Furthermore, real data dependencedetweenencaling of neighboring macroblocks
serializemany stagesof the encaling process. The portion of the code perform-
ing motion estimation was distributed out of the loop and optimized for GPU
execution,which required signi cant deweloper e®ort.

In seeral stagesof encaling, the encaling parametersfor a macroblack depend
on results producedfor neighboring macroblacks in the sameframe. For example,
in motion estimation a starting point for the seart is obtained by averagingthe
best- t locations of neighboring blocks that have already been processed. This
dependencewas broken to parallelize the code, which is acceptableby the H.264
standard but may result in lower-quality and larger encalings for fast-moving

video. More frame-le\el parallelization may be possiblewith algorithm changes,

54

but changing the algorithm is a designdecisionthat a®ectsthe quality and size
of the encaded output and would be made with the target platform and purpose
in mind.

When encaling a CIF-size* (352x288)video with a 16-pel seard range, 1.7
million 4x4 SADsand 1 million larger SADs are generatedto encale one P-frame.
The hugedegreeof parallelismacrossmany uniform and simple SAD computations
makes it appealing for GPU execution. The SPEC version of the encaler was
rewritten to computeall SADs for a frame at once,rather than interleaving SAD
computation with other stepsof encaling. This changeincreasesthe available
parallelism and amortizesthe time spent in data transfers. Three GPU kernels
were createdto replacethe function SetupFastFullPelSearch . The rst kernel,
taking 61% of GPU time, computesSADSs over 4x4 areas. The secondand third
kernels,taking 31% and 8% of GPU time, respectively, compute SADs for larger
areasusing the results of the rst kernel. The discussionbelov focuseson the
“rst kernel sinceit comprisesmost of the computation on the GPU.

An initial GPU implemertation computesone 4x4 SAD per thread, yielding
a 15X kernel speeduprelative to the CPU-only code. Howewer, speedupcan be
doubledby writing the kernelto exploit data reuseby selectively grouping compu-
tation into threadsand thread blocks and by applying software-managedcading,
loop transformations, and instruction-level optimizations. Theseare described in
detail below.

To illustrate the available data reuse,the code for a simpli ed sequetial ver-
sion of the SAD computation loop is shavn in Figure 4.1. Each executionof lines

5-10 reads a 4x4 square area of two video frames and computesa single SAD

4CIF stands for Common Intermediate Format. With regards to image size, H.264 tends
to split into two categories. The rst is the mobile market, where small screensare the norm.
H.264 is also used for high-de nition video, with length and width in the thousands of pels.
Both categoriesbenet from high-quality motion estimation: mobile devicesrequire lessdata
to be transmitted, and high-de nition can achieve better video quality with similar data usage.

55

1 for (blockY = 0; blockY < height / 4; blockY++)

2 for (blockX = 0; blockX < width / 4; blockX++)

3 for (offy = -16; offY <= 16; offY++)

4 for (offX = -16; offX <= 16; offX++)

5 sad = 0;

6 for (pixY = 0; pixY < 4; pixY++)

7 for (pixX = 0; pixX < 4; pixX++)

8 sad += abs(reference[blockY*4+offY+pixY][blockX*4+0offX+pixX]
9 - frame[blockY*4+pixY][blockX*4+pixX]);

10 sad_array[blockY][blockX][offY][offX] = sad;

Figure 4.1: Simpli ed SAD kernel.

value. lterations of the loops at lines 3-4 selectdi®eren 4x4 areasof the refer-
enceframe for comparison. These4x4 areaspartially overlap with one another.
The two outermost loops selectdi®eren 4x4 areasof the frame being encaled.
Readsfrom frame are fully reusedacrossthe loops at lines 3-4, sincethe array
index is not dependert on offX or offY . The two outer loops carry no reusein
frame. Thereis partial reusein reference acrossall of the outer four loops, since
the 36x36areafrom reference usedfor ead block is shifted by 4 pels between
iterations of either loop.

Ead thread block is responsiblefor se\eral iterations of the outer two loops.
Reuseis exploitedin frame by cading the datain sharedmemory, andin reference
by using the texture cade. Within a thread block, ead thread executesse\eral
iterations of the middle two loops, taking advantage of registertiling [16]to elim-
inate redundart memory accesses.The innermost loop is completely unrolled
and the offX loop is unrolled by a factor of 3; register pressurepreverts further
pro table unrolling.

Memory accessdelays accourt for more than half of the kernel's execution
time. Memory transfersrelated to software-managecdading of input and output
data, using the sharedmemory to enabledmemory coalescing,consume5.5% of
execution. In cortrast, operating directly out of global memory increaseskernel

executiontime by a factor of 2.8. Another 21%is consumedreadingvaluesfrom a

56

constart memory array to obtain index valuesfor the spiral seart pattern. This
array ts ertirely in the cade, but threadsin this kernel do not read the same
addressin the samecycle, causingserializedreadsfrom the single constart cade
port. While texture memory provides 2D image cading and special behavior for
out-of-bounds image accessesboth of which assist performance,24% of kernel
executionis spert waiting on results of texture fetches. Cache missesaccourt for
lessthan 3% of that 24%. The large per-threadregisterusagelimits the number of
threadsper SM to 256 or fewer, which is not suxcient TLP to hide the latency of
a texture fetch. 123threads per block® was chosento utilize closeto 256 threads
per SM, primarily to minimize the e®ectsof texture fetch latency.

The remaining half of the 4x4 SAD kernel's executiontime is spert in com-
putation out of the register e and shared memory The code was optimized
through manual application of classicaloptimizations to reducethe instruction
court in threads, primarily strength reduction of integermultiplication anddivide-
modulus operations. One GPU-speci ¢ optimization was to broadcast values
through sharedmemory rather than recomputethem in ead thread.

The other two GPU kernelsload SADs calculatedby the rst kernel,add them
together, and write the new SADs to global memory They are nearly identical,
di®eringonly in addresscalculations. The inner loop is very memory-inensive
with 11 global memory instructions and 9 other instructions. Thus, the most
important optimizations wereto take advantage of global memory coalescingand
to keepmany threadsactive simultaneouslyto enhancethread- and memory-leel
parallelism.

While latency tolerance through thread parallelism a®ordsspeedup in the
primary kernel with a shader-syle computation model, additional speedupwas

achievablethrough CUDA's programmingmodel by consolidatinga larger amourt

5This seeminglyodd number is primarily due to the way the 33x33seart areais divided.

57

of work into threads and then applying loop-level optimizations. These opti-
mizations usedadditional registersover a nadve version, reducing the number of
in-°ight threads and exposing more of the hardware's latency. Howeer, they re-
ducedthe dynamic instruction court suzciently to improve overall performance.
Overall, the largest remaining bottlenedk is not in GPU computation (2.6% of
application executiontime) but in moving memory betweenthe CPU and GPU
(4.5%), which exceedghe time spert in GPU computation and limits the available

speedup.

4.2.2 Fluid dynamicsusingthe Lattice-Boltzmann method

The SPECCPU2006bendimark 470.lbmis a °uid dynamicssimulator that imple-
merts the Lattice-Boltzmann method. The program simulates the collisions be-
tween‘°uid particles acrossa seriesof time steps. The most heavily executedcode
region is an iteration-parallel loop within the function performStreamCollide ,
which accourts for over 99%of single-coreCPU-only executiontime whenrunning
the SPEC referenceinput.

Figure 4.2 outlines the basic algorithm. The primary data structure for the
programis a 3D grid of cells,which represets the spacethrough which °uid °ows.
Ead cell within the grid characterizesa set of °uid particles and their velocities
toward neighboring cells. Somecells are designatedas obstaclesto interfere with
the °uid particles and are treated accordingly during simulation. Eacdh cell is a
20-elemen °oating-point array: oneelemen is usedasa °ag to specify properties
related to the cell, oneis usedfor °ow information for the cell itself, and the other
18 are usedto specify velocities towards neighboring cellsthat sharean edgewith

the cell (6 facesand 12 edges).

58

initializeGrid(src)
initializeGrid(dst)
for(each time step)
if (mode == CHANNEL)
handlelnOutFlow(src)
performStreamCollide(dst,src)
swapGrids(dst,src)

Figure 4.2: LBM algorithm.

for (all cells in the grid)
/* check to see if cell is not an obstacle */
if (I(src[off+19] & OBSTACLE))
rho = src[off+0] + src[off+l] + ... + src[off+18];

/* calculate directional vectors */
ux = src[off+3] - src[off+4] + ... - src[off+18];

[* compute and store velocity field elements to neighboring cells */
dst[above_off+1]
dst[below_off+2]

else
[* copy velocity field elements of current cell to neighboring cells */

Figure 4.3: Partial code for performStreamCollide .

Figure 4.3 shaws partial code of the performStreamCollide function. Every
thread operateson a single cell of the grid and all 20 array elemerts are con-
sumed. A major issueis that the usagepattern of data is dispersed,as depicted
in Figure 4.4(a), which takesa memory cycle per datum to satisfy whentheseare
loaded from global memory Becauseall data of ead cell are used, threads can
cooperate to bu®erthe data in sharedmemory and gain performancefrom access
coalescing,as shovn in Figure 4.4(b). By also unrolling loops, this implemen-
tation has 12.3X performancespeedupover the CPU-only version on the SPEC
referenceinput. An unoptimized version,in comparison,achieves6X speedup.

Further optimization of performStreamCollide was limited due to the al-
gorithm's acces9atterns and resourcelimitations of the GPU. First, the 16 KB

available in an SM's sharedmemory can bu®erdata for only 200threads (16 KB /

59

Figure 4.4: Addresspattern for two consecutiw loadsin LBM.
(a) Requiresa memory cycle per addressdue to non-cortiguous access.
(b) Can obtain seeral valuesper cyclevia coalescingout requiresshared
memory bu®ering.
(20 elemens/thread * 4 B/element)). Seconda global syndronization is required
at the end of ewvery time step, which CUDA can only provide with a kernel ter-
mination. As a result, the contents of sharedmemaory are not presened between
kernel invocations and a given elemen is usedat most three times before being
discarded. Lastly, storesof result data are not coalescedalthough the bu®ers

usedto coalescememory readscould be utilized to adieve the samee®ectfor

memory writes.

4.2.3 Magnetic resonancamaging in non-Cartesiantrajectory
space

The readeris likely to be familiar with the use of magnetic resonanceimaging

(MRI) in the medical domain. MRI usesalgorithms basedon inverse Fourier

transformsto reconstructan imagefrom a set of RF signalscollectedfrom a sam-

plein aslowly time-varying magnetic eld gradiert. What is not commonlyknown

is that convertional MRI does not have high resolution comparedto radiation-

basedimaging becausdt makestradeo®sto reducethe computation requiremerts

60

of the algorithm. Cartesian/grid-basedscansare commonlyusedsothat animage
can be reconstructedusing a fast Fourier transform (FFT). Howewer, this choice
often producesimaging artifacts, particularly in 3D images,limiting its usefulness
for identifying small featuresin biological tissue. While radial- and spiral-based
scanscan produce higher-quality images,they require signi cantly more compu-
tational power, asthe computationsto reconstruct the image must be performed
in an arbitrary, non-Cartesiantrajectory (\k-") space.The computational power

suppliedby the GPU makesit possibleto perform reconstructionusingthesescans
in a practical amourt of time, opening up the possibility of fast, high-resolution
MRI. Work by Stoneet al. [31] discusseshis application and its optimizations in

greater depth.

z
dit) = Yx)e Zdx+ (4.1)

Frd= (F"F)¥%= Q% (4.2)

Equation (4.1) shows the generic MRI reconstruction problem: d(t) is the
measuredinput, Yzis the desired image, k represems the trajectory, and ~ is
external noise. This equation can be transformed into Equation (4.2): F is the
Fourier matrix and F" is its conjugate transpose. The algorithm operates by
precomputing a matrix Q and a vector F"d and then "nding an iterativ e linear
solution via conjugate gradiert. The time-intensive part of this algorithm is the
computation of Q and FHd. Q is speci ¢ to the scannercon guration and only
needsto be computedoncefor a given scannersetup, while FHd is speci ¢ to both
the scannerand the image being reconstructed,and is computed on a per-image
basis. Both computations involve matrix or vector multiplication by a Fourier
matrix whoseelemerts are generatedon the °y. Figure 4.5 shows the code to

compute Q, while Figure 4.6 shows the FH d computation.

61

for (idxK = 0; idxK < numK; idxK++)
phiMag[idxK] = phiR[idxK] * phiR[idxK] + phillidxK] * phil[idxK];

for (idxK = 0; idxK < numK;idxK++)
for (idxX = 0; idxX < numX;idxX++)
expArg = 2 * Pl * (kx[idxK] * x[idxX] + ky[idxK] * y[idxX]
+ kz[idxK] * z[idxX]);
QrlidxX] += phiMag * cos (expArg);
QilidxX] += phiMag * sin (expArg);

Figure 4.5: Sequetial algorithm to compute Q.

for (idxK = 0; idxK
realRhoPhi[idxK]
imagRhoPhi[idxK]

numk; idxK++)
phiR[idxK] * dR[idxK] + phil[idxK] * dI[idxK];
phiR[idxK] * dl[idxK] - phillidxK] * dR[idxK];

Inn A

for (idxK = 0; idxK numK; idxK++)
for (idxX = 0; idxX < numX;idxX++)
expArg = 2 * Pl * (kx[idxK] * x[idxX] + ky[idxK] * y[idxX]
+ kz[idxK] * z[idxX]);
COsArg = cos(expArg);
sinArg = sin(expArg);
rFHD[idxX] += realRhoPhi[idxK] * cosArg - imagRhoPhi[idxK] * sinArg;
iFHD[idxX] += imagRhoPhi[idxK] * cosArg + realRhoPhi[idxK] * sinArg;

N

Figure 4.6: Sequetial algorithm to compute F"d.

The experimertal results were collected on an image size of 64x64x64pixels
and a trajectory sizeof 147 258. The highest CPU-only performancewas mea-
suredat 0.199GFLOPS for Q and 0.263GFLOPS for F " d using single-precision
°oating-point, fast math code generationfor trigonometry functions, SSE vector
instructions, and manual tuning of the code. This performancecorrespndsto an
executiontime of appraximately 5 hours for Q and 40 minutes for FH d.

Direct, unoptimized ports of the kernelsto the GPU arerespectively 81X (18.8
GFLOPS) and 73X (22.9 GFLOPS) fasterthan the CPU-only versions,but higher
performancecanbe achieved. The primary performanceoptimization wasto store
trajectory valuesfor eat step in constart memory To enablethis optimization,
the computation was divided into steps small enoughthat ead step's data t

ertirely in the constart cache. The loops of both kernelswere interchanged so

62

that threads simultaneously iterate over the idxK indicesin their inner loop,
thus loading the samevalue from constart memory in a given cycle. The large
register le alsoallows vevalues(x, y, z, Qr, and Qi) to be heldin registersfor
ead thread during the inner loop. The optimized kernel has the character of a
texture shader:it loadsa small number of values,proceedsthrough a sequencef
°oating-point operationsand constart-memory lookups,and nally storesa small
number of valuesout to memory.

There are a signi cant number of trigonometric calculations, approximately
onefor every se\en standard °oating-p oint operations. Fast math code generation
was usedon both CPU-only and GPU versions.On the GPU, fast math usesthe
SFUs rather than perform a software Taylor expansion. Fast math does not
unduly a®ectthe image quality; the signal-to-noiseratios are reducedby only
3 dB andstill exceedyenerallyacceptedquality standardsby 25dB. Thesechanges
resultin athroughput of 96.1GFLOPS for Q and 74.0GFLOPS for FHd, or 457X
and 316X respectively over CPU-only performance. Further speedupappearsto
be limited primarily by the availability of instruction issuebandwidth: a higher
issueand executionrate in eadr SM would improve application performance.

Se\eral aspects of the GPU designcortribute to this application's impressiwe
speedup. First, the SPsand SFUs are heavily optimized for °oating-point per-
formance, so °oating-point instructions, particularly the trigonometry functions,
take fewer clock cyclesthan on the CPU. Second,the GPU can maintain high
pipelined °oating-point throughput without dependencestalls by overlappingthe
execution of separatethreads. Third, the abundanceof registersreducedthe
number of memory instructions and the assaiated stall times on the GPU. In
contrast, the CPU-only code has a large proportion of °oating-point loads and
stores,due to the CPU's limited register capacity and the lack of direct register

transfer instructions betweenthe SSEand FP units. Finally, the broadcastability

63

of the constart cade enablesa much higher e®ectiv memory bandwidth than is
possibleon traditional processors.

Continued work by Stoneet al. [30] further improved the performanceof both
CPU-only and GPU versionsof the application. They use a newer, four-core
processomwith wider SSE capabilities asthe baseplatform, usethe Intel compiler
to adhieve higher per-thread performance,and thread the code to utilize all cores
on the superscalarprocessor.The authors were able to improve the performance
of the CPU-only implemertation sothat the GPU's performanceadvantage was
reducedto 23times over a four-coreCPU-only implemertation, asopposedto over
100timesin the resultsshavn here. They found that only whenconstart memory
and the SFUs were used did the GPU adieve signi cant performancebene t
over a highly optimized, superscalar, multicore solution. This indicates that for
the MRI kernelsand similar applications, the primary bottleneds of superscalar

processorsare memory bandwidth and trigonometry calculation exciency.

4.3 OptimizationPractice

This sectiondiscusseshe relative e®ectf optimizations and speci ¢ experiences
with the applications studied. It is intended as a guide to dewelopers optimizing
their applicationsand to give speci ¢ examplesof methodsto follow the principles

in Section3.1.

4.3.1 Memory optimization

Optimization of memory accessess generally necessaryto achieve signi cant
speedup for the applications in the suite. For someapplications the choice of
using texture or constart memory is intuitiv e, sud astexture memory for H.264

and other video applications. It may be necessaryto transform the code in order

64

to exposethe proper memory accesgatterns to exciently utilize thesememories.
Otherwise, sharedmemory is the default choicefor reducingredundart loadsand
thus pressureon memory bandwidth. Its useis straightforward when there are
either no sharedvaluesbetweenthreads (ead thread hasits own private space)
or whenneighboring threads sharedata in a simple blocked/tiled pattern, similar
to matrix multiplication. Care must be taken sothat threadsin the samewarp
accesdi®eren banks of the sharedmemory; e.g.,array elemeitis may needto be
paddedto ensurenoncon’icting accesses.More complex applications often use
more sophisticateddata structures, requiring splitting of data structures or other
e®ortby the deweloper.

One use of shared memory is as a bu®erto improve the accesspattern of
globalmemory As stated previously, memorybandwidth is easily saturated when
accessesre not coalescednto 16-word, aligned regions. LBM, FEM, FDTD,
and other lattice computations use arrays of small structures in global memory.
Threads simultaneously read or write a given eld of multiple elemerts and these
“elds are not cortiguous in memory Ead noncortiguous accessis a separate
DRAM accesgequest, overwhelming the device'smemory bandwidth. In LBM
the problem can be alleviated using cortiguous accesseto transfer the arrays in
bulk into sharedmemory; this transformation is discussedn Section4.2.2. The
bu®eringoptimization may alsobe possiblewith FDTD if a substartial amourt of
data reorganizationis performed,but FEM usesan irregular meshdata structure
that hasfew cortiguous accessesven with data reorganization.

Evenwith the useof sharedmemory, coalescingaccesset® globalmemorygen-
erally improvesperformance.Iln somecasesnoncoalesce@ccessesausememory
bandwidth to be a performancebottlened, ase®ectiv bandwidth is signi cantly
lower without coalescing.lt is alsoimportant to remenber that the SIMD nature

of warp instruction issueon the SMs meansthat a warp cannot execute until

65

all of its input operandsare available. Becausenoncoalescediccessesnust be
processedsequetially, they causea warp's memory instructions to have a longer
latency than if accessewere coalescedAs a result, noncoalesce@ccessesequire
more parallelism to cover their latencies. The performancedi®erencemay not
be multiple times, but in generalglobal coalescings worth the cost of any extra
instructions that may be neededin order to coalesceaccesses.

Tiling factors of thread blocks also play a role in performance. Large thread
blocks have the potertial to increasedata sharing but increasethe coarseness
of thread block-to-SM sdheduling and can reduce TLP. The choice of tile shape
shouldbe rst motivated by global memory coalescingand other memory system
optimizations, sud asthe useof sharedmemory for applications with large per-
thread data sets,or the constart cate. After tiling, optimizations suc asregister
tiling can be performedto further improve performance.

As previously discussed prefetdiing is not often usedas an optimization be-
causeit generallyhaslittle positive e®ectand often causesreducedperformance

dueto decreasedlLP. | referto Chapter 3 for further discussionon prefetding.

4.3.2 Registerusage

In Section3.1, 1 stated that performancedependson the perceriage of \core" op-
erations (instruction exciency) and the utilization of executionresources.On the
GeForce 8800, utilization is achieved through TLP on the SM, with a multiplica-
tive e®ectirom threads' ILP and MLP. Exciency is addressedhrough \classical"
compiler optimizations. In a highly optimized application, improving oneis often
doneat the cost of the other. On the GeForce 8800,e®ortsto improve exciency
may inadvertertly damageutilization by the reduction of TLP, dueto anincrease

in registersper thread. This TLP reduction canreduceoverall kernelperformance.

66

There aremany optimizations which canincreaseregisterusage many of which
are descriked and cited in compiler texts [33{35]. They are generally performed
with the intent of reducingthe number of executedinstructions or replacingslower
operationswith fasterones(e.g., integer multiply of a power of two replacedwith
a shift operation). The common optimizations that increaseregister usageare
CSE and redundart load elimination, which are performed by nvcc. Developer-
directed loop unrolling also may increaseregister usageby exposing instruction
scheduling opportunities to the runtime.

In general, dewelopers should be aware of potertial changesin register and
shared memory usagethat can result from optimizations, as detailed in Chap-
ter 3. Limiting the scope and scaleof optimizations can also help cortrol usage.
Optimization on the innermost, most frequertly executedkernels generally has
bene cial e®ectswithout a major increasein register usage.

Three techniquescan also help mitigate thesee®ects:

2 The performanceloss from register usageis most apparert in application
con gurations with few, large thread blocks. Con guring an implemerta-
tion to usea larger number of smallerthread blocks resultsin fewer threads
beinglost whenonefewer thread block canbe simultaneously scheduledper
SM. Using smallerthread blocks is to be avoided unlessother performance
bene ts are expected: kernelsemploying tiling optimizations usually bene t
from large thread block sizesbecausethey eliminate more memory opera-
tions. In tiled kernels,onemay haveto try arangeof block sizesto nd the

best con guration.

2 A deweloper canexplicitly spill and 1l values,normally mappedto registers,
to sharedor global memory Register spilling is done by default for the

matrix multiplication kernelusedin this work, asit addsonly two additional

67

instructions to ead thread's execution while saving at least one register.
Overzealousregister cortrol can hurt performancedue to the additional

executedoperations.

2 Registerpressure-sensitig code sthedulingalgorithms and optimization stra-
tegies,sudh asthat proposedin [36], have beeninvestigatedin the context
of instruction-level parallelism compilers. Additional researt is neededto
apply these strategiesto architectures sud as the GeForce 8800 because
the \correct” number of registersto useis uncertain, as discussedin Sec-

tion 4.3.3.

4.3.3 Balancingthread-lewel parallelism with individual thread
performance

From the point of view of a deweloper performing transformations by hand, op-
timization becomesan e®ort of improving individual thread performancewhile
maintaining enoughthreads to hide memory latenciesand utilize executionre-
sourcese®ectiely. Dewvelopers must considerthat the highest-performing con g-
urations may have relatively few threads and thread blocks per SM. For example,
Table 4.2 shows that someapplication implemertations use only a third of the
available thread cortexts. Even when there is an option to use more threads,
thesecon gurations have superior performancebecausehe ILP within the threads
makesup for reducedTLP comparedto other con gurations, while code etciency
is higher due to the optimizations which usethe larger number of registersper
thread.

Dewelopers should be also aware that a con guration found by manual, itera-
tive optimization may be a local performancemaximum. For example,in H.264,

an initial implemenrtation had many threads simultaneously executing per SM,

68

ead with a small number of registers. An exhaustive optimization spaceseart
found that a con guration with fewer threads, ead with more registers,achieved
higher performanceby performing fewer memory operations. This con guration
was often stalled on accesse$o texture memory, but executionezciency during
nonstalled periods was higher than that of other con gurations.

Attempting to manually nd the best balanceof parallelism and a highly ef-
“cient instruction stream is ditcult for the GeForce 8800 for seweral reasons.
First, there are generallymultiple potential high-performancecon gurations and
they will be dissimilar in seeral optimizations, meaning that it is possibleto
be trapped at a local maximum during iterativ e optimization using a greedyap-
proadh. Second,resourceusageand instruction sdeduling is not under complete
control of the deweloper, so targeting particular parallelism levels is ditcult at
best. Instead, in the next chapter | proposea technique that beginswith the
ertire optimization spaceand prunesit to nd con gurations which are likely to

have high performance.

69

CHAPTERS

OPTIMIZATION CARVING

When deweloping an application with a high performancerequiremen, a dewel-
oper beginswith a mertal model of the target platform and createsthe application
with this modelin mind. Oneusually starts with the rst-order concernfor perfor-
mance, which historically has beenthe application algorithm and its instruction
court. After nding a seeminglyreasonablebasecon guration, the application
will be tested and then iterativ ely optimized until an acceptablecon guration is
found.

This approad is often adopted by compilersthat generatehigh-performance
code for traditional uniprocessorsand multipro cessors: algorithms cannot be
changed,sothe exciency of the instruction streamis the rst-order performance
concern. A plethora of instruction removal, redundancyelimination, and strength
reduction optimizations have beendeweloped to addressthis concern.

Howe\er, the iterativ e optimization approad hasmajor detriments when ap-
plied to many-core compilation. The broad issueswere discussedin the rst

chapter, and somespeci cs are discussecdhere:

1. It is well understood by the compiler comnunity that particular orderings
of optimizations can trap optimization processinginto a local performance
maximum. Optimization phaseordering [37,38] has not received as much
attention asit could have. The reasonis that the performancedi®erence
betweentwo con gurations of an application executingon a single-coresu-

perscalaror EPIC/VLIW processomight be on the order of seweral percen.

70

On many-coreplatforms sud asthe GeForce8800,a performancedi®erence
of seweral times is possible. Optimizations for the systemhave complexef-
fects, and a poor decisionby an application dewveloper or compiler can trap
the application in a local performancemaximum. This possibility makesit
imperative to perform a broad seart of the spacewhen increasedapplica-

tion performanceis valuable.

. Contemporary many-corearchitectures have a wealth of executionresources,
but theseare separatedboth by physical spaceand by architecture struc-
ture, sudh as the lack of direct global-to-scrathipad memory transfers on
the GeForce 8800. The cost of communication is signi cant, which is well-
understood by parallel program optimization experts. Howewer, the degree
of tradeo®son many-core systemsis di®erert: for example,there is a much
more vague tradeo® between whether a processingunit should recompute
a value locally or obtain that value from another processingunit, due to
shorter communication latenciesbetweenprocessingunits on the samechip.
Determining a good combination of tradeo®swill be ditcult for most de-

velopers.

. We are currertly in a period of rapid innovation in both applications and
architecture; the GPU innovation cycleis particularly short. New features
are introducedvery regularly, with someresidingon hardware and disabled
until their correctnesscan be validated. Howeer, it takestime and e®ort
for application dewlopers and compiler designersto utilize new features;
they will not be well understood for a signi cant amourt of time. Also, to
preserne competitiv e advantage, limited information may be available about
thesefeatures. The primary examplesencourered during the application

study for the GeForce8800wereglobal memory coalescingcade attributes,

71

and SFU performance. Iterativ e compilation is likely to make the wrong as-
sumptionsabout how to usethesefeaturesand createsuboptimal application
optimization con gurations. In addition, becauseapplication featuresare
addedover time, a con guration that worked well for a previous version of
the application may not stay that way. Changesmay invalidate assumptions
about the e®ectf optimizations and generallyrequire reapplication of the

optimization process.

Instead of selectinga single starting con guration and iterativ ely optimizing
it, | proposean approad that beginswith alarge spaceof con gurations and then
prunesaway thosethat are likely poor performers. This pruning is donebasedon
knowledgeof the primary and secondaryperformanceconcernsfor the application
and architecture, quarti ed as metrics. Becausel found a single cost function
to be ine®ectie acrossmultiple applications, the technique usesthresholdsand
Pareto-optimal curvesto determine which con gurations should be pruned. The
purposeof the techniqueis to nd a near-optimal con guration without detailed,
accurateknowledgeof the systemby either a deweloper or the compiler.

| beginthis chapter with one of the most simple examplesof application op-
timization, that of matrix multiplication, and explain why it can be ditcult to
‘nd the best con guration. | then descrike the optimization carving technique
and how metrics are usedto prune the optimization space.!| identify and create
metrics for the GeForce 8800and then apply them to the optimization of kernels

for the architecture.

72

5.1 ExampleRevisited:Matrix Multiplication
OptimizationSpace

The purpose of this sectionis to shav the primary performancefacets of the
architecture and the discortinuity of the optimization space,using the matrix
multiplication kernel usedin previous chapters. | start with a tiled con gura-
tion of matrix multiplication, and vary seweral parametersto explore the ertire

optimization space.The parametersusedfor matrix multiplication are:

2 Tile size: | choosethread blocks of size8x8 and 16x16. They processan

integral multiple of data tiles. Tiling reducesmemory bandwidth usage.

2 Unrolling factor: The innermostloop of the kernelhasbeenunrolled by an
ewven divisor of the loop trip court, varying betweenone (no unrolling) and
complete unrolling of the loop. Unrolling reducesthe number of dynamic

instructions executed.

2 Rectangular tiling factor: The default con guration, 1x1, processe®ne
tile in the rst input matrix and onetile in the secondinput matrix at a
time. Increasingthe rectangular tiling factor to 1x2 processeswo tiles in
the secondinput matrix for every onein the rst, and soon. Rectangular
tiling enablesthe register tiling optimization and reducesmemory band-

width usage.

2 Prefetc hing: In an e®ort to improve ILP and reduce exposed memory
latency, a prefetding optimization is applied to overlap global memoryload

latencieswith computation.

Figure 3.10n page32showns code examplesof theseoptimizations, while Figure 3.2

depicts their memory accesgatterns.

73

7+ Ounral 1

® unrdl 2

O unrdl 4

@ complete|
unrall

normal prefetch normal prefetch normal prefetch normal prefetch normal prefetch normal prefetch

Figure 5.1: Matrix multiplication optimization spaceruntime.

Ounroll 1
100 +——

| unroll 2

O unroll 4

@ complete

unroll

nomal | prefetch | nommal
1x2

8x8tiles 16x16 tiles

Figure 5.2: Matrix multiplication optimization spaceperformance.

Figure 5.1 shows the run time of thesecon gurations, while Figure 5.2 shovs
the performancein GFLOPS. Onecon guration, with 16x16tiles, 1x4 rectangular
tiling, and prefetching, doesnot executebecausat is oversubscrilied on registers.

There are se\eral performancetrends shovn by the results.

2 When bandwidth is the major performancelimitation of the kernel, little
elsematters; e.g.,increasinginstruction stream exciency or ILP and MLP
(through prefetching) hasno appreciablee®ect. This e®ectis shavn for the

8x8 tiles: the tiling format doesnot allow for coalescingof global memory

74

accessesand its performanceis se\erely restricted by memory bandwidth
limitations. Although rectangular tiling alleviates the pressureon band-
width, other optimizations still have little e®ectuntii memory bandwidth
is removed as a performancelimitation via global memory coalescingusing

16x16tiles.

2 Unrolling is a hit-or-miss proposition for increasing performanceon this
architecture. The reasonfor performanceossespther than instruction cace
e®ects,is that the runtime createsan instruction stedule that increases
registerusageand allows fewer thread blocks to be simultaneously executed
per SM. This e®ectcausesa loss of SP utilization that must be gained,
if possible,through further optimization: complete unrolling is generally

superior to an unroll factor of 4.

2 Increasingthe rectangulartiling factor generally improves performance. It
improvesthe exciency of the instruction stream, global memory bandwidth
utilization, and ILP. Howewer, to take advantage of registertiling, additional
registers must be used, which in one casereducesthe number of thread

blocks executingper SM and kernel performance.

2 As mertioned in Chapter 3, prefetching hasa limited bene t for this system
becausethere is often much useful work that can be done while a long-
latency load requestis being satis ed. It providesa minor improvemert in
performancewhen there are sutcient registersto not causefewer thread
blocks to be executedper SM. For bandwidth-limited con gurations, suc

asthosewith 8x8tiling factors, there is no appreciablebene t.

Table 5.1 shaws the resourceusageof the 16x16matrix multiplication con gu-

rations, excludingregister spilling. It shovs how the application of optimizations

75

Table5.1: ResourceJsageand Performancefor 16x16Matrix Multiplication Con-
“gurations Excluding Register Spilling

Rectangular | Unrolling | Prefetching| Registers | Thread Performance
Tiling Factor per Blocks per | (GFLOPS)
Factor Thread SM
1 no 11 2 53.13
1 yes 13 2 55.17
2 no 11 2 66.40
1 2 yes 13 2 70.52
4 no 12 2 54.71
4 yes 14 2 78.54
complete no 13 2 54.58
complete yes 13 2 79.22
1 no 13 2 84.53
1 yes 15 2 86.60
2 no 14 2 98.17
2 2 yes 16 2 100.76
4 no 16 2 90.30
4 yes 19 1 87.26
complete no 16 2 109.51
complete yes 16 2 108.22
1 no 18 1 98.66
1 yes 20 1 107.96
2 no 19 1 92.18
2 yes 24 1 99.09
4 4 no 24 1 88.21
4 yes 29 1 94.01
complete no 27 1 119.82
complete yes 35 0 doesnot
execute

may sometimesdecreaseperformance: one exampleis shavn with the con gura-
tions that are 1x2 rectangularly tiled with unroll factor of 4. In this case,the
prefetdhing optimization reducesperformancebecauseonly onethread block can
be executingon the SM at a giventime, asopposedto two thread blocks for the
nonprefetdiing con guration.

Register spilling can sometimesenablean additional thread block to be resi-
dert per SM. Major performancedi®erencesare not demonstratedwith the use
of register spilling on this matrix multiplication kernelbecausewo thread blocks,

ead with 256threads, contain enoughwork to hide eat others' global memory

76

accesdatencies. Explicit register spilling with CUDA v1.0 only causessomecon-
“gurations with two thread blocks to move to three blocks per SM, which results
in a small performanceincreaseat best. The 0.8 versionof CUDA usedin previ-
ous experimerts [39] causedsomecon gurations to move from one thread block
to two per SM, resulting in a more signi cant performanceincrease.

The optimal con guration of matrix multiplication is a 16x16tiled, 1x4rectan-
gular tiled, completely unrolled con guration. This result is initially nonintuitiv e
to most dewlopers: the con guration allows only a single thread block execut-
ing per SM, causingblock syndronizationsto have a more signi cant e®ecton
stheduling. Howewer, the sheernumber of operations, due to rectangular tiling,
createsa signi cant amourt of ILP. This tradeo®betweenTLP and ILP will be
unique for every application becauseof the variation in work granularity. A point
| wish to make is that very few, if any, developerswill arrive at this con guration
by guessinga starting point and iterativ ely optimizing. For example,there is a
continuousdecreasean performancefor unroll factors of 2 and 4 for the 16x16tile,
1x4 rectangulartiled con guration.

There are a signi cant number of optimization con gurations to be considered
for an application as simple as matrix multiplication. Figure 5.3 shows the op-
timization spacefor an SAD kernel adapted from H.264, which is se\eral times
larger in code size. In this kernel, the best con guration usesfewer threads (just
under 64) than a hand-optimized version (just under 128). The large \p eaks" in
the graph generallyrepresem transitions whereper-thread resourceusagepermits
fewer thread blocks to be residert per SM, relative to the samecon guration with
slightly fewer threadsper thread block. Becausea deweloper is likely to emphasize
thread-lewel parallelismin an initial versionof the code, iterativ e approadeswill
beginat con gurations towardsthe right sideof the graph. It is unclearduring an

iterativ e optimization processwhether superior performancecan be gainedby go-

77

Time (ms)

1 1 1
32 64 96 128 160 192 224 256 288 320 352 384
Threads per Thread Block

Figure 5.3: SAD optimization space.
Lines connectcon gurations that di®eronly in their SADs-per-thread parameter.

ing to fewer threads per thread block, especially sincemany of the con gurations
at the performancevalley with appraximately 60 threads per block have worse
performancethan con gurations at the other valleys.

Previous work in optimization spaceexploration [39,40] for this systemdis-
cusseghe optimization spacesand seartesfor SAD and other kernelsin greater
detail. The primary ndings of theseworks are: For applicationswith multiple di-
mensionsof optimization, no hand-optimizedcon guration wasthe bestonefound
by an exhaustive seard; the bestwas generallyunexpectedto the deweloperswho
optimized the kernel; and the best and hand-optimized con gurations di®ered
in se\eral optimization parameters,making it unlikely that automated, iterative
optimization using a greedy approad would have found the best con guration,
starting from the hand-optimizedone.

An expert with in-depth understanding of both the algorithm, including its

behavior and memory usagepatterns, and the hardware, including its memory

78

bandwidth and resourcecharacteristics,may have beenableto bypasssomeof the
pitfalls preseried here. Howeer, the goal of this work is to dewelop a technique
that allows deweloperswith imperfect understandingof the systemto still nd a

near-optimal con guration.

5.2 Descriptionof the Tednique

Conceptually, optimization carving beginswith the ertire optimization spacefor
an application. By examining metrics extracted from application con gurations
for the system,it removescon gurations in the spacethat are unlikely to get high
performance. This approad is in cortrast to traditional compilation techniques
that can be likenedto oil drilling: an initial guessis made and strong e®ort is
put forth to nd a desirableresult from that point. Eadc carving prunes the
optimization space,ewertually leaving a few potentially optimal con gurations
that canthen be evaluated via hardware executionto determinethe superior one.

There are se\eral reasonswhy optimization carving is practical or reasonable,

particularly for the GeForce 8800:

2 The kernel codesstudied here have a small number of independert con gu-

ration axes. The optimization seart spaceis relatively small.

2 The e®ectf code transformations, particularly in conbination, are unpre-
dictable. This situation is especially true for the GeForce 8800, because
of the application deweloper's lack of cortrol over the runtime's instruction
scheduling and register allocation. Thus, iterativ e optimization is unlikely

to nd acon guration with closeto the best performance.

2 0On single-dip, many-core architectures, con gurations that are trapped in

local performancemaxima may be signi cantly removed from the optimal

79

in both performanceand transformations, as shovn in previous work [39,
40]. A partial seard of the optimization spacemay achieve a substarial

performanceadvantage over iterativ e optimization.

Optimization carving is done in order of performanceimpact. First-order
issuesare addressedrst, then second-order,and soon. Carving must be done
correctly to nd a near-optimal con guration, but it is easierto understandand
correctly model the high-order performanceconcernsof an architecture than the
exact e®ectsof optimizations. The technique as presened here beginswith the
completeoptimization spaceand full knowledgeof resourceusagefor this reason.
How to perform more speculative optimization carving is left for future work.

| anticipate that optimization carving would be more e®ectie if it is cus-
tomizedto the needsof eat particular application. In addition, for architectures
other than the GeForce8800,more complexcarving may be necessaryto usefully
prune the seard space.For this work, | addressthe needsof the kernelsstudiedin
the previous chapter on a relatively simple but highly parallel architecture. This
choiceresultsin a simple, two-stagecarving processthat is easily explained.

Although it might seemthat optimization carving hasa suzciently high cost
that usersmay as well perform a full optimization spaceseard, | assertthat
signi cant time savings is achieved with the technique. Kernel code dominates
executedinstructions and often execution time, but not static instructions or
compile time, so static analysiscan be very inexpensive. Table 5.2 shavs com-
pilation times for seweral GPU kernelsand their test harnesses.compilation for
discovering the static code and resourceusageof the kerneltakessigni cantly less
time than completecompilation. Although the harnesscode doesnot needto be
recompiledfor every con guration, my point is that statically generatingkernel
code is lessexpensiwe than full compilation, even beforefactoring in compilation

time for completeapplications or executiontime for ead con guration.

80

Table 5.2: Compile Time for Seeral Kernels with Basic Optimizations

Kernel -cubin Compile | Complete
Time Compile Time
Matrix Multiplication 0.278s 0.972s
CP 0.300s 0.887s
SAD 0.288s 0.873s
MRI-FHD 0.266s 0.893s

| de ne two kinds of carving, thresholdcarving and tradeo® carving. Each has

di®eren selectioncriteria, discussedhere.

5.2.1 Threshold carving

Threshold carving is performed when some performanceaspect must be satis-
“ed or mitigated in order to achieve good performance. The prime exampleon
the GeForce 8800is o®-tip memory bandwidth: as shown in Figure 5.2, perfor-
manceis not positively impacted by exciency-increasingoptimizations whenthe
hardware is constartly stalled on o®-tip memory accesses.

Selectionfor threshold carving involvespruning all con gurations that do not
surpasseither a relative or absolute threshold, quarti ed in a metric. In the
matrix multiplication example,the deweloper or compiler performing the carving
could requirethat all global memoryaccessebe coalesciblepr that the estimated
bandwidth requiremer of the application be below a certain limit. This require-
mert represems an absolutethreshold. A relative threshold might be established
for an application wherememory bandwidth is always a bottlened, in which case

only the con gurations with the best memory usageare evaluated.

81

5.2.2 Tradeo®carving

Tradeo®carving hasa di®eren nature from threshold carving: in somecasesit is
not clearthat one should maximize or minimize a particular performanceaspect.
An examplemertioned in previouschaptersis instruction streamezciency: some
redundart computation may improve performanceby allowing more threads to
executein parallel or by reducing commnunication betweenthreads. The purpose
of tradeo®carving is to retain all con gurations that balancetwo or more aspects
of an application becausethe optimal balanceis unclear.

Selectionfor tradeo® carving involves metrics for two or more aspects of an
application. The con gurations that are retained are thosethat lie on a Pareto-
optimal curve: no point on the curve is inferior in every dimensionto any other
point in the space. Any con guration that is inferior in every dimensionto any
other con guration is pruned.

During tradeo®carving, good con gurations may lie just o®the Pareto-optimal
curve becausethe metrics may not capture all performanceaspects of the archi-
tecture. The probability of this situation is higher with more detailed metrics,
particularly those that introduce more variables into the calculations, because
any e®ectghat are not exactly modeledare likely to in°ate the metric valuesfor
poor-performing con gurations. This possibility of \false precision" meansthat
metrics usedfor tradeo®carving should either be very simple or extremely exact.
Another method for avoiding this situation is to retain con gurations that are
within a certain distance from the Pareto-optimal curve, although the reduced
pruning increaseghe number of con gurations to be evaluated. | explorethe use

of more precisemetrics in Section6.4.2.

82

5.3 OptimizationCarvingfor the GeForce8800

In this sectionl discussthe useof optimization carving for applications executing
on the GeForce 8800. To keepthe demonstration of the technique simple, | use
two carving stages. More carving stagesare easily conceiwed; for example,if the
application being optimized has a known issuewith on-chip network con®icts or

instruction cade thrashing, another carving stagecan be createdto addressthat.

5.3.1 O®-ctip bandwidth

The rst-order performanceconcernfor the GeForce8800is global memory band-
width. As shawvn in Section 5.1, only optimizations that a®ectglobal memory
bandwidth have any e®ectwhen bandwidth is a performancebottlenedk. Thus,
the optimization space's rst carving is a threshold carving targeting ezcient
global memory bandwidth usage.

Global memory bandwidth usageis easily estimated by examining the per-
certage of memoryaccessem the instruction streamand determining the average
number of bytes being transferred per cycle. The global memory coalescinge®ect
can also be included by observingwhether memory accesse#n kernel code are
to cortiguous locations within a warp and are aligned (o®setby a multiple of 16
from the beginning of the structure).

The performanceof many of the applications studied hereis limited by global
memory bandwidth for versionsthat do not take advantage of reuseor coalescing.
This carving focusesattention on those optimizations that improve bandwidth

and in many caseseliminatesit asa bottleneck.

83

5.3.2 Instruction stream exciency versusexecutionresource
utilization

When the performanceof the GeForce 8800is not limited by memory bandwidth
capacity, it is determinedby two factors: instruction streamezciency and execu-
tion resourceutilization. In many casesone can be traded o®for the other with
potertial improvemert in performance. An exampleof this tradeo®is the use of
shared memory to capitalize on data reuse: instead of loading a value multiple
times from global memory, a thread can load the value once, store it in shared
memory (an extra instruction), and subsequetly load the value from there. Even
though additional instructions must be executedto initialize the sharedmemory,
the thread no longer is stalled on global memory accessand therefore can make
faster progress. On the other hand, threads that usetoo much shared mem-
ory may causefewer threads to be simultaneously executedper SM, potertially
reducing performance.

The conceptsof exciency and utilization are very generaland can be applied
to any computer architecture. Howewer, it is possibleto calculate reasonably
accurate metrics for applications executing on the GeForce 8800. The initial

versionsdeweloped for this work are explainedbelow.

1

E+ciency =
y Instr @ Threads

(5.1)

Equation (5.1) estimatesthe instruction exciency of the kernelto be run on
the GPU by courting the total number of instructions that will be executed.Instr
is an estimate of the number of dynamic instructions that will be executedper
thread on the GPU, derived from the PTX code generatedby nvcc. For this
work, the averageiteration courts of the major loopsin the kernel are manually

annotated to obtain this data. Someinstructions court as multiple instructions;

84

32-bit integer multiplication is the primary example, taking multiple processor
cyclesto executeon the GeForce8800. Threadsis the number of threadsthat will
run on the GPU for a given problem size, known to the deweloper when writing
the code. This value is madeexplicit in the invocation of the kernel function and
does not have to be an absolute value as long as the relative values of di®erer
con gurations are correct.

In the absenceof a memory bandwidth bottlened and assumingnearly full
SP utilization, | expect that exciency will correlate directly to the performance
of di®eren con gurations. Becauseit courts the total number of instructions
executed,the metric measureghe instructions that areredundart acrossthreads.
This metric penalizescon gurations that have more redundancy sud as ones

with “ner-grained threads.

Instr 'WTB i

1 ,
Regions 5 + (Bsm i 1)(Wrg) (5.2)

Utilization =

Equation (5.2) estimatesthe utilization of the computeresourceson the GPU.
The goalof this metric is to encapsulatehe sdedulability of warpsin the system.
Utilization is estimated primarily by looking at TLP and determining how often
a warp is expectedto wait and the amourt of available work from independern
warps. The fraction % represeis the averagenumber of nonstalling instruc-
tions a singlewarp is expectedto executebeforeencourtering an instruction that
causest to stall. Again, Instr is the per-thread number of dynamic instructions
that will be executedon the GPU. Regions is the number of dynamic instruction
intervals delimited by warp-stalling instructions or the start or end of the ker-
nel. Examplesof warp-stalling instructions are thosethat consumethe results of

long latency operations(generally global and texture memoryloads)and syndro-

nization operations. SFU instructions are consideredto have long latency when

85

longer latency operations are not presert. Issuessud as memory bank and port
con’icts, SFU oversubscription,and so on have beenignored becauseheir e®ect
is small comparedto the stall time incurred by global memory accesses.

The quartit y within the bradkets represeis the number of independent warps
in the SM, other than the onecurrertly executing,that canbe executedwhile the

warp-stalling instruction is being resohed.

2 The rst term in the bracket is the number of other warps in the same
thread block asthe currertly executingwarp. W+g is the number of warps
in a thread block, which is determined by dividing the number of threads
in a thread block by 32. There is a division by two becauseif the blocking
instruction is a syndironization instruction, on averagehalf of the warpsin
the sameblock still needto executeuntil they alsoread the syndironization
point. This assumptionrepreseis the worst case,sinceload stalls do not

have a similar requiremert.

2 The secondterm in the bracket is the number of warps from other thread
blocks on the SM that canbe executed.Bgsy is the number of thread blocks
assignedio ead SM. The runtime assignsthe maximum number of thread
blocks possibleto eadv SM, up to eight, without violating local resource
usage.Consequetly, this number can be calculatedfrom the local resource

usageobtained via -cubin .

Syndronization instructions are grouped with the consumersof long latency
memory operationsin order to simplify the calculation of the Regions term, even
though they display di®eren behavior. Execution at a barrier syndironization
proceedsonly when all of the threadsin a thread block have reated that point,
whereasstalls on usesof global load operationsdo not stall the executionof other

warps. | anticipate that the division by twoin the rst term in the bracket captures

86

the rst order e®ects.The next chapter experimerts with metric calculations of
both lesserand greater detail.

There is a distinct upper limit on how exciently the executionresourcescan
be used. If utilization were usedin a single cost metric (e.g., exciency * uti-
lization), it would be expectedthat the value would be capped or asymptotically
approad the peaktheoretical limit of 10 operations per cycle, per SM. Howeer,
becausemy intent is to usethis metric as part of a Pareto-optimal selection, it
is only necessanthat the superiority or inferiority of a con guration relative to
other con gurations is retained. | do not model capped or asymptotic utilization
becauset is unnecessaryfor this purpose. Becauseof this decision,the relative
utilization valuesof con gurations may not be meaningful.

There are aspects of application behavior which are not modeledin the met-
rics. Someexamplesof theseare cade behavior, SFU performance,the penalty
incurred when threads in the samewarp take di®erent cortrol paths, and mem-
ory bank and port con®icts. Theseare generallynot rst-order concernsfor the
kernelsstudied in this work, although I shov one exceptionin the experimerts.

As discussedpreviously, running nvcc with -cubin and -ptx °ags is faster
than full compilation of a kernel or application. Computing the exciency and
utilization metrics is relatively fast after this information and a few numerical
inputs from the deweloper or a pro le are obtained. This approad allows for fast

exploration of a large seart space.

5.3.3 Individual metrics and a single cost function

In the initial phaseof this work, an attempt was made to create a single cost
function that would approximate the performanceof the code. This approad is

akin to using static sdhedulesto estimate EPIC/VLIW code performance. The

87

z = gridspacing * (float) k;

for (j=0; j<gridy; j++)
y = gridspacing * (float) j;
for (i=0; i<grid.x; i++)
X = gridspacing * (float) i
energy = 0.0f;

for (n=0; n<atomarrdim; n+=4)

float dx = x - atoms|n];
float dy =y - atoms[n+1];
float dz = z - atoms[n+2];

energy += atoms[n+3] / sqrtf(dx*dx + dy*dy + dz*dz);

energygrid[grid.x*grid.y*k + grid.x*j +i] = energy;
Figure 5.4: Coulombic potertial grid code.

exciency and utilization metrics both carry part of the information neededto
predict the performanceof a kernel con guration, but experiencehas shavn that
neitheris suxcient in isolation for usefulperformancecomparisons.The CP kernel
is usedas an exampleto shav what aspect of performanceis captured by eadt
metric.

The CP kernel,shownn in Figure 5.4, computeselectric potentials at every point
in a3D grid. Oneofits usedsin setting up initial conditionsfor aqueousmolecular
dynamics simulations. In the original con guration, ead thread computesthe
potertial at a single grid point with a loop that processesone charge in eat
iteration. The optimization with the largest e®ectis tiling the computation at
the thread level, computing multiple grid points per thread. This optimization
greatly improvesezciency by eliminating redundart °oating-point computation.

Figure 5.5 shavs how CP's executiontime and performancemetrics vary with
the results-per-threadtiling factor. The normalizedreciprocalsof the performance
metrics are plotted, solower is superior in both plots. The exciency data points
overlapand appearasa singlecurve. Exciency closelyfollowsthe actual execution

time at tiling factors of 1, 2, 4, and 8. Although utilization varies over this

88

j 1/Utilization ---m---
1/Efficiency —=—

Performance Metric

T
Execution Time —+—

Execution Time (sec)

- 8 16
Tiling Factor

Figure 5.5: Performancemetrics versusexecutiontime for CP.

range,it remainssuzciently high that decrease utilization do not signi cantly
slov down the madine's execution throughput. At a tiling factor of 16, the
decreasein utilization reducesthe madine's throughput, courtering a further
increasein exciency. For this kernel, exciency improves monotonically while
utilization worsensmonotonically with increasingtiling factor, and the optimum
con guration balancesboth metrics.

It should be noted that CP does not stress global memory bandwidth. In
applications where memory bandwidth was often but not always a bottlened,
it was more ditcult to estimate the performanceof kernelsusing a single cost

function.

5.3.4 Applying metrics to matrix multiplication

The matrix multiplication kernelshawvn in Figure 5.6 is usedto demonstratethe

calculation of the metrics. The kernel is rst compiled with -cubin to obtain

89

|
|
L))
l# -t) # Yy |
s w & '
I)y .o I
I) # I - # :
|
I 0 1 % & |
|

el __ J
:__3707»__872______________7

: |
[I #) |
' |
' |
| Ll o#) |
' |
L0 % & |

Figure 5.6: Matrix multiplication examplefor calculating metrics.

This code is the sameas Figure 3.1(c) with regionsdelineatedfor clarity.
the resourceusage, which shows that ead thread uses13 registers, and eadh
thread block uses2088bytes of sharedmemory for its 256 threads. Determining
the number of residen thread blocks per SM is done by referring to the per-SM
resourcelimits in Table 2.2. In this case,register usageis the limiting factor:
Bsvw = 08192131256 = 2. The number of warps per thread block is Wrg =
d256=32e = 8.

The kernelis then compiledwith -ptx to determineits executionpro le. The
loop is annotated with a trip court of 256, found by dividing the matrix size
(4096) by the tile length (16). With this annotation, the number of dynami-
cally executedinstructions can be determinedstatically. A singlethread executes

15 150instructions, including 512barriers and 256load-consumerpairs: | assume

90

that the load from B is performed prior to the store to sharedmemory array As,
sothat the globalload latenciesare overlapped and the storeto Bs doesnot incur
a stall. Thus, Instr = 15 150 and Regions = 769. The nal piece of informa-
tion neededis the number of threadsin the kernel. There is onethread for eah
elemen of the 4k x 4k output matrix: Threads = 22*. From these numbers,
Exciency = 3:93c 10 2 and Utilization = 227. The relationship of these met-
rics amongdi®eren con gurations is more meaningfulthan their absolutevalues.

Even relative valuesare not necessarilycomparable,sincethe utilization metric

doesnot taper o®to a constart value aswould the true utilization of a system.

91

CHAPTERG

EXPERIMENTS

This chapter discussedhe use of optimization carving to nd high-performance
con gurations of seweral applications. | also compare the results of the tech-
nique to random sampling of the ertire optimization space,and examinethe use
of di®eremn computations for the utilization metric. | closethe chapter with a

discussionof the shortcomingsof the technique asusedhere.

6.1 Methadology

The resultsin this chapter were obtained with CUDA version 1.0. Experimerts
wereperformedon an Intel Core2Extreme Quadrunning at 2.66GHz with 4 GB of
main memory The presened data represemn runs with smallerinputs than those
consideredtypical, which allows an exploration of the ertire optimization space
in a reasonableamourt of time for comparisonto optimization carving results.
Informal experimerts have shonn that executiontime will scaleaccordingly with
an increasein input data sizefor theseapplications on this architecture, due to
the regular and otherwise data-independernt execution of the kernels. The data
are gatheredfrom a singlerun of ead con guration; repeated experimerts have
shown that the gatheredrun times are reliable.

Table 6.1 lists the applications studied, the optimization parametersvaried,
the number of con gurations in the optimization space,and the total time needed

to ewaluate the performanceof ewery con guration in the optimization space.

92

Table 6.1: Parameter Seart Properties

Kernel Parameters Varied Total Con- | Total Eval-
“gurations uation Time

Matrix memory tile/thread block size, rect- 93 363.3s

Multiplication | angular tile dimension, unroll factor,

(MM) prefetching, register spilling

CP thread block size,per-thread tiling, co- 38 159.5s
alescingof output

SAD per-thread tiling, unroll factor (3 908 7.677s
loops), work per thread block

MRI-FHD thread block size, unroll factor, work 896 2875s
per kernel invocation

These applications were selectedfrom the larger suite presened in Chapter 4
becausethere were a large variety of optimizations that could be conbined, with
interesting e®ectsand sometimesdiscortinuous results. The SAD kernel is the
“rst kernel of the three in the H.264 application, discussedn Section4.2.1. It is
modi ed to not follow a spiral seard pattern, thus avoiding the constart cace
port con’icts encouneredin the original version. Optimizations varied for carving
were performedat the sourcecode level; e.g.,loopsof di®eren unroll factors were

manually written and selectedat compiletime.

6.2 Initial Results

Figure 6.1 shaws Pareto plots of the metric valuesfor eat optimization con gura-
tion for all of the applications. Threshold carving was performedonly for matrix
multiplication. The maximum metric values have been normalized to one for
comparisonpurposes.Most Pareto plots are con gured sothat smallervaluesare
superior and the optimal curvesare closeto the origin; | have kept larger values
assuperior becausdt is more intuitiv e, although it createsPareto-optimal curves

which may appear odd to readers. In generalthe best performanceshould come

from con gurations with both high exciency and utilization, meaningpoints to-

93

\\
f= f=
2 2
3 < g ;
N t N
= 1 =
) o !)
gﬂu . 5 \
s e
N i
@
T
M
0 0
0 . 1 0 . 1
Efficiency Efficiency
(a) Matrix Multiplication (MM) (b) CP
1 1
Fay
+ n \\\t
+ ;
+ *
N
+ \\ + Y
c * I c M ' *
S ., . S ooad
= oy = T
IS P e ‘ IS o
= Ll T * R = Lt
2 - % @, =) o
[+ W, " s N o
B " oo T
e o« e * A s .
ARty *
ﬂ&%%q L+ - +
WA, e k!
PR * +
-
0 0
0 . 1 0 . 1
Efficiency Efficiency
(c) SAD (d) MRI-FHD

Figure 6.1: Optimization carving for four bendhmark kernels.

The best performing con guration is circled in ead graph. Con gurations
pruned by threshold carving are marked with squaresrather than "+'. In (d),
ead point actually represeis as many as sewen con gurations with

indistinguishable exciency and utilization.

wards the upper right corner of the graph. Thesepoints createa Pareto-optimal
curve, which is drawn in the gure. The best performing con guration for eah
application is circled. Con gurations that are inferior to another con guration in
only one metric value are eligible for inclusion on the Pareto-optimal curve; for
example,there are seeral con gurations in CP and MRI-SAD that have the best
exciency and varying utilization values.

The matrix multiplication kernel has thread blocks of size 8x8 and 16x16in
its con guration space. Although a deweloper with detailed knowledgeof global

memory coalescingvould know to exclude8x8 blocks, the requiremerts for global

memory coalescingwere not well understood when these experimerts were rst

94

Table 6.2: Optimization Carving SpaceReduction

Kernel Selected Space Selected Time Re- | SelectedBest Rela-
Congura- | Reduction | Evaluation | duction tiveto Overall Best
tions Time

Matrix Multi- 8 91% 10.2s 97% 100%

plication (MM)

CP 10 74% 42.95s 73% 100%

SAD 19 98% 62.21ms 99% 100%

MRI-FHD 58 93% 270.0s 91% 99.2%

performed. | usethis opportunity to shav the e®ectof threshold carving: con g-
urations pruned by threshold carving are marked with a squarerather than "+'.
This pruning changesthe Pareto-optimal curve in subsequet tradeo® carving,
as can be seenby the squareson the \outside" of the curve in Figure 6.1(a).
Thesecon gurations run signi cantly more slowly than the plot would indicate
becausethey are limited by memory bandwidth. A Pareto-optimal curve that
includesthesecon gurations will still nd the bestcon guration, but at the cost
of ewvaluating seeral con gurations with poor performance.

Table 6.2 shavs the number of con gurations selectedby carving and the
resulting reductionsin spaceand evaluation time, which were signi cant. It also
shows the relative performanceof the best con guration on the Pareto-optimal
curve comparedto the best performancefound via exhaustive seart. For three
kernels, the Pareto-optimal subsetcortains the best overall con guration. The
best con guration of the MRI-FHD kernel does not lie on the Pareto-optimal
curve, but the second-lest con guration does, with a performancedi®erenceof
lessthan 1%. The variation in runs is relatively closeto this di®erence,and
there are seeral points on the Pareto-optimal curve that are within 2% of the
best performance. As | discussin Section6.3, the MRI-FHD kernel has a large

number of high-performancecon gurations.

95

It is dixcult to make a judgment about whether a given value of utilization
is \good" or \bad." As previously stated, the utilization metric measuresthe
relative ability of a con guration to utilize the executionunits, but the di®erences
in valuesare of lessimportance. For example,considerthat the bestcon guration
for matrix multiplication in Figure 6.1(a) has one of the lowest utilization values
of the entire space. The reasonlow utilization is not a reliable predictor of poor
performancefor matrix multiplication is becauseall con gurations are quite good
at ensuringthat executionresourcesre almostalways occupied. Thus, instruction
stream exciency is the primary determinart of performancefor this kernel. This
fact is not necessarilytrue for the other kernels.

Figure 6.1(d) shaws the Pareto plot for the MRI-FHD application. In this
graph, con gurations tend to be clusteredin groupsof sewen, appearing as a sin-
gle point. This e®ects dueto the fact that MRI-FHD is not a blocked algorithm
in the way that matrix multiplication is, so changesin thread block size a®ect
neither the exciency nor the utilization of this kernel. Di®erencesn actual per-
formance within ead cluster are small, generally a few percen. Hence,when
seweral con gurations have identical or nearly identical metrics and similar opti-
mization parameters,it may be sutcient to randomly selecta singlecon guration

from that cluster, rather than ewaluating all the con gurations.

6.3 Comparisorio RandomSampling

The last stageof optimization carving requiresexecutionof the remaining con g-
urations to determinethe best one. A questionthat arisesis whether a random
sampleof the optimization spacemight be capableof achieving similar results. In
this sectionl comparerandom sampling of the optimization spaceto the results

of optimization carving.

96

Table 6.3: Random Sampling Results

Kernel Best Optimization | Expected Random Random | Random
Con g- Carving Maximum Sample Sample | Sample
uration Con gura- Performance | Performance | Size for | Size for
Time tions of SameSize | Relative to 90% of | 95% of

Random Best Best Best
Sample

MM (16x16 1.147s 8 1.404s 81.7% 20 37

only)

CP 2.679s 10 2.869s 93.4% 8 15

SAD 2.029ms 19 2.479ms 81.8% 78 93

MRI-FHD 3.727s 58 3.763s 99.0% 2 4

The value of interest in random sampling is the highest performanceof the
con gurations in the sample. | term this valuethe expected maximum performance
of a sample. Conceptually a sample of unit size has an expected maximum
performanceequal to the expectedvalue (arithmetic mean) of the space.On the
other end of the scale,a sampleconsistingof the ertire spacewould provide the
maximum performancein the space. This calculation is not describted in any
introductory statistics or probability text | have referenced,so | descrike it in
Appendix A.

Figure 6.2 shavs the expected maximum performanceof random samplesof
varying size, while Table 6.3 shaws the size of the samplesrequired to have an
expected maximum performanceof 90% and 95% of the best con guration. For
matrix multiplication | useonly 16x16 thread blocks, since thread blocks that
do not take advantage of global memory coalescinghave mediccre performance
(shown in Figure 5.1 on page 74) and can be eliminated prior to sampling. A
vertical dotted line correspnds to the number of selectedcon gurations from

optimization carving for comparison.

97

86

1.7
16
15
14
13
1.2
11

—— Random__

Sample Size
(&) MM (16x16 only)

—— Random

20 40 60 80 100 120
Sample Size
(c) SAD

4 \ H
3.75 § — Random|_
\ ; — — Best
35 \ :
3.25 < f
: \I\\I\
275 +—— S
25 EW T 1
0 10 15 20
Sample Size
(b) CP
43 :
-\— — — Best :
41 :
4\
39 \ §
38 i
N A
0 10 20 30 40 50 60
Sample Size
(d) MRI-FHD

Figure 6.2: Expected maximum performanceof a random sampleof the optimization space.
A vertical dotted line marks the number of con gurations that optimization carving selects.

Random sampling is an e®ective method for nding good con gurations for
the CP and MRI-FHD kernels, with an expected maximum performanceclose
to the best con guration's performancewith a small random sample. It is ef-
fective becausethere are many con gurations with near-best performancein the
optimization spacesof thosekernels.

Matrix multiplication and SAD require much larger random samplesfor a
near-best con guration to be expected. Unlike CP and MRI-FHD, there are only
a few con gurations with performancenear the best, and even thesecan still be
se\eral percen away from the best. The right combination of local memorytiling,
registertiling, and loop unrolling givessigni cant performanceadvantagesto the
highest-performing con gurations.

One possibility that should be examinedis whether randomly sampling the
pruned spaceproduced by optimization carving can nd a near-best con gura-
tion e®ectiely. The dotted lines in Figure 6.3 shov the expected maximum
performanceof a random sample of the Pareto-optimal con gurations selected
by optimization carving. The important obsenation is that, with the exception
of matrix multiplication, small samplesof the Pareto-optimal con gurations may
not be signi cantly better than sampling of the ertire space,and are worse for
MRI-FHD. Not ewery Pareto-optimal con guration should be expected to have
good performance;oneshouldonly expect that the best performing con guration
is Pareto-optimal. Larger samplesof the pruned spaceoften have a much better
expected maximum performancebecausat is more likely that the bestor a near-
best con guration is included in the sample, sincethe pruned spaceis smaller.
MRI-FHD is a notable exception, where optimization carving is not signi cantly
superior to random sampling. It appearsthat variations in the performanceof the
MRI-FHD kernel are due to di®erencesn how the con gurations interact with

the constart cache and SFUSs, neither of which is modeledin the metrics.

99

00T

1.7 \
16 — Tol 375 — Total |
' \ - - - Pareto \ - - - Pareto

15 — - Best
1.4 \
1.3
12 -~
11 T T T
0 10 20 30 40
Sample Size
(@) MM (16x16 only)
3 43 -
— Total \: — Total
2.8 - - - Pareto— 4.2 \II o Pal’etoi
' — - Best 4.1 -+ —-Best
26 \
X 47
2.4 . \
‘\ | \
22 38 R
2 ___\\ T T T T 37 _______________________
0 20 40 60 80 100 120 0 10 20 30 40 50 60
Sample Size Sample Size
(c) SAD (d) MRI-FHD

Figure 6.3: Expected maximum performanceof random sampling of the Pareto-optimal con gurations from optimization
carving and the ertire optimization space.

6.4 VaryingMetrics

The key factorsin the usability of the technique are the e®ectienesf relatively
simple metrics and the results’ robustnessto approximations and inaccuraciesin
the metrics. In this section| dewelop both simpler and more complex versions
of the metric for execution resourceutilization. | usetheseto perform tradeo®

carvingsand comparethe resultsto those of the initial metrics.

6.4.1 Simpler metric: Discourting syndronization e®ects

Here, | createa simpler version of the utilization metric and test its e®ectieness
versusEquation (5.2) in reducingthe seart spacewhile still nding a near-best
optimization con guration. In selectingwhich aspectsto include in the simpler
metric, | obsenethat stalls dueto globalloadsand the longestlatency operations
are the greatestdetriment to madine utilization for our application suite. The
primary way to avoid theselossesds to executemore threadsin parallel per SM.
This intuition is codi ed into Equation (6.1). | remove the stalling e®ectf syn-
chronizations and assumethat barrier syndronization is no more expensiwe than
any other instruction. Instead of regionsbeing delineatedby consumersof global
loads and syndronizations, | now only court regions delineated by consumers
of global loads or the longest latency operations, represeted by LongRegions.
Becausethe e®ectsof syndronizations are no longer being considered,all other
warps are potentially available for executionduring a stall, sol calculate the to-
tal number of warps executing on the SM and subtract one. Comparedto the
previous utilization calculation, this metric will increase,relative to other con-
“gurations, the utilization valuesof con gurations that have fewer thread blocks

with many warps and do not perform prefetcing.

101

Instr

Utilization g; = —
simple ™ | ongRegions

[BsmWrg i 1] (6.1)

The reasonl remove the e®ectf syndironizationsis that the previousmetric
potertially \double-counts" the e®ectsof load stalls. First, barrier syndroniza-
tion on the GeForce 8800 appearsto be extremely fast, unlike on traditional
multipro cessingsystems. Thus, syndronizations stall executionof a thread block
only when the warps that have not readed the barrier cannot executeuseful in-
structions due to another stall. Thesestalls will generally be due to loads from
texture and global memory that have not returned their values. However, most
syndironizations exist to ensurethat valueshave beenstoredto sharedmemory
for useby all threads, and these precedingstores often consumethe results of
global loads. Thus, a warp generally encouners a syndronization stall when
another warp is stalled on the useof a load.

In addition, a combination of a good instruction schedule, a good dynamic
thread scheduling policy, and many warps per SM may ensurethat syndroniza-
tions rarely causesigni cant stalls. Considerthe matrix multiplication instruction
sthedulein Figure 6.4, correspnding to the code in Figure 5.6 on page90. When
a warp erters the loop, loads of elemens in arrays A and B are executedfor the
‘rst warp. No forward progresscan be madein that warp becausethe next in-
struction is a store of value beingloaded, so executionproceedsto other warpsin
the thread block. Oncethose have stalled, execution proceedsto another thread
block if multiple are simultaneouslyrunning on an SM. Oncethe resultsof the rst
set of loadsarrive, the rst warp can executeloads and other instructions before
encourering the syndronization barrier. Due to MLP, se\eral other warps' load
results have alsoarrived by that time and executioncan cortinued unstalled until

the last warp in the thread block readesthe barrier. Becauseall other warps

102

Figure 6.4: A hypothetical instruction scedulefor a thread block of the matrix
multiplication kernelfrom Figure 5.6.

103

have reathed the barrier, executioncan proceedunabated past the barrier. With
this sdhedule,the barrier never causesexecutionto stall on the SM.

Finally, there are no syndironizationsin the inner loops of the kernelsother
than matrix multiplication. The previous metric penalizescon gurations with
larger thread blocks due to the division by two: warps in the samethread block
shouldtheoretically be equally schedulableaswarpsin di®eren blocks for kernels
without syndronization.

Figure 6.5shavsthe resultsof optimization carving usingthe simpli ed utiliza-
tion metric for the four applications. Matrix multiplication carving is performed
only with 16x16thread block con gurations for clarity. Someshifting of the lo-
cations of con gurations has occurred, but in generalthe plots appear similar
to results using the original metric calculation, with the largest di®erencebeing
further clustering of formerly scatteredcon gurations in the MRI-FHD plot. For
matrix multiplication, the Pareto-optimal line hasnot changedfrom Figure 6.1(a),
cortaining the samecon gurations. Similar to the original metric calculation, the
best con guration is on the Pareto-optimal curve for all but the MRI-FHD plot.

Table 6.4 comparesthe number of points on the Pareto-optimal curve using
the original and simpli ed utilization metrics. In applications other than matrix
multiplication there is a signi cant increasein the number of points on the curve,
mainly becausehereis lessto di®erettiate con gurations in the simpli ed metric.
Eventhough the simpli ed metric still senesits purpose,for three kernelsa larger
number of con gurations must be evaluated to nd the con guration with the
highest performance.

The MRI-FHD kernel is notable in that even though the simpli ed metric
producesa Pareto-optimal curve with three times the number of con gurations
of the original utilization metric, no con guration on the curve is closerthan 5%

in performancefrom the best con guration. Given that 152 con gurations are

104

S
f= f=
2 2
T - T
N t N
= 1 =
) !)
+
N
.
& @
0 0
0 . 1 0 . 1
Efficiency Efficiency
(@) MM (16x16 only) (b) CP
1 4 1
LT
- - . +
+ + * *
+ PN
PRV b o ey
< H c +
.(% LV f‘&m + » ﬁ:; """"""""" s % + . *3
N BAEM N Hi . i :***
= = -l
Ef i:j’é i} ot " @ 35 + *é;
t”oﬁ}m+ o P - ~ * s
a0 ow L +
M, T]
RS - e
- * R
"
0 0
0 . 1 0 . 1
Efficiency Efficiency
(c) SAD (d) MRI-FHD

Figure 6.5: Optimization carving using the simpli ed utilization metric.

ewvaluated, the simpli ed metric fares poorly comparedto random sampling of
the optimization space.As stated previously, the primary di®erencebetweenthe
simpli ed and original utilization metrics is that the simpli ed metric improves
the standing of con gurations that have fewer thread blocks and morethreadsper
block. A simple experimert shows that there may be a signi cant performance
penalty when a singlethread block with heary SFU usageis executedper SM, as

opposedto multiple, smallerthread blocks.

Table 6.4: SpaceReduction Using Simpli ed Utilization Metric

Kernel Total # of Original | # of Simpli- | Performance
Con gurations | Selections “ed Selections | Relative to Best

MM (16x160nly) 45 8 8 100%

CP 38 10 18 100%

SAD 908 19 23 100%

MRI-FHD 896 58 152 94.9%

105

1.6e-06

1.4e-06 |

1.2e-06

Time

1e-06

8e-07 |-

6e-07
1

4 5
Thread Blocks

Figure 6.6: Reciprocal square-rmt executiontime for varying numbers of thread
blocks per SM.

The test kernelfor this experimert consistsof a kernelthat loopsover a single
reciprocal square-rat operation 2000times. The number of thread blocks on an
SM is varied while the total number of threads is kept roughly constart (slight
variations aremadeto createan integral multiple of half-warps,to avoid impacting
instruction sdeduling and the memory system). Figure 6.6 shows the results.
Although the variations from 2 to 8 thread blocks may be due to variations in the
total number of threads, there is a clear performanceloss when a single thread
block is running on an SM. The MRI-FHD kernel illustrates a situation where
behavior of an architectural feature was not anticipated or initially understood
by application dewelopers or optimizers, making the metric and the optimization

carving technique lesse®ectie.

6.4.2 Modeling cycle count

It is evidert that the metrics displayed sofar arerelatively crude. | have discussed
the combined e®ectsof ILP, TLP, and MLP but have not attempted to relate
their e®ectswithin a single metric until this point. Here, | attempt to capture

the behavior of the application kernels more precisely by factoring in the stall

106

time and work performedby ead thread as a fraction of a single thread block's
minimum executiontime.

In the previous utilization calculations, a region represeis a nonstalling in-
struction sequenceand by assaiation the stall period betweenit and the next
region. This abstract stall time is assumedto be the samefor all con gurations.
In reality, ILP and MLP e®ectanreducethe exposedstall time for a singlewarp
by executingother instructions after a load operation. They have a multiplicativ e
e®ectwith TLP. Kernelswith low TLP and high ILP comparedto other con gu-
rations are unfairly penalizedwith the previousutilization calculations,and may
have much higher utilization and overall performancethan the metric predicts. |
showvn an examplehere.

Considerthe code in Figure 6.7, taken from a 1x4 rectangularly tiled matrix
multiplication kernelwith 16x16thread blocks. The rst load will take approxi-
mately 200 SP cyclesto return its values. Four more load operations can execute
immediately after the rst. These v e loadsexecutein 20 SP cycles,after which
the warp must stall for load results. In a 16x16thread block, there are a total of 8
warps, and eat warp can executefor 20 cyclesbeforeencourering a stall. Thus,
appraximately 160 cyclesof the rst load's latency are covered by the execution
of other load instructions in a singlethread block. High ILP is one of the factors
that enablesthe 1x4 rectangularly tiled kernelto achieve the best performanceof
the matrix multiplication con gurations.

Figure 6.8depictshow the sdheduling of warpshidesa singlewarp's compulsory
stall time. Compulsory stall time is the latency from loads or other long-latency
operations, reducedby the executionof operations from the samewarp after the
long-latency operation is issued. Work from other threads hidesthe compulsory
stall time and helpsthe SM avoid stalls. Conceptually, utilization shouldrepresen

the percentage of executiontime wherethe SM is not stalled. Here, | attempt to

107

st.shared.f32 [$rd20+0], $f5;
st.shared.f32 [$rd23+0], $f6;

1 Id.global.f32 $f5, [$rd9+0];

2 Id.global.f32 $f6, [$rd16+0];

3 Id.global.f32 $f7, [$rd16+64];
4 Id.global.f32 $f8, [$rd16+128];
5 Id.global.f32 $f9, [$rd16+192];
6

7

Figure 6.7: Example PTX code from a matrix multiplication kernel with 1x4
rectangulartiling.

Figure 6.8: Scdeduling warps to hide compulsorystall time.

calculate utilization by determining the amourt of compulsorystall time that is
not covered by the work from the thread blocks executingon the SM.

It shouldbe noted that within a synchionization region, or the regionbetween
two barrier syndronizations, warps in the samethread block must be executing
code within the sameregion. Howewer, work in other thread blocks can come
from any part of the kernel. This fact should be correctly factored into the
calculation of the metric. For example,the syndironization region with global
loads in matrix multiplication can have relatively few instructions comparedto
the syndironization regionthat performsthe partial dot product calculation. A
relatively small percertage of the thread block's total work is available to cover
the latency of the global loads.

Another important detail is that only a portion of the work of other thread
blocks is available to cover a stall, sinceother thread blocks will encourter their

own stalls. | assumethat the amourt of this work is the total number of instruc-

108

tions executedby a thread divided by the total number of long latency stalls,
or Lm‘qg%. For the simple kernels used here, using this value is probably a
reasonableassumption. Howe\er, there is a possibility that thread blocks running
on the sameSM will have a tendencyto be either in-phaseor out-of-phasewith
eat other, with potential increasesor decreasesn the number of instructions
available for executionduring a stall. How to predict this situation and include
it in the utilization metric is left for future work.

| “rst introducethe conceptof a thread block's minimum executiontime for
a syndironization region, mintime ¢, shavn in Equation (6.2). The letters sr
stand for syndironization region. The available work from a single warp in a
syndronization region is warpworks,, calculated directly from the instructions
betweenthe syndronization operations. The compulsory stall time for a single
warp in ead syndironization region is stalls; and is measuredby taking the
latency of a long-latency instruction (200 cyclesfor global memory loads) and
subtracting the work from operations between the long-latency instruction and
its consuminginstruction in the samewarp. If the warps in a thread block can
cover all of the latencies,then the minimum executiontime is equivalert to the
total number of work cyclesin the thread block. Otherwise, somepart of the
compulsorystall time is exposedand must be covered by work from other thread
blocks. One important note is that this calculation and the following onesare
optimistic about the ability of other warps' work to cover a stall: the warps
may encourter their own stalls after performing a fraction of their work in the

syndronization region, as depictedin Figure 6.8.

mintimeg, = warpwork, + max[stalls;; (Wrg | 1)warpwork;] (6.2)

109

| next calculatethe amourt of work that an SM can executeduring a syndiro-
nization region, workg,, shavn in Equation (6.3). The work from a thread block
is addedto available work from other thread blocks. Only a portion of the other
thread blocks' work is available to cover a stall, asl previouslydescribed, but there
may be multiple stalls within a syndronization, represeted by LongRegonss; .
The combined work may completely cover the latenciesin the syndironization
region, in which casethe value of works, is capped at mintime 4. | cap the value

becausehe SM reaches maximum utilization when all latenciesare hidden.

works, = min mintime g ; Wrg ¢warpworks,

N (Bsw i 1)(Wrg)lnstr ¢LongRegonsy; * (6.3)

LongRegons

Equation (6.4) showns the new utilization metric, which appraximatesthe frac-
tion of executiontime that the SM is executing instructions. The denominator
represens the total time that a singlethread block requiresto executethe code,
calculated by adding up the minimum execution times for all syndronization
regions. The numerator is the total amourt of work that an SM can sdedule
during the period represered by the denominator. Capping the value of workg,
at mintime ¢, for eat syndironization region prevens extra work in one syn-
chronization regionfrom covering the latenciesin another syndronization region,
which was possiblein the previous utilization calculationsbut cannot happenin

reality.

e§(sr
works,

Utilization cycle = (64)

aj(sr
mintime ¢,

| make seweral assumptionsabout SFU behavior. SFU latency is assumed

to be 20 cycles. | assumethat the SM can issueinstructions to SPs after four

110

cyclesof issuingSFU instructions, but must nish issuingSFU instructions before
issuing another set of SFU instructions; otherwise,the SM must stall. Finally,
| assumeno e®ectsfrom execution capacity limitations are exhibited. A related
assumptionl make is that warps in the samethread block are as sdhedulableas
warps in other thread blocks, although Figure 6.6 showns otherwise.

Becausd do not have accesdo a cycle-accuratescheduler,| manually sced-
uled instructions and calculatedthe work and exposedstall time for ead con g-
uration. SAD and MRI-FHD are not included in this experimert becauseof the
large number of con gurations in those kernels. | assumethat the compiler and
runtime sdedule instructions to maximize MLP and minimize compulsory stall
time. It should be noted that this assumptioncan create signi cant error if it is
incorrect: if two load latenciesare sequetial instead of overlapped, a warp will
have twice as much compulsorystall time.

Since CP generally bene ts from global memory coalescing,for the baseline
comparison| remove noncoalesceccon gurations from the optimization space.
Tradeo®carving selectsnine con gurations for evaluation, asshavn in Figure 6.9;
only one of the con gurations on the original Pareto-optimal curve in Section6.2
did not have coalescing.

Table 6.5 shavs the results of usingthe new utilization calculation on the MM
and CP kernels. Unlike the previous experimerts, | no longerinclude con gura-
tions that are equivalert in one metric value and inferior in another comparedto
other con gurations. The reasonis that all con gurations in both kernelshave
maximum utilization: the available work should be able to cover all latenciesin
eat syndronization region.

Only the best MM con guration is selectedby carving. The advantage of
capping the utilization for eat syndronization regionis that carving can deter-

mine that all con gurations have very high utilization. In reality, the best MM

111

Utilization

Efficiency

Figure 6.9: Tradeo®carving using the original utilization metric calculation for
CP with coalescedton gurations.

Table 6.5: SpaceReduction Using Cycle-BasedUtilization Metric

Kernel Total # Original | # Cycle-Based | Performance

Con gurations | Selections | Selections Relative to Best
MM (16x160nly) 45 8 1 100%
CP (coalesced 19 9 3 79%
only)

con guration should have lower utilization than other con gurations: the warps
in the singlethread block cannot completely cover the stall time of the rst load,
sincethey cannot executeall of their work before encounering their own stalls.
This inaccuracycould be correctedby splitting syndronization regionsinto sev-
eral work-and-stall regions,similar to the LongRegons of the previousutilization
calculation. Re nemert of the calculation is left for future work.

The Pareto-optimal con gurations for CP have a loop unroll factor of 16, as
opposedto the best-performing con guration with an unroll factor of 8. More
unrolling gives those con gurations higher exciency at the cost of fewer total

warps per SM (4 or 6) than the best con guration, which has 10 warps per SM.

112

The second-and third-b est con gurations, which have the sameezciency asthe
best con guration, have 8 warps per SM. It appearsthat the additional warpsin
the bestcon gurations have a positive e®ecton utilization that is not modeledby
the metric. One likely reasonis that the the code being executedon the system
may be essetially the sameasthe PTX code, which placesthe consumersof the
results of reciprocal squareroot operations directly after their producers. The
manually scheduledcode usedasthe input for the metric calculation movesthose
instructions downward in the sdedule, for much higher ILP and far lower com-
pulsory stall time. If the executedcode resenblesthe PTX code, SFU latencies
will be exposedand the additional warps will be necessaryto cover the latencies.
The CP caseillustrates a potential danger of using more precisemetric cal-
culations: unlessthey capture execution details very accurately they may inad-
vertently penalizeand possibly prune top-performing con gurations. Accidertal
pruning can be mitigated by not pruning points that are closeto the Pareto-
optimal curve, which is courter to the purpose of using more precise metrics.
Given this danger,the use of precisemetrics will probably be most useful when
the optimization spaceneedsto be sewerely pruned, even at the risk of missing

the best con guration in the overall optimization space.

6.5 Impactof Performancd-actorsNot Includedin
Metrics

Although the con gurations selectedby optimization carving cortained a near-
best optimization con guration for the test kernels,one should examinethe e®ec-
tivenessof the technique when the metrics do not incorporate certain aspects of

performancebehavior. | obsene one aspect here,that of cacte behavior.

113

140

L .
Execution Time —+—

120 -

=
© o
o o
T

Execution Time (sec)
g

40

0 1 1 1 1 1
32 64 128 .. 256 512 1024 2048
Tiling Factor

Figure 6.10: Execution time of MRI-FHD with cade con®icts.

ConsiderFigure 6.10,which depictsthe performanceof a preliminary version
of the MRI-FHD kernel as the tiling factor (number of data points processed
by ead thread block) changes.The performancemetrics indicate that exciency
and utilization remain constart asthe tiling factor changes,predicting no signif-
icant changein performance. Howewer, experimerts revealedthat performance
decreasessthe tiling factor increasesas shown in Figure 6.10.

The sharp cortrast betweenthe predicted performancetrend and the actual
performanceled the deweloper of the MRI kernelsto considerthat the layout and
traversal of data in constart memory might be causingfrequert constart cathe
con’icts. Changingthe data layout yielded a kernelthat is insensitive to changes
in the tiling factor and performanceup to 17% faster than the previous best

con guration.

6.6 Future Work

In this sectionl discussfuture work related to programoptimization carving. One

thrust concernsmethods to reducethe amourt of compilation or con gurations

114

seartedfor optimization carving. Another thrust is alternate approahesfor nd-

ing high-performanceapplication con gurations. Finally, | discussthe possibility
of architectural support for mitigating the discortinuity of the optimization space
and tools to help dewelopersin the optimization process.

The e®ectienessof the metrics would improve with the inclusion of e®ects
of architectural featuresthat are rst-order performancedeterminarts for some
applications. The MRI-FHD kernel is the prime example of the needfor more
re ned metrics. More precise modeling would also enable the combination of
the exciency and utilization metrics into a single cost function. Even if the
cost function assumesno memory bandwidth limitations, it would remove the
needto do a tradeo®carving, replacing it with a threshold carving basedon a
combined costfunction. As stated previously, sofar | have not beenableto nd a
suzxciently accuratecostfunction that consisterly nds near-bestcon gurations
acrossmultiple, relatively simple kernels.

It is feasiblefor a runtime system like that of the GeForce 8800 to auto-
matically perform many of the code optimizations usedby optimization carving.
If performancefeedba& information were producedduring execution, it could be
consumedby the runtime to optimize kernels,enablingspeedupof the kernelprior
to its completion. Run time modi cation of kernelsis relatively easyto manage
for programswritten for CUDA, dueto the independenceof thread blocks: newly
initiated thread blocks can executeoptimized code, while thread blocks already
running can complete executionof unoptimized code.

The fundamenal issuethat optimization carving addressess the ditcult y
for either an automatic system or a human deweloper to determine what mix
of optimization dimensions,suc astiling, will achieve high performanceon the
GeForce 8800. Howe\er, it is often much easierto determinewhich of two similar

con gurations will have greater performance. For example, most of the matrix

115

multiplication kernelsstudied herehave decreasegerformancewhenunrolling by
a factor of four becausehe number of thread blocks simultaneously executingon
an SMis reducedcomparedto con gurations unrolled by a factor of two. Sincethe
number of thread blocks per SM cannot changefurther whenunrolling completely
(assumingno oversubscriptionof registers),it is likely that completeunrolling will

have resultssuperior to thoseof unrolling by a factor of four. It would be desirable
to avoid compiling or evaluating con gurations with poor unrolling factors. This

approad requires either preciseknowledge about the e®ectsof optimization or
prediction of their e®ectssimilar to work by Zhao et al. on codesfor embedded
processorg41].

A more directed approad for optimizing code for the GeForce 8800 is to
target speci ¢ granularities of parallelism and maintain them throughout the op-
timization process.Insteadof trying variousoptimizations without regardto their
e®ectsthe compiler can compile multiple con gurations that have varying values
of speci c characteristics, such as the number of thread blocks simultaneously
executing per SM or the degreeof register tiling. It can then cortrol optimiza-
tions that allow con gurations to stay within the speci ed limits. Although the
compilerwill still needto compile multiple con gurations, targeting speci c gran-
ularities would reduce the number of con gurations that needto be compiled,
e®ectiely targeting the con gurations on the Pareto-optimal curve from tradeo®
carving. This approad alsorequirescareful study of optimization phaseordering
and prediction of optimization e®ectdn order to prevern the accidertal bypassof
desirablecon gurations.

One major issuewith the GeForce 8800 architecture is that the number of
thread blocks assignedto ead SM is directly related to a thread block's local
resourceusage. Although this issueis a fundamenal limitation for many-core

processors,the problem is exacerbatedby unpredictable performance changes

116

when small changesare madeto the kernel. It may be possibleto create support
in the runtime to automatically spill registerswhen it would allow signi cantly
better utilization of executionresources.This technique could be enhancedwith
architectural support to spill registersto unusedlocal memory, avoiding additional
burden on global memory bandwidth.

A more integrated and structured environment for optimizing kernelswould
make the application deweloper's e®orts more focused and excient. Environ-
merts sud as those constructed by Adve et al. [42] have been constructed for
past systems,languages,and compilers. The issueis complicated by the opacity
of somearchitectural feature of the GeForce 8800, but the basicsof global mem-
ory bandwidth, instruction ezciency, and resourceutilization can be combined
with visualization tools to improve deweloper exciency. This approad can be
integrated with pro ling information and feedbak into the compiler and runtime

to automate much of the optimization process.

117

CHAPTER 7

RELATED WORK

Code transformation and optimization for parallel programs have a long his-
tory, with much of the foundational work performed by the Parafrase[43,44],
PTRAN [45],and PFC [46{48]projects, followedlater by Polaris[49]and SUIF [50].
This work builds on past work by examininga particular classof parallel architec-
ture, namely single-dip, many-corearchitecturesthat enable ne-grained sharing
of local executionresourcesand memories,and how to optimize applications for

the architecture.

7.1 ParallelProgrammind-anguages

Data-parallel programming languagesare consideredan intermediate approad
between automatic parallelization and vectorization e®orts[51,52] and explicit
parallel programming models sud as OpenMP [53] to support parallel comput-
ing. APL was one of the rst data-parallel languagesand was deweloped from
notation work by Iverson[54]. Fortran 90 [55] was one of the most widely used
data-parallellanguagesand wasnotable for its useof array assignmeh statemerts.
Later, High PerformanceFortran (HPF) [56] was introducedas a standard data-
parallel languageto support programswith SPMD. Howewer, the complexity of
data distribution and comnunication optimization techniques, as discussedin
the nal two chapters of [34], was a ditcult challenge. As a result, application

dewelopersbecameinvolvedin explicitly handling data distribution and comnuni-

118

cation; messag@assinglibraries suc asMPI [57]becamea popular programming
model for scalableparallel systems. CUDA has similar managemen capability,
where the deweloper explicitly managesdata layout in DRAM and local mem-
ory spacesdata cading, thread comnunication within thread blocks, and other
resourcedo achieve high performance.

The interest in general-purpse GPU programming has beendriven by rela-
tively recet improvemers in the programmability of graphics hardware. The
releaseof Cg [58] signi ed the recognition that GPUs were programmable pro-
cessorsand that a higher-lewel languagewas neededto dewelop applications for
them. Others felt that the abstractions provided by Cg and other shadinglan-
guageswere insuxcient and built higher-lewel languageconstructs. Brook [59]
enablesthe usageof the GPU as a streaming coprocessor. Accelerator [60] is
another systemthat usesdata-parallel arrays to perform general-purpsecompu-
tation on the GPU. A Microsoft C# library providesdata typesand functions to
operate on data-parallel arrays. Data-parallel array computation is transparertly
compiledto shaderprogramsby the Accelerator runtime.

Other e®ortsto provide a more productive stream processingprogramming
ervironment for deweloping multithreaded applications include the RapidMind
Streaming Execution Manager[61] and PeakStreamVirtual Machine [62]. These
mainly target high-performance computing applications that are amenableto
stream processing. Their adhieved performancemay be inferior to customized
GPU/CPU code due to virtual madcine and dynamic compilation overhead as
well as the inability to use platform-speci ¢ features. CUDA supports kernels
with much larger code sizesand avoids the use of graphics APIs, although it
currently doesnot map to other architectures asthe RapidMind and PeakStream
ervironments do. The hardware aspectsof mapping general-purpsecomputation

to GPUs is discussedater in the chapter.

119

A programminginterfacealternativeto CUDA is availablefor the AMD Stream
Processorusingthe R580GPU, in the form of the Closeto Metal (CTM) compute
runtime driver [63]. Instead of abstracting away architecture-level instructions,
CTM completely exposesthe ISA to the programmerfor ne-grained cortrol.

Intel's C for Heterogeneousntegration (CHI) programming ernvironmert [64]
is a di®erent approad to tightly integrate acceleratorssud as GPUs and gen-
eral purpose CPU corestogether, basedon the proposedEXOCHI model. EX-
OCHI supports a sharedvirtual memory heterogeneousnultithreaded program-
ming model with minimal OS intrusion. In the CUDA execution model, the
GPU is a device with a separatememory spacefrom the CPU's. As a result,
all data communication and syndironization betweenCPU and GPU is explicitly

performedthrough the GPU devicedriver.

7.2 Optimizationsand Performancd8uning

Chapter 3 discusseshe e®ectf optimizations on the GeForce 8800. Many clas-
sical optimization techniquesfor data-parallel architectures are described in [34,

35,65]. The e®ectsof sud optimizations, especially in conbination, can be un-

expected due to their e®ectson local resourceusage,as discussedn [66,67]. In

particular, tiling at both the sharedmemory and registerlevels has major e®ects
on performanceand is the causeof signi cant discortinuities in the optimization

spacesof someapplications.

The memory subsystemof the GeForce 8800favors accesgatterns which can
be enabledby data layout transformations. The encompassingvork on compiler-
driven optimization for data locality was performed by Kennedy et al. [68,69].
They split data locality optimization into three stages:loop optimizations, tiling,

and registertiling. The ne-grained sharing of resourcegpermits a variable num-

120

ber of threads and registersper thread to executeon this architecture, and this
particular ordering of concernshasthe potertial of beingtrapped at a local per-
formancemaximum.

Later work in this areafocusedmainly on cache behavior of di®eren instances
of dynamically allocated objects on superscalarprocessorswhereasperformance
on the GPU involves structuring of accessesusually to single arrays of struc-
tures, sothat cortiguous memory regionsare simultaneously accessed.Yamada
et al. [20] proposea combined hardware and software approad to improve mem-
ory performance.Truong et al. [21] usea library, driven by pro Te information, to
reorganize elds of data or separatestructuresinto di®eren elds for better per-
formance. Chilimbi et al. usedautomated techniques[22] for the samepurpose.

The needfor dewelopersto understand the behavior of optimizing compilers
for data-parallel architectures was discussedin work by Adve et al. [5]. They
discussthe needto identify the modeling assumptionsmade about the system
and a medanismto validate those assumptions;optimization carving is a tech-
nique that doesboth of thesefor the GeForce 8 SeriesGPUs. NVIDIA provides
tools, sudh as the -ptx and -cubin °ags of nvcc, to give dewelopers visibility
into compiler behavior for assisting performanceoptimization. They have also
recerily enabledrun-time pro ling of applications on newer products. Howeer,
the GeForce8800is not suzciently obsenable for application dewelopersto easily
‘nd optimal con gurations, and no support for compiler or runtime consumption

of performanceinformation is currertly exposedto third-party dewelopers.

7.3 PhaseOrdering

Phase ordering concernsthe order in which optimizations are applied and the

decisionsof whether to apply them or not. There is much previouswork in phase

121

ordering, particularly for classicaloptimizations directed towards single-thread
applications. Vegdahl published one of the rst papers on phaseordering [37],

looking at the interaction of code generationand compaction. Whit eld and So®a
deweloped a framework to cortrol phaseordering to improve performance[38].

Cooper et al. [70] usegeneticalgorithms to nd good phaseorderings. Kulkarni

et al. mertion other previouswork [71].

This work is not directly related to phaseordering becausethe optimizations
varied in the study are e®ectiely orthogonaland applied unconditionally, making
phaseordering a nonissue.Chapter 3 instead focuseson understandingthe e®ects
of optimizations on this classof architecture, while Chapter 5 shovs how di®eren
optimizations interact. Prior work [39] has examinedhow optimal con gurations
di®er from hand-optimized onesfor se\eral applications. This work cortributes
to future construction of e®ectie phaseorderingsfor this classof architecture.

If a compilertargets particular resourceusageqthread blocks per SM, dimen-
sionsof thread blocks, etc.) instead of using optimization carving, phaseordering
will becomean important issuein nding the bestoptimization con guration that
matchesthe desiredresourceusage. This issueis discussedorie®y in Section6.6.
Studies sudh as that performed by Cooper et al. [72] or more recerlly Kulkarni
et al. [71] will be necessarnto nd good phaseorderingsfor particular program
characteristics. The e®ectsof optimizations may needto be predicted, similar to

what Zhao et al.'s framework performsfor embeddedsystemscompilation [41].

7.4 OptimizationSpaceExploration

Program optimization carving as preserted hereis derived from a full exploration
of the optimization space,an approad that hasbeenexploredby othersin various

fashions. Wolf et al. [73]introduceda compiler that exploresthe ertire optimiza-

122

tion spaceto nd the optimal optimization con guration, but they do not use
metrics to prune the space.Han et al. [74] alsousestatic modelsto seard for the
optimal tiling and padding sizefor a corvertional multipro cessor.Work hasalso
beendone to study the interaction among di®ere optimizations and between
optimizations and the hardware without a full seart.. Theseare basedon analyt-
ical models[75,76], statistical models[77], geneticalgorithms [72], and adaptive
learning and intelligent seard techniques[78{81]to nd an optimal con guration.

The optimization carving technique is most similar to the work of Wolf et al.,
but the performancemetrics presened hereare customizedfor a massiely data-
parallel architecture with a large memory bandwidth and latency-hiding memory
system. To my knowledge,the only similar study of this emergingclassof data-
parallel architectures directed at broadercomputing domainsis work by Jimenez-
Gonzalezet al. [82]. They presen an evaluation of comnunication bandwidth
betweendi®eren storageand computing componerts of the Cell Broadband En-
gine,and generalguidelinesin terms of optimizations, comnunication, data access
patterns, and programming models for full utilization.

Iterativ e approathesto spaceexploration, suc asthe approad taken by the
SPIRAL project [83], start at one or se\eral basic con guration points and then
apply optimizations in an attempt to nd a good optimization con guration. In
this work | do not take an iterative approad, since sud an approad is easily
trapped in a local maximum. Instead | examinethe e®ectsof optimizations on
the GeForce8800. Transformationstightly interact onthe GeForce8 SeriesGPUs
and must be evaluated basedon their joint e®ectdo avoid being trapped at local
maxima. Methodsto direct iterative approatesto optimization will beimportant
when particular resourceusagetargets are de ned or when even a partial space

exploration is prohibitiv ely expensiwe.

123

7.5 GPU ApplicationMappingand Optimization

Owenset al. review previouswork in mapping generalpurposecomputation to
GPUs in [84]. In general,previous GPU programming systemslimit the sizeand
complexity of GPU code due to their underlying graphics API-based implemen-
tations. CUDA supports kernelswith much larger code sizesvia a new hardware
interface and instruction cading. The ability to write larger and more complex
kernel codesgivesrise to this work.

Previous GPU generationsand their APIs also had restricted memory access
patterns, usually allowing only sequetial, cortiguous writes to a linear array.
This restriction is due primarily to limits in graphics APIs and correspnding
limits in the GPU's specializedpixel and vertex processors.Accelerator [60] does
not allow separateaccesdo an individual elemen in parallel arrays: operations
are performedon all array elemerts. Brook [59] also executesits kernel for every
elemen in the stream, with someexceptions. The GeForce8800allows for general
addressingof memory by ead thread, which supports a much wider variety of
algorithms. However, the increasedgenerality also makesit important to apply
locality enhancemen optimizations to applicationsin order to consene memory
bandwidth and hide memory latency.

Liao et al. [85] deweloped a framework on top of Brook [59] to perform ag-
gressie data and computation transformations. Their goalwasto speedup GPU
streaming applications on CPU multipro cessors.Breternitz et al. [86] also dewel-
oped a compilerto generateexcient code on a CPU for SIMD graphic workloads
by extendingthe baselSA to SSE2[87]. Thesee®ortsdi®erfrom this work, which
investigatesthe e®ectsof optimizations speci cally on a cortemporary GPU ar-

chitecture.

124

Previous attempts at general purpose programming on GPU systemshave
been limited in size and complexity. In particular, in°exibilit y of memory ac-
cesseg59,60] and memory performance[88,89] were major hurdles. A previous
study on performancetuning for GPU [90] was also constrainedby the program-
ming environment and the necessi of mappingalgorithmsto existing GPU struc-
tures. The CUDA programming model, along with the hardware support of the
GeForce 8800, allows larger, more complexkernel code to accesghe low-latency,
high-bandwidth on-chip memoryin a more generalmanner.

Traditional GPUs also provided limited cade bandwidth for nongraphicsap-
plications on the GPU. Fatahalian et al. [88] discusshow low-bandwidth cathe
designson GPUs prevert generalpurposeapplications from bene ting from the
computational power available on these architectures. Work by Govindaraju et
al. [89] usesan analytical cade performanceprediction model for GPU-basedal-
gorithms. Their results indicate that memory optimization techniquesdesigned
for CPU-basedalgorithms may not be directly applicableto GPUs. With the in-
troduction of reasonablysized,low-latency, high-bandwidth, on-chip memoriesin
new generationsof GPUSs, this issueand its optimizations have becomelesscriti-
cal. The excient useof theseon-chip memoriesstill requirescreative programmer
e®ort.

One of the important optimizations for these processorsis managemen of
data layout. Automated e®ortson data layout beganwith distributed memory
madines[91]. Recen work hasfocusedon removing the needfor application de-
velopersto manually designatethe useof speci ¢ memoriesin CUDA. Baskaran et
al. [92] have deweloped a technique to automatically map global memory accesses
to the sharedscratthpad memory on the GeForce 8 Series. They are currently

working on techniquesto map data to the cadeson the GPU.

125

CHAPTERS8

CLOSINGREMARKS

Becauseof power constrains and performancebottlenedks, computer processors
now consistof an increasingnumber of processingcoresper silicon die. This sit-
uation requiresan evaluation of the properties of applications that achieve good
performanceon sud processorsand the optimization techniquesrequiredto take
advantage of the large number of execution resources. This situation is little
di®eren from previouserasof parallel computing researt, but the newest data-
parallel platforms are very inexpensiwe, opening up the areato nearly anyonethat
has interest in performing researt on these platforms. It is also not clear how
thesesystemsshould ewlve, opening up possibilitiesfor researbersto de ne fun-
damertal computerarchitecture for many yearsto come. As a computer architect
and compiler designer,| feelthat now is an exciting time to be working in these

areas.

8.1 Applicability to Future Many-CoreProcessors

I beganthis work with an examination of the GeForce 8800GTX GPU and the
CUDA programming model. Although highly specializedas a graphicsarchitec-
ture, the GeForce 8800permits exploration of someof the fundamertal concepts
and issuesthat ewery single-tip, many-core processorwill have in the future.
The most notable of theseare data managemet and use of local memories,the

balance between multithreading and excient use of resources,and the use of

126

specializedfunction units and cadesto improve performancebeyond that of a
minimal design.

| mertioned seeral times in this work that o®-tip bandwidth is a rst-order
concernfor most applications. This issueis unlikely to changein the future; the
number of transistors per die and potertial executionresourceswill increaseat a
fasterrate than o®-thip bandwidth. Managemem of data locality and reuseshould
bethe initial focusof application and compilerdewelopersfor thesesystems.There

are two issuesherethat must be addressedn the future:

2 Due to software engineeringconcerns,programmersde ne data structures
with multiple elds to logically group data. Many of these elds may not
be usedin a given kernel or application phase,and waste bandwidth when
they are loaded from DRAM and sert through the memory system, either
on the GeForce8800or a traditional processomwith cades. In addition, the
GeForce 8800 requires global memory coalescingwhen possibleto achieve
good performance,which, due to the SIMD nature of the SM, meansthat
dewelopers must either split up the structure (generally poor software engi-
neeringpractice) or load ertire structuresin bulk into sharedmemory This
work motivates the needfor additional researt into reconciling software

engineeringneedswith the desirefor performance.

2 Expressingdata locality in code can be doneeasilywith local variables,but
many application dewelopers are usedto a °at memory spaceand often op-
eratedirectly on variablesin memory, relying on hardware cachesto manage
reuseand locality. Copying to local memory spacein previous architecture
generationsgenerallyresultedin poor performancebecausehe loadeddata
would usually be in the processor'scace anyway. Future many-coreproces-

sorsarelikely to have a scratchpad-style memory or lockable cacde to ensure

127

both locality and availability for somedata. Whether the CUDA method
of declaring somethread-speci ¢ local variables should be usedor a com-
piler should attempt to automatically determine and map the appropriate

variablesto those memoriesis open to question.

The partitionable register Te and sharedmemory on eadh SM of the GeForce
8800 enablean interesting tradeo® betweenthe number of threads on eatch SM
and the amourt of resourcesavailable to ead thread. Sincethe ideal balancewill
be di®eren for every application, this arrangemei enablestuning of application
performancebeyond what an architecture with a constart amourt of resources
per thread allows. It is not entirely clear what the chip areaand designcostsare
for enabling this °exibilit y, but the performancebene t has shavn that the idea
has merit.

The specialized cadhes and the SFUs on the GPU provided signi cant per-
formancebenet to the MRI kernels, but it is not ertirely clear whether such
featureswould be useful in a more general system. Value broadcast from the
constart cade is enabledby the SIMD nature of the SM, ensuringthat threads
in a warp executethe sameload instruction at the sametime. How to presene
this advantage when threads can simultaneously take divergen cortrol paths is
unclear. On the other hand, given the abundanceof transistors expectedin fu-
ture processorswe may seefunctionality similar to that of the SFUSs' in future
many-core processorghat are intended for a wider variety of applications.

One of the largest optimization issuesis the discortinuity in the optimiza-
tion spacedue to the strict limits on local memories. Limited local memory is
a fundamenal trait of many-core processors,and it will be important to nd
hardware and software medanismsto mitigate the discortinuities. It should be
remenberedthat application dewelopmert is an iterative process,with new fea-

tures addedin successig versions. Thesewill often require additional memory,

128

potentially exceedingavailable local memory and causing performanceto drop
precipitously comparedto the previousversion. Structures sud as intermediate
cadesor other storagethat lie betweenlocal memoriesand o®-tip DRAM are
conceptually simple, but it will be important to provide automated or mostly

automated medanismsto make their usesimple for dewelopers.

8.2 Thoughs on Optimization

The GeForce8800is highly threadedand enables ne-grained sharing of resources
amongthreads. Thus, the e®ectf well-known optimizations on this architecture
can be di®eren from their e®ectson more traditional multicore systems. With-
out understandingthe e®ectsof optimizations, a useful, systematic optimization
processis not possible. | discussedse\eral categoriesof optimizations and their
e®ecton this architecture. | alsodiscussechow theseoptimizations can interact
in unexpected ways, particularly how register usagecan reduce the number of
threads simultaneously executingon the system.

The changeneededn dewelopers' assumptionsmay be oneof the largestobsta-
clesin adoption of massiwely data-parallel, many-core systems. Until dewelopers
build up intuition of how applicationsmap to this platform and how optimizations
a®ectapplication performance,they will not be ableto extract good performance
from the system. The most prominert exampleis the relatively small e®ectof
prefetching and the possibility of signi cant TLP lossdue to increasedregister
usage.One of the goalsof this work is to dewelopthat intuition and comnmunicate
it to others.

Manual, iterative optimization on this systemmay becometrapped in a lo-
cal performancemaximum and underutilize the executionresourcesof the GPU.

Rather than attempt an iterative optimization process,| instead proposedpro-

129

gram optimization carving. This technique avoids becomingtrapped in local
performance maxima by examining the entire optimization spaceand pruning
away con gurations that are unlikely to be local maxima (and thus not the global
maximum). This techniqueis capableof eliminating up to 98%of the spacewhile
still retaining the optimal con guration. | have shown that the technique can be
far superior to random selectionfor someapplications. | have also shavn that
lessprecisemetrics provide similar functionality but are not e®ectie at reducing
the space.More precisemetrics may be better at reducingthe spacebut run the
risk of being inaccurate and pruning the top-performing con gurations.

| anticipate that somecompiler developerswill instinctively rebel againstthe
idea of generatingmultiple code con gurations and insist that the best code ver-
sioncanbe createdthrough carefultuning. Evenfor the author, it took sometime
to becomeaccustomedto the idea, but on the GeForce 8800there is little choice
becauseof the lack of deweloper cortrol of resourceusage. More generally the
complexity of compilersand architecture, aswell asthe enormousrange of appli-
cations, meansthat compilation systemswill not have the perfect understanding
of all the factors necessaryto get the \b est" optimization con guration via iter-
ative optimization using greedyapproades. This issuemight be of little concern
exceptthat on many-core systemsthe di®erencemay be substartial (double-digit
perceriage or more), and somedewelopers desirethe additional performance.

Future work in this areaincludestechniquesto further prune the seart space
or nd near-best con gurations more reliably. A combination of spaceseart
and iterativ e optimization may also be e®ectie in nding near-optimal con gu-
rations of applications (although multiple carvingscould be considereda iterative
approad). Finally, deweloper tools can make the optimization task more auto-
mated and visible. Visualization tools in particular can help guide dewelopers'

thinking into the fundamertal issuesof bandwidth, exciency, and utilization.

130

As the computing comnunity cortinuesto move forward with many-core pro-
cessorswe should reexamineour assumptionsabout the systemsand tools we
dewelop as well as what application dewelopers are willing to do or are capable
of doing. This work has shavn that assumptionsabout optimization e®ectsmay
be lessvalid becauseof the nature of the target architecture. By questioningour
assumptions,we are forcedto revisit the fundamertals of performanceand pro-
grammability. Sud a mindset will be vital to making cortinued, rapid progress

in the dewelopmert of single-tip, many-core processors.

131

APPENDIX A

CALCULATION OF THE EXPECTED
MAXIMUM VALUE OF A SAMPLE

This appendix descrikes the calculation of the expected maximum value of a
randomly selectedsamplefrom a list of numbers. The calculation is used for
comparisonto the optimization carving technique demonstratedin Section 6.3.
That sectionactually usesexpectedminimum values,which translate to expected
maximum performance.| demonstratethe expected maximum value calculation
here becausel beliewe it to be more natural to most readers;the calculation of
expected minimum value is a straightforward derivation. | rst work through the
calculation assumingreplacemen of selectedvalues as a simple example, then
demonstratethe calculation without replacemen

| start with a list of numbers S, sorted in ascendingorder. |Sj is the size of
S. For simplicity | assumethere are no repeatedvaluesin the list. S; is de ned
asthe ith-smallest elemen of S, wherel - i - |Sj. A sampleX is a collection
of elemerts taken from S and is of sizen. The calculation showvn hereis for the
expectedvalue of the maximum elemen of X .

The calculation of the expected maximum value of X is conceptually simple
if broken down into seweral parts. The calculation is basedaround nding the
probability of the maximum value of X being S; for ead i. The rst stageis
the calculation of the probability that all elemens in X are lessthan or equal
to S;. From this, one can calculate the probability of the maximum value of X
beingexactly S;. The calculation concludeswith the computation of the expected

value, which is the probability of S; being the maximum of X, times S;, for

132

every i in S. In SectionA.1 | allow X to cortain repeatedelemeits of S. For
optimization carving, con gurations are sampled no more than once. This is

modeledin SectionA.2 by not allowing X to contain repeatedelemerts of S.

A.1 With Replacemdn

| rst make the obsenation that the probability that an elemen chosenrandomly
from S hasa value smallerthan or equalto S; is (i=)Sj). Assumingreplacemen
of elemens after being chosen,the probability of the valuesof all elemens in X

being smallerthan or equalto S; is (i=)Sj)". This is showvn in Equation (A.1).

= PXyk- i) (A.1)

Next, | calculate the probability of the maximum of X being S;, or more
precisely the maximum value of the elemens within X being exactly S;. The
probability that the maximum of X is greaterthan S; is oneminusthe probability
that all valuesin the sampleare lessthan or equalto S;. This is the sameas
Equation (A.1), sothe the calculation that the maximum is greaterthan S; can

be performedas shovn in Equation (A.2).

Y
P(max[X]> Sj) = 1j P(Xk - 1)

tfli 1, (A.2)

=1; —
OS]

133

The probability of the maximum of X being S; is the sameasthe probability
that the maximum is greaterthan S;; ; but no morethan S;. This calculation is

shown in Equation (A.3).

P(max[X]= §)) = P(max[X]> Sj;1) i P(max[X]> S)
’ HII 1ﬂn> ' H I ﬂm
= 1j ﬁ i 1 J§j (A.3)

isi 'S
The expectedvalue of the maximum value of the sampleX can be calculated
by summing the products of S; and the probability that the maximum of the

sampleis S; for all i in S. This calculation is shovn in Equation (A.4).

¥i
E[max[X]]= [P(max[X]= i) ¢S]
i=1
o (A.4)
ZXSJ MU | Tn IJII 1ﬂnﬂs,

i —ij i

isi

i=1

A.2 Without Replacemén

For optimization carving, choosing a sampleis done without replacemen of ele-
merts already chosenfrom the list. A sampleconsistingof the ertire samplespace
should provide the elemen with the maximum value in the space,which is not
the casewith replacemen Without replacemen the sizeand the valid number
of remaining choicesdecreasewith an increasein the size of the sample. The
probability of the valuesof all elemens in X being smallerthan or equalto S; is

showvn in Equation (A.5). For this calculation, n must be lessthan i; otherwise,

134

the maximum value of X will be equalto or greaterthan S; and the probability

of the maximum being equalto S; is one or zero, respectively.

PBx2X :x: §)=P(X1- S) " =™ Xn-)

S R T T T

S Sl 1 g isjin+1
it (4Sji n)!

(iin jSi!

(A.5)

The probability of the maximum of X being S; is calculated similarly to that
of Equations (A.2) and (A.3). The calculationsare shovn in Equations (A.6) and

(A.7).

P(max[X]> S)=1j P(8x2 X :x- §)

M gsiom! (18)

N TS TSI

P(max[X] = S) = P(max[X]> S, 1) i P(max[X]> S)
| G gsiim M i gsiim™

:1i

(i 1i n)! jSj! i L (i n jSj!
it (i) (Sji n)
Gy G 1oy S

ity (ii DWij n)* (jSji n)!

_ (ii n) jSj!
_ il Dty (i m@i 1) GSji n)!
(ij n)! iS)!
_n(i DIGSji n)!
@(iin S

(A.7)

135

The computation for the expected value of the maximum of the sampleis
shown in Equation (A.8). The summation beginswith i = n, sincethe maximum
of X cannot be any smallerthan S,. A derivation of this equation for minimum
expectedvalueis usedto calculatethe expectedmaximum performanceof samples

of various sizesin Section6.3.

56
E [max[X]] = [P(max[X]=1) ¢S]
© M ogs mgsim
- T EE (A8)

_nGsii mr (i
TS TR () The

136

REFERENCES

[1] D. Pham et al., \The designand implemertation of a rst-generation CELL
processor,"in IEEE International Solid-StateCircuits Conferene, February
2005.

[2] AGEIA, \PhysX by AGEIA," March 2008. [Online]. Available:
http://www.ageia.com.

[3] D. E. Shaw et al., \An ton, a special-purposemadine for moleculardynamics
simulation,” in Proceedings of the 34th Annual International Symmsium on
Computer Architecture, Decenber 2007,pp. 1{12.

[4] J. W. Sias, S.-Z. Ueng, G. A. Kent, I. M. Steiner, E. M. Nystrom, and
W. W. Hwu, \Field-testing IMPACT EPIC researt resultsin Itanium 2,"
in Proceedings of the 31st Annual International Symmsium on Computer
Architecture, June 2004, pp. 26{39.

[5] V. S. Adve, C. Koelbel, and J. M. Mellor-Crummey, \Compiler support for
analysisandtuning data parallel programs,"in Proceedingsof the 1994Work-
shopon Parallel ProcessingTools and Environments May 1994.

[6] NVIDIA, \NVIDIA CUDA," February 2008. [Online]. Available:
http://www.n vidia.com/cuda.

[7] J. Nickolls and I. Buck, \NVIDIA CUDA software and GPU parallel com-
puting architecture," presened at Microprocesso~orum, SanJose,CA, May
2007.

[8] M. J. Atallah, Ed., Algorithms and Theory of Computation Handlook. Boca
Raton, FL: CRC Press,1998.

[9] S.Woop, J. Schmittler, and P. Slusallek,\RPU: A programmableray process-
ing unit for realtime ray tracing,” ACM Transactionson Graphics vol. 24,
no. 3, pp. 434{444,July 2005.

[10] D. Burger, J. R. Goodman, and A. Kagi, \Memory bandwidth limitations
of future microprocessors,"in Proceedings of the 23rd Annual International
Sympsium on Computer Architecture, May 1996,pp. 78{89.

137

[11] C. Ding and K. Kennedy \Bandwidth-based performancetuning and pre-
diction," in Proceedingsof the IASTED International Conference on Parallel
Computing and Distributed Systems November 1999.

[12] M. Wolfe, \Iteration spacetiling for memory hierarchies," in Proceedings of
the Third SIAM Conference on Parallel Processingfor Scienti ¢ Computing
Decenber 1987,pp. 357{361.

[13] F. Irigoin and R. Triolet, \Supernode partitioning,” in Proceedings of the
1988 Conferenee on Principles of Programming Languages January 1988,
pp. 319{329.

[14] M. E. Wolf and M. S. Lam, \A data locality optimizing algorithm," in Pro-
ceedings of the ACM SIGPLAN 1991 Conference on Programming Language
Designand Implementation, June 1991, pp. 30{44.

[15] M. S. Lam, E. E. Rothberg, and M. E. Wolf, \The cade performanceand
optimizations of blocked algorithms,"” in Proceedings of the 4th International
Conferene on Architectural Supprt for Programming Languagesand Oper-
ating Systems April 1991,pp. 63{74.

[16] D. Callahan, S. Carr, and K. Kennedy, \Impro ving register allocation for
subscriptedvariables," Proceedings of the ACM SIGPLAN 1990 Conference
on Program LanguageDesignand Implementation, pp. 53{65, June 1990.

[17] C. Ding and K. Kennedy \The memory bandwidth bottlenedk and its ame-
lioration by a compiler,” in Proceedings of the 14th International Symmsium
on Parallel and Distributed Processing May 2000, pp. 181{190.

[18] C. Ding and K. Kennedy, \Impro ving e®ectie bandwidth through compiler
enhancemenof global cachereuse,"Journal of Parallel and Distributed Com-
puting, vol. 64, no. 1, pp. 108{134,January 2004.

[19] J. Allen and K. Kennedy, \Automatic loop interchange," in Proceadings of
the 1984ACM SIGPLAN Sympmsium on Compiler Construction, June 1984,
pp. 233{246.

[20] Y. Yamada, J. Gyllenhaal, G. Haab, and W. W. Hwu, \Data relocation
and prefetaiing for large data sets,” in Proceedings of the 27th Annual
ACM/IEEE International Symmsium on Microarchitecture, 1994, pp. 118{
127.

[21] D. N. Truong, F. Bodin, and A. Seznec\Impro ving cade behavior of dynam-
ically allocated data structures,” in Proceadings of the Seventhinternational
Conferene on Parallel Architectures and Compilation Techniques October
1998, pp. 322{329.

138

[22] T. Chilimbi, B. Davidson, and J. Larus, \Cache-consciousstructure de ni-
tion," in Proceedings of the ACM SIGPLAN 1991 Conferene on Program-
ming LanguageDesignand Implementation, May 1999, pp. 13{24.

[23] J. W. Sias, \A systematic approad to delivering instruction-level paral-
lelismin EPIC systems,"Ph.D. dissertation, University of lllinois at Urbana-
Champaign, 2005.

[24] Y. Chou, B. Fahs, and S. Abraham, \Microarc hitecture optimizations for
exploiting memory-lewel parallelism," in Proceedings of the 31th Annual In-
ternational Symposium on Computer Architecture, June 2004,pp. 76{88.

[25] V. S. Pai and S. Adve, \Code transformations to improve memory paral-
lelism,” in Proceadings of the 32nd Annual IEEE/A CM International Sym-
posium on Microarchitecture, Novermber 1999,pp. 147{155.

[26] S. Che, J. Meng, J. Shea®er,and K. Skadron, \A performance study of
generalpurposeapplications on graphicsprocessors,'in The First Workshop
on Geneial PurposeProcessingon GraphicsProcessingUnits, October 2007.

[27] J. E. Stone,J. C. Phillips, P. L. Freddolino, D. J. Hardy, L. G. Trabuco,and
K. Sdlten, \Accelerating molecular modeling applications with graphics
processors,"Journal of Computational Chemistry, vol. 28, no. 16, pp. 2618{
2640,Decenber 2007.

[28] IMPACT Researb Group, \P arboil bendymark suite,” March 2008.[Online].
Available: http://www.crhc.uiuc.edu/IMP ACT/parb oil.php.

[29] C.I. Rodrigues,D. J. Hardy, J. E. Stone,K. Sdwlten, andW. W. Hwu, \GPU
accelerationof cuto®pair potentials for molecularmodeling applications," in
Proceedings of the ACM International Conferene on Computing Frontiers,
to be published.

[30] S.S.Stone,J. P. Haldar, S.C. Tsao,W. W. Hwu, Z. Liang, and B. P. Sutton,
\Accelerating advancedMRI reconstructionson GPUs," in Proceedingsof the
ACM International Conferenee on Computing Frontiers, to be published.

[31] S.Stone,H. Yi, J. Haldar, W. W. Hwu, B. Sutton, and Z. Liang, \How GPUs
canimprove the quality of magneticresonancamaging,” in The First Work-
shopon Geneml Purpose Processingon Graphics ProcessingUnits, October
2007.

[32] H.-M. Hang, Y.-M. Chou, and S.-C. Cheng, \Motion estimation for video
coding standards," Journal of VLSI Signal Processing vol. 17, pp. 113{136,
1997.

[33] A. Aho, M. Lam, R. Sethi,and J. Ullman, Compilers: Principles, Techniques,
and Tools, 2nd ed. Reading,MA: Addison-Wesley 2006.

139

[34] K. Kennedy and R. Allen, Optimizing Compilers for Modern Architectures:
A Demendene-Basel Approach San Francisco, CA: Morgan Kaufmann
Publishers, 2002.

[35] S. Muchnick, Advaned Compiler Design and Implementation San Fran-
cisco,CA: Morgan Kaufmann Publishers,1997.

[36] R. Gupta and R. Bodik, \Register pressuresensitive redundancy elimina-
tion," in Proceedings of the 8th International Conferena on Compiler Con-
struction, LNCS 1575 March 1999,pp. 107{121.

[37] S. R. Vegdahl, \Phase coupling and constart generationin an optimizing
microcode compiler,” in Proceedings of the 15th Annual Workshopon Micro-
programming, October 1982,pp. 125{133.

[38] D. Whiteld and M. L. So®a,\An approad to ordering optimizing trans-
formations,” in Proceadings of the Second ACM SIGPLAN Symmsium on
Principles and Practice of Parallel Programming, 1990,pp. 137{146.

[39] S.Ryoo, C. . Rodrigues,S. S. Stone,S. S.Baghsorkhi,S.-Z.Ueng,and W. W.
Hwu, \Program optimization study on a 128-coreGPU," in The First Work-
shopon Geneml Purpose Processingon Graphics ProcessingUnits, October
2007.

[40] S. Ryoo, C. I. Rodrigues, S. S. Stone, S. S. Baghsorkhi, S.-Z. Ueng, J. A.
Stratton, and W. W. Hwu, \Program optimization spacepruning for a mul-
tithreaded GPU," in Proceadings of the 2008 International Symposium on
Cade Geneiation and Optimization, April 2008,pp. 195{204.

[41] M. Zhao, B. Childers, and M. L. So®a,\Predicting the impact of optimiza-
tions for embeddedsystems,"in Proceedings of the 2003 Conferene on Lan-
guages,Compilers, and Tools for Embedded Systems June 2003, pp. 1{11.

[42] V. S. Adve, J. Mellor-Crummey, M. Anderson,J.-C. Wang, D. A. Reed,and
K. Kennedy, \An integrated compilation and performanceanalysisenviron-
ment for data parallel programs,” in Proceedings of the 1995 ACM/IEEE
Conferene on Supercomputing, November 1995, pp. 50{67.

[43] D. J. Kuck, R. H. Kuhn, B. Leasure,and M. Wolfe, \The structure of an
advancedvectorizer for pipelined processors,"in Proceadings of the 4th In-
ternational Computer Softwaie and Applications Conference, October 1980,
pp. 709{715.

[44] D. J. Kuck et al., \The e®ectsof program restructuring, algorithm change,
and architecture choiceon program performance,"in Proceedings of the 13th
International Conferenae on Parallel Processing August 1984,pp. 129{138.

140

[45] F. E. Allen, M. Burke, P. Charles,R. Cytron, and J. Ferrante, \An overview
of the PTRAN analysissystemfor multipro cessing,"in Proceedings of the 1st
International Conferena on Sugercomputing, June 1987,pp. 194{211.

[46] J. R. Allen and K. Kennedy, \PF C: A programto corvert Fortran to parallel
form,” in Supercomputers: Design and Applications, K. Hwang, Ed. Los
Alamitos, CA: IEEE Computer Scciety Press,August 1984,pp. 186{203.

[47] R. Allen, D. Callahan, and K. Kennedy \Automatic decompsition of sci-
erti c programs for parallel execution," in Proceedings of the 14th ACM
SIGACT-SIGPLAN Sympmsium on Principles of Programming Languages
January 1987,pp. 63{76.

[48] J. R. Allen and K. Kennedy, \Automatic translation of Fortran programsto
vector form,” ACM Transactionson Programming Languagesand Systems
vol. 9, no. 4, pp. 491{542,0ctober 1987.

[49] W. Blume et al., \P olaris: The next generationin parallelizing compilers,”
University of lllinois at Urbana-Champaign,Ted. Rep. 1375,1994.[Online].
Available: polaris.cs.uiuc.edu/publications/1375.f.

[50] M. W. Hall, J. M. Anderson,S. P. Amarasinghe,B. R. Murphy, S.-W. Liao,
E. Bugnion, and M. S. Lam, \Maximizing multipro cessorperformancewith
the SUIF compiler,” IEEE Computer, vol. 29, no. 12, pp. 84{89, 1996.

[51] R. Allen and K. Kennedy, \Automatic translation of Fortran programsto
vector form," ACM Transactionson Programming Langugagesnd Systems
vol. 9, no. 4, pp. 491{542,1987.

[52] M. J. Wolfe, Optimizing Supercompilers for Supgercomputers Cambridge,
MA: MIT Press,1990.

[53] OpenMP Architecture Review Board Members, OpenMP Application Pro-
gram Interface, OpenMP Architecture ReviewBoard, May 2005.

[54] K. E. Iverson,A Programming Language New York, NY: John Wiley and
Sons,1962.

[55] J. C. Adams, W. S.Brainerd, J. T. Martin, B. T. Smith, and J. L. Wagener,
Fortran 90 Handlook: Complete ANSI/ISO Referene. New York, NY:
Intertext Publications, Inc.,/McGraw-Hill, Inc., 1992.

[56] D. B. Loveman,\High performanceFortran,” IEEE Parallel & Distributed
Technolay: Systems& Applications, vol. 1, no. 1, pp. 25{42, February 1993.

[57] M. Snir, S. W. Otto, D. W. Walker, J. Dongarra, and S. Huss-Lederman,
MPI. The CompleteReferenee. Cambridge, MA: MIT Press,1995.

141

[58] W. R. Mark, R. S. Glanville, K. Akeley and M. J. Kilgard, \Cg: a systemfor
programming graphics hardware in a C-like language,"in SIGGRAPH '03:
ACM SIGGRAPH 2003 Pagpers, 2003,pp. 896{907.

[59] I. Buck, \Bro ok speci cation v0.2," Stanford University, Ted. Rep.
CSTR 2003-04, October 2003. [Online]. Available: http://merrimac.stan-
ford.edu/brook/bro okspec-v0.2.f.

[60] D. Tarditi, S. Puri, and J. Oglesly, \Accelerator: Using data parallelismto
program GPUs for general-purpseuses,”in Proceedings of the 12th Interna-
tional Conferena on Architectural Supmrt for Programming Languagesand
Operating Systems October 2006,pp. 325{335.

[61] M. D. McCool, K. Wadleigh, B. Henderson,and H.-Y. Lin, \P erformance
evaluation of GPUs using the RapidMind dewelopmen platform,” poster at
the 2006 ACM/IEEE Conferenceon Supercomputing, Tampa, FL, 2006.

[62] PeakStreamSta®, \The PeakStreamplatform: High productivity software
dewelopmern for multi-core processors,"PeakStreaminc., Tedh. Rep., 2006.

[63] AMD, \AMD stream computing,” March 2008. [Online]. Available:
http://ati.amd.com/pro ducts/streamprocessor/index.timl.

[64] P. H. Wang et al., \EX OCHI: Architecture and programming ervironmert
for a heterogeneousnulti-core multithreaded system,” in Proceedings of the
2007 ACM SIGPLAN Conferene on Programming LanguageDesign and
Implementation, June 2007, pp. 156{166.

[65] H. Zima and B. Chapman,Sugercompilersfor Parallel and Vector Computers
Reading, MA: Addison-WesleyPublishing Compary, 1991.

[66] V. Sarkar and R. Thekkath, \A generalframework for iteration-reordering
loop transformations,” in Proceedings of the ACM SIGPLAN 1992 Confer-
ena@ on Programming LanguageDesignand Implementation, June 2007,pp.
175{187.

[67] C. Click and K. D. Cooper, \Combining analyses,combining optimizations,"
ACM Transactionson Programming Languagesand Systems vol. 17, no. 2,
pp. 181{196,March 1995.

[68] K. Kennedyand K. S. McKinley, \Optimizing for parallelismand data local-
ity," in Proceadings of the 6th International Conferena on Supercomputing,
July 1992,pp. 323{334.

[69] S. Carr, K. S. McKinley, and C.-W. Tseng, \Compiler optimizations for
improving data locality,” in Proceedingsof the Sixth International Conference
on Architectural Supprt for Programming Languagesnd Operating Systems
October 1994,pp. 252{262.

142

[70] K. D. Cooper, P. J. Saiielke, and D. Subramanian,\Optimizing for reduced
code spaceusing geneticalgorithms," in Proceedings of the 1999 ACM SIG-
PLAN Workshopon LanguagesCompilers,and Tools for Embedded Systems
May 1999,pp. 1{9.

[71] P. A. Kulkarni, D. B. Whalley, G. S. Tyson,and J. W. Davidson, \Ev aluation
heuristic optimization phaseorder seard algorithms," in Proceadings of the
2007International Symppsium on Code Geneiation and Optimization, March
2007,pp. 157{169.

[72] K. D. Cooper, A. Grosul, T. J. Harvey, S. Reewes,D. Subramanian,L. Torc-
zon,and T. Waterman, \Exploring the structure of the spaceof compilation
sequencesising randomized seart algorithms,” The Journal of Supgercom-
puting, vol. 36, no. 2, pp. 135{151,2006.

[73] M. E. Wolf, D. E. Maydan, and D.-K. Chen, \Combining loop transforma-
tions consideringcacdhesand scheduling,” in Proceedings of the 29th Annual
ACM/IEEE International Symmsium on Microarchitecture, Decenber 1996,
pp. 274{286.

[74] H. Han, G. Rivera, and C.-W. Tseng,\Software support for improving local-
ity in scierti ¢ codes," in Proceedings of the 8th International Workshopon
Compilersfor Parallel Computers January 2000.

[75] S. Ghosh, M. Martonosi, and S. Malik, \Precise miss analysisfor program
transformations with cadesof arbitrary assaiativity,” in Proceedings of the
8th International Conference on Architectural Supmrt for Programming Lan-
guagesand Operating Systems October 1998, pp. 228{239.

[76] T. Kisuki, P. M. W. Knijnenburg, and M. F. P. O'Boyle, \Combined selection
of tile sizesand unroll factors using iterative compilation,” in Proceedings of
the 2000International Conference on Parallel Architecturesand Compilation
Techniques October 2000, pp. 237{248.

[77] M. Haneda, P. M. W. Knijnenburg, and H. A. G. Wijsho®, \Automatic
selectionof compiler options using non-parametric inferertial statistics," in
Proceedings of the 14th International Conference on Parallel Architectures
and Compilation Techniques Septenber 2005, pp. 123{132.

[78] F. Agakov, E. Bonilla, J. Cavazos,B. Franke, G. Fursin, M. F. P. O'Boyle,
J. Thomson,M. Toussairn, and C. K. I. Williams, \Using madine learningto
focusiterativ e optimization,” in Proceedings of the 4th Annual International
Symmsium on Code Genelation and Optimization, March 2006,pp. 295{305.

143

[79] L. Almagor, K. D. Cooper, A. Grosul, T. J. Harvey, S. W. Reees,D. Sub-
ramanian, L. Torczon,and T. Waterman, \Finding e®ectie compilation se-
guences,"Proceadings of the 2004 ACM SIGPLAN/SIGBED Conference on
LanguagesCompilers, and Tools for Embedded Systems pp. 231{239,March
2004.

[80] S. Triantafyllis, M. Vachharajani, N. Vachharajani, and D. I. August, \Com-
piler optimization-space exploration,” in Proceedings of the 2003 Interna-
tional Sympmsium on Code Genemation and Optimization, March 2003, pp.
204{215.

[81] K. Vaswani, M. J. Thazhuthaveetil, Y. N. Srikant, and P. J. Joseph,\Mi-
croarchitecture sensitive empirical models for compiler optimizations," in
Proceedings of the 2007 International Sympsium on Code Geneiation and
Optimization, March 2007,pp. 131{143.

[82] D. Jimenez-GonzalezX. Martorell, and A. Ramirez, \P erformanceanalysis
of Cell Broadband Engine for high memory bandwidth applications," in Pro-
ceedings of the IEEE International Sympsium on Performance Analysis of
Systemsand Softwale, April 2007,pp. 210{219.

[83] M. Pésdel, B. Singer, J. Xiong, J. M. F. Moura, J. Johnson, D. Padua,
M. Veloso,and R. W. Johnson \SPIRAL: A generatorfor platform-adapted
libraries of signal processingalgorithms,” Journal of High Performance Com-
puting and Applications (Special Issue on Automatic Performance Tuning),
vol. 18, no. 1, pp. 21{45, 2004.

[84] J. D. Owens,D. Luebke, N. Govindaraju, M. Harris, J. Kriger, A. E. Lefohn,
and T. J. Purcell, \A survey of general-purpse computation on graphics
hardware," Computer Graphics Forum, vol. 26, no. 1, pp. 80{113, 2007.

[85] S.-W. Liao, Z. Du, G. Wu, and G.-Y. Lueh, \Data and computation transfor-
mations for Brook streamingapplicationson multipro cessors,'in Proceadings
of the 4th International Symposium on Code Genemtion and Optimization,
March 2006, pp. 196{207.

[86] M. Breternitz Jr., H. Hum, and S. Kumar, \Compilation, architectural sup-
port, and ewaluation of SIMD graphics pipeline programs on a general-
purposeCPU," in Proceedings of the 12th International Conferene on Par-
allel Architectures and Compilation Techniques 2003,pp. 135{145.

[87] Intel Tedhnical Sta®, Intel 64 and IA-32 Architectures Softwae Develogr's
Manual, Intel, May 2007.

[88] K. Fatahalian, J. Sugerman,and P. Hanrahan,\Understanding the exciency
of GPU algorithms for matrix-matrix multiplication,” in Proceedings of the
2004 ACM SIGGRAPH/EUR OGRAPHICS Conferene on Graphics Hard-
ware, August 2004,pp. 133{137.

144

[89] N. K. Govindaraju, S. Larsen,J. Gray, and D. Manocha, \A memory model
for scieni ¢ algorithms on graphics processors,"in Proceedings of the 2006
ACM/IEEE Conferene on Supercomputing, no. 89, August 2006,pp. 89{99.

[90] C. Jiang and M. Snir, \Automatic tuning matrix multiplication performance
on graphicshardware,” in Proceadings of the 14th International Conferene

on Parallel Architecture and Compilation Techniques Septenber 2005, pp.
185{196.

[91] K. Kennedy and U. Kremer, \Automatic data layout for distributed mem-
ory madines,” ACM Transactionson Programming Languagesand Systems
(TOPLAS), vol. 20, no. 4, pp. 869{916,July 1998.

[92] M. M. Baskaran, U. Bondhugula, S. Krishnamoorthy, J. Ramarujam,
A. Rountev, and P. Sadgappan, \Automatic data movemert and compu-
tation mapping for multi-level parallel architectures with explicitty managed
memories,"in Proceadings of the 13th ACM SIGPLAN Symposium on Prin-
ciplesand Practice of Parallel Programming, February 2008, pp. 1{10.

145

AUTHOR'SBIOGRAPHY

ShaneRyoo wasborn on 18 July 1978in Chicago, lllinois. He received a Bachelor
of Sciencedegreein Electrical Engineeringwith Highest Honorsfrom the Univer-
sity of Illinois at Urbana-Champaignin May of 2000. He cortinued his studies
at the University of Illinois, with a Master of Sciencein Electrical Engineeringin
May of 2004and his Doctor of Philosoplhy in Electrical and Computer Engineering
in May of 2008. Shane'sprimary researt interestslie in program optimization
and the architectural featuresand software analyseghat enablehigh-performance
execution.

Shanewas a recipiert of the National DefenseScienceand EngineeringGrad-
uate Fellowship, aswell as a University of lllinois Fellowship, ECE Distinguished
Fellowship, and Carver Fellowship. Shanesered as a researt assistart under
Wen-meiW. Hwu for eight years. During his studies, Shaneperformedinternships
at AdvancedMicro Devicesin Austin, Texas,and Intel Corporation in Portland,

Oregon,and Folsom, California.

146

